[go: up one dir, main page]

GB2480612A - Oxidation stabilized fuels having enhanced corrosion resistance - Google Patents

Oxidation stabilized fuels having enhanced corrosion resistance Download PDF

Info

Publication number
GB2480612A
GB2480612A GB1008632A GB201008632A GB2480612A GB 2480612 A GB2480612 A GB 2480612A GB 1008632 A GB1008632 A GB 1008632A GB 201008632 A GB201008632 A GB 201008632A GB 2480612 A GB2480612 A GB 2480612A
Authority
GB
United Kingdom
Prior art keywords
fuel
mixture
middle distillate
distillate fuel
biodiesel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1008632A
Other versions
GB201008632D0 (en
Inventor
Christine Dani Le Mabille
John Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Ltd
Original Assignee
Afton Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Ltd filed Critical Afton Chemical Ltd
Priority to GB1008632A priority Critical patent/GB2480612A/en
Publication of GB201008632D0 publication Critical patent/GB201008632D0/en
Priority to US13/111,364 priority patent/US20110283603A1/en
Priority to CN2011101335403A priority patent/CN102260553A/en
Priority to SG2011037298A priority patent/SG176394A1/en
Publication of GB2480612A publication Critical patent/GB2480612A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Powder Metallurgy (AREA)

Abstract

A method of improving oxidation properties of biodiesel-containing fuel compositions provides combining a major amount of middle distillate fuel containing more than about 5 volume percent biodiesel components with a minor amount of a synergistic mixture of (A) hydrocarbyl- substituted succinimide dispersant and (B) a compound of the formula:and tautomers and enantiomers thereof. In the formula, R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000. The synergistic mixture has a weight ratio of A:B ranging from 2:1 to 10:1.

