[go: up one dir, main page]

GB2480517A - Heat transfer compositions - Google Patents

Heat transfer compositions Download PDF

Info

Publication number
GB2480517A
GB2480517A GB1102556A GB201102556A GB2480517A GB 2480517 A GB2480517 A GB 2480517A GB 1102556 A GB1102556 A GB 1102556A GB 201102556 A GB201102556 A GB 201102556A GB 2480517 A GB2480517 A GB 2480517A
Authority
GB
United Kingdom
Prior art keywords
weight
composition
composition according
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1102556A
Other versions
GB2480517B (en
GB201102556D0 (en
Inventor
Robert E Low
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mexichem Amanco Holding SA de CV
Original Assignee
Mexichem Amanco Holding SA de CV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1008438.2A external-priority patent/GB201008438D0/en
Priority claimed from GBGB1010057.6A external-priority patent/GB201010057D0/en
Priority claimed from GB1020624.1A external-priority patent/GB2480513B/en
Application filed by Mexichem Amanco Holding SA de CV filed Critical Mexichem Amanco Holding SA de CV
Priority to GB1102556.6A priority Critical patent/GB2480517B/en
Publication of GB201102556D0 publication Critical patent/GB201102556D0/en
Priority to ES11728908.2T priority patent/ES2547550T3/en
Priority to MX2012013313A priority patent/MX2012013313A/en
Priority to PL11728908T priority patent/PL2571953T3/en
Priority to JP2013510673A priority patent/JP5824039B2/en
Priority to AU2011254380A priority patent/AU2011254380B2/en
Priority to PCT/GB2011/000772 priority patent/WO2011144909A2/en
Priority to EP11728908.2A priority patent/EP2571953B1/en
Priority to RU2012155282/05A priority patent/RU2582703C2/en
Priority to CA2799840A priority patent/CA2799840A1/en
Priority to PCT/GB2011/000769 priority patent/WO2011144906A2/en
Priority to CN2011800305396A priority patent/CN102939351A/en
Priority to ES11728912.4T priority patent/ES2565088T3/en
Priority to PL11728912T priority patent/PL2571956T3/en
Priority to KR1020127033338A priority patent/KR20130082095A/en
Priority to BR112012029468A priority patent/BR112012029468A2/en
Priority to MX2012013314A priority patent/MX2012013314A/en
Priority to ES11728909.0T priority patent/ES2561671T3/en
Priority to CN2011800304336A priority patent/CN102939350A/en
Priority to EP11728912.4A priority patent/EP2571956B1/en
Priority to CA2799846A priority patent/CA2799846A1/en
Priority to EP11728911A priority patent/EP2571955A2/en
Priority to EP11728909.0A priority patent/EP2571954B1/en
Priority to KR1020127033340A priority patent/KR20130082096A/en
Priority to JP2013510675A priority patent/JP2013528235A/en
Priority to US13/698,803 priority patent/US8808570B2/en
Priority to US13/698,817 priority patent/US20130119299A1/en
Priority to AU2011254381A priority patent/AU2011254381C1/en
Priority to US13/698,810 priority patent/US8808571B2/en
Priority to PCT/GB2011/000771 priority patent/WO2011144908A2/en
Priority to PCT/GB2011/000770 priority patent/WO2011144907A2/en
Priority to JP2013510674A priority patent/JP5827992B2/en
Priority to CN2011800305288A priority patent/CN102947409A/en
Priority to PL11728909T priority patent/PL2571954T3/en
Priority to CN201180030475.XA priority patent/CN102947408B/en
Priority to US13/698,814 priority patent/US9309450B2/en
Priority to PCT/GB2011/000768 priority patent/WO2011144905A2/en
Priority to JP2013510676A priority patent/JP2013533896A/en
Priority to RU2012155280/05A priority patent/RU2574656C2/en
Priority to BR112012029456A priority patent/BR112012029456A2/en
Publication of GB2480517A publication Critical patent/GB2480517A/en
Application granted granted Critical
Publication of GB2480517B publication Critical patent/GB2480517B/en
Priority to US15/091,242 priority patent/US20160215193A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5018Halogenated solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/04Aerosol, e.g. polyurethane foam spray
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/132Components containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)

Abstract

Heat transfer compositions comprise (i) a first component selected fr orn trans-1 ,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3- trans-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-1 52a), fluoroethane (R-161), 1 ,1 ,1 , 2 tetrafluoroethane (R-134a), 2,3,3,3tetrafluoropropene (R-1234yf), 3,3,3-trifluoropropene (R-1243zf), 1 ,1 ,1-trifluoropropane (R-263fb), 1,1,1,2,3-pentafluoropropane (R-245eb), propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), ammonia (R-717) and mixtures thereof. The composition preferably has a low GWP and may further comprise a lubricant, a stabiliser or a flame retardant. The composition may be a refrigerant, blowing agent, a foam or a sprayable composition. The composition may be used in a heat transfer device e.g. automotive air conditioning systems, chiller refrigeration systems. Also shown are methods of cooling, heating, extraction and cleaning using the composition.

Description

HEAT TRANSFER COMPOSITIONS
The invention relates to heat transfer compositions, and in particular to heat transfer compositions which may be suitable as replacements for existing refrigerants such as R- 134a, R-152a, R-1234yf, R-22, R-410A, R-407A, R-407B, R-407C, R507 and R-404a.
The listing or discussion of a prior-published document or any background in the specification should not necessarily be taken as an acknowledgement that a document or background is part of the state of the art or is common general knowledge.
Mechanical refrigeration systems and related heat transfer devices such as heat pumps and air-conditioning systems are well known. In such systems, a refrigerant liquid evaporates at low pressure taking heat from the surrounding zone. The resulting vapour is then compressed and passed to a condenser where it condenses and gives off heat to a second zone, the condensate being returned through an expansion valve to the evaporator, so completing the cycle. Mechanical energy required for compressing the vapour and pumping the liquid is provided by, for example, an electric motor or an internal combustion engine.
In addition to having a suitable boiling point and a high latent heat of vaporisation, the properties preferred in a refrigerant include low toxicity, non-flammability, non-corrosivity, high stability and freedom from objectionable odour. Other desirable properties are ready compressibility at pressures below 25 bars, low discharge temperature on compression, high refrigeration capacity, high efficiency (high coefficient of performance) and an evaporator pressure in excess of 1 bar at the desired evaporation temperature.
Dichlorodifluoromethane (refrigerant R-12) possesses a suitable combination of properties and was for many years the most widely used refrigerant. Due to international concern that fully and partially halogenated chlorofluorocarbons were damaging the earth's protective ozone layer, there was general agreement that their manufacture and use should be severely restricted and eventually phased out completely. The use of dichlorodifluoromethane was phased out in the 1990's.
Chlorodifluoromethane (R-22) was introduced as a replacement for R-12 because of its lower ozone depletion potential. Following concerns that R-22 is a potent greenhouse gas, its use is also being phased out.
Whilst heat transfer devices of the type to which the present invention relates are essentially closed systems, loss of refrigerant to the atmosphere can occur due to leakage during operation of the equipment or during maintenance procedures. It is important, therefore, to replace fully and partially halogenated chiorofluorocarbon refrigerants by materials having zero ozone depletion potentials.
In addition to the possibility of ozone depletion, it has been suggested that significant concentrations of halocarbon refrigerants in the atmosphere might contribute to global warming (the so-called greenhouse effect). It is desirable, therefore, to use refrigerants which have relatively short atmospheric lifetimes as a result of their ability to react with other atmospheric constituents such as hydroxyl radicals, or as a result of ready degradation through photolytic processes.
R-410A and R-407 refrigerants (including R-407A, R-407B and R-407C) have been introduced as a replacement refrigerant for R-22. However, R-22, R-41 OA and the R-407 refrigerants all have a high global warming potential (GWP, also known as greenhouse warming potential).
1,1,1,2-tetrafluoroethane (refrigerant R-134a) was introduced as a replacement refrigerant for R-12. R-134a is an energy efficient refrigerant, used currently for automotive air conditioning. However it is a greenhouse gas with a GWP of 1430 relative to 002 (GWP of 002 is 1 by definition). The proportion of the overall environmental impact of automotive air conditioning systems using this gas, which may be attributed to the direct emission of the refrigerant, is typically in the range 10-20%. Legislation has now been passed in the European Union to rule out use of refrigerants having GWP of greater than 150 for new models of car from 2011. The car industry operates global technology platforms, and in any event emission of greenhouse gas has global impact, thus there is a need to find fluids having reduced environmental impact (e.g. reduced GWP) compared to HFC-134a.
R-152a (1,1-difluoroethane) has been identified as an alternative to R-134a. It is somewhat more efficient than R-134a and has a greenhouse warming potential of 120.
However the flammability of R-152a is judged too high, for example to permit its safe use in mobile air conditioning systems. In particular it is believed that its lower flammable limit in air is too low, its flame speeds are too high, and its ignition energy is too low.
Thus there is a need to provide alternative refrigerants having improved properties such as low flammability. Fluorocarbon combustion chemistry is complex and unpredictable.
It is not always the case that mixing a non-flammable fluorocarbon with a flammable fluorocarbon reduces the flammability of the fluid or reduces the range of flammable compositions in air. For example, the inventors have found that if non-flammable R-134a is mixed with flammable R-152a, the lower flammable limit of the mixture alters in a manner which is not predictable. The situation is rendered even more complex and less predictable if ternary or quaternary compositions are considered.
There is also a need to provide alternative refrigerants that may be used in existing devices such as refrigeration devices with little or no modification.
R-1234yf (2,3,3,3-tetrafluoropropene) has been identified as a candidate alternative refrigerant to replace R-134a in certain applications, notably the mobile air conditioning or heat pumping applications. Its GWP is about 4. R-1234yf is flammable but its flammability characteristics are generally regarded as acceptable for some applications including mobile air conditioning or heat pumping. In particular, when compared with R- 152a, its lower flammable limit is higher, its minimum ignition energy is higher and the flame speed in air is significantly lower than that of R-152a.
The environmental impact of operating an air conditioning or refrigeration system, in terms of the emissions of greenhouse gases, should be considered with reference not only to the so-called "direct" GWP of the refrigerant, but also with reference to the so-called "indirect" emissions, meaning those emissions of carbon dioxide resulting from consumption of electricity or fuel to operate the system. Several metrics of this total GWP impact have been developed, including those known as Total Equivalent Warming Impact (TEWI) analysis, or Life-Cycle Carbon Production (LCCP) analysis. Both of these measures include estimation of the effect of refrigerant GWP and energy efficiency on overall warming impact. Emissions of carbon dioxide associated with manufacture of the refrigerant and system equipment should also be considered.
The energy efficiency and refrigeration capacity of R-1234yf have been found to be significantly lower than those of R-134a and in addition the fluid has been found to exhibit increased pressure drop in system pipework and heat exchangers. A consequence of this is that to use R-1234yf and achieve energy efficiency and cooling performance equivalent to R-134a, increased complexity of equipment and increased size of pipework is required, leading to an increase in indirect emissions associated with equipment. Furthermore, the production of R-1234yf is thought to be more complex and less efficient in its use of raw materials (fluorinated and chlorinated) than R-134a.
Current projections of long term pricing for R-1234yf is in the range 10-20 times greater than R-134a. This price differential and the need for extra expenditure on hardware will limit the rate at which refrigerants are changed and hence limit the rate at which the overall environmental impact of refrigeration or air conditioning may be reduced. In summary, the adoption of R-1234yf to replace R-134a will consume more raw materials and result in more indirect emissions of greenhouse gases than does R-134a.
Some existing technologies designed for R-134a may not be able to accept even the reduced flammability of some heat transfer compositions (any composition having a GWP of less than 150 is believed to be flammable to some extent).
A principal object of the present invention is therefore to provide a heat transfer composition which is usable in its own right or suitable as a replacement for existing refrigeration usages which should have a reduced GWP, yet have a capacity and energy efficiency (which may be conveniently expressed as the "Coefficient of Performance") ideally within 10% of the values, for example of those attained using existing refrigerants (e.g. R-134a, R-152a, R-1234yf, R-22, R-410A, R-407A, R-407B, R-407C, R507 and R- 404a), and preferably within less than 10% (e.g. about 5%) of these values. It is known in the art that differences of this order between fluids are usually resolvable by redesign of equipment and system operational features. The composition should also ideally have reduced toxicity and acceptable flammability.
The subject invention addresses the above deficiencies by the provision of a heat transfer composition comprising (i) a first component selected from trans-i,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-i,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (CO2 or R-744); and (iii) a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-152a), fluoroethane (R-161), 1,1,1,2-tetrafluoroethane (R-i 34a), 2,3,3,3-tetrafluoropropene (R-1234yf), 3,3,3-trifluoropropene (R-i 243zf), 1,1,1 -trifluoropropane (R-263fb), 1,1,1,2,3-pentafluoropropane (R-245eb), propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), ammonia (R-717) and mixtures thereof.
All of the chemicals herein described are commercially available. For example, the fluorochemicals may be obtained from Apollo Scientific (UK).
Typically, the compositions of the invention contain trans-i,3,3,3-tetrafluoropropene (R- i234ze(E)). The majority of the specific composition described herein contain R-i234ze(E). It is to be understood, of course, that some or all of the R-i234ze(E) in such compositions can be replaced by R-i234ze(Z). The trans isomer is currently preferred, however.
Typically, the composition of the invention contain at least about 5 % by weight R-i234ze(E), preferably at least about 15 % by weight. In one embodiment, the compositions of the invention contain at least about 45 % by weight R-i234ze(E), for example from about 50 to about 98 % by weight.
The preferred amounts and choice of components for the invention are determined by a combination of properties: (a) Flammability: non flammable or weakly flammable compositions are preferred.
(b) Effective operating temperature of the refrigerant in an air conditioning system evaporator.
(c) Temperature "glide" of the mixture and its effect on heat exchanger performance.
(d) Critical temperature of the composition. This should be higher than the maximum expected condenser temperature.
The effective operating temperature in an air conditioning cycle, especially automotive air conditioning, is limited by the need to avoid ice formation on the air-side surface of the refrigerant evaporator. Typically air conditioning systems must cool and dehumidify humid air; so liquid water will be formed on the air-side surface. Most evaporators (without exception for the automotive application) have finned surfaces with narrow fin spacing. If the evaporator is too cold then ice can be formed between the fins, restricting the flow of air over the surface and reducing overall performance by reducing the working area of the heat exchanger.
It is known for automotive air-conditioning applications (Modern Refrigeration and Air Conditioning by AD Althouse et al, 1988 edition, Chapter 27, which is incorporated herein by reference) that refrigerant evaporation temperatures of -2 00 or higher are preferred to ensure that the problem of ice formation is thereby avoided.
It is also known that non-azeotropic refrigerant mixtures exhibit temperature "glide" in evaporation or condensation. In other words, as the refrigerant is progressively vaporised or condensed at constant pressure, the temperature rises (in evaporation) or drops (in condensation), with the total temperature difference (inlet to outlet) being referred to as the temperature glide. The effect of glide on evaporation and condensation temperature must also be considered.
The critical temperature of a heat transfer composition should be higher than the maximum expected condenser temperature. This is because the cycle efficiency drops as critical temperature is approached. As this happens, the latent heat of the refrigerant is reduced and so more of the heat rejection in the condenser takes place by cooling gaseous refrigerant; this requires more area per unit heat transferred.
R-410A is commonly used in building and domestic heat pump systems and by way of illustration its critical temperature of about 71 00 is higher than the highest normal condensing temperature required to deliver useful warm air at about 50 00. The automotive duty requires air at about 50 °C so the critical temperature of the fluids of the invention should be higher than this if a conventional vapour compression cycle is to be utilised. Critical temperature is preferably at least 15K higher than the maximum air temperature.
In one aspect, the compositions of the invention have a critical temperature of greater than about 65 00 preferably greater than about 70 00.
The carbon dioxide content of the compositions of the invention is limited primarily by considerations (b) and/or (c) and/or (d) above. Conveniently, the compositions of the invention typically contain up to about 35 % by weight R-744, preferably up to about 30 % by weight.
In a preferred aspect, the compositions of the invention contain from about 4 to about 30 % R-744 by weight, preferably from about 4 to about 28 % by weight, or from about 8 to about 30 % by weight, or from about 10 to about 30 % by weight.
The content of the third component, which may include flammable refrigerants (such as R-32, R-152a, R-161, propylene or propane), is selected so that even in the absence of the carbon dioxide element of the composition, the residual fluorocarbon mixture has a lower flammable limit in air at ambient temperature (e.g. 23°C) (as determined in the ASHRAE-34 12 litre flask test apparatus) which is greater than 5% v/v, preferably greater than 6% vlv, most preferably such that the mixture is non-flammable. The issue of flammability is discussed further later in this specification.
Typically, the compositions of the invention contain up to about 60 % by weight of the third component. Preferably, the compositions of the invention contain up to about 50 % by weight of the third component. Conveniently, the compositions of the invention contain up to about 45 % by weight of the third component. In one aspect, the compositions of the invention contain from about 1 to about 40 % by weight of the third component.
In one embodiment, the compositions of the invention comprise from about 10 to about % R-1234ze(E) by weight, from about 2 to about 30 % by weight R-744, and from about 3 to about 60 % by weight of the third component.
As used herein, all % amounts mentioned in compositions herein, including in the claims, are by weight based on the total weight of the compositions, unless otherwise stated.
For the avoidance of doubt, it is to be understood that the stated upper and lower values for ranges of amounts of components in the compositions of the invention described herein may be interchanged in any way, provided that the resulting ranges fall within the broadest scope of the invention.
The compositions of the invention may consist essentially of (or consist of) the first component (e.g. R-1234ze(E)), R-744 and the third component.
By the term "consist essentially of", we mean that the compositions of the invention contain substantially no other components, particularly no further (hydro)(fluoro)compounds (e.g. (hydro)(fluoro)alkanes or (hydro)(fluoro)alkenes) known to be used in heat transfer compositions. We include the term "consist of" within the meaning of "consist essentially of".
For the avoidance of doubt, any of the compositions of the invention described herein, including those with specifically defined compounds and amounts of compounds or components, may consist essentially of (or consist of) the compounds or components defined in those compositions.
In one embodiment, the third component is selected from R-32, R-152a, R-161, 1R- 134a, R-1234y1, R-1243zf, R-1270, R-290 and mixtures thereof. Preferably, the third component is selected from R-32, R-152a, R-161, IR-134a, R-1234yf, R-1270, R-290 and mixtures thereof.