Description

OXIDATION STABILIZED FUELS HAVING
ENHANCED CORROSION RESISTANCE
TECHNICAL FIELD:
100011 The disclosure is directed to certain diesel fuel additives and to diesel fuels and diesel fuel additive concentrates that include the additive. In particular the disclosure is directed methods for improving the oxidation stability andlor corrosion resistance of diesel and biodiesel fuels.
BACKGROUND AND SUMMARY:
[00011 In order to preserve valuable resources and reduce emissions that may be detrimental to the environment, renewable fuels, made from crops such as oilseed rape, soya, oil palm, sugar cane or maize, have been added to fuels. A goal of using such fuel components is to make transport fuels increasingly environmentally friendly without changing how a vehicle engine works on such fuel.
100021 Biodiesel components for fuel may be produced from straight vegetable oil, animal oil/fats, tallow and waste oils. Almost all biodiesel components are produced using base catalyzed transesterification as it is the most economical process requiring only low temperatures and pressures and producing a 98% conversion yield. Rape, oil palm and soya oil are the most common crops used for biodiesel production. Most commercially available biodiesel fuels are actually biodiesel blends that are properly referenced with the letter B followed by a one-or two-digit number that represents the percentage of biodiesel used in the blend with petroleum diesel fuel. Pure biodiesel is sometimes called "neat" biodiesel and is also referred to as B100. The most common biodiesel blends are B2, B5, B7, BlO, B20 and B50. The remaining fraction is petroleum-based diesel fuel, which is often referred to as petrodiesel.
100031 Vegetable oils and fatty acid methyl esters have a relatively short storage life as they are slowly oxidized by atmospheric oxygen. The resulting oxidation products may be insoluble in the fuel and thus may damage vehicle engines. For this reason oxidation stability of biodiesel containing fuels is an important quality criterion. Until now, use of relatively expensive fuel additive components may be required to meet the oxidation stability standards of biodiesel containing fuels as determined by ASTM D-2274. Hence, methods for effectively
I
reducing or eliminating the need for relatively expensive fuel components while maintaining the oxidation stability of biodiesel containing fuels are needed.
100041 In accordance with the disclosure, exemplary embodiments provide methods of improving oxidation stability of biodiesel-containing fuel compositions. The methods provide combining a major amount of middle distillate fuel containing more than about 5 volume percent of at least one biodiesel component with a minor amount of a synergistic mixture of (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: /\/\ FI2N NH CH-CH2NH NH2
R
and tautomers and enantiomers thereof. In the fonnula, R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000. The synergistic mixture has a weight ratio of A:B ranging from 2:1 to 10:1.
100051 Another embodiment of the disclosure provides a method of operating an engine on a middle distillate fuel containing more than about 5 volume percent of at least one biodiesel component. The method includes formulating the fuel with a minor amount of a synergistic mixture of (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: I-(2N NH CH-CH2NH NH2
R
and tautomers and enantiomers thereof to provide an oxidation resistant fuel composition, wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000. The synergistic mixture has a weight ratio of A:B ranging from 2:1 to 10:1. The engine is operated on the fuel composition.
100061 A further embodiment of the disclosure provides use of a synergistic mixture of (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: // XTJ\ FN NH CH-CH2NH NH2
R
and tautomers and enantiomers thereof, wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000. The synergistic mixture has a weight ratio of A:B ranging from 2:1 to 10:1 in a middle distillate fuel containing at least 7 volume percent of at least one biodiesel component to improve the oxidation stability of the fuel according to ASTM D-2274.
[00071 An unexpected advantage of the synergistic mixture of A and B described above, is that a middle distillate fuel containing more than about 5 volume percent biodiesel components may not require the use of relatively expensive metal deactivation agents in order to meet or exceed the oxidation stability criteria for such fuel as determined by ASTM D-2274 in the presence of added copper.
[00081 Additional embodiments and advantages of the disclosure will be set forth in part in the detailed description which follows, and/or can be learned by practice of the disclosure. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0009J In accordance with embodiments of the disclosure, a synergistic fuel additive mixture is provided. The synergistic mixture includes: (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: A/k I-IN NH CH-CH2NH NH2 and tautomers and enantiomers thereof, wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000. The synergistic mixture may have a weight ratio of A:B ranging from about 2:1 to about 10:1, for example from about 3:1 to about 6:1, more particularly from about 3.5:1 to 5:1.
[000101 As used herein, the term "hydrocarbyl group" or "hydrocarbyl" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include: (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical); (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl, and imidazolyl. In general, no more than two, or as a further example, no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; in some embodiments, there will be no non-hydrocarbon substituent in the hydrocarbyl group.
[000111 As used herein, the term "major amount" is understood to mean an amount greater than or equal to 50 wt. %, for example from about 80 to about 98 wt.% relative to the total weight of the composition. Moreover, as used herein, the term "minor amount" is understood to mean an amount less than 50 wt. % relative to the total weight of the composition.
1000121 "Biorenewable fuel," "biodiesel fuel," and "biodiesel component" as used herein is understood to mean any fuel which is derived from resources other than petroleum. Such resources include, but are not limited to, corn, maize, soybeans and other crops; grasses, such as switchgrass, miscanthus, and hybrid grasses; algae, seaweed, vegetable oils; natural fats; and mixtures thereof. In an aspect, the biorenewable fuel may include monohydroxy alcohols, such as those having from 1 to about 5 carbon atoms. Non-limiting examples of suitable monohydroxy alcohols include methanol, ethanol, propanol, n-butanol, isobutanol, t-butyl alcohol, amyl alcohol, and isoamyl alcohol.
[00013] "Middle distillate fuel" as used herein may be, for example, a naphtha, kerosene or diesel fuel composition. It may be a heating oil, an industrial gas oil, a drilling oil, an automotive diesel fuel, a distillate marine fuel or a kerosene fuel such as an aviation fuel or heating kerosene. It may in particular be a diesel fuel composition. More particularly, a middle distillate fuel is a fuel that is suitable and/or adapted and/or intended for use in an internal combustion engine; for example an automotive fuel composition, and/or adapted and/or intended for use in an automotive diesel (compression ignition) engine. Such middle distillate fuel may be organically or synthetically derived, for example a petroleum derived or Fischer-Tropsch derived gas oil. A middle distillate fuel may have boiling points within the usual diesel range of from or 150 to 400 or 5500 C., depending on grade and use. A density of the middle distillate fuel may range from 0.75 to 1.0 glcm3, for example, from 0.8 to 0.86 g/cm3, at 15° C. (IP 365) and a measured cetane number (ASTM D613) of from 35 to 80, suitably from 40 to 75 or 70. An initial boiling point of a middle distillate fuel may suitably be in the range 150 to 230° C. and the fuel may have a final boiling point in the range 290 to 400° C. A kinematic viscosity of the middle distillate fuel at 40° C. (ASTM D445) might suitably range from 1.5 to 4.5 mm2/s (centistokes).
[00014] Component A of the synergistic mixture may be a dispersant, such as an amine- containing dispersant. Suitable amine-containing dispersants may include hydrocarbyl-substituted succinimide dispersants. The hydrocarbyl substituent of the dispersant may have a number average molecular weight ranging from about 100 to about 5000, such as about 500 to about 5000 daltons, as determined by GPC.
[00015] As used herein the term "succinimide" is meant to encompass the completed reaction product from reaction between an amine and a hydrocarbyl-substituted succinic acid or anhydride (or like succinic acylating agent), and is intended to encompass compounds wherein the product may have amide, and/or salt linkages in addition to the imide linkage of the type that results from the reaction of or contact with an amine and an anhydride moiety.
1000161 Suitable hydrocarbyl-substituted succinic anhydrides may be fonned by first reacting an olefinically unsaturated hydrocarbon of a desired molecular weight with maleic anhydride. Reaction temperatures of about 100°C to about 250°C may be used.