In one aspect, the third component contains only one of the listed components. For example, the third component may contain only one of difluoromethane (R-32), 1,1- difluoroethane (R-1 52a), fluoroethane (R-1 61), 1,1,1,2-tetrafluoroethane (R-1 34a), R- 1234yf, propylene or propane. Thus, the compositions of the invention may be ternary blends of R-1234ze(E), R-744 and one of the listed third components (e.g. R-32, R-152a, R-161, R-134a, R-1234yf, propylene or propane).
However, mixtures of one or more of these compounds can be used as the third component. For example, the third component may include R-1 34a together with one of R-32, R-152a, R-161, R-1234yf, propylene or propane. The R-134a typically is included to reduce the flammability of the equivalent composition that does not contain R-1 34a.
Preferably, the compositions of the invention which contain R-1 34a are non-flammable at a test temperature of 60°C using the ASHRAE-34 methodology. Advantageously, the mixtures of vapour that exist in equilibrium with the compositions of the invention at any temperature between about -20°C and 60°C are also non-flammable.
In one preferred embodiment, the third component comprises R-134a. The third component may consist essentially of (or consist of) R-134a.
Compositions of the invention which contain R-134a typically contain it in an amount of from about 2 to about 50 % by weight, for example from about 5 to about 40 % by weight.
Typical compositions of the invention containing R-134a comprise from about 20 to about 93 % by weight R-1234ze(E), from about 2 to about 30 % by weight R-744 and from about 5 to about 50 % by weight R-1 34a.
A relatively low GWP composition containing R-134a comprises from about 60 to about 92 % R-1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 10 % by weight R-134a. A preferred composition comprises from about 62 to about 86 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 4 to about 10% by weight R-134a.
A relatively low GWP composition containing R-134a comprises from about 20 to about 86 % R-1234ze(E), from about 4 to about 30 % by weight R-744 and from about 10 to about 50 % by weight R-134a. A preferred composition comprises from about 22 to about 80 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 10 to about 50 % by weight R-134a.
In one embodiment, the third component comprises R-32. The third component may consist essentially of (or consist of) R-32.
Compositions of the invention which contain R-32 typically contain it in an amount of from about 2 to about 30 % by weight, conveniently in an amount of from about 2 to about 25 % by weight, for example from about 5 to about 20 % by weight.
A typical compositions of the invention containing R-32 comprise from about 60 to about 91 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744 and from about 5 to about 30 % by weight R-32.
A preferred composition comprises from about 58 to about 85 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 5 to about 30 % by weight R-32.
Further advantageous compositions of the invention containing R-32 comprise from about 50 to about 88 % by weight R-1234ze(E), from about 4 to about 30 % by weight R- 744 and from about 2 to about 20 % by weight R-32.
In one embodiment, the third component comprises R-32 and R-134a. The third component may consist essentially of (or consist of) R-32 and R-134a.
Compositions of the invention containing R-32 and R-134a typically contain from about 5 to about 95 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744, from about 2 to about 30 % by weight R-32 and from about 2 to about 50 by weight R-134a.
Preferred compositions comprise from about 5 to about 92 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744, from about 2 to about 25 % by weight R-32 and from about 2 to about 40 % by weight R-134a.
Advantageous compositions which exhibit a relatively low GWP comprise from about 30 to about 81 % by weight R-1234ze(E), from about 10 to about 30 % by weight R-744, from about 5 to about 30 % by weight R-32 and from about 4 to about 10 by weight R- 134a. Preferably such compositions contain from about 37 to about 81 % by weight R- 1234ze(E), from about 10 to about 28 % by weight R-744, from about 5 to about 25 % by weight R-32 and from about 4 to about 10 by weight R-134a.
Yet further compositions of the invention containing R-32 and R-134a comprise from about 5 to about 75 % by weight R-1234ze(E), from about 10 to about 30 % by weight R- 744, from about 5 to about 25 % by weight R-32 and from about 10 to about 50 by weight R-1 34a. Preferred such compositions comprise from about 7 to about 75 % by weight R- 1234ze(E), from about 10 to about 28 % by weight R-744, from about 5 to about 25 % by weight R-32 and from about 10 to about 40 by weight R-1 34a.
In another embodiment, the third component comprises R-152a. The third component may consist essentially of (or consist of) R-1 52a.
Compositions of the invention which contain R-152a typically contain it in an amount of from about 2 to about 50 % by weight, conveniently in an amount of from about 3 to about 45 % by weight, preferably from about 4 to about 30 by weight.
Preferred compositions of the invention contain from about 30 to about 94 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 2 to about 40 % by weight R-152a.
Further preferred compositions contain from about 42 to about 85 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 5 to about 30 % by weight R-152a.
In one embodiment, the third component comprises R-161. The third component may consist essentially of (or consist of) R-1 61.
Compositions of the invention which contain R-161 typically contain it in an amount of from about 2 to about 30 % by weight, conveniently in an amount of from about 3 to about 20 % by weight, for example from about 4 to about 15 % by weight.
Preferred compositions of the invention contain from about 45 to about 94 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 2 to about 25 % by weight R-1 61. For example, such compositions may comprise from about 52 to about 86 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 4 to about 20 % by weight R-1 61.
Further advantageous compositions of the invention comprise from about 62 to about 92 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 10% by weight R-161.
In one embodiment, the third component comprises propylene. The third component may consist essentially of (or consist of) propylene.
Compositions of the invention which contain propylene typically contain it in an amount of from about 1 to about 20 % by weight, conveniently in an amount of from about 2 to about 12 % by weight, for example from about 3 to about 10 % by weight.
Preferred compositions of the invention contain from about 60 to about 95 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about ito about 10 % by weight propylene.
Further preferred compositions of the invention contain from about 64 to about 88 % R- 1234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 8 % by weight propylene. ii
In one embodiment, the third component comprises propane. The third component may consist essentially of (or consist of) propane.
Compositions of the invention which contain propane typically contain it in an amount of from about 1 to about 20 % by weight, conveniently in an amount of from about 2 to about 12 % by weight, for example from about 3 to about 10 % by weight.
Preferred compositions of the invention contain from about 60 to about 95 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about ito about 10 % by weight propane.
Further preferred compositions of the invention contain from about 64 to about 88 % R-i234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 8 % by weight propane.
In one embodiment, the third component comprises R-1234yf. The third component may consist essentially of (or consist of) R-1234y1.
Compositions of the invention which contain R-1234yf typically contain it in an amount of from about 2 to about 60 % by weight, for instance about 4 to about 50 % by weight.
Conveniently the R-1243yf is present in an amount of from about 6 to about 40 %.
Preferred compositions of the invention contain from about 10 to about 92 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 60 % by weight R-1234yf. For example, such compositions may comprise from about 22 to about 84 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 6 to about 50 % by weight R-1 234y1.
Further preferred compositions of the invention contain from about 14 to about 86 % R- 1234ze(E), from about 4 to about 26 % by weight R-744 and from about 10 to about 60 % by weight R-1234yf.
Another group of compositions of the invention containing R-1234y1 comprise from about 32 to about 88 % R-1234ze(E), from about 8 to about 28 % by weight R-744 and from about 4 to about 40 % by weight R-1234y1.
In one embodiment, the third component comprises R-1243zf. The third component may consist essentially of (or consist of) R-1243zf.
Compositions of the invention which contain R-1243zf typically contain it in an amount of from about 2 to about 60 % by weight, for instance about 4 to about 50 % by weight.
Conveniently the R-1243zf is present in an amount of from about 6 to about 40 %.
Preferred compositions of the invention contain from about 20 to about 92 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 50 % by weight R-1243zf. For example, such compositions may comprise from about 32 to about 88 % R-1234ze(E), from about 6 to about 28 % by weight R-744 and from about 6 to about 40 % by weight R-1243zf.
In one embodiment, the third component comprises R-263fb. The third component may consist essentially of (or consist of) R-263fb. Compositions of the invention which contain R-263fb typically contain it in an amount of up to about 50 % by weight.
In one embodiment, the third component comprises R-245eb. The third component may consist essentially of (or consist of) R-245eb. Compositions of the invention which contain R-245eb typically contain it in an amount of up to about 30 % by weight.
In one embodiment, the third component comprises n-butane. The third component may consist essentially of (or consist of) n-butane. Compositions of the invention which contain n-butane typically contain it in an amount of up to about 20 % by weight.
In one embodiment, the third component comprises isobutane. The third component may consist essentially of (or consist of) isobutane. Compositions of the invention which contain isobutane typically contain it in an amount of up to about 20 % by weight.
In one embodiment, the third component comprises ammonia. The third component may consist essentially of (or consist of) ammonia. Compositions of the invention which contain ammonia typically contain it in an amount of up to about 30 % by weight.
The compositions of the invention may further contain pentafluoroethane (R-125). If present, R-125 typically is present in amounts up to about 40 % by weight, preferably from about 2 to about 20 % by weight.
Compositions according to the invention conveniently comprise substantially no R-1225 (pentafluoropropene), conveniently substantially no R-1225ye (1,2,3,3,3-pentafluoropropene) or R-1225zc (1,1,3,3,3-pentafluoropropene), which compounds may have associated toxicity issues.
By "substantially no", we include the meaning that the compositions of the invention contain 0.5% by weight or less of the stated component, preferably 0.1 % or less, based on the total weight of the composition.
Certain compositions of the invention may contain substantially no: (i) 2,3,3,3-tetrafluoropropene (R-1234y1), (ii) cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)), and/or (iii) 3,3,3-trifluoropropene (R-1 243zf).
The compositions of the invention have zero ozone depletion potential.
Typically, the compositions of the invention have a GWP that is less than 1300, preferably less than 1000, more preferably less than 800, 500, 400, 300 or 200, especially less than 150 or 100, even less than 50 in some cases. Unless otherwise stated, IPCC (Intergovernmental Panel on Climate Change) TAR (Third Assessment Report) values of GWP have been used herein.
Advantageously, the compositions are of reduced flammability hazard when compared to the third component(s) alone, e.g. R-32, R-161, R-152a, propane or propylene.
Preferably, the compositions are of reduced flammability hazard when compared to R-l234y1.
In one aspect, the compositions have one or more of (a) a higher lower flammable limit; (b) a higher ignition energy; or (c) a lower flame velocity compared to the third component(s) such as R-32, R-152a, R-161, propane, propylene or R-1234yf. In a preferred embodiment, the compositions of the invention are non-flammable.
Advantageously, the mixtures of vapour that exist in equilibrium with the compositions of the invention at any temperature between about -20°C and 60°C are also non-flammable.
Flammability may be determined in accordance with ASH RAE Standard 34 incorporating the ASTM Standard E-681 with test methodology as per Addendum 34p dated 2004, the entire content of which is incorporated herein by reference.
In some applications it may not be necessary for the formulation to be classed as non-flammable by the ASHRAE-34 methodology; it is possible to develop fluids whose flammability limits will be sufficiently reduced in air to render them safe for use in the application, for example if it is physically not possible to make a flammable mixture by leaking the refrigeration equipment charge into the surrounds.
R-1234ze(E) is non-flammable in air at 23°C, although it exhibits flammability at higher temperatures in humid air. We have determined by experimentation that mixtures of R- 1234ze(E) with flammable fluorocarbons such as R-32, R-152a or R-161 will remain non-flammable in air at 23 °C if the "fluorine ratio" Rf of the mixture is greater than about 0.57, where Rf is defined per gram-mole of the overall refrigerant mixture as: Rf = (gram-moles of fluorine)/(gram-moles fluorine + gram-moles hydrogen) Thus for R-161, Rf = 1/(1+5) = 1/6 (0.167) and it is flammable, in contrast R-1234ze(E) has Rf = 4/6 (0.667) and it is non-flammable. We found by experiment that a 20% v/v mixture of R-161 in R-1234ze(E) was similarly non-flammable. The fluorine ratio of this non-flammable mixture is 0.2*(116) + 0.8*(416) = 0.567.
The validity of this relationship between flammability and fluorine ratio of 0.57 or higher has thusfar been experimentally proven for HFC-32, HFC-152a and mixtures of HFC-32 with HFC-152a.
Takizawa et al, Reaction Stoichiometry for Combustion of Fluoroethane Blends, ASHRAE Transactions 112(2) 2006 (which is incorporated herein by reference), shows there exists a near-linear relationship between this ratio and the flame speed of mixtures comprising R-152a, with increasing fluorine ratio resulting in lower flame speeds. The data in this reference teach that the fluorine ratio needs to be greater than about 0.65 for the flame speed to drop to zero, in other words, for the mixture to be non-flammable.
Similarly, Minor et al (Du Pont Patent Application W02007/053697) provide teaching on the flammability of many hydrofluoroolefins, showing that such compounds could be expected to be non-flammable if the fluorine ratio is greater than about 0.7.
In view of this prior art teaching, it is unexpected that that mixtures of R-1234ze(E) with flammable fluorocarbons such as R-32, R-152a or R-161 will remain non-flammable in air at 23 °C if the fluorine ratio Rf of the mixture is greater than about 0.57.
Furthermore, we identified that if the fluorine ratio is greater than about 0.46 then the composition can be expected to have a lower flammable limit in air of greater than 6% v/v at room temperature.
By producing low-or non-flammable R-744/third component/R-1234ze(E) blends containing unexpectedly low amounts of R-1234ze(E), the amounts of the third component, in particular, in such compositions are increased. This is believed to result in heat transfer compositions exhibiting increased cooling capacity and/or decreased pressure drop, compared to equivalent compositions containing higher amounts of (e.g. almost 100 %) R-1234ze(E).
Thus, the compositions of the invention exhibit a completely unexpected combination of low-/non-flammability, low GWP and improved refrigeration performance properties.
Some of these refrigeration performance properties are explained in more detail below.
Temperature glide, which can be thought of as the difference between bubble point and dew point temperatures of a zeotropic (non-azeotropic) mixture at constant pressure, is a characteristic of a refrigerant; if it is desired to replace a fluid with a mixture then it is often preferable to have similar or reduced glide in the alternative fluid. In an embodiment, the compositions of the invention are zeotropic.
Advantageously, the volumetric refrigeration capacity of the compositions of the invention is at least 85% of the existing refrigerant fluid it is replacing, preferably at least 90% or even at least 95%.
The compositions of the invention typically have a volumetric refrigeration capacity that is at least 90% of that of R-1234yf. Preferably, the compositions of the invention have a volumetric refrigeration capacity that is at least 95% of that of R-1234yf, for example from about 95% to about 120% of that of R-1234yf.
In one embodiment, the cycle efficiency (Coefficient of Performance, COP) of the compositions of the invention is within about 5% or even better than the existing refrigerant fluid it is replacing Conveniently, the compressor discharge temperature of the compositions of the invention is within about 15K of the existing refrigerant fluid it is replacing, preferably about 10K or even about 5K.
The compositions of the invention preferably have energy efficiency at least 95% (preferably at least 98%) of R-134a under equivalent conditions, while having reduced or equivalent pressure drop characteristics and cooling capacity at 95% or higher of R-134a values. Advantageously the compositions have higher energy efficiency and lower pressure drop characteristics than R-134a under equivalent conditions. The compositions also advantageously have better energy efficiency and pressure drop characteristics than R-1234yf alone.
The heat transfer compositions of the invention are suitable for use in existing designs of equipment, and are compatible with all classes of lubricant currently used with established HFC refrigerants. They may be optionally stabilized or compatibilized with mineral oils by the use of appropriate additives.
Preferably, when used in heat transfer equipment, the composition of the invention is combined with a lubricant.
Conveniently, the lubricant is selected from the group consisting of mineral oil, silicone oil, polyalkyl benzenes (PAB5), polyol esters (POEs), polyalkylene glycols (PAG5), polyalkylene glycol esters (PAG esters), polyvinyl ethers (PVEs), poly (alpha-olefins) and combinations thereof.
Advantageously, the lubricant further comprises a stabiliser.
Preferably, the stabiliser is selected from the group consisting of diene-based compounds, phosphates, phenol compounds and epoxides, and mixtures thereof.
Conveniently, the composition of the invention may be combined with a flame retardant.
Advantageously, the flame retardant is selected from the group consisting of tri-(2- chloroethyl)-phosphate, (chloropropyl) phosphate, tri-(2,3-dibromopropyl)-phosphate, tn- (1,3-dichloropropyl)-phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminium trihydrate, polyvinyl chloride, a fluorinated iodocarbon, a fluorinated bromocarbon, trifluoro iodomethane, perfluoroalkyl amines, bromo-fluoroalkyl amines and mixtures thereof.
Preferably, the heat transfer composition is a refrigerant composition.
In one embodiment, the invention provides a heat transfer device comprising a composition of the invention.
Preferably, the heat transfer device is a refrigeration device.
Conveniently, the heat transfer device is selected from the group consisting of automotive air conditioning systems, residential air conditioning systems, commercial air conditioning systems, residential refrigerator systems, residential freezer systems, commercial refrigerator systems, commercial freezer systems, chiller air conditioning systems, chiller refrigeration systems, and commercial or residential heat pump systems.
Preferably, the heat transfer device is a refrigeration device or an air-conditioning system.
The compositions of the invention are particularly suitable for use in mobile air-conditioning applications, such as automotive air-conditioning systems (e.g. heat pump cycle for automotive air-conditioning).
Advantageously, the heat transfer device contains a centrifugal-type compressor.
The invention also provides the use of a composition of the invention in a heat transfer device as herein described.
According to a further aspect of the invention, there is provided a blowing agent comprising a composition of the invention.
According to another aspect of the invention, there is provided a foamable composition comprising one or more components capable of forming foam and a composition of the invention.
Preferably, the one or more components capable of forming foam are selected from polyurethanes, thermoplastic polymers and resins, such as polystyrene, and epoxy resins.
According to a further aspect of the invention, there is provided a foam obtainable from the foamable composition of the invention.
Preferably the foam comprises a composition of the invention.
According to another aspect of the invention, there is provided a sprayable composition comprising a material to be sprayed and a propellant comprising a composition of the invention.
According to a further aspect of the invention, there is provided a method for cooling an article which comprises condensing a composition of the invention and thereafter evaporating said composition in the vicinity of the article to be cooled.
According to another aspect of the invention, there is provided a method for heating an article which comprises condensing a composition of the invention in the vicinity of the article to be heated and thereafter evaporating said composition.
According to a further aspect of the invention, there is provided a method for extracting a substance from biomass comprising contacting the biomass with a solvent comprising a composition of the invention, and separating the substance from the solvent.
According to another aspect of the invention, there is provided a method of cleaning an article comprising contacting the article with a solvent comprising a composition of the invention.
According to a further aspect of the invention, there is provided a method for extracting a material from an aqueous solution comprising contacting the aqueous solution with a solvent comprising a composition of the invention, and separating the material from the solvent.
According to another aspect of the invention, there is provided a method for extracting a material from a particulate solid matrix comprising contacting the particulate solid matrix with a solvent comprising a composition of the invention, and separating the material from the solvent.
According to a further aspect of the invention, there is provided a mechanical power generation device containing a composition of the invention.
Preferably, the mechanical power generation device is adapted to use a Rankine Cycle or modification thereof to generate work from heat.
According to another aspect of the invention, there is provided a method of retrofitting a heat transfer device comprising the step of removing an existing heat transfer fluid, and introducing a composition of the invention. Preferably, the heat transfer device is a refrigeration device or (a static) air conditioning system. Advantageously, the method further comprises the step of obtaining an allocation of greenhouse gas (e.g. carbon dioxide) emission credit.
In accordance with the retrofitting method described above, an existing heat transfer fluid can be fully removed from the heat transfer device before introducing a composition of the invention. An existing heat transfer fluid can also be partially removed from a heat transfer device, followed by introducing a composition of the invention.
In another embodiment wherein the existing heat transfer fluid is R-134a, and the composition of the invention contains R134a, R-1234ze(E), R-744, any other third component and/or R-125 present (and optional components such as a lubricant, a stabiliser or an additional flame retardant), R-1234ze(E) and R-744, etc, can be added to the R-1 34a in the heat transfer device, thereby forming the compositions of the invention, and the heat transfer device of the invention, in situ. Some of the existing R-134a may be removed from the heat transfer device prior to adding the R-1234ze(E), R-744, etc, to facilitate providing the components of the compositions of the invention in the desired proportions.
Thus, the invention provides a method for preparing a composition and/or heat transfer device of the invention comprising introducing R-1234ze(E), R-744, any other third component in addition to R-134a, any R-125 desired, and optional components such as a lubricant, a stabiliser or an additional flame retardant, into a heat transfer device containing an existing heat transfer fluid which is R-134a. Optionally, at least some of the R-134a is removed from the heat transfer device before introducing the R-1234ze(E), R-744, etc. Of course, the compositions of the invention may also be prepared simply by mixing the R-1234ze(E), R-744, the third component, any R-125 desired (and optional components such as a lubricant, a stabiliser or an additional flame retardant) in the desired proportions. The compositions can then be added to a heat transfer device (or used in any other way as defined herein) that does not contain R-1 34a or any other existing heat transfer fluid, such as a device from which R-134a or any other existing heat transfer fluid have been removed.
In a further aspect of the invention, there is provided a method for reducing the environmental impact arising from operation of a product comprising an existing compound or composition, the method comprising replacing at least partially the existing compound or composition with a composition of the invention. Preferably, this method comprises the step of obtaining an allocation of greenhouse gas emission credit.
By environmental impact we include the generation and emission of greenhouse warming gases through operation of the product.
As mentioned above, this environmental impact can be considered as including not only those emissions of compounds or compositions having a significant environmental impact from leakage or other losses, but also including the emission of carbon dioxide arising from the energy consumed by the device over its working life. Such environmental impact may be quantified by the measure known as Total Equivalent Warming Impact (TEWI). This measure has been used in quantification of the environmental impact of certain stationary refrigeration and air conditioning equipment, including for example supermarket refrigeration systems (see, for example, http:/!enwikipediaorq!wikUTotal equivalentwarmin impact).
The environmental impact may further be considered as including the emissions of greenhouse gases arising from the synthesis and manufacture of the compounds or compositions. In this case the manufacturing emissions are added to the energy consumption and direct loss effects to yield the measure known as Life-Cycle Carbon Production (LCCP, see for example http://vvsae.orq!eventsIaars/rresentaUonsi2OO7par)asavv3.df). The use of LCCP is common in assessing environmental impact of automotive air conditioning systems.
Emission credit(s) are awarded for reducing pollutant emissions that contribute to global warming and may, for example, be banked, traded or sold. They are conventionally expressed in the equivalent amount of carbon dioxide. Thus if the emission of 1 kg of R- 134a is avoided then an emission credit of 1x1300 = 1300 kg 002 equivalent may be awarded.
In another embodiment of the invention, there is provided a method for generating greenhouse gas emission credit(s) comprising (i) replacing an existing compound or composition with a composition of the invention, wherein the composition of the invention has a lower GWP than the existing compound or composition; and (ii) obtaining greenhouse gas emission credit for said replacing step.
In a preferred embodiment, the use of the composition of the invention results in the equipment having a lower Total Equivalent Warming Impact, and/or a lower Life-Cycle Carbon Production than that which would be attained by use of the existing compound or composition.
These methods may be carried out on any suitable product, for example in the fields of air-conditioning, refrigeration (e.g. low and medium temperature refrigeration), heat transfer, blowing agents, aerosols or sprayable propellants, gaseous dielectrics, cryosurgery, veterinary procedures, dental procedures, fire extinguishing, flame suppression, solvents (e.g. carriers for flavorings and fragrances), cleaners, air horns, pellet guns, topical anesthetics, and expansion applications. Preferably, the field is air-conditioning or refrigeration.
Examples of suitable products include heat transfer devices, blowing agents, foamable compositions, sprayable compositions, solvents and mechanical power generation devices. In a preferred embodiment, the product is a heat transfer device, such as a refrigeration device or an air-conditioning unit.
The existing compound or composition has an environmental impact as measured by GWP and/or TEWI and/or LCCP that is higher than the composition of the invention which replaces it. The existing compound or composition may comprise a fluorocarbon compound, such as a perfluoro-, hydrofluoro-, chlorofluoro-or hydrochlorofluoro-carbon compound or it may comprise a fluorinated olefin Preferably, the existing compound or composition is a heat transfer compound or composition such as a refrigerant. Examples of refrigerants that may be replaced include R-134a, R-152a, R-1234yf, R-410A, R-407A, R-407B, R-407C, R507, R-22 and R-404A. The compositions of the invention are particularly suited as replacements for R- 134a, R-152a or R-1234yf, especially R-134a or R-1234yf.
Any amount of the existing compound or composition may be replaced so as to reduce the environmental impact. This may depend on the environmental impact of the existing compound or composition being replaced and the environmental impact of the replacement composition of the invention. Preferably, the existing compound or composition in the product is fully replaced by the composition of the invention.
The invention is illustrated by the following non-limiting examples.
Examples
Flammability The flammability of certain compositions of the invention in air at atmospheric pressure and controlled humidity was studied in a flame tube test as follows.
The test vessel was an upright glass cylinder having a diameter of 2 inches. The ignition electrodes were placed 60 mm above the bottom of the cylinder. The cylinder was fitted with a pressure-release opening. The apparatus was shielded to restrict any explosion damage. A standing induction spark of 0.5 second duration was used as the ignition source.
The test was performed at 23 or 35 °C (see below). A known concentration of fuel in air was introduced into the glass cylinder. A spark was passed through the mixture and it was observed whether or not a flame detached itself from the ignition source and propagated independently. The gas concentration was increased in steps of 1 % vol. until ignition occurred (if at all). The results are shown below (all compositions are v/v basis unless otherwise stated).
Fuel Temperature (°C) Humidity Results R134a/R1234ze(E) 10/90 23 50%RH/23°C Non flammable C02/R134a/R1234ze 10110180a 23 50%RH/23°C Non flammable R134a/R1234yf 10/90 35 50%RH/23°C LFL 6% UFL 11% R134a/R1234ze(E) 10/90 35 50%RH/23°C LFL 8% UFL 12% CO2IR134a/R1234ze 10/10/80a 35 50%RH/23°C LFL 10% UFL 11%c a This corresponds to about 4 % 002, 10 % R-134a and 86 % R-1234ze(E) by weight.
b LFL = lower flammable limit and UFL = upper flammable limit Incomplete propagation The ternary composition 4 % 002, 10 % R-134a and 86 % R-1234ze(E) by weight was shown to be non-flammable at 23 °C. At 35 °C, it was significantly less flammable than corresponding Ri 34a/R1 234y1 and Ri 34a1R1234ze(E) mixtures.
Modelled Performance Data Generation of accurate physical property model The physical properties of R-1234yf and R-1234ze(E) required to model refrigeration cycle performance, namely critical point, vapour pressure, liquid and vapour enthalpy, liquid and vapour density and heat capacities of vapour and liquid were accurately determined by experimental methods over the pressure range 0-200bar and temperature range -40 to 200°C, and the resulting data used to generate Helmholtz free energy equation of state models of the Span-Wagner type for the fluid in the NIST REFPROP Version 8.0 software, which is more fully described in the user guide vnist.qov!srd!PDFfiIes!REFPR0P8PDF, and is incorporated herein by reference.
The variation of ideal gas enthalpy of both fluids with temperature was estimated using molecular modelling software Hyperchem v7.5 (which is incorporated herein by reference) and the resulting ideal gas enthalpy function was used in the regression of the equation of state for these fluids. The predictions of this model for R1234yf and R1234ze(E) were compared to the predictions yielded by use of the standard files for R1234yf and R1234ze(E) included in REFPROP Version 9.0 (incorporated herein by reference). It was found that close agreement was obtained for each fluid's properties.
The vapour liquid equilibrium behaviour of R-1234ze(E) was studied in a series of binary pairs with carbon dioxide, R-32, R-125, R-134a, R-152a, R-161, propane and propylene over the temperature range -40 to +60°C, which encompasses the practical operating range of most refrigeration and air conditioning systems. The composition was varied over the full compositional space for each binary in the experimental programme, Mixture parameters for each binary pair were regressed to the experimentally obtained data and the parameters were also incorporated into the REFPROP software model. The academic literature was next searched for data on the vapour liquid equilibrium behaviour of carbon dioxide with the hydrofluorocarbons R-32, R-125, R-152a, R-161 and R-152a. The VLE data obtained from sources referenced in the article Applications of the simple multi-fluid model to correlations of the vapour-liquid equilibrium of refrigerant mixtures containing carbon dioxide, by R. Akasaka, Journal of Thermal Science and Technology, 159-168, 4, 1, 2009 (which is incorporated herein by reference) were then used to generate mixing parameters for the relevant binary mixtures and these were then also incorporated into the REFPROP model. The standard REFPROP mixing parameters for carbon dioxide with propane and propylene were also incorporated to this model.
The resulting software model was used to compare the performance of selected fluids of the invention with R-134a in a heat pumping cycle application.
Heat rumrinQ cycle comrarison In a first comparison the behaviour of the fluids was assessed for a simple vapour compression cycle with conditions typical of automotive heat pumping duty in low winter ambient temperatures. In this comparison pressure drop effects were included in the model by assignation of a representative expected pressure drop to the reference fluid (R-134a) followed by estimation of the equivalent pressure drop for the mixed refrigerant of the invention in the same equipment at the same heating capacity. The comparison was made on the basis of equal heat exchanger area for the reference fluid (R-1 34a) and for the mixed fluids of the invention. The methodology used for this model was derived using the assumptions of equal effective overall heat transfer coefficient for refrigerant condensation, refrigerant evaporation, refrigerant liquid subcooling and refrigerant vapour superheating processes to derive a so-called UA model for the process. The derivation of such a model for nonazeotropic refrigerant mixtures in heat pump cycles is more fully explained in the reference text Vapor Compression Heat Pumps with refrigerant mixtures by R Radermacher & Y Hwang (pub Taylor & Francis 2005) Chapter 3, which is incorporated herein by reference.
Briefly, the model starts with an initial estimate of the condensing and evaporating pressures for the refrigerant mixture and estimates the corresponding temperatures at the beginning and end of the condensation process in the condenser and the evaporation process in the evaporator. These temperatures are then used in conjunction with the specified changes in air temperatures over condenser and evaporator to estimate a required overall heat exchanger area for each of the condenser and evaporator. This is an iterative calculation: the condensing and evaporating pressures are adjusted to ensure that the overall heat exchanger areas are the same for reference fluid and for the mixed refrigerant.
For the comparison the worst case for heat pumping in automotive application was assumed with the following assumptions for air temperature and for R-134a cycle conditions.
Cycle conditions Ambient air temperature on to condenser and evaporator -15°C Air temperature leaving evaporator: -25°C Air temperature leaving condenser (passenger air) +45°C R134a evaporating temperature -30°C R-134a condensing temperature +50°C Subcooling of refrigerant in condenser 1 K Superheating of refrigerant in evaporator 5K Compressor suction temperature 0°C Compressor isentropic efficiency 66% Passenger air heating load 2kW Pressure drop in evaporator for R-134a 0.O3bar Pressure drop in condenser for R-134a O.O3bar Pressure drop in suction line for R-134a O.O3bar The model assumed countercurrent flow for each heat exchanger in its calculation of effective temperature differences for each of the heat transfer processes.
Condensing and evaporating temperatures for compositions was adjusted to give equivalent usage of heat exchange area as reference fluid. The following input parameters were used.
Parameter ________ Reference Refrigerant R134a Mean condensertemperature °C 50 Mean evaporator temperature °C -30 Condenser subcooling K 1 Evaporator superheat K 5 Suction diameter mm 16.2 Heating capacity kW 2 Evaporator pressure drop bar 0.03 Suction line pressure drop bar 0.03 Condenser pressure drop bar 0.03 Compressor suction temperature °C 0 Isentropic efficiency ________ 66% Evaporator air on °C -15.00 Evaporator air off °C -25.00 Condenser air on °C -15.00 Condenser air off °C 45.00 Condenser area 100.0% 100.0% Evaporator area 100.0% 100.0% Using the above model, the performance data for the reference R-1 34a is shown below.
COP (heating) 2.11 COP (heating) relative to Reference 100.0% Volumetric heating capacity at suction kJ/m3 879 Capacity relative to Reference 100.0% Critical temperature 101.06 Critical pressure bar 40.59 Condenser enthalpy change kJ/kg 237.1 Pressure ratio 16.36 Refrigerant mass flow kg/hr 30.4 Compressor discharge temperature °C 125.5 Evaporator inlet pressure bar 0.86 Condenser inlet pressure bar 13.2 Evaporator inlet temperature °C -29.7 Evaporator dewpoint °C -30.3 Evaporator exit gas temperature °C -25.3 Evaporator mean temperature °C -30.0 Evaporator glide (out-in) K -0.6 Compressor suction pressure bar 0.81 Compressor discharge pressure bar 13.2 Suction line pressure drop Pa/m 292 Pressure drop relative to reference 100.0% Condenser dew point °C 50.0 Condenser bubble point °C 50.0 Condenser exit liquid temperature °C 49.0 Condenser mean temperature °C 50.0 Condenser glide (in-out) K 0.1 The generated performance data for selected compositions of the invention is set out in the following Tables. The tables show key parameters of the heat pump cycle, including operating pressures, volumetric heating capacity, energy efficiency (expressed as coefficient of performance for heating COP) compressor discharge temperature and pressure drops in pipework. The volumetric heating capacity of a refrigerant is a measure of the amount of heating which can be obtained for a given size of compressor operating at fixed speed. The coefficient of performance (COP) is the ratio of the amount of heat energy delivered in the condenser of the heat pump cycle to the amount of work consumed by the compressor.
The performance of R-134a is taken as the reference point for comparison of heating capacity, energy efficiency and pressure drop. This fluid is used as a reference for comparison of the ability of the fluids of the invention to be used in the heat pump mode of an automotive combined air conditioning and heat pump system.
It should be noted in passing that the utility of fluids of the invention is not limited to automotive systems. Indeed these fluids can be used in so-called stationary (residential or commercial) equipment. Currently the main fluids used in such stationary equipment are R-410A (having a GWP of 2100) or R22 (having a GWP of 1800 and an ozone depletion potential of 0.05). The use of the fluids of the invention in such stationary equipment offers the ability to realise similar utility but with fluids having no ozone depletion potential and significantly reduced GWP compared to R41OA.
It is evident that fluids of the invention can provide improved energy efficiency compared to R-134a or R-410A. It is unexpectedly found that the addition of carbon dioxide to the refrigerants of the invention can increase the COP of the resulting cycle above that of R- 134a, even in case where admixture of the other mixture components would result in a fluid having worse energy efficiency than R-1 34a.
It is further found for all the fluids of the invention that compositions up to about 30% w/w of CO2 can be used which yield refrigerant fluids whose critical temperature is about 70 °C or higher. This is particularly significant for stationary heat pumping applications where R-410A is currently used. The fundamental thermodynamic efficiency of a vapour compression process is affected by proximity of the critical temperature to the condensing temperature. R-410A has gained acceptance and can be considered an acceptable fluid for this application; its critical temperature is 71 00. It has unexpectedly been found that significant quantities of 002 (critical temperature 31 °C) can be incorporated in fluids of the invention to yield mixtures having similar or higher critical temperature to R-410A. Preferred compositions of the invention therefore have critical temperatures are about 70 °C or higher.
The heating capacity of the preferred fluids of the invention typically exceeds that of R134a. It is thought that R-134a alone, operated in an automotive a/c and heat pump system, cannot provide all of the potential passenger air heating demand in heat pump mode. Therefore higher heating capacities than R-134a are preferred for potential use in an automotive a/c and heat pump application. The fluids of the invention offer the ability to optimise fluid capacity and energy efficiency for both air conditioning and cooling modes so as to provide an improved overall energy efficiency for both duties.
For reference, the heating capacity of R-410A in the same cycle conditions was estimated at about 290% of the R-134a value and the corresponding energy efficiency was found to be about 106% of the R-1 34a reference value.
It is evident by inspection of the tables that fluids of the invention have been discovered having comparable heating capacities and energy efficiencies to R-410A, allowing adaption of existing R-410A technology to use the fluids of the invention if so desired.
Some further benefits of the fluids of the invention are described in more detail below.
At equivalent cooling capacity the compositions of the invention offer reduced pressure drop compared to R-134a. This reduced pressure drop characteristic is believed to result in further improvement in energy efficiency (through reduction of pressure losses) in a real system. Pressure drop effects are of particular significance for automotive air conditioning and heat pump applications so these fluids offer particular advantage for this application.
The use of hydrocarbon components in the compositions of the invention (e.g. the C02/R-1270/R-1234ze(E) and C02/R-290/R-1234ze(E) blends) results in an improved solubility and miscibility of the refrigerant with lubricants. In particular, the inclusion of hydrocarbon improves these properties in relation to synthetic hydrocarbon or mineral oil type lubricants, which can otherwise exhibit poor miscibility and low mutual solubility with hydrofluorocarbons such as R-134a.