1000171 With higher boiling olefinically-unsaturated hydrocarbons, good results may be obtained at about 200°C to about 250°C. This reaction may be promoted by the addition of chlorine.
1000181 Typical olefins may include, but are not limited to, cracked wax olefins, linear alpha olefins, branched chain alpha olefins, polymers and copolymers of lower olefins. The olefins may be chosen from ethylene, propylene, butylene, such as isobutylene, 1-octane, 1-hexene, 1 -decene and the like. Useful polymers and/or copolymers may include, but are not limited to, polypropylene, polybutenes, polyisobutene, ethylene-propylene copolymers, ethylene-isobutylene copolymers, propylene-isobutylene copolymers, ethylene-1 -decene copolymers and the like.
1000191 In an aspect of the disclosed embodiments, the hydrocarbyl substituents of the hydrocarbyl-substituted succinic anhydrides may be derived from butene polymers, for example polymers of isobutylene. Suitable polyisobutenes for use herein include those formed from HR-PIB having at least about 60%, such as about 70% to about 90% and above, terminal vinylidene content. Suitable polyisobutenes may include those prepared using BF3 catalysts. The average number molecular weight of the hydrocarbyl substituent may vary over a wide range, for example from about 100 to about 5000, such as from about 500 to about 5000, as determined by GPC.
1000201 Carboxylic reactants other than maleic anhydride may be employed such as maleic acid, fumaric acid, malic acid, tartaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, ethylmaleic anhydride, dimethylmaleic anhydride, ethylmaleic acid, dimethylmaleic acid, hexylmaleic acid, and the like, including the corresponding acid halides and lower aliphatic esters. A mole ratio of maleic anhydride to olefin in the reaction mixture may vary widely. Accordingly, the mole ratio may vary from about 5:1 to about 1.5, for example from about 3:1 to about 1:3, and as a further example, the maleic anhydride may be used in stoichiometric excess to force the reaction to completion. The unreacted maleic anhydride may be removed by vacuum distillation.
[00021] Any of numerous polyamines can be utilized in preparing the hydrocarbylsubstituted succinimide dispersant. Non-limiting exemplary polyamines may include aminoguanidine bicarbonate (AGBC), diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA) and heavy polyamines. A heavy polyamine may comprise a mixture of polyalkylenepolyamines having small amounts of lower polyamine oligomers such as TEPA and PEHA, but primarily oligomers having seven or more nitrogen atoms, two or more primary amines per molecule, and more extensive branching than conventional polyamine mixtures. Additional non-limiting polyamines which may be used to prepare the hydrocarbyl-substituted succinimide dispersant are disclosed in US. Pat, No. 6,548,458, the disclosure of which is incorporated herein by reference in its entirety. In an embodiment of the disclosure, the polyamine may be selected from tetraethylene pentamine (TEPA).
1000221 In an embodiment, the dispersant may include compounds of formula (IV): R2 wherein n represents 0 or an integer of from 1 to 5, and R2 is a hydrocarbyl substituent as defined above. In an embodiment, n is 3 and R2 is a polyisobutenyl substituent, such as that derived from polyisobutylenes having at least about 60%, such as about 70% to about 90% and above, terminal vinylidene content. Compounds of formula (IV) may be the reaction product of a hydrocarbyl-substituted succinic anhydride, such as a polyisobutenyl succinic anhydride (P[BSA), and a polyamine, for example tetraethylene pentamine (TEPA).
[00023J Component B of the synergistic mixture may be made by reacting an amine compound or salt thereof of the formula
NR II 1
NH2-C-NH--NHR wherein R is selected from the group consisting of a hydrogen and a hydrocarbyl group containing from about 1 to about 15 carbon atoms, and R' is selected from the group consisting of hydrogen and a hydrocarbyl group containing from about 1 to about 20 carbon atoms with a hydrocarbyl carbonyl compound of the formula
R
wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from about 200 to about 3000. Without desiring to be bound by theoretical considerations, it is believed that the reaction product of the amine and hydrocarbyl carbonyl compound is an aminotriazole, such as a bis-aminotriazole compound of the formula F-IN NH CH-CH2NH NH2
R
including tautomers and enantiomers thereof, having a number average molecular weight ranging from about 200 to about 3000 containing from about 40 to about 80 carbon atoms. The five-membered ring of the triazole is considered to be aromatic. The aminotriazoles are fairly stable to oxidizing agents and are extremely resistant to hydrolysis. It is believed, although it is not certain, that the reaction product is polyalkenyl bis-3-amino-1,2,4-triazole. Such a product contains relatively high nitrogen content, within the range of about 1.8 wt % to about 2.9 wt % nitrogen.