Surprisingly, the use of hydrocarbon in the preferred amounts also results in an increase in cooling capacity of the refrigerant greater than may have been predicted using approximate estimation techniques. Without being bound by theory, it is believed that the non-ideal vapour-liquid equilibrium interaction of the hydrocarbons with R-1234ze(E) is responsible for this improvement. This benefit is found with both propane and propene. No azeotrope was found in determination of the vapour liquid equilibrium to exist between propene and R-1234ze(E) in the entire temperature range of relevance to the application (-40 to 60°C) so the effect does not appear to be related to the presence of azeotropes.
In summary, the combination of hydrocarbon together with carbon dioxide and R- 1234ze(E) gives an improved refrigeration performance, more versatility in selection and application of compressor lubricant, without significantly increasing the flammability hazard of R-1234ze(E) itself. This combination of advantages is completely unexpected.
The compositions containing C02/R-134a/R-1234ze(E) are especially attractive since they have non-flammable liquid and vapour phases at 23°C and selected compositions are also wholly non-flammable at 60°C.
The performance of fluids of the invention were compared to binary mixtures of C02/R1234ze(E). For all the ternary and quaternary compositions of the invention apart from C02/R1234yf/R1234ze(E) the energy efficiency of the ternary or quaternary mixtures was increased relative to the binary mixture having equivalent 002 content.
These mixtures therefore represent an improved solution relative to the C02/R1234ze(E) binary refrigerant mixture, at least for CO2 content less than 30% w/w.
It was found that the C02/R1234y1/R1234ze(E) system exhibited worse energy efficiency did than comparable ternary mixtures of CO2 and R1234ze(E) with either R-32, R-134a, R-152a, R-161, propane or propene at equivalent CO2 content. It was possible nonetheless to generate C02/R1234yf/R1234ze(E) mixtures having comparable or slightly higher energy efficiency to R-134a. Thus unexpectedly this ternary fluid system of the invention provides a means to ameliorate the poor intrinsic energy efficiency of R-l234y1. : *
:. :.: .: :. :i Table 1: Theoretical Performance Data of Selected R-7441R-134aiR-1234ze(E) blends containing 0-14 % R-744 and 5 % R-134 Composition CO2IR-1 34a1R- 1234ze(E) % by weight _______ 0/5/95 2/5/93 4/5/91 6/5/89 8/5/87 10/5/85 12/5/83 14/5/81 COP (heating) 2.00 2.06 2.10 2.14 2.16 2.18 2.20 2.21 COP (heating) relative to Reference 94.8% 97.7% 99.8% 101.4% 102.7% 103.6% 104.3% 104.9% Volumetric heating capacity at suction kJ/m3 634 715 799 886 976 1069 1166 1265 Capacity relative to Reference 72.1% 81.3% 90.9% 100.8% 111.1% 121.7% 132.7% 143.9% Critical temperature °C 109.40 105.47 101.78 98.30 95.02 91.91 88.98 86.19 Critical pressure bar 37.08 37.84 38.60 39.36 40.12 40.88 41.64 42.39 Condenserenthalpychange kJ/kg 211.5 224.7 235.8 245.4 253.6 261.0 267.5 273.5 Pressure ratio 18.55 18.78 18.82 18.71 18.47 18.15 17.77 17.36 Refrigerant mass flow kg/hr 34.0 32.0 30.5 29.3 28.4 27.6 26.9 26.3 Compressordischargetemperature °C 113.3 117.6 121.5 125,1 128.3 131.3 134.1 136.8 Evaporator inlet pressure bar 0.67 0.71 0.76 0.82 0.89 0.97 1.05 1.14 Condenser inlet pressure bar 10.9 12.1 13.3 14.5 15.7 16.9 18.0 19.2 Evaporator inlet temperature °C -29.0 -29.7 -30.4 -31.1 -31.9 -32.7 -33.6 -34.5 Evaporator dewpoint °C -30.2 -29.6 -29.0 -28.2 -27.4 -26.6 -25.8 -25.1 Evaporator exit gas temperature °C -25.2 -24.6 -24.0 -23.2 -22.4 -21.6 -20.8 -20.1 Evaporator mean temperature °C -29.6 -29.7 -29.7 -29.7 -29.7 -29.7 -29,7 -29.8 Evaporator glide (out-in) K -1.2 0.1 1.4 2.9 4.5 6.1 7.8 9.5 Compressor suction pressure bar 0.59 0.64 0.71 0.77 0.85 0.93 1.01 1.10 Compressor discharge pressure bar 10.9 12.1 13.3 14.5 15.7 16.9 18.0 19.2 Suction line pressure drop Pa/rn 447 378 327 286 253 226 204 185 Pressure drop relative to reference 152.9% 129.6% 111.8% 97.9% 86.6% 77.4% 69.7% 63.2% Condenser dew point °C 53.1 55.0 56.5 57.8 58.8 59.6 60.2 60.5 Condenser bubble point °C 52.7 47.0 42.5 39.0 36.2 34.0 32,1 30.6 Condenser exit liquid temperature °C 51.7 46.0 41.5 38.0 35.2 33.0 31.1 29.6 Condenser mean temperature °C 52.9 51.0 49.5 48.4 47.5 46.8 46.1 45.6 Condenserglide(in-out) K 0.4 7.9 14.0 18.8 22.6 25.7 28.1 29.9 : * * S S. ** : : Table 2: Theoretical Performance Data of Selected R-7441R-134a/R-1234ze(E) blends containing 16-30% R-744 and 5% R-134a Composition CO21R-1 34a/R- 1234ze(E) % by weight _______ 16/5/79 18/5/77 20/5/75 22/5173 24/5/71 26/5/69 28/5/67 30/5/65 COP (heating) 2.22 2.23 2.24 2.24 2.24 2,24 2.24 2.24 COP (heating) relative to Reference 105.4% 105.8% 106.0% 106.2% 106.3% 106.4% 106.4% 106.3% Volumetric heating capacity at suction kJ/m3 1366 1469 1575 1681 1789 1897 2007 2116 Capacity relative to Reference 155.5% 167.2% 179.2% 191.3% 203.6% 215.9% 228.4% 240.8% Critical temperature °C 83.54 81.03 78.63 76.35 74.17 72.09 70.10 68.20 Critical pressure bar 43.15 43.91 44.66 45.42 46.17 46.93 47.68 48.43 Condenserenthalpychange kJ/kg 279.0 284.2 289.1 293.7 298.2 302.6 306.8 310.9 Pressure ratio 16.93 16.51 16.09 15.68 15.29 14.92 14.57 14.24 Refrigerant mass flow kg/hr 25.8 25.3 24.9 24.5 24.1 23.8 23.5 23.2 Compressordischargetemperature °C 139.3 141.7 144.0 146.3 148.6 150.8 153.0 155.2 Evaporator inlet pressure bar 1.23 1.32 1.42 1.53 1.63 1.74 1.85 1.97 Condenser inlet pressure bar 20.3 21.4 22.5 23.6 24.6 25.7 26.7 27.7 Evaporatorinlettemperature °C -35.5 -36.5 -37.5 -38.6 -39.6 -40.6 -41.7 -42.6 Evaporator dewpoint °C -24.4 -23.7 -23.1 -22.6 -22.1 -21.6 -21.3 -21.0 Evaporatorexitgastemperature °C -19.4 -18.7 -18.1 -17.6 -17.1 -16.6 -16.3 -16.0 Evaporator mean temperature -29.9 -30.1 -30.3 -30.6 -30.8 -31.1 -31.5 -31.8 Evaporatorgilde (out-in) K 11.1 12.8 14.4 16.0 17.5 19.0 20.4 21.7 Compressor suction pressure bar 1.20 1.30 1.40 1.50 1.61 1.72 1.83 1.95 Compressordischarge pressure bar 20.3 21.4 22.5 23.6 24.6 25.7 26.7 27.7 Suction linepressuredrop Pa/rn 168 154 142 132 122 114 107 100 Pressure drop relative to reference 57.6% 52.8% 48.7% 45.1% 41.9% 39.0% 36.5% 34.3% Condenser dew point 60.7 60.8 60.7 60.6 60.3 59.9 59.5 59.0 Condenser bubble point 29.3 28.3 27.4 26.6 25.9 25.4 24.9 24.4 Condenser exit liquid temperature °C 28.3 27.3 26.4 25.6 24.9 24.4 23.9 23.4 Condenser mean temperature 45.0 44.5 44.0 43.6 43.1 42.6 42.2 41.7 Condenserglide (in-out) K 31.4 32.5 -33,4 34.0 34.3 34.6 34.6 34.6 * : *: .: :.: Table 3: Theoretical Performance Data of Selected R-7441R-134a/R-1234ze(E) blends containing 0-14 % R-744 and 10 % R-134a Composition C02/R-1 34aIR- 1234ze(E) % by weight _______ 0/10I90 2/10/88 4/10186 6/10/84 8/10/82 10110/80 12/10/78 14/10/76 COP (heating) 2.01 2.07 2.11 2,14 2.17 2.19 2.20 2.21 COP (heating) relative to Reference 95.1% 97.9% 100.0% 101.6% 102.8% 103.7% 104.4% 105.0% Volumetric heating capacity at suction kJ/m3 652 734 819 906 998 1092 1190 1290 Capacity relative to Reference 74.2% 83.5% 93.2% 103.2% 113.6% 124.3% 135.4% 146.8% Critical temperature °C 108.91 105.03 101.37 97.92 94.66 91.58 88.67 85.90 Critical pressure bar 37.56 38.31 39.07 39.82 40.58 41.33 42.09 42.84 Condenserenthalpychange kJ/kg 212.7 225.6 236.6 246.0 254.2 261.4 268.0 273.9 Pressure ratio 18.37 18.57 18.61 18.49 18.24 17.93 17.55 17.15 Reffigerant mass flow kg/hr 33.9 31.9 30.4 29.3 28.3 27.5 26.9 26.3 Compressor discharge temperature 113.9 118.1 121.9 125.5 128.7 131.7 134.5 137.1 Evaporatorinletpressure bar 0.68 0.73 0.78 0.84 0.91 0.99 1.07 1.16 -r Condenserinletpressure bar 11.1 12.3 13.5 14.7 15.9 17.1 18.2 19.4 Evaporator inlet temperature -29.1 -29.8 -30.5 -31.2 -31.9 -32.8 -33.6 -34.5 Evaporator dewpoint °C -30.1 -29.6 -28.9 -28.2 -27.4 -26.6 -25.8 -25.1 Evaporator exit gas temperature -25.1 -24.6 -23.9 -23.2 -22.4 -21.6 -20.8 -20.1 Evaporator mean temperature -29.6 -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 Evaporatorglide(out-in) K -1.0 0.2 1.6 3.0 4.6 6.2 7.8 9.4 Compressor suction pressure bar 0.61 0.66 0.73 0.80 0.87 0.95 1.04 1.13 Compressordischargepressure bar 11.1 12.3 13.5 14.7 15.9 17.1 18.2 19.4 Suction line pressure drop Pa/rn 432 367 318 279 247 221 199 181 Pressure drop relative to reference 147.9% 125.8% 108.8% 95,4% 84.6% 75.7% 68.2% 61.9% Condenser dew point °C 53.0 54.8 56.3 57.6 58.5 59.3 59.8 60.1 Condenser bubble point °C 52.4 46.9 42.5 39.1 36.3 34.1 32.3 30.8 Condenserexitliquidtemperaur Cc 51.4 45.9 41.5 38.1 35.3 33.1 31.3 29.8 Condenser mean temperature °c 52.7 50.9 49.4 48.3 47.4 46.7 46.0 45.5 Condenser glide (in-out) K 0.6 7.9 -13.8 18.5 22.2 25.2 27.5 29.3 * * * :. :.: :. :i Table 4: Theoretical Performance Data of Selected R-744/R-134aJR-1234ze(E) blends containing 16-30 % R-744 and 10 % R-134a Composition CO2IR-134a/R- 1234ze(E) % by weight _______ 16/10/74 18/10/72 20/10/70 22/10/68 24/10166 26/10/64 28/10/62 30/10/60 COP (heating) 2.22 2.23 2.24 2.24 2.24 2.24 2.24 2.24 COP (heating) relative to Reference 105.5% 105.8% 106.1% 106.3% 106.4% 106.4% 106.4% 106.4% Volumetric heating capacity at suction kJ/m3 1393 1498 1604 1712 1822 1933 2044 2156 Capacity relative to Reference 158.5% 170.4% 182.6% 194.9% 207.4% 219.9% 232,6% 245.4% Critical temperature °C 83.28 80.78 78.40 76.13 73.97 71.90 69.93 68.03 Critical pressure bar 43.59 44.35 45.10 45.85 46.61 47.36 48.11 48.86 Condensererithalpychange kJlkg 279.4 284.5 289.3 293.9 298.4 302.7 306.8 310.9 Pressure ratio 16.73 16.31 15.89 15.49 15.10 14.74 14.39 14.06 Refrigerant mass flow kg/hr 25.8 25.3 24.9 24.5 24.1 23.8 23.5 23.2 Compressordischargetempera(ure °C 139.6 142.0 144.3 146.6 148.8 151.0 153.2 155.4 Evaporator inlet pressure bar 1.25 1.35 1.45 1.56 1.67 1.78 1.89 2.01 Condenserinletpressure bar 20.5 21.6 22.7 23.8 24.9 25.9 27.0 28.0 Evaporatorinlettemperature °C -35.5 -36.5 -37.5 -38.5 -39.5 -40.5 -41.4 -42.4 Evaporator dewpoint °C -24.4 -23.7 -23.2 -22.6 -22.1 -21.7 -21.4 -21.1 Evaporatorexitgastemperature -19.4 -18.7 -18.2 -17.6 -17.1 -16.7 -16.4 -16.1 Evaporatormeantemperature °C -29.9 -30.1 -30.3 -30.5 -30.8 -31.1 -31.4 -31.7 Evaporatorgiide(out-in) K 11.1 12.7 14.3 15.8 17.3 18.8 20.1 21.3 Compressorsuctjon pressure bar 1.23 1.33 1.43 1.54 1.65 1.76 1.87 1.99 Compressor discharge pressure bar 20.5 21.6 22.7 23.8 24.9 25.9 27.0 28.0 Suction line pressure drop Palm 165 151 139 129 120 112 105 98 Pressure drop relative to reference 56.5% 51.8% 47.8% 44.2% 41.1% 38.3% 35.9% 33.7% Condenser dew point °C 60.3 60.4 60.3 60.1 59.8 59.5 59.0 58.5 Condenser bubble point 29.5 28.5 27.6 26.8 26.2 25.6 25.1 24.7 Condenserexitliquidtemperature °C 28.5 27.5 26.6 25.8 25.2 24.6 24.1 23.7 Condenser mean temperature 44.9 44.4 44.0 43.5 43.0 42.6 42.1 41.6 Condenserglide(in-out) K 30.8 31.9 32.7 33.3 33.6 33.8 33.9 33.8 : * a. ** *: : :.: : : * : .:. .:.
Table 5: Theoretical Performance Data of Selected R-744/R-134a/R-1234ze(E) blends containing 0-14 % R-744 and 15 % R-134a Composition CO2IR-l 34a/R- 1234ze(E) % by weight _______ 0/15/85 2/15/83 4/15/81 6/15/79 8/15/77 10/15/75 12115/73 14/15/71 COP (heating) 2.01 2.07 2.11 2.14 2.17 2.19 2.20 2.22 COP (heating) relative to Reference 95.5% 98.2% 100.2% 101.7% 102.9% 103.8% 104.5% 105.1% Volumetricheatingcapacityatsuctjon kJ/m3 670 753 838 927 1020 1115 1214 1315 Capacity relative to Reference 76.3% 85.7% 95.4% 105.5% 116.0% 126.9% 138.1% 149.7% Critical temperature °C 108.44 104.58 100.96 97.54 94.31 91.26 88.36 85.62 Critical pressure bar 38.00 38.75 39.50 40.25 41.00 41.76 4251 43.26 Condenser enthalpy change kJ/kg 213.8 226.6 237.4 246.7 254.8 262.0 268.5 274.3 Pressure ratio 18.19 18.38 18.40 18.28 18.03 17.72 17.35 16.95 Refrigerant mass flow kg/hr 33.7 31.8 30,3 29.2 28.3 27.5 26.8 26.2 Compressordischargetemperature °C 114.4 118.6 122.4 125.9 129.1 132.1 134.9 137.5 Evaporator inlet pressure bar 0.69 0.74 080 0.86 0.93 1.01 1.10 1.18 Condenser inlet pressure bar 11.3 12.5 13.7 14.9 16.1 17.3 18.4 19.6 Evaporatorinlettemperature °C -29.2 -29.8 -30.5 -31.2 -32.0 -32.8 -33.6 -34.5 Evaporator dewpoint °C -30.1 -29.5 -28.9 -28.1 -27.4 -26.6 -25.8 -25.1 Evaporator exit gas temperature -25.1 -24.5 -23.9 -23.1 -22.4 -21.6 -20.8 -20.1 Evaporator mean temperature ec -29.6 -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 Evaporator glide (out-in) K -0.9 0.3 1.6 3.1 4.6 6.2 7.8 9.4 Compressor suction pressure bar 0.62 0.68 0.74 0.81 0.89 0.97 1.06 1.15 Compressordischargepressure bar 11.3 12.5 13.7 14.9 16.1 17.3 18.4 19.6 Suction line pressure drop Palm 419 357 310 272 241 216 195 177 Pressure drop relative to reference 143.4% 122.3% 106.0% 93.1% 82.6% 74.0% 66.8% 60.6% Condenserdewpoint °C 52.9 54.6 56.1 57.3 58.2 58.9 59.4 59.8 Condenser bubble point 52.2 46.8 42.5 39.2 36.4 34.3 32.5 31.0 Condenserexitliquid temperature 51.2 45.8 41.5 38.2 35.4 33.3 31.5 30.0 Condenser mean temperature °C 52.5 50.7 49.3 48.2 47.3 46.6 46.0 45.4 Condenserglide(in-out) K 0.8 7.8 13.6 18.1 21.8 24.7 27.0 28.8
S
Table 6: TheoretIcal Performance Data of Selected R-7441R-134aIR.1234ze(E) blends containing 16-30 % R-744 and 15 % R-134a Composition C02!R-134a/R- 1234ze(E) % by weight _______ 16/15/69 18/15/67 20/15/65 22/15/63 24/15/61 26/15/59 28/15157 30/15/55 COP (heating) 2.22 2.23 2.24 2,24 2.24 2.25 2.24 2.24 COP (heating) relative to Reference 105.5% 105.9% 1061% 106.3% 106.4% 106.5% 106.5% 106.4% Volumetric heating capacity at suction kJ/m3 1419 1525 1633 1743 1855 1967 2081 2196 Capacity relative to Reference 161.5% 173.6% 185.9% 198.4% 211.1% 223.9% 236.8% 249.9% Critical temperature cc 83.01 80.53 78.17 75.92 73.77 71.71 69.75 67.87 Critical pressure bar 44.01 4.4.76 45.52 46.27 47.02 47.77 48.52 49.27 Condenserenthalpychange kJ/kg 279.8 284.9 289.7 294.2 298.6 302.8 306.9 310.9 Pressure ratio 16.54 16.12 15.71 15.31 14.93 14.56 14.21 13.88 Refrigerant mass floW kg/hr 25.7 25.3 24.9 24.5 24.1 23.8 23.5 23.2 Compressordischargetemperature cc 140.0 142.3 144.6 146.9 149.1 151.3 153.4 155.5 Evaporatorinletpressure bar 1.28 1.38 1.48 1.59 1.70 1.81 1.93 2.05 Condenserinletpressure bar 20.7 21.8 22.9 24.0 25.1 26.2 27.2 28.3 Evaporator inlet temperature °c -35.4 -36.4 -37.4 -38.3 -39.3 -40.3 -41.2 -42.2 Evaporatordewpoint °C -24.4 -23.8 -23.2 -22.7 -22.2 -21.8 -21.4 -21.1 Evaporatorexitgastemperature cc -19.4 -18.8 -18.2 -17.7 -17.2 -16.8 -16.4 -16.1 Evaporator mean temperature °c -29.9 -30.1 -30.3 -30.5 -30.8 -31.0 -31.3 -31.6 Evaporatorglide (out-in) K 11.0 12.6 14.2 15.7 17.1 18.5 19.8 21.0 Compressorsuction pressure bar 1.25 1.35 1.46 1.57 1.68 1.80 1.91 204 Compressordischargepressure bar 20.7 21.8 22.9 24.0 25.1 26.2 27.2 28.3 Suction line pressure drop Palm 162 148 137 127 118 110 103 97 Pressure drop relative to reference 55.4% 50.8% 46.9% 43.4% 40.3% 37.6% 35.2% 33.1% Condenser dew point °c 59.9 60.0 59.9 59.7 59.4 59.0 58.6 58.1 Condenser bubble point cc 29.7 28.7 27.8 -27.1 26.4 25.9 25.4 25.0 Condenser exit liquid temperature °c 28.7 27.7 26.8 26.1 25.4 24.9 24.4 24.0 Condenser mean temperature °c 44.8 44.3 43.9 43.4 42.9 42.5 42.0 41.6 Condenserglide(in..out) K 30.2 31.3 32.1 32.6 33.0 33.2 33.2 33.1 S * * S ** *, * . * S * * * S.. *** S.. * * * . S * * S * **. ...
Table 7: Theoretical Performance Data of Selected R-7441R-134a/R-1234ze(E) blends containing 0-14% R-744 and 20% R-134a Composition CO2IR-134aJR- 1234ze(E) % by weight _______ 0/20/80 2/20/78 4/20/76 6/20/74 8120172 10/20/70 12/20168 14/20/66 COP (heating) 2.02 2.08 2.12 2.15 2.17 2.19 2.20 2.22 COP (heating) relative to Reference 95.8% 98.4% 100.4% 101.8% 103.0% 103.9% 104.6% 105.1% Volumetric heating capacity at suction kJIm3 688 771 857 947 1041 1137 1237 1339 Capacity relative to Reference 78.3% 87.7% 97.6% 107.8% 118.4% 129.4% 140.7% 152.4% Critical temperature 107.96 104.14 100.55 97.16 93.96 90.93 88.06 85.34 Critical pressure bar 38.40 39.15 39.90 40.65 41.40 42.15 42.91 43.66 Condenserenthalpychange kJ/kg 215.0 227.5 238.2 247.5 255.5 262.6 269.0 274.9 Pressure ratio 18.02 18.19 18.21 18.08 17.84 17.53 17.16 16.76 Refrigerantmassflow kg/hr 33.5 31.6 30.2 29.1 28.2 27.4 26.8 26.2 Compressordischargetemperature °C 114.9 119.1 122,9 126.4 129.6 132.5 135.3 137.9 Evaporator inlet pressure bar 0.71 0.76 0.81 0.88 0.95 1.03 1.12 1.21 00 Condenserinletpressure bar 11.5 12.7 13.9 15.1 16.3 17.5 18.6 19.8 Evaporator inlet temperature -29.2 -29.9 -30.5 -31.3 -32.0 -32.8 -33.6 -34.5 Evaporator dewpoint °C -30.0 -29.5 -28.8 -28.1 -27.4 -26.6 -25.9 -25.2 Evaporator exit gas temperature -25.0 -24.5 -23.8 -23.1 -22.4 -21.6 -20.9 -20.2 Evaporator mean temperature -29.6 -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 Evaporator glide (out-in) K -0.8 0.4 1.7 3.1 4.6 6.2 7.8 9.3 Compressor suction pressure bar 0.64 0.70 0.76 0.83 0.91 1.00 1.08 1.18 Compressordischarge pressure bar 11.5 12.7 13.9 15.1 16.3 17.5 18.6 19.8 Suction line pressure drop Palm 406 348 302 266 236 212 191 174 Pressure drop relative to reference 139.1% 119.0% 103.4% 91.0% 80.8% 72.5% 65.4% 59.4% Condenser dew point 52.8 54.5 55.9 57.0 57.9 58.6 59.1 59.4 Condenser bubble point 52.0 46.7 42.5 39.2 36.5 34.4 32.6 31.1 Condenserexitliquidtemperature °C 51.0 45.7 41.5 38.2 35.5 33.4 31.6 30.1 Condenser mean temperature 52.4 50.6 49.2 48.1 47.2 46.5 45.9 45.3 Condenserglide(in-out) K 0.8 7.7 13.3 17.8 21.4 24.2 26.5 28.2 * S * * * * .5.* * S S S S * * *.* 5** .5. . . * * a * * S * **. *5I Table 8: Theoretical Performance Data of Selected R-744/R-134a/R-1234ze(E) blends containing 16-30 % R-744 and 20 % R-134a Composition C02/R-1 34aIR-I 234ze(E) % by weight _______ 16/20164 18/20/62 20/20/60 22/20/58 24/20/56 26/20/54 28/20/52 30/20/50 COP (heating) 2.23 2.23 2.24 2.24 2.25 2.25 2.25 2.25 COP (heating) relative to Reference 105.6% 105.9% 106.2% 106.4% 106.5% 106.5% 106.5% 106.5% Volumetric heating capacity at suction kJ/m3 1445 1552 1662 1774 1887 2002 2117 2235 Capacity relative to Reference 164.4% 176.7% 189.2% 201.9% 214.8% 227,8% 241.0% 254.3% Critical temperature °C 82.75 80.29 77.94 75.70 73.57 71.53 69.57 67.70 Critical pressure bar 44.41 45.16 45.91 46.66 47.41 48.16 48.91 49.66 Condenserenthalpychange kJ/kg 280.3 285.3 290.1 294.6 298.9 303.1 307.1 311.1 Pressure ratio 16.36 15.94 15.54 15.14 14.76 14.40 14.05 13.72 Refrigerant mass flow kg/hr 25.7 25.2 24.8 24.4 24.1 23.8 23.4 23.1 Compressordischargetemperature °C 140.3 142.7 145.0 147.2 149.4 151.5 153.7 155.7 Evaporator inlet pressure bar 1.31 1.41 1.51 1.62 1.73 1.85 1.97 2.09 Condenser inlet pressure bar 20.9 22.0 23.1 24.2 25.3 26.4 27.5 28.5 Evaporatorinlettemperature °C -35.4 -36.3 -37.3 -38.2 -39.2 -40.1 -41.0 -41.9 Evaporator dewpoint °C -24.5 -23.8 -23.3 -22.7 -22.3 -21.9 -21.5 -21.2 Evaporatorexitgastemperature °C -19.5 -18.8 -18.3 -17.7 -17.3 -16.9 -16.5 -16.2 Evaporator mean temperature C -29.9 -30.1 -30.3 -30.5 -30.7 -31.0 -31.3 -31.6 Evaporatorglide(outin) K 10.9 12.5 14.0 15.5 16.9 18.3 19.5 20.7 Compressor suction pressure bar 1.28 1.38 1.49 1.60 1.71 1.83 1.95 2.08 Compressordischargepressure bar 20.9 22.0 23.1 24.2 25.3 26.4 27.5 28.5 Suction line pressure drop Palm 159 146 134 124 116 108 101 95 Pressure drop relative to reference 54.3% 49.9% 46.0% 42.6% 39.6% 37.0% 34.6% 32.5% Condenserdewpoint °C 59.5 59.6 59.5 59.3 59.0 58.6 58.2 57.7 Condenser bubble point 29.9 28.9 28.0 27.3 26.7 26.1 25.6 25.2 Condenser exit liquid temperature °C 28.9 27.9 27.0 26.3 25.7 25.1 24.6 24.2 Condensermeantemperature °C 44.7 442 43.8 43.3 42.8 42.4 41.9 41.5 Condenserglide(in-out) K 29.6 30.7 31.5 32.0 32.3 32.5 32.5 32.4 * S * * * * *. ** * * * S 5 * * *** .*. *.* S S * . * S S S * *5S *..
Table 9: Theoretical Performance Data of Selected R-744/R-134a/R-1234ze(E) blends contaIning 0-14% R-744 and 30% R-134a Composition CO2IR-l34aJR- 1234ze(E) % by weight _______ 0/30/70 2/30168 4/30/66 6/30/64 8/30/62 10/30/60 12/30/58 14/30/56 COP (heating) 2.03 2.08 2.12 2.15 2.18 2.19 2.21 2.22 COP (heating) relative to Reference 96.4% 98.9% 100.7% 102.1% 103.2% 104.1% 104.7% 105.3% Volumetric heating capacity at suction kJ/m3 721 806 894 985 1081 1179 1281 1387 CapacityrelativetoReferen 82.1% 91.7% 101.7% 112,1% 123.0% 134.2% 145.8% 157.8% Critical temperature 107.03 103.28 99.75 96.42 93.27 90.29 87.47 84.78 Critical pressure bar 39.11 39.86 40.61 41.37 42.12 42.87 43.62 44.37 Condenserenthalpychange kJ/kg 217.3 229.6 240.1 249.1 257.0 264.1 270.4 276.1 Pressure ratio 17.70 17.85 17.86 17.73 17.49 17.18 16.82 16.43 Refrigerant mass flow kg/hr 33.1 31.4 30.0 28.9 28.0 27.3 26.6 26.1 Compressordischargetemperature °C 116.0 120.2 123.9 127.4 130.5 133.5 136.2 138.8 Evaporatorinletpressure bar 0.74 0.79 0.85 0.91 0.99 1.07 1.16 1.25 0 Condenser inlet pressure bar 11.9 13.0 14.2 15.4 16.6 17.8 19.0 20.1 Evaporator inlet temperature -29.3 -30.0 -30.6 -31.3 -32.0 -32.8 -33.6 -34.4 Evaporator dewpoint °C -30.0 -29.5 -28.8 -28.1 -27.4 -26.7 -25.9 -25.2 Evaporator exit gas temperature -25.0 -24.5 -23.8 -23.1 -22.4 -21.7 -20.9 -20.2 Evaporator mean temperature -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 -29.8 Evaporator glide (out-in) K -0.7 0.5 1.8 3.2 4.6 6.1 7.6 9.2 Compressor suction pressure bar 0.67 0.73 0.80 0.87 0.95 1.04 1.13 1.23 Compressordischarge pressure bar 11.9 13.0 14.2 15.4 16.6 17.8 19.0 20.1 Suction line pressure drop Palm 384 330 288 254 226 203 184 167 Pressure drop relative to reference 131.6% 113.1% 98.6% 87.0% 77.5% 69.6% 62.9% 57.2% Condenser dew point °C 52.5 54.1 55.4 56.5 57.3 58.0 58.4 58.7 Condenser bubble point 51.6 46.6 42.5 39.3 36.7 34.6 32.9 31.4 Condenser exit liquid temperature 50.6 45.6 41.5 38.3 35.7 33.6 31.9 30.4 Condenser mean temperature °C 52.1 50.3 49.0 47.9 47.0 46.3 45.6 45.1 Condenserglide (in-out) K 0.9 7.5 12.9 17.2 20.6 23.4 25.6 27.3 : .: .: 0 0* * * 0 : 0: : : : S S *** 000 Table 10: Theoretical Performance Data of Selected R-7441R-134a/R-1234ze(E) blends containing 16-30 % R-744 and 30 % R-134a Composition CO2IR-134a1R- 1 234ze(E) % by weight ________ 16/30/54 18/30/52 20/30/50 22/30/48 24/30/46 26/30/44 28/30/42 30/30/40 COP (heating) 2.23 2.24 2.24 2.25 2.25 2.25 2.25 2.25 COP (heating) relative to Reference 105.7% 106.0% 106.3% 106.5% 106.6% 106.7% 106.7% 106.6% Volumetric heating capacity at suction kJ/m3 1494 1605 1718 1833 1949 2068 2188 2309 Capacity relative to Reference 170.1% 182.7% 195.5% 208.6% 221.9% 235.3% 249.0% 262.8% Critical temperature °C 82.23 79.80 77.49 75.28 73.17 71.16 69.23 67.38 Critical pressure bar 45.12 45.88 46.63 47.38 48.13 48.88 49.63 50.38 Conderisererithalpychange kJlkg 281.5 286.4 291.1 295.5 299.8 303.8 307.8 311.6 Pressure ratio 16.03 15.63 15.23 14.84 14.46 14.10 13.75 13.42 Refrigerant mass flow kg/hr 25.6 25.1 24.7 24.4 24.0 23.7 23.4 23.1 Compressordischargetemperature °C 141.2 143.5 145.8 148.0 150.1 152.2 154.2 156.3 Evaporator inlet pressure bar 1.35 1.46 1.57 1.68 1.80 1.92 2.05 2.18 Condenserinletpressure bar 21.3 22.4 23.5 24.6 25.7 26.8 27.9 29.0 Evaporator inlet temperature -35.3 -36.2 -37.1 -38.0 -38.9 -39.8 -40.7 -41.5 Evaporator dewpoint °C -24.6 -24.0 -23.4 -22.9 -22.4 -22.0 -21.6 -21.3 Evaporatorexitgastemperature °C -19.6 -19.0 -18.4 -17.9 -17.4 -17.0 -16.6 -16.3 Evaporator mean temperature °C -29.9 -30.1 -30.2 -30.4 -30.7 -30.9 -31.2 -31.4 Evaporatorglide (out-in) K 10.7 12.2 13.7 15.1 16.5 17.8 19.0 20.2 Compressor suction pressure bar 1.33 1.43 1.55 1.66 1.78 1.90 2,03 2.16 Compressordischargepressure bar 21.3 22.4 23.5 24.6 25.7 26.8 27.9 29.0 Suction linepressuredrop Palm 153 140 130 120 112 104 98 92 Pressure drop relative to reference 52.3% 48.1% 44.4% 41.1% 38.3% 35.7% 33.4% 31.4% Condenser dew point °C 58.8 58.8 58.7 58.5 58.2 57.9 57.4 56.9 Condenser bubble point °C 30.2 29.2 28.4 27.6 27.0 26.5 26.0 25.7 Condenser exit liquid temperature 29.2 28.2 27.4 26.6 26.0 25.5 25.0 24.7 Condensermeantemperature °C 44.5 44.0 43.6 43.1 42.6 42.2 41.7 41.3 Condensergtide (in-out) K 28.6 29.6 -30.4 30.9 31.2 31.4 31.4 31.3 * : *: *: *.* *** ... : : * * * * * * * *** I..
Table 11: Theoretical Performance Data of Selected R-744IR-134aJR-1234ze(E) blends containIng 0-14 % R-744 and 40 % R-134a Composition C02/R-1 34aIR-I 234ze(E) % by weight _______ 0/40/60 2/40/58 4/40/56 6/40/54 8/40/52 10140/50 12/40/48 14/40/46 COP (heating) 2.04 2.09 2.13 2,16 2.18 2.20 2.21 2.22 COP (heating) relative to Reference 96.9% 99.3% 101.1% 102.4% 103.4% 104.3% 104.9% 105.4% Volumetric heating capacity at suction kJ/m3 752 838 928 1021 1118 1220 1323 1431 Capacity relative to Reference 85.6% 95.4% 105.6% 116.2% 127.3% 138.8% 150.6% 162.8% Critical temperature 106.12 102.44 98.97 95.70 92.60 89.66 86.88 84.24 Critical pressure bar 39.69 40.45 41.21 41.96 42.72 43.48 44.23 44.99 Condenser enthalpy change kJfkg 219.7 231.7 242.1 251.0 258.9 265.8 272.1 277.8 Pressure ratio 17.41 17.56 17.56 17.42 17.19 16.88 16,53 16.15 Refrigerantmassflow kg/hr 32.8 31.1 29.7 28.7 27.8 27.1 26.5 25.9 Compressordischargetemperature °C 117.2 121.3 125.1 128.5 131.6 134.5 137.2 139.8 Evaporator inlet pressure bar 0.76 0.81 0.88 0.95 1.02 tIl 1.20 1.30 Condenserinletpressure bar 12.2 13.3 14.6 15.8 17.0 18.2 19.3 20.5 Evaporator inlet temperature °c -29.4 -30.0 -30.6 -31.3 -32.0 -32.7 -33.5 -34.3 Evaporator dewpoint -30.0 -29.5 -28.9 -28.2 -27.5 -26.7 -26.0 -25.3 Evaporator exit gas temperature °C -25.0 -24.5 -23.9 -23.2 -22.5 -21.7 -21.0 -20.3 Evaporator mean temperature °C -29.7 -29.7 -29.8 -29.7 -29.7 -29.7 -29.8 -29.8 Evaporator glide (out-in) K -0.6 0.5 1.8 3.1 4.6 6.0 7.5 9.0 Compressor suction pressure bar 0.70 0.76 0.83 0.90 0.99 1.08 1.17 1.27 Compressordischarge pressure bar 12.2 13.3 14.6 15.8 17.0 18.2 19.3 20.5 Suction line pressure drop Pa/m 366 315 276 244 217 196 177 161 Pressure drop relative to reference 125.2% 108.0% 94.4% 83.5% 74.5% 66.9% 60.6% 55.2% Condenserdewpoint °C 52.2 53.7 54.9 56.0 56.8 57.4 57.8 58.1 Condenser bubb'e point 51.4 46.4 42.5 39.3 36.8 34.7 33.0 31.6 Condenser exit liquid temperature °C 50.4 45.4 41.5 38.3 35.8 33.7 32.0 30.6 Condenser mean temperature 51.8 50.1 48.7 47.7 46.8 46.1 45.4 44.8 Condenser glide (in-out) K 0.8 7.2 12.4 16.6 20.0 22.7 24.8 26.5 * * ** ..