1000241 In other aspects of the present disclosure, the disclosed additive containing the synergistic mixture of A and B may include a fuel soluble carrier. Such carriers may be of various types, such as liquids or solids, e.g., waxes. Examples of liquid carriers include, but are not limited to, mineral oil and oxygenates, such as liquid polyalkoxylated ethers (also known as polyalkylene glycols or polyalkylene ethers), liquid polyalkoxylated phenols, liquid polyalkoxylated esters, liquid polyalkoxylated amines, and mixtures thereof. Examples of the oxygenate carrier fluids may be found in U.S. Pat. No. 5,752,989, the description of which carriers is herein incorporated by reference in its entirety. Additional examples of oxygenate carrier fluids may include alkyl-substituted aryl polyalkoxylates described in U.S. Patent Publication No. 2003/0131527, published July 17, 2003 to Colucci et. al., the description of which is herein incorporated by reference in its entirety.
[000251 In other aspects, the additive containing the synergistic mixture of A and B may not contain a carrier. For example, some compositions may not contain mineral oil or oxygenates, such as those oxygenates described above.
[000261 One or more additional optional additives may be present in the fuel compositions disclosed herein. For example, the fuel compositions may contain antifoam agents, dispersants, detergents, antioxidants, thermal stabilizers, carrier fluids, metal deactivators, dyes, markers, corrosion inhibitors, biocides, antistatic additives, drag reducing agents, friction modifiers, demulsifiers, emulsifiers, dehazers, anti-icing additives, antiknock additives, surfactants, cetane improvers, corrosion inhibitors, cold flow improvers, pour point depressants, solvents, demulsifiers, lubricity additives, extreme pressure agents, viscosity index improvers, seal swell agents, amine stabilizers, combustion improvers, dispersants, conductivity improvers, marker dyes, organic nitrate ignition accelerators, manganese tricarbonyls compounds, and mixtures thereof. In some aspects, the fuel additive compositions described herein may contain about 10 wt.% or less, or in other aspects, about 5 wt.% or less, based on the total weight of the additive or fuel composition, of one or more of the above additives. Similarly, the fuel compositions may contain suitable amounts of fuel blending components such as methanol, ethanol, dialkyl ethers, and the like.
[000271 When formulating the presently disclosed compositions, the disclosed additives can be employed in amounts sufficient to improve the oxidation stability of a fuel, such as middle distillate fuel containing more than 5 volume percent of at least one biodiesel component, for example B7, BlO, B20, B50 and B100 diesel fuel. In some aspects, the fuels may contain a major amount of a fuel and a minor amount of the above-described synergistic additive composition. In an aspect, fuels of the present disclosure may contain, on an active ingredient basis, an aminotriazole compound (B) as described herein in an amount ranging from about I ppm to about 100 ppm, such as from about 20 ppm to about 70 ppm. In another aspect, the presently disclosed fuel compositions may contain, on an active ingredient basis, a dispersant (A) as described herein in an amount ranging from about 50 to about 500 ppm, such as from about 80 ppm to about 200 ppm.
[000281 In aspects where a carrier is employed, the fuel compositions may contain, on an active ingredients basis, an amount of the carrier ranging from about 10 mg to about 1000 mg of carrier per kg of fuel, such as about 25 mg to about 700 mg of carrier per kg of fuel. The active ingredient basis excludes the weight of (i) unreacted components associated with and remaining in the disclosed additives as produced and used, and (ii) solvent(s), if any, used in the manufacture of the disclosed additives either during or after its formation but before addition of a carrier, if a carrier is employed.
1000291 The fuel additives of the present disclosure may be blended into a base fuel individually or in various sub-combinations. In some embodiments, the additive components of the present disclosure may be blended into a fuel concurrently using an additive concentrate, as this takes advantage of the mutual compatibility and convenience afforded by the combination of ingredients when in the form of an additive concentrate. Also, use of a concentrate may reduce blending time and lessen the possibility of blending errors.