* * * *. * S *S *** **. S S * * * * * * *S* *S* Table 12: Theoretical Performance Data of Selected R-744/R-134a/R-1234ze(E) blends containIng 16-30 % R-744 and 40 % R-134a Composition C02/R-134a1R.
I 234ze(E) % by weight ________ 16/40/44 18140/42 20/40/40 22140/38 24/40/36 26140/34 28/40/32 30/40/30 COP (heating) 2.23 2.24 2.24 2.25 2.25 225 2.25 2.25 COP (heating) relative to Reference 105.9% 106.2% 106.4% 106.6% 106.7% 106.8% 106.8% 106.8% Volumetric heating capacity at suction kJ/m3 1541 1654 1770 1888 2008 2130 2253 2379 Capacity relative to Reference 175.4% 188.3% 201.5% 214,9% 228.5% 242.4% 256.5% 270.7% Critical temperature °C 81.72 79.33 77.05 74.87 72.78 70.79 68.89 67.06 Critical pressure bar 45.74 46.50 47.26 48.01 48.77 49.52 50.27 51.03 Condenserenthalpychange kJlkg 283.0 287.9 292.5 296.9 301.0 305.0 308.8 312.5 Pressure ratio 15.76 15.36 14.97 14.58 14.21 13.85 13.50 13.17 Refrigerant mass flow kg/hr 25.4 25.0 24.6 24.3 23.9 23.6 23.3 23.0 Compressordischargetemperature °C 142.2 144.5 146.7 148.8 150.9 153.0 155.0 157.0 Evaporator inlet pressure bar 1.40 1.51 1.62 1.74 1.86 1.98 2.11 2.25 U.) Condenser inlet pressure bar 21.6 22.8 23.9 25.0 26.1 27.2 28.3 29.4 Evaporator inlet temperature -35.2 -36.1 -36.9 -37.8 -38.7 -39.6 -40.4 -41.2 Evaporator dewpoint °C -24.7 -24.1 -23.5 -23.0 -22.5 -22.1 -21.8 -21.5 Evaporatorexitgastemperature °C -19.7 -19.1 -18.5 -18.0 -17.5 -17.1 -16.8 -16.5 Evaporator mean temperature -29.9 -30.1 -30.2 -30.4 -30.6 -30.8 -31.1 -31.3 Evaporatorglide(out-in) K 10.5 12.0 13.4 14.8 16.1 17.4 18.6 19.7 Compressorsuctionpressure bar 1.37 1.48 1.60 1.72 1.84 1.97 2.10 2.23 Compressordischargepressure bar 21.6 22.8 23.9 25.0 26.1 27.2 28.3 29.4 Suction line pressure drop Palm 148 136 125 116 108 101 95 89 Pressure drop relative to reference 50.5% 46.5% 42.9% 39.8% 37.0% 34.6% 32.4% 30.4% Condenserdewpoint °C 58.2 58.2 58.1 57.9 57.6 57.2 56.8 56.3 Condenser bubble point °C 30.4 29.4 28.6 27.9 27.3 26.8 26.3 26.0 Condenser exit liquid temperature 29.4 28.4 27.6 26.9 26.3 25.8 25.3 25.0 Condenser mean temperature 0Q 44.3 43.8 43.3 42.9 42.4 42.0 41.6 41.1 Condenser glide (in-out) K 27.8 28.8 29.5 30.0 30.3 30.4 30.4 30.3 : .: : :. :: : : 0 * ..J *0* Table 13: Theoretical Performance Data of Selected R-7441R-134a/R-1234ze(E) blends containing 0-14 % R-744 and 50 % R-134a Composition C02/R-1 34aIR-I 234ze(E) % by weight ________ 0/50/50 2/50/48 4/50/46 6/50/44 8/50/42 10/50(40 12/50/38 14150/36 COP (heating) 2.05 2.10 2.14 2.17 2.19 2.20 2.22 2.23 COP (heating) relative to Reference 97.5% 99.7% 101.4% 102.7% 103.7% 104.5% 105.1% 105.6% Volumetric heating capacity at suction kJ/m3 780 868 959 1054 1153 1256 1362 1472 Capacity relative to Reference 88.8% 98.7% 109.1% 120.0% 131.2% 143.0% 155.0% 167.5% Critical temperature °C 105.23 101.62 98.21 94.99 91.94 89.05 8631 83.70 Critical pressure bar 40.15 40.91 41.68 42.45 43.21 43.98 44.74 45.51 Condenserenthalpychange kJfkg 222.2 234.1 244.4 253.2 261.0 267.9 274.1 279.7 Pressure ratio 17.16 17.30 17.30 17.17 16.94 16.64 16.30 15.92 Refrigerant mass flow kg/hr 32.4 30.8 29.5 28.4 27.6 26.9 26.3 25.7 Compressordischarge temperature 118.4 122.5 126.3 129.7 132.8 135.7 138.4 140.9 Evaporator inlet pressure bar 0.78 0.84 0.90 0.97 1.05 1.14 1.23 1.33 -1 Condenser inlet pressure bar 12.4 13.6 14.8 16.1 17.3 18.5 19.6 20.8 Evaporator inlet temperature -29.5 -30.1 -30.7 -31.3 -32.0 -32.7 -33.5 -34.3 Evaporator dewpoint °C -30.0 -29.5 -28.9 -28.2 -27.5 -26.8 -26.1 -25.4 Evaporator exit gas temperature -25.0 -24.5 -23.9 -23.2 -22.5 -21.8 -21.1 -20.4 Evaporator mean temperature °C -29.7 -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 Evaporatorglide (out-in) K -0.6 0.5 1.8 3.1 4.5 5.9 7.4 8.9 Compressor suction pressure bar 0.72 0.79 0.86 0.93 1.02 1.11 1.21 1.31 Compressordischargepressure bar 12.4 13.6 14.8 16.1 17.3 18.5 196 20.8 Suction line pressure drop Pa/rn 349 302 265 235 210 189 171 156 Pressure drop relative to reference 119.7% 103.5% 90.7% 80.3% 71.8% 64.6% 58.6% 53.4% Condenserdewpoint °C 51.8 53.2 54.5 55.5 56.3 56.9 57.3 57.5 Condenser bubble point 51.1 46.3 42.4 39.3 36.8 34.8 33.1 31.7 Condenser exit liquid temperature °c 50.1 45.3 41.4 38.3 35.8 33.8 32.1 30.7 Condenser mean temperature 51.5 49.8 48.5 47.4 46.5 45.8 45.2 44.6 Condenserglide (in-out) K 0.7 6.9 12.1 16.2 19.5 22.1 24.2 25.9 : .: : * .4 4p 4 4** **S *.* 4.
* * 4 * S S * *54 *.* Table 14: Theoretical Performance Data of Selected R-7441R-I34aJR-1234ze(E) blends containing 16-30 % R-744 and 50 % R-134a Composition C02/R-1 34aIR-I 234ze(E) % by weight ________ 16/50/34 18/50132 20/50/32 22150/28 24/50/26 26/50/24 28/50/22 30/50/20 COP (heating) 2.24 2.24 2.25 2.25 2.25 2.26 2.26 2.26 COP (heating) relative to Reference 106.1% 106.4% 106.6% 106.8% 106.9% 107.0% 107.0% 107.0% Volumetric heating capacity at suction kJ/m3 1585 1700 1818 1939 2061 2186 2312 2441 Capacity relative to Reference 180.3% 193.5% 206.9% 220.7% 234.6% 248.8% 263.2% 277. 8% Critical temperature °C 81.22 78.86 76.61 74.46 72.40 70.44 68,55 66.75 Critical pressure bar 46.27 47.03 47.80 48.56 49.32 50.08 50.84 51.60 Condenser enthalpy change kJ/icg 284.9 289.7 294.3 298.6 302.7 306.6 310.4 314.0 Pressure ratio 15.53 15.14 14.75 14.37 14.00 13.64 13.30 12.97 Refrigerant mass floW kg/hr 25.3 24.9 24.5 24.1 23.8 23.5 23.2 22.9 Compressordischargeternperature °C 143.3 145.6 147.7 149.9 151.9 153.9 155.9 157.9 Evaporatorinletpressure bar 1.44 1.55 1.67 1.79 1.91 2.04 2.17 2.31 Ln Condenser inlet pressure bar 22.0 23.1 24.3 25.4 26.5 27.6 28.7 29.8 Evaporator inlet temperature -35.1 -36.0 -36.8 -37.7 -38.5 -39.4 -40.2 -41.0 Evaporator dewpoint °C -24.8 -24.2 -23.6 -23.1 -22.6 -22.2 -21.9 -21.6 Evaporatorexitgastemperature °C -19.8 -19.2 -18.6 -18.1 -17.6 -17.2 -16.9 -16.6 Evaporator mean temperature °C -29.9 -30.1 -30.2 -30.4 -30.6 -30.8 -31.0 -31.3 Evaporatorglide(out.jn) K 10.3 11.8 13.2 14.6 15.9 17.2 18.3 19.4 Compressorsuctionpressure bar 1.41 1.53 1.64 1.77 1.89 2.02 2.16 2.30 Compressor discharge pressure bar 22.0 23.1 24.3 25.4 26.5 27.6 28.7 29.8 Suction line pressure drop Pa/rn 143 131 121 113 105 98 92 86 Pressure drop relative to reference 48.9% 45.0% 41.6% 38.6% 35.9% 33.6% 31.4% 29.5% Condenserdewpoint °C 57.7 57.7 57.5 57.3 57.0 56.7 56.2 55.8 Condenser bubble point °C 30.5 29.5 28.7 28.0 27.4 26.9 26.5 26.2 Condenser exit liquid temperature °C 29.5 28.5 27.7 27.0 26.4 25.9 25.5 25.2 Condensermeantemperature °C 44.1 43.6 43.1 42.7 42.2 41.8 41.4 41.0 Condenser glide (in-out) K 27.1 28.1 -28.8 29.3 29.6 29.7 29.7 29.6 : .: * . * S S 5 *** *** *** * S * S * . S S * *** *** Table 15: Theoretical Performance Data of Selected R-7441R-32/R-1234ze(E) blends containing 0-14 % R-744 and 5 % R-32 Composition CO2JR-321R-1234ze(E) % by weight _______ 0/5/95 2/5/93 4/5191 6/5/89 8/5/87 10/5/85 12/5/83 14/5/81 COP (heating) 2.07 2.11 2.15 2.17 2.19 2.21 2.22 2.23 COP (heating) relative to Reference 95.0% 100.2% 101.8% 103.1% 104.0% 104.8% 105.4% 105.9% Volumetric heating capacity at suction kJ/m3 729 813 900 990 1083 1179 1278 1379 Capacity relative to Reference 83.0% 92.5% 102.4% 112.7% 123.3% 134.2% 145.4% 156.9% Critical temperature °C 106.60 103.13 99.78 96.58 93.54 90.65 87.91 85.29 Critical pressure bar 39.06 39.91 40.71 41.47 42.23 42.98 4373 44.48 Condenserenthalpychange kJ/kg 226.5 237.7 247.3 255.7 263.2 269.9 276.1 281.7 Pressure ratio 17.96 17.98 17.89 17.68 17.40 17.07 16.71 16.33 Refrigerant mass flow kg/hr 31.8 30.3 29.1 28.2 27.4 26.7 26.1 25.6 Compressordischarge temperature 118.1 121.9 125.4 128.6 131.6 134.4 137.1 139.6 Evaporator inlet pressure bar 0.73 0.78 0.84 0.91 0.99 1.07 1.15 1.25 Condenser inlet pressure bar 12.0 13.1 14.2 15.4 16.5 17.7 18.8 19.9 Evaporator inlet temperature -29.9 -30.5 -31.3 -32.1 -32.9 -33.7 -34.6 -35.6 Evaporator dewpoint °C -29.4 -28.8 -28.1 -27.3 -26.5 -25.8 -25.1 -24.4 Evaporatorexitgastemperature °C -24.4 -23.8 -23.1 -22.3 -21.5 -20.8 -20.1 -19.4 Evaporator mean temperature GC -29.6 -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 Evaporatorglide(out-in) K 0.4 1.8 3.2 4.8 6.3 8.0 9.6 11.2 Compressor suction pressure bar 0.67 0.73 0.80 0.87 0.95 1.03 1.12 1.22 Compressordischarge pressure bar 12.0 13.1 14.2 15.4 16.5 17,7 18,8 19.9 Suction line pressure drop Pa/rn 368 319 280 248 222 200 181 166 Pressure drop relative to reference 126.2% 109.2% 95.8% 84.9% 75.9% 68.4% 62.1% 56.7% Condenser dew point °C 53.8 55.3 56.6 57.6 58.3 58.9 59.3 59.5 Condenser bubble point 48.6 44.2 40.6 37.8 35.4 33.5 31.9 30.5 Condenser exit liquid temperature 47.6 43.2 39.6 36.8 34.4 32.5 30.9 29.5 Condenser mean temperature °C 51.2 49.7 48.6 47.7 46.9 46.2 45.6 45.0 Condenserglide(in-out) K 5.2 11.1 15.9 19.8 22.9 25.4 27.4 29.0 : * * e 0. *.
..: : * : *:. *:.
Table 16: Theoretical Performance Data of Selected R-744IR-32/R-1234z(E) blends containing 16-30 % R-744 and 5 % R-32 Composition CO2IR-32/R-1234ze(E) % by weight _______ 16/5/79 18/5/77 20/5/75 22/5/73 24/5/71 26/5/69 28/5/67 30/5/65 COP (heating) 2.24 2.25 2.25 2.25 2.25 2.25 2.25 2.25 COP (heating) relative to Reference 106.3% 106.6% 106.8% 106.9% 106.9% 106.9%' 106.9% 106.8% Volumetric heating capacity at suction kJ/m3 1482 1586 1692 1799 1907 2015 2125 2236 Capacity relative to Reference 168.6% 180.5% 192.5% 204.7% 217.0% 229.4% 241.8% 254.4% Critical temperature °C 82.80 80.43 78.16 75.99 73.92 71.94 70.04 68.22 Critical pressure bar 45.22 45.96 46.71 47.45 48.19 48.93 49.66 50.40 Condenser enthalpy change kJ/kg 287.1 292.1 296.9 301.5 306.0 310.3 314.5 318.6 Pressure ratio 15.95 15.57 15.21 14.86 14.52 14.20 13.89 13.59 Refrigerant mass flow kg/hr 25.1 24.6 24.2 23.9 23.5 23.2 22.9 22.6 Compressordischargetemperature °C 142.1 144.5 146.8 149.1 151.3 153.6 155.8 158.0 Evaporator inlet pressure bar 1.34 1.44 1.54 1.65 1.75 1.86 1.98 2.09 -1 Condenser inlet pressure bar 21.0 22.0 23.1 24.2 25.2 26.2 27.2 28.2 Evaporatorinlettemperature °C -36.5 -37.5 -38.5 -39.5 -40.4 -41.4 -42.3 -43.1 Evaporator dewpoint °C -23.7 -23.2 -22.6 -22.2 -21.8 -21.4 -21.1 -20.9 Evaporatorexitgastemperature °C -18.7 -18.2 -17.6 -17.2 -16.8 -16.4 -16.1 -15.9 Evaporatormeantemperature DC -30.1 -30.3 -30.6 -30.8 -31.1 -31.4 -31.7 -32.0 Evaporatorglide (out-in) K 12.8 14.4 15.9 17.3 18.7 20.0 21.1 22.2 Compressor suction pressure bar 1.31 1.42 1.52 1.63 1.73 1.85 1.96 2.08 Compressordischargepressure bar 21.0 22.0 23.1 24.2 25.2 26.2 27.2 28.2 Suction linepressuredrop Pa/rn 152 140 130 121 113 105 99 93 Pressure drop relative to reference 52.0% 48.0% 44.4% 41.3% 38.5% 36.1% 33.9% 31.9% Condenserdewpoint °C 59.6 59.6 59.5 59.3 59.0 58.6 58.1 57.6 Condenser bubble point °C 29.4 28.4 27.6 26.9 26.3 25.7 25.3 24.9 Condenser exit liquid temperature 28.4 27.4 26.6 25.9 25.3 24.7 24.3 23.9 Condenser mean temperature DC 44.5 44.0 43.5 43.1 42.6 42.1 41.7 41.2 Condenser glide (in-out) K 30.2 31,2 31.9 32.4 32.7 32.8 32.9 32.8 : * . * *. ** ** : : ..: : : * * . * **. **.