100030] The diesel fuels of the disclosed embodiments may be applicable to the operation of both stationary diesel engines (e.g., engines used in electrical power generation installations, in pumping stations, etc.) and ambulatory diesel engines (e.g., engines used as prime movers in automobiles, trucks, road-grading equipment, military vehicles, etc.).
[00031J In one embodiment, the biodiesel-containing diesel fuels of the present disclosure may be essentially free, such as devoid, of conventional metal deactivator compounds. The term "essentially free" is defined for purposes of this application to be concentrations having substantially no measurable effect on oxidation stability or insolubles formation according to ASTM D-2274.
1000321 Metal deactivators that may be reduced or eliminated from the biodiesel containing fuels according to the disclosure may include the condensation product of an ortho-hydroxy aromatic aldehyde with an aliphatic amine. A typical example of such metal deactivator is disalicylalalkylenediamine which is prepared by the condensation of two mols of salicylalaldehyde with one mol of alkylenediamine. Such metal deactivators include, for example, salicylidene-o-aminophenol, disalicylidene ethylenediamine, disalicylidene propylenediamine, and N,N'-disalicylidene-1,2-diaminopropane.
EXAMPLES
1000331 The following examples are illustrative of exemplary embodiments of the disclosure. In these examples as well as elsewhere in this application, all parts and percentages are by weight unless otherwise indicated. It is intended that these examples are being presented for the purpose of illustration only and are not intended to limit the scope of the invention disclosed herein.
Example I
1000341 In the following example, a B7 diesel fuel was doped with 2 ppm copper using a copper solution of copper naphthenate having 8 wt.% copper and was oxidized according to ASTM D-2274 to determine the total insolubles in 500 ml of fuel. The maximum insoluble according to ASTM D-2274 in diesel fuel is 2.5 mg/100 ml of fuel. The base B7 fuels containing no added copper had total insolubles of 0.6 mg/lO0 ml of fuel. Copper was added and the fuels were oxidized according to the ASTM procedure in order to determine the oxidation stability of the fuels containing at least one biodiesel component.
1000351 In all of the runs, the carrier used for the additives (A) and (B) as defined above was a mixture of Aromatic 150 and Aromatic 200. In the following table "MDA" is a conventional metal deactivator as described above. Runs The results are shown in the following
table.
Table 1
Run Fuel (A) (B) MDA Carrier Adherent Filterable Total No. No. mg/kg mg/kg mg/kg mg/kg Insolubles Insolubles Insolubles ______ _____ _______ ________ ________ ________ mg/100 ml mg/tOO ml mgIlOO ml 1 1 0 0 0 0 238.7 2.1 240.8 2 2 0 0 0 0 1740 55 1794 3 1 190 0 10 760 3.6 2.2 5.8 4 1 120 30 0 420 0.9 <0.1 0.9 2 190 0 0 770 486 64 550 6 2 120 0 0 450 1056 140 1196 7 2 0 30 0 70 0 6.5 6.5 8 2 120 30 0 420 0.3 0.4 0.7 9 2 120 30 0 420 1.63 <0.1 1.63 2 60 15 0 210 3.51 <0.1 3.51 11 2 120 30 10 420 1 0 1 12 2 0 0 10 50 0.6 0.2 0.8 [00036] As shown by Runs 4 and 8-9, a combination of component A and B provided a synergistic decrease in the amount of insolubles in oxidized fuel containing 2 ppm copper as compared to the base fuel (Runs 1 and 2). Even at a half-treat rate of components A and B, (Run 10), there was a synergistic decrease in total insolubles in the oxidized fuel compared to the base fuel (Run 2). Run 3 containing component A and an MDA showed significant improvement over the base fuel of Run 1 and adding MDA to components A and B (Run 11) showed no significant improvement over Runs 4 and 8-9 containing no MDA or Run 12 containing MDA alone. Accordingly, MDA may be eliminated from a fuel containing more than 5 volume percent biodiesel components and still be capable of improved oxidation stability when the synergistic mixture of components A and B is used.
1000371 It is noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the," include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to "an antioxidant" includes two or more different antioxidants. As used herein, the term "include" and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items 1000381 For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present disclosure.
At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
1000391 While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or can be presently unforeseen can arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they can be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.

Claims (15)

  1. WHAT IS CLAIMED IS: 1. A method of improving oxidation-stability of a biodiesel-containing fuel composition, comprising: combining a major amount of middle distillate fuel containing more than about 5 volume percent of at least one biodiesel component with a minor amount of a synergistic mixture consisting essentially of (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: // I-(2N NH CH-CH2NH NH2 R2 and tautomers and enantiomers thereof, wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000 and wherein a weight ratio of A:B ranges from 2:1 to 10:1.
  2. 2. The method of claim 1, wherein component A of the mixture comprises a reaction product of polyalkenyl succinic acid or anhydride with tetraethylene pentamine.
  3. 3. The method of claim 2, wherein the polyalkenyl succinic acid or anhydride is derived from polyisobutylene having a number average molecular weight ranging from 800 to 1100 daltons.
  4. 4. The method of claim 3, wherein the polyisobutylene comprises a high reactivity polyisobutylene having at least 60% or more terminal olefinic double bonds.
  5. 5. The method of any one of claims 1 to 4, wherein the middle distillate fuel comprises from 200 to 600 ppm by weight of the mixture of A and B.
  6. 6. The method of any one of claims 1 to 5, wherein R2 is a polyolefin radical having a number average molecular weight of from 200 to 3,000 daltons.
  7. 7. The method of any one of claim 1 to 6, wherein the middle distillate fuel is substantially devoid of disalicylidene diaminoalkane compounds.
  8. 8. The method of any one of claims 1 to 7, wherein the fuel containing A and B has a total insolubles amount of no more than 2.5 mgIlOOml a determined by ASTM D-2274.
  9. 9. The method of any one of claims 1 to 8, wherein the middle distillate fuel is substantially devoid of metal deactivators.
  10. 10. The method of any one of claims 1 to 9, wherein the weight ratio of A:B in the middle distillate fuel ranges from about 3.5:1 to about 5:1.
  11. 11. Use of a synergistic mixture consisting essentially of (A) a hydrocarbyl-substituted succinimide dispersant and (B) a compound of the formula: /k/1\ FI2N NH CH-CH2NH NH2Rand tautomers and enantiomers thereof, wherein R2 is a hydrocarbyl group having a number average molecular weight ranging from 100 to 5000 and wherein a weight ratio of A:B ranges from 2:1 to 10:1 in a middle distillate fuel containing at least 7 volume percent of at least one biodiesel component to improve the oxidation stability of the fuel according to ASTM D-2274, wherein the oxidation stability of the fuel according to ASTM D-2274 is less than 2.5 mg/100 ml insolubles compared to the oxidation stability of the fuel without the synergistic mixture having greater than 2.5 mg/100 ml insolubles.
  12. 12. Use of the mixture of claim 11, wherein component A of the mixture comprises a reaction product of polyalkenyl succinic acid or anhydride with tetraethylene pentamine, wherein the polyalkenyl succinic acid or anhydride is derived from polyisobutylene having a number average molecular weight ranging from 800 to 1100 daltons.
  13. 13. Use of the mixture of claim 12, wherein the polyisobutylene comprises a high reactivity polyisobutylene having at least 60% or more terminal olefinic double bonds.
  14. 14. Use of the mixture of any one of claims 11 to 13, wherein the middle distillate fuel comprises from 200 to 600 ppm by weight of the mixture of A and B.
  15. 15. Use of the mixture of any one of claims 11 to 14, wherein the middle distillate fuel is substantially devoid of metal deactivators.
GB1008632A 2010-05-24 2010-05-24 Oxidation stabilized fuels having enhanced corrosion resistance Withdrawn GB2480612A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1008632A GB2480612A (en) 2010-05-24 2010-05-24 Oxidation stabilized fuels having enhanced corrosion resistance
US13/111,364 US20110283603A1 (en) 2010-05-24 2011-05-19 Oxidation stabilized fuels having enhanced corrosion resistance
CN2011101335403A CN102260553A (en) 2010-05-24 2011-05-23 Oxidation stabilized fuels having enhanced corrosion resistance
SG2011037298A SG176394A1 (en) 2010-05-24 2011-05-24 Oxidation stabilized fuels having enhanced corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1008632A GB2480612A (en) 2010-05-24 2010-05-24 Oxidation stabilized fuels having enhanced corrosion resistance