Table 17: Theoretical Performance Data of Selected R-744/R-321R-1234ze(E) blends containing 0-14 % R-744 and 10 % R-32 Composition C02/R-32/R-1234ze(E) % by weight ________ 0/10190 2/10/88 4/10/86 6/10/84 8/10/82 10/10/80 12/10/78 14/10/76 COP (heating) 2.12 2.16 2.18 2.20 2.22 2.23 2.24 2.25 COP (heating) re'ative to Reference 100.6% 102.3% 103.5% 104.5% 105.3% 106.0% 106.4% 106.8% Volumetric heating capacity at suction kJ/m3 847 934 1024 1118 1215 1314 1415 1518 Capacity relative to Reference 96.3% 106.3% 116.6% 127.3% 138.2% 149.5% 161.0% 172.8% Critical temperature °C 103.66 100.50 97.45 94.53 91.74 89.08 86.53 84.10 Critical pressure bar 41.28 42.13 42.93 43.70 44.47 45.22 45,97 46.71 Condenserenthalpychange kJlkg 240.3 249.9 258.3 265.9 272.8 279.1 284.9 290.4 Pressure ratio 17.03 16.94 16.77 16.52 16.25 15.93 15.61 15.27 Refrigerant mass flow kg/hr 30.0 28.8 27.9 27.1 26.4 25.8 25.3 24.8 Compressordischargetemperature °C 122.7 126.1 129.3 132.3 135.2 137.8 140.4 142.9 Evaporatorintetpressure bar 0.82 0.88 0.95 1.03 1.11 1.20 1.29 1.38 00 Condenserinletpressure bar 13.1 14.2 15.3 16.4 17.5 18.6 19.7 20.8 Evaporatorintettemperature °C -30.7 -31.4 -32.2 -33.0 -33.8 -34.7 -35.5 -36.4 Evaporator dewpoint °C -28.6 -27.9 -27.2 -26.5 -25.8 -25.1 -24.5 -23.9 Evaporator exit gas temperature °C -23.6 -22.9 -22.2 -21.5 -20.8 -20.1 -19.5 -18.9 Evaporator mean temperature C -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 -30.2 Evaporatorglide(out-in) K 2.1 3.5 5.0 6.5 8.0 9.6 11,1 12.5 Compressor suction pressure bar 0.77 0.84 0.91 0.99 1.08 1.17 1.26 1.36 Compressordischarge pressure bar 13.1 14.2 15.3 16.4 17.5 18,6 19.7 20.8 Suction line pressure drop Palm 304 267 238 213 193 175 160 147 Pressure drop relative to reference 104.0% 91.6% 81.4% 73.0% 65.9% 59.9% 54.8% 50.3% Condenserdew point 53.9 55.0 56.0 56.8 57.3 57.7 58.0 58.1 Condenser bubble point 45.9 42.3 39.4 37.0 35.1 33.4 32.0 30.8 Condenser exit liquid temperature °C 44.9 41.3 38.4 36,0 34.1 32.4 31.0 29.8 Condenser mean temperature 49,9 48.7 47.7 46.9 46.2 45.6 45.0 44.4 Condenser glide (in-out) K 8.0 12.7 -16.6 19.7 22.3 24.3 26.0 27.3 * : * **. **. * S : :: Table 18: Theoretical Performance Data of Selected R-7441R-32/R-1234ze(E) blends containing 16-30 % R-744 and 10 % R-32 Composition CO2IR-321R-1234z�(E) % by weight ________ 16/10/74 18110172 20/10170 22/10/68 24110166 26/10/64 28/10(62 30/10/60 COP (heating) 2.26 2.26 2.27 2.27 2.27 2.27 2.26 2.26 COP (heating) relative to Reference 107.1% 107.3% 107.4% 107.5% 107.5% 107.5% 107.4% 107.3% Volumetric heating capacity at suction kJ/m3 1623 1730 1838 1947 2057 2169 2283 2397 Capacity relative to Reference 184.7% 196.9% 209.1% 221.6% 234.1% 246.8% 259.8% 272.8% Critical temperature 81.78 79.56 77.44 75.40 73.45 71.58 69.78 68.05 Critical pressure bar 47.46 48.20 48.93 49.67 50.41 51.14 51.88 52.61 Condenserenthalpycharige kJ/kg 295.5 300.4 305.1 309.6 314.0 318.2 322.3 326.2 Pressure ratio 14.94 14.62 14.30 13.99 13.69 13.40 13.12 12.85 Refrigerant mass flow kg/hr 24.4 24.0 23.6 23.3 22.9 22.6 22.3 22.1 Compressordischarge temperature 145.3 147.6 149.9 152.1 154.4 156.6 158.7 160.8 Evaporator inlet pressure bar 1.48 1.59 1.69 1.80 1.91 2.03 2.15 2.27 -1 Condenser inlet pressure bar 21.6 22.9 23.9 24.9 26.0 27.0 28.0 29.0 Evaporatorinlettemperature °C -37.3 -38.2 -39.1 -39.9 -40.8 -41.5 -42.3 -43.0 Evaporator dewpoint °C -23.3 -22.9 -22.4 -22.0 -21.7 -21.4 -21.1 -20.9 Evaporatorexitgastemperature °C -18.3 -17.9 -17.4 -17.0 -16.7 -16.4 -16.1 -15.9 Evaporator mean temperature -30.3 -30.5 -30.7 -31.0 -31.2 -31.5 -31.7 -31.9 Evaporatorglide(out-in) K 14.0 15.4 16.7 17.9 19.1 20.1 21.1 22.0 Compressor suction pressure bar 1.46 1.56 1.67 1.78 1.90 2.01 2,13 2.26 Compressor discharge pressure bar 21.8 22.9 23.9 24.9 26.0 27.0 28.0 29.0 Suction line pressure drop Pa/rn 136 126 117 109 102 96 90 85 Pressure drop relative to reference 46.4% 43.1% 40.1% 37.4% 35.0% 32.9% 31.0% 29.2% Condenser dew point °C 58.1 58.0 57.8 57.6 57.2 56.8 56.3 55.8 Condenser bubble point 29.7 28.9 28.1 27.4 26.9 26.4 25.9 25.6 Condenser exit liquid temperature 28.7 27.9 27.1 26.4 25.9 25.4 24.9 24.6 Condenser mean temperature °C 43.9 43.4 43.0 42.5 42.0 41.6 41.1 40.7 Condenser glide (in-out) K 28.4 29.1 -29.7 30.1 30.3 30.4 30.4 30.3 -. * S * * *5.1 0** *** S * * * * : Table 19: TheoretIcal Performance Data of Selected R-7441R-321R-1234ze(E) blends contaIning 0-14 % R-744 and 15 % R-32 Composition CO2IR-321R.1234z�(E) % by weight _______ 0/15/85 2115/83 -4/15/81 6/15/79 8/15/77 10115/75 12/15/73 14/15/71 COP (heating) 2.17 2.19 2.21 2.23 2.24 2.25 2.26 2.27 COP (heating) relative to Reference 102.7% 104.0% 105.0% 105.8% 106.4% 106.9% 107.3% 107.6% Volumetric heating capacity at suction kJ/m3 965 1056 1150 1247 1346 1447 1551 1656 Capacity relative to Reference 109.9% 120.2% 130.9% 141.9% 153.2% 164.7% 176.5% 188.5% Critical temperature 101.02 98.12 95.32 92.63 90.05 87.59 85.23 82.97 Critical pressure bar 43.26 44.09 44.90 45.68 46.45 47.21 47.96 48.71 Condenserenthalpychange kJ/kg 252.5 261.1 268.8 275.8 282.2 288,2 293.8 299.1 Pressure ratio 16.11 15.97 15.76 15.52 15.25 14.97 1468 14.38 Refrigerant mass flow kg/hr 28.5 27.6 26.8 26.1 25.5 25.0 24.5 24.1 Compressordischargetemperature °C 126.9 130.1 133.1 135.9 138.6 141.2 143.7 146.2 Evaporatorinletpressure bar 0.92 0.99 1.07 1.15 1.24 1.33 1.42 1.52 o Condenser inlet pressure bar 14.1 15.2 16.3 17.3 18.4 19.5 20.5 21.6 Evaporatorinlettemperature °C -31.6 -32.3 -33.0 -33.8 -34.6 -35.4 -36.2 -37.0 Evaporator dewpoint °C -27.9 -27.2 -26.5 -25.9 -25.2 -24.6 -24.1 -23.6 Evaporatorexitgastemperature °C -22.9 -22.2 -21.5 -20.9 -20.2 -19.6 -19.1 -18.6 Evaporator mean temperature -29.7 -29.7 -29.8 -29.8 -29.9 -30.0 -30.2 -30.3 Evaporatorglide(out-in) K 3.7 5.1 6.5 7.9 9.4 10.7 12.1 13.4 Compressor suction pressure bar 0.88 0.95 1.03 1.12 1.21 1.30 1.40 1.50 Compressordischargepressure bar 14.1 15.2 16.3 17.3 18.4 19.5 20.5 21.6 Suction line pressure drop Pa/rn 257 229 206 186 169 155 143 132 Pressure drop relative to reference 87.9% 78.4% 70.4% 63.7% 58.0% 53.1% 48.8% 45.1% Condenser dew point °C 53.6 54.5 55.2 55.8 56.2 56.5 56.6 56.6 Condenser bubble point 44.1 41.1 38.7 36.6 34.9 33.4 32.1 31.1 Condenserexitliquidtemperature °C 43.1 40.1 37.7 35.6 33.9 32.4 31.1 30.1 Condenser mean temperature 48.8 47.8 47.0 46.2 45.5 44.9 44.4 43.9 Condenserglide (in-out) K 9.5 13.4 16.5 19.1 21.3 23.0 24.5 25.6 * * * : ** *.
*.: : ; * : *:. *:.
Table 20: Theoretical Performance Data of Selected R-744/R-32/R-1234ze(E) blends containing 16-30 % R-744 and 15 % R-32 Composition C02/R-32/R-I 234ze(E) % by weight ________ 16/15/69 18115/67 20115165 22/15/63 24/15/61 26/15/59 28/15/57 30115/55 COP (heating) 2.27 2.28 -2.28 2.28 2.28 2.28 2.28 2.27 COP (heating) relative to Reference 107.8% 107.9% 108.0% 108.1% 108.0% 1080% 107.9% 107.8% Volumetric heating capacity at suction kJ/m3 1763 1872 1983 2095 2209 2324 2442 2562 Capacity relative to Reference 200.7% 213.1% 225.6% 238.4% 251.4% 264.5% 277.9% 291.5% Critical temperature 80.80 78.72 76.73 74.82 72.98 71.21 69.51 67.88 Critical pressure bar 49.46 50.20 50.94 51.68 52.42 53.16 53.90 54.63 Condenserenthalpychange kJlkg 304.1 308.9 313.4 317.8 322.0 326.1 330.0 333.8 Pressure ratio 14.09 13.80 13.52 13.23 12.96 12.70 12.44 12.19 Refrigerant mass flow kg/hr 23.7 23.3 23.0 22.7 22.4 22.1 21.8 21.6 Compressordischargetemperature °C 148.5 150.8 153.1 155.2 157.4 159,5 161.6 163.6 Evaporator inlet pressure bar 1.63 1.73 1.84 1.96 2.08 2.20 2.32 2.45 Ui Condenser inlet pressure bar 22.6 23.6 24.7 25.7 26.7 27.7 28.7 29.7 I. Evaporatorinlettemperature °C -37.8 -38.6 -39.3 -40.1 -40.7 -41.4 -42.0 -42.5 Evaporator dewpoint °C -23.1 -22.7 -22.3 -22.0 -21.7 -21.5 -21.3 -21.1 Evaporatorexitgastemperature °C -18.1 -17.7 -17.3 -17.0 -16.7 -16.5 -16.3 -16.1 Evaporator mean temperature °C -30.5 -30.6 -30.8 -31.0 -31.2 -31.4 -31.6 -31.8 Evaporatorglide(out-in) K 14.7 15.9 17.0 18.0 19.0 19.9 20.7 21.4 Compressorsuctionpressure bar 1.61 1.71 1.83 1.94 2.06 2.18 2.31 2.44 Compressor discharge pressure bar 22.6 23.6 24.7 25.7 26.7 27.7 28.7 29.7 Suction line pressure drop Pa/rn 122 114 106 100 93 88 83 78 Pressure drop relative to reference 41.9% 39.0% 36.4% 34.1% 32.0% 30.1% 28.4% 26.9% Condenser dew point °C 56.6 56.4 56.2 55.9 55.5 55.1 54.6 54.1 Condenser bubble point 30.1 29.3 28.6 28.0 27.5 27.0 26.6 26.3 Condenser exit liquid temperature 29.1 28.3 27.6 27.0 26.5 26.0 25.6 25.3 Condenser mean temperature °C 43.4 42.9 42.4 41.9 41.5 41.1 40.6 40.2 Condenserglide (in-out) K 26.5 27.1 -27.6 27.9 28.1 28.1 28.0 27.9 * ** S ** 55 *** ** * * * : Table 21: Theoretical Performance Data of Selected R-7441R-321R-1234ze(E) blends containing 0-14% R-744 and 20% R-32 Composition C02/R-32/R.1234ze(E) % by weight ________ 0/20/80 2/20/78 4/20/76 6120/74 8/20/72 10/20/70 12/20168 14/20/66 COP (heating) 2.20 2.22 2.24 2.25 2.26 2.27 2.28 2.28 COP (heating) relative to Reference 104.4% 105.4% 106.2% 106.8% 107.3% 107.7% 108.0% 108.2% Volumetric heating capacity at suction kJ/m3 1085 1179 1275 1375 1476 1580 1685 1793 Capacity relative to Reference 123.5% 134.1% 145.1% 156.4% 168.0% 179.8% 191.8% 204.1% Critical temperature °C 98.64 95.95 93.36 90.88 88.49 86.20 84.00 81.89 Critical pressure bar 45.03 45.86 46.66 47.44 48.22 48.98 49,75 50.50 Condenserenthatpychange kJlkg 263.9 271.7 278.9 285.5 291.6 297.4 302.8 307.9 Pressure ratio 15.25 15.09 14.88 14.65 14.40 14.15 13.88 13.62 Refrigerant mass 110W kg/hr 27.3 26.5 25.8 25.2 24.7 24.2 23.8 23.4 Compressordischargetemperature °C 130.9 134.0 136.8 139.6 142.2 144.7 147.1 149.5 Evaporator inlet pressure bar 1.03 1.10 1.18 1.27 1.36 1.46 1.56 1.66 Condenser inlet pressure bar 15.1 16.1 17.2 18.2 19.3 20.3 21.3 22.4 Evaporator inlet temperature -32.3 -33.0 -33.7 -34.4 -35.2 -35.9 -36.6 -37.3 Evaporator dewpoint °C -27.2 -26.6 -26.0 -25.4 -24.9 -24.4 -23.9 -23.5 Evaporator exit gas temperature -22.2 -21.6 -21.0 -20.4 -19,9 -19.4 -18.9 -18.5 Evaporator mean temperature -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 -30.3 -30.4 Evaporatorglide(out-in) K 5.1 6.4 7.7 9.0 10.3 11.5 12.7 13.9 Compressor suction pressure bar 0.99 1.07 1.15 1.24 1.34 1.43 1.54 1.64 Compressordischargepressure bar 15.1 16.1 17.2 18.2 19.3 20.3 21.3 22.4 Suction line pressure drop Palm 221 199 180 164 151 139 128 119 Pressure drop relative to reference 75.6% 68.1% 61.7% 56.3% 51.6% 47.5% 43.9% 40.8% Condenserdewpoint °C 53.0 53.7 54.3 54.7 55.0 55.2 55.2 55.2 Condenser bubble point 42.9 40.3 38.2 36.4 34.8 33.5 32.4 31.4 Condenserexitliquidtemperature °C 41.9 39.3 37.2 35.4 33.8 32.5 31.4 30.4 Condenser mean temperature °C 47.9 47.0 46.2 45.5 44.9 44.3 43.8 43.3 Condenser glide (in-out) -K 10.2 13.4 -16.1 18.3 20.1 21.6 22.9 23.8 * * * : *. *.
*** *.: * * * : : Table 22: Theoretical Performance Data of Selected R-7441R-32/R-1234ze(E) blends containing 16-30 % R-744 and 20 % R-32 Composition C02/R-32/R-1234ze(E) % by weight ________ 16/20/64 18120/62 20/20/60 22/20/58 24/20/56 26/20/54 28/20/52 30/20/50 COP (heating) 2.29 2.29 2.29 2.29 2.29 2.29 2,29 2.28 COP (heating) relative to Reference 108.4% 108.5% 108.5% 108.6% 108.5% 108.5% 108.4% 108.3% Volumetric heating capacity at suction kJ/m3 1903 2014 2127 2243 2360 2481 2603 2729 Capacity relative to Reference 216.5% 229.2% 242.1% 255.2% 268.6% 282.3% 296.3% 310.6% Critical temperature °C 79.87 77.92 76.05 74.25 72.52 70.86 69.25 67.70 Critical pressure bar 51.26 52.01 52.76 53.51 5425 55.00 55.75 56.49 Condenserenthalpychange kJlkg 312.7 317.4 321.8 326.1 330.1 334.0 337.8 341.3 Pressure ratio 13.36 13.09 12.84 12.58 12.33 12.08 11.84 11.60 Refrigerant mass flow kg/hr 23.0 22.7 22.4 22.1 21.8 21.6 21.3 21.1 Compressordischargetemperature °C 151.8 154.0 156.2 158.4 160.4 162.5 164.5 166.4 Evaporator inlet pressure bar 1.77 1.88 2.00 2.12 2.24 2.37 2.50 2.64 Condenser inlet pressure bar 23.4 24.4 25.4 26.4 27.4 28.4 29.5 30.5 Evaporator inlet temperature °C -38.0 -38.7 -39.3 -39.9 -40.5 -41.0 -41.4 -41.8 Evaporator dewpoint °C -23.1 -22.7 -22.4 -22.1 -21.9 -21.7 -21.5 -21.3 Evaporatorexitgastemperature °C -18.1 -17.7 -17.4 -17.1 -16.9 -16.7 -16.5 -16.3 Evaporatormeantemperature °C -30.5 -30.7 -30.9 -31.0 -31.2 -31.3 -31.5 -31.6 Evaporatorglide (out-in) K 14.9 16.0 16.9 17.8 18.6 19.3 19.9 20.5 Compressorsuctionpressure bar 1.75 1.86 1.98 2.10 2.23 2.35 2.49 2.63 Compressor discharge pressure bar 23.4 24.4 25.4 26.4 27.4 28.4 29.5 30.5 Suction tine pressure drop Palm 111 104 97 91 86 81 77 72 Pressure drop relative to reference 38.0% 35.5% 33.2% 31.2% 29.4% 27.7% 26.2% 24.8% Condenserdewpoint °C 55.1 54.9 54.6 54.3 53.9 53.5 53.0 52.5 Condenser bubble point °C 30.5 29.8 29.1 28.5 28.0 27.6 27.3 27.0 Condenser exit liquid temperature °C 29.5 28.8 28.1 27.5 27.0 26.6 26.3 26.0 Condenser mean temperature 42.8 42.3 41.9 41.4 41.0 40.6 40.2 39.8 Condenser glide (in-out) K 24.6 25.1 25.5 25.8 25.9 25.9 25.8 25.6 * * * S. ** *.. *: *.: : : * : .:. *:.