Publications (2)

Publication Number Publication Date
GB201008632D0 GB201008632D0 (en) 2010-07-07
GB2480612A true GB2480612A (en) 2011-11-30

Family

ID=42341213

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1008632A Withdrawn GB2480612A (en) 2010-05-24 2010-05-24 Oxidation stabilized fuels having enhanced corrosion resistance

Country Status (4)

Country Link
US (1) US20110283603A1 (en)
CN (1) CN102260553A (en)
GB (1) GB2480612A (en)
SG (1) SG176394A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504371A (en) * 2012-04-19 2014-01-29 Afton Chemical Corp Fuel additives for treating internal deposits of fuel injectors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523057B2 (en) * 2011-02-22 2016-12-20 Afton Chemical Corporation Fuel additives to maintain optimum injector performance
US8852297B2 (en) 2011-09-22 2014-10-07 Afton Chemical Corporation Fuel additives for treating internal deposits of fuel injectors
WO2024137793A1 (en) 2022-12-21 2024-06-27 Ecolab Usa Inc. Compositions and methods for inhibiting oxidation of natural oil based composition using aminophenol antioxidant

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310364A1 (en) * 1987-09-30 1989-04-05 Amoco Corporation Chlorine-free silver protective lubricant composition (II)
EP0310365A1 (en) * 1987-09-30 1989-04-05 Amoco Corporation Engine seal compatible dispersant for lubricating oils
US5080815A (en) * 1987-09-30 1992-01-14 Amoco Corporation Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof
GB2280907A (en) * 1993-08-13 1995-02-15 Ethyl Petroleum Additives Ltd Motor oil compositions,additive concentrates for producing such motor oils,and the use thereof
EP0663436A1 (en) * 1994-01-14 1995-07-19 Ethyl Petroleum Additives Limited Dispersants for lubricating oil
EP0921136A1 (en) * 1997-12-03 1999-06-09 The Lubrizol Corporation Nitrogen containing dispersant-viscosity improvers
GB2462696A (en) * 2008-05-13 2010-02-24 Afton Chemical Corp Fuel additives to maintain optimum injector performance
GB2465056A (en) * 2008-11-06 2010-05-12 Afton Chemical Corp Conductivity-improving additives for fuel
GB2465057A (en) * 2008-11-04 2010-05-12 Afton Chemical Corp Fuel additive concentrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623105B2 (en) * 2008-05-13 2014-01-07 Afton Chemical Corporation Fuel additives to maintain optimum injector performance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310364A1 (en) * 1987-09-30 1989-04-05 Amoco Corporation Chlorine-free silver protective lubricant composition (II)
EP0310365A1 (en) * 1987-09-30 1989-04-05 Amoco Corporation Engine seal compatible dispersant for lubricating oils
US5080815A (en) * 1987-09-30 1992-01-14 Amoco Corporation Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof
GB2280907A (en) * 1993-08-13 1995-02-15 Ethyl Petroleum Additives Ltd Motor oil compositions,additive concentrates for producing such motor oils,and the use thereof
EP0663436A1 (en) * 1994-01-14 1995-07-19 Ethyl Petroleum Additives Limited Dispersants for lubricating oil
EP0921136A1 (en) * 1997-12-03 1999-06-09 The Lubrizol Corporation Nitrogen containing dispersant-viscosity improvers
GB2462696A (en) * 2008-05-13 2010-02-24 Afton Chemical Corp Fuel additives to maintain optimum injector performance
GB2465057A (en) * 2008-11-04 2010-05-12 Afton Chemical Corp Fuel additive concentrate
GB2465056A (en) * 2008-11-06 2010-05-12 Afton Chemical Corp Conductivity-improving additives for fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504371A (en) * 2012-04-19 2014-01-29 Afton Chemical Corp Fuel additives for treating internal deposits of fuel injectors
GB2504371B (en) * 2012-04-19 2015-05-20 Afton Chemical Corp Fuel additives for treating internal deposits of fuel injectors

Also Published As

Publication number Publication date
US20110283603A1 (en) 2011-11-24
CN102260553A (en) 2011-11-30
SG176394A1 (en) 2011-12-29
GB201008632D0 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US8529643B2 (en) Fuel additives for treating internal deposits of fuel injectors
US8623105B2 (en) Fuel additives to maintain optimum injector performance
US8852297B2 (en) Fuel additives for treating internal deposits of fuel injectors
US20100107476A1 (en) Compositions and Methods Including Hexahydrotriazines Useful as Direct Injection Fuel Additives
US9523057B2 (en) Fuel additives to maintain optimum injector performance
US9574150B2 (en) Conductivity-improving additives for fuel
US20100107479A1 (en) Antifoam fuel additives
KR101435270B1 (en) Fuel additive for improved performance of low sulfur diesel fuels
GB2462696A (en) Fuel additives to maintain optimum injector performance
US20110283603A1 (en) Oxidation stabilized fuels having enhanced corrosion resistance
EP2910626B1 (en) Fuel additive for diesel engines
EP4424801A2 (en) Gasoline additive composition for improved engine performance
KR101586116B1 (en) Fuel additives for treating internal deposits of fuel injectors
US20250034471A1 (en) Gasoline additive composition for improved engine performance
EP4345151A1 (en) Gasoline additive composition for improved engine performance
US12024686B2 (en) Gasoline additive composition for improved engine performance
SG194314A1 (en) Fuel additives for treating internal deposits of fuel injectors

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)