Table 23: Theoretical Performance Data of Selected R-7441R-32/R.1234ze(E) blends containing 0-14 % R-744 and 25 % R-32 Composition C02/R-321R-1234ze(E) % by weight ________ 0/25/75 2125173 4/25/71 6/25/69 8/25/67 10/25/65 12/25/63 14/25/61 COP (heating) 2.23 2.25 2.26 2.27 2.28 2.29 2.29 2.29 COP (heating) relative to Reference 105.7% 106.5% 107.2% 107.7% 108.1% 108.4% 108.6% 108.8% Volumetric heating capacity at suction kJIm3 1205 1301 1399 1500 1604 1710 1818 1928 Capacity relative to Reference 137.1% 148.0% 159.2% 170.8% 182.5% 194.6% 2069% 219.4% Critical temperature °C 96.47 93.97 91.57 89.26 87.04 84.91 82.86 80.89 Critical pressure bar 46.62 47.44 48.24 49.03 49.81 50.59 51.36 52.13 Condenserenthalpychange kJ/kg 274.8 282.1 288.9 295.2 301,1 306.6 311.8 316.8 Pressure ratio 14.48 14.31 14.12 13.91 13.68 13.45 13.21 12.96 Refrigerant mass flow kg/hr 26.2 25.5 24.9 24.4 23.9 23.5 23.1 22.7 Compressordischargeten,perature °C 134.9 137.8 140.5 143.2 145.7 148.2 150.6 152.9 Evaporatorinletpressure bar 1.14 1.22 1.30 1.39 1.49 1.59 1.69 1.80 Condenser inlet pressure bar 16.0 17.0 18.0 19.0 20.1 1.1 22.1 23.1 Evaporator inlet temperature -32.9 -33.6 -34.2 -34.9 -35.5 -36.2 -36.8 -37.4 Evaporator dewpoint °C -26.8 -26.2 -25.7 -25.2 -24.7 -24.3 -23.9 -23.5 Evaporatorexitgastemperature °C -21.8 -21.2 -20.7 -20.2 -19.7 -19.3 -18.9 -18.5 Evaporator mean temperature -29.8 -29.9 -30.0 -30.0 -30.1 -30.2 -30.3 -30.4 Evaporatorglide (out-in) K 6.1 7.3 8.5 9.7 10.8 11.9 12.9 13.9 Compressor suction pressure bar 1.10 1.19 1.28 1.37 1.47 1.57 1.67 1.78 Compressordischargepressure bar 16.0 17.0 18.0 19.0 20.1 21.1 22.1 23.1 Suction linepressuredrop Pa/rn 193 175 160 147 135 125 116 108 Pressure drop relative to reference 66.1% 60.0% 548% 50.3% 46.4% 42.9% 39.8% 37.1% Condenserdewpoint °C 52.3 52.8 53.2 53.5 53.7 53.8 53.8 53.8 Condenser bubble point °C 42.0 39.8 37,9 36.3 34.9 33.7 32.6 31.7 Condenserexitliquidtemperature °C 41.0 38.8 36.9 35.3 33.9 32.7 31.6 30.7 Condenser mean temperature °C 47.2 46.3 45.6 44.9 44.3 43.8 43.2 42.7 Condenserglide(in-out) K 10.3 13.0 15.3 17.3 18.9 20.2 21.2 22.1 * * * ** ** : *.: : : * S * * * S. *.* Table 24: Theoretical Performance Data of Selected R-7441R-32/R-1234ze(E) blends containing 16-30 % R-744 and 25 % R-32 Composition C02/R-32/R-1234ze(E) % by weight -________ 16/25/59 18/25/57 20/25/55 22/25/53 24/25/51 26/25/49 28/25/47 30/25/45 COP (heating) 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.29 COP (heating) relative to Reference 108.9% 109.0% 109.0% 109.0% 109.0% 108.9% 108.9% 108.8% Volumetric heating capacity at suction kJ/m3 2040 2155 2272 2391 2513 2638 2766 2898 Capacity relative to Reference 232.2% 245.2% 258.5% 272.1% 286.0% 300.3% 314.8% 329.8% Critical temperature 78.99 77.17 75.41 73.72 72.08 70.51 68.99 67.53 Critical pressure bar 52.89 53.65 54.41 55.17 55.93 56.69 57.45 58.20 Condenserenthalpychange kJ/kg 321.5 326.0 330.3 334.4 338.3 342.0 345.5 348.9 Pressure ratio 12.72 12.48 12.24 12.00 11.76 11.53 11.29 11.06 Refrigerantmassflow kg/hr 22.4 22.1 21.8 21,5 21.3 21.1 20.8 20.6 Compressordischargetemperature °C 155.1 157.3 159.4 161.5 163.5 165.4 167.3 169.1 Evaporator inlet pressure bar 1.91 2.03 2.15 2.28 2.41 2.54 2.68 2.83 Condenserinletpressure bar 24.1 25.1 26.1 27.1 28.1 29.1 30.2 31.2 Evaporator inlet temperature °C -38.0 -38.5 -39.1 -39.6 -40.0 -40.4 -40.8 -41.1 Evaporator dewpoint °C -23.1 -22.8 -22.6 -22.3 -22.1 -21.9 -21.8 -21.7 Evaporatorexitgastemperature °C -18.1 -17.8 -17.6 -17.3 -17.1 -16.9 -16.8 -16.7 Evaporator mean temperature -30.6 -30.7 -30.8 -30.9 -31.1 -31.2 -31.3 -31.4 Evaporatorglide(out-in) K 14.8 15.7 16.5 17.2 17.9 18.5 19.0 19.4 Compressorsuction pressure bar 1.90 2.01 2.14 2.26 2.39 2.53 2.67 2.82 Compressordischargepressure bar 24.1 25.1 26.1 27.1 28.1 29.1 30.2 31.2 Suction line pressure drop Pa/rn 101 95 89 84 79 75 71 67 Pressure drop relative to reference 34.7% 32.5% 30.5% 28.7% 27.1% 25.6% 24.2% 23.0% Condenserdewpoint °C 53.6 53.4 53.1 52.8 52.4 52.0 51.5 51.0 Condenser bubble point 30.9 30.2 29.6 29.1 28.6 28.2 27.9 27.6 Condenser exit liquid temperature °C 29.9 29.2 28.6 28.1 27.6 27.2 26.9 26.6 Condensermeantemperature °C 42,3 41.8 41.4 40.9 40.5 40.1 39.7 39.3 Condenser glide (in-out) K 22.7 23.2 -23.5 23.7 23.8 23.7 23.6 23.4 * : * * * ** ** ** *** *.* * . . : : : * Table 25: Theoretical Performance Data of Selected R-7441R-32/R-1234ze(E) blends containing 0-14 % R-744 and 30 % R-32 Composition C02/R-321R-j 234ze(E) % by weight ________ 0130/70 2/30/68 4I30166 6/30/64 8/30/62 10130/60 12/30/58 14/30156 COP (heating) 2.25 2.27 2.28 2.29 2.29 2.30 2.30 2.30 COP (heating) relative to Reference 106.8% 107.5% 108.0% 108.4% 108.7% 109.0% 109.2% 109.3% Volumetric heating capacity at suction kJ/m3 1323 1421 1522 1625 1730 1838 1949 2062 Capacity relative to Reference 150.5% 161.7% 173.2% 184.9% 196.9% 209.2% 221.8% 234.7% Critical temperature °C 94.49 92.17 89.93 87.77 85.70 83.71 8179 79.95 Critical pressure bar 48.05 48.86 49.66 50.46 51.25 52.03 52.82 53.60 Condenserenthalpychange kJ/kg 285.4 292.4 298.9 304.9 310.6 315.9 321.0 325.8 Pressure ratio 13.81 13.64 13.46 13.26 13.05 12.84 12.61 12.39 Refrigerant mass flow kg/hr 25.2 24.6 24.1 23.6 23.2 22.8 22.4 22.1 Compressordischargetemperature °C 138.8 141.6 144.3 146.8 149.3 151.7 154.1 156.3 Evaporator inlet pressure bar 1.25 1.33 1.42 1.52 1.62 1.72 183 1.94 Condenser inlet pressure bar 16.8 17.8 18.8 19.8 20.8 21.8 22.8 23.8 Evaporatorinlettemperature °C -33.3 -33.9 -34.5 -35.1 -35.7 -36.2 -36.8 -37.3 Evaporator dewpoint °C -26.5 -26.0 -25.6 -25.1 -24.7 -24.3 -24.0 -23.6 Evaporatorexitgastemperature °C -21,5 -21.0 -20.6 -20.1 -19.7 -19.3 -19.0 -18.6 Evaporator mean temperature °C -29.9 -30.0 -30.0 -30.1 -30.2 -30.3 -30.4 -30.5 Evaporator glide (out-in) K 6.8 7.9 9.0 10.0 11.0 11.9 12.8 13.7 Compressor suction pressure bar 1.22 1.30 1.40 1.49 1.59 1.70 1.81 1.92 Compressordischarge pressure bar 16.8 17.8 18.8 19.8 20.8 21.8 22.8 23.8 Suction line pressure drop Pa/rn 171 156 144 132 123 114 106 99 Pressure drop relative to reference 58.5% 53.5% 49.1% 45.3% 42.0% 39.0% 36.4% 34.0% Condenserdewpoint °C 51.4 51.8 52.2 52.4 52.5 52.5 52.5 52.4 Condenser bubble point °C 41.4 39.4 37.7 36.3 35.0 33.9 32.9 32.0 Condenser exit liquid temperature °C 40.4 38.4 36.7 35.3 34.0 32.9 31.9 31.0 Condenser mean temperature 46.4 45.6 44.9 44.3 43.7 43.2 42.7 42.2 Condenser glide (in-out) K 10.0 12.4 -14.4 16.1 17.5 18.7 19.6 20.4 * * * : * *; : : ..: : : :. *:.
Table 26: Theoretical Performance Data of Selected R-744/R-32(R-1234ze(E) blends containing 16-30% R-744 and 30 % R-32 Composition C02/R-321R-1234ze(E) % by weight ________ 16/30/54 18/30/52 20/3/50 22/30/48 24/30/46 26/30/44 28/30/42 30/30/40 COP (heating) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.30 COP (heating) relative to Reference 109.4% 109.4% 109.5% 109.5% 109.4% 109.4% 109.4% 109.3% Volumetric heating capacity at suction kJ/m3 2177 2296 2416 2540 2667 2797 2931 3068 Capacity relative to Reference 247.8% 261.3% 275.0% 289.1% 303.5% 318.3% 333.5% 349.2% Critical temperature oc 78.17 76.45 74.80 73.21 71.67 70.18 68.75 67.36 Critical pressure bar 54.37 55.15 55.92 56.70 57.47 58.24 59.01 59,78 Condenser enthalpy change kJ/kg 330.3 334.7 338.8 342.7 346.4 350.0 353.3 356.5 Pressure ratio 12.16 11.93 11.70 11.48 11.25 11.03 10.80 10.58 Refrigerantmassflow kg/hr 21.8 21.5 21.3 21.0 20.8 20.6 20.4 20.2 Compressordischargetemperature °C 158.5 160.6 162.6 164.6 166.5 168.3 170.1 171.7 Evaporator inlet pressure bar 2.06 2.18 2.31 2.44 2.57 2.72 2.87 3.02 -Condenser inlet pressure bar 24.8 25.8 26.8 27.8 28.8 29.8 30.8 31.9 Evaporatorinlettemperature °C -37.8 -38.2 -38.7 -39.1 -39.4 -39.7 -40.0 -40.2 Evaporatordewpoint °C -23.3 -23.1 -22.8 -22.6 -22.4 -22.3 -22.2 -22.1 Evaporatorexitgastemperature °C -18.3 -18.1 -17.8 -17.6 -17.4 -17.3 -17.2 -17.1 Evaporator mean temperature -30.6 -30.7 -30.8 -30.8 -30.9 -31.0 -31.1 -31.1 Evaporatorglide (out-in) K 14.4 15.2 15.8 16.4 17.0 17.4 17.8 18.2 Compressor suction pressure bar 2.04 2.16 2.29 2.42 2.56 2.71 2.86 3.01 Compressor discharge pressure bar 24.8 25.8 26.8 27.8 28.8 29.8 30.8 31.9 Suction line pressure drop Palm 93 87 82 78 73 69 66 62 Pressure drop relative to reference 31.9% 29.9% 28.2% 26.6% 25.1% 23.7% 22.5% 21.3% Condenserdew point °C 52.2 52.0 51.7 51.3 51.0 50.5 50.1 49.6 Condenser bubble point 31.3 30.6 30.1 29.6 29.2 28.8 28.5 28.3 Condenser exit liquid temperature 30.3 29.6 29.1 28.6 28.2 27.8 27.5 27.3 Condensermeantemperature °C 41.7 41.3 40.9 40.5 40.1 39.7 39.3 38.9 Condenserglide(in-out) K 20.9 21.3 21.6 21.7 21.8 21.7 21.6 21.3 * . . * ** ** **. *. * * .1 * : : : Table 27: Theoretical Performance Data of Selected R-744/R-1234yf/R-1234ze(E) blends containing 0-14% R-744 and 5% R-1234yf Composition C02/R-1 234yf/R- 1234ze(E) % by weight _______ 0(5/95 2/5/93 4/5/91 6/5(89 8/5/87 10/5/85 12/5/83 14/5/81 COP (heating) 1.99 2.05 2.10 2.13 2.16 2.18 2.19 2.20 COP (heating) relative to Reference 94.2% 97.2% 99.4% 101.0% 102.3% 103.2% 103.9% 104.5% Volumetric heating capacity at suction kJ/m3 638 721 807 896 987 1082 1180 1280 Capacity relative to Reference 72.6% 82.1% 91.8% 101.9% 112,4% 123.2% 134.3% 145.7% Critical temperature °C 109.13 105.19 101.49 98.00 94.71 91.59 8865 85.86 Critical pressure bar 36.92 37.75 38.58 39.40 40.22 41.03 4184 42.64 Condenserenthalpychange kJ/kg 208.0 221.4 232.7 242.2 250.4 257.6 264.1 269.9 Pressure ratio 18.41 18.67 18.74 18.64 18.40 18.08 17.70 17.28 Refrigerant mass flow kg/hr 34.6 32.5 30.9 29.7 28.8 27.9 27.3 26.7 Compressordischargetemperature °C 112.1 116.4 120.4 124.0 127.2 130.2 133.0 135.6 Evaporator inlet pressure bar 0.68 0.72 0.78 0.84 0.91 0.99 1.07 1.16 Go Condenserinletpressure bar 11.0 12.2 13.5 14.7 15.9 17.1 18.3 19.5 Evaporator inlet temperature -29.0 -29.7 -30.4 -31.2 -32.0 -32.8 -33.7 -34.7 Evaporator dewpoint °C -30.0 -29.5 -28.8 -28.0 -27.2 -26.4 -25.7 -24.9 Evaporatorexitgastemperature °C -25.0 -24.5 -23.8 -23.0 -22.2 -21.4 -20.7 -19.9 Evaporator mean temperature -29.5 -29.6 -29.6 -29.6 -29.6 -29.6 -29.7 -29.8 Evaporatorglide(out-in) K -1.0 0.2 1.6 3.1 4.7 6.4 8.1 9.7 Compressor suction pressure bar 0.60 0.66 0.72 0.79 0.87 0.95 1.03 1.13 Compressordischarge pressure bar 11.0 12.2 13.5 14.7 15.9 17.1 18.3 19.5 Suction line pressure drop Palm 449 379 327 285 252 226 203 184 Pressure drop relative to reference 153.8% 129.8% 111.8% 97.7% 86.5% 77.2% 69.5% 63.0% Condenser dew point °C 53.3 55.3 56.9 58.2 59.2 60.0 60.5 60.8 Condenser bubble point 52.8 46.9 42.4 38.8 36.0 33.7 31.9 30.4 Condenser exit liquid temperature °C 51.8 45.9 41.4 37.8 35.0 32.7 30.9 29.4 Condenser mean temperature 53.1 51.1 49.6 48.5 47.6 46.9 46.2 45.6 Condenserglide(in-out) K 0.6 8.3 14.5 19.4 23.3 26.3 286 30.4 * * * *;. :.: * * . * ** ,*.
Table 28: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 16-30 % R-744 and 5 % R-1234yf Composition CO2IR-1 234yf1R-I 234ze(E) % by weight ________ 16/5/79 18/5177 20(5(75 22/5(73 24/5(71 26/5169 28/5/67 30/5/65 COP (heating) 2.21 2.22 2.23 2.23 2.23 2.23 2.23 2.23 COP (heating) relative to Reference 105.0% 105.3% 105.6% 105.7% 105.8% 105.8% 105.8% 105.7% Volumetric heating capacity at suction kJ/m3 1383 1488 1594 1702 1810 1920 2030 2141 Capacity relative to Reference 157.4% 169.3% 181.4% 193.7% 206.0% 218.5% 231.0% 243.6% Critical temperature 83.21 80.69 78.29 76.01 73.83 71,75 69.76 67.85 Critical pressure bar 43.44 44.24 45.04 45.83 46.62 47.41 48.19 48.97 Condenserenthalpychange kJ/kg 275.3 280.3 285.1 289.6 294.0 298.2 302.3 306.4 Pressure ratio 16.85 16.42 16.00 15.59 15.20 14.82 14.47 14.14 Refrigerant mass flow kg/hr 26.2 25.7 25.3 24.9 24.5 24.1 23.8 23.5 Compressordischarge temperature °C 138.1 140.5 142.8 145.0 147.3 149.5 151.6 153.8 Evaporatorinletpressure bar 1.25 1.35 1.45 1.56 1.67 1.78 1.89 2.01 Condenser inlet pressure bar 20.6 21.7 22.8 23.9 25.0 26.1 27.1 28.2 Evaporatorinlettemperature °C -35.6 -36.7 -37.7 -38.8 -39.8 -40.9 -41.9 -42.9 Evaporatordewpoint °C -24.2 -23.5 -22.9 -22.4 -21.9 -21.5 -21.2 -20.9 Evaporatorexitgastemperature °C -19.2 -18.5 -17.9 -17.4 -16.9 -16.5 -16.2 -15.9 Evaporator mean temperature °C -29.9 -30.1 -30.3 -30.6 -30.9 -31.2 -31.5 -31.9 Evaporator glide (out-in) K 11.4 13.1 14.8 16.4 17.9 19.4 20.8 22.0 Compressor suction pressure bar 1.22 1.32 1.43 1.53 1.65 1.76 1.87 1.99 Compressordischargepressure bar 20.6 21.7 22.8 23.9 25.0 26.1 27,1 28.2 Suction line pressuredrop Pa/rn 168 154 142 131 122 114 107 100 Pressure drop relative to reference 57.5% 52.7% 48.6% 45.0% 41.8% 39.0% 36.5% 34.3% Condenser dew point °C 61.0 61.0 60.9 60.7 60.4 60.0 59.5 58.9 Condenser bubble point 29.2 28.1 27.3 26.5 25.9 25.3 24.9 24.4 Condenser exit liquid temperature °C 28.2 27.1 26.3 25.5 24.9 24.3 23.9 23.4 Condensermeantemperature °C 45.1 44.6 44.1 43.6 43.1 42.6 42.2 41.7 Condenserglide (in-out) K 31.8 32.9 -33.7 34.2 34.5 34.6 34.6 34.5
I S
S * * * S. ** S S * * 0,S * * S * S S SS ** Table 29: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 0-14 % R-744 and 10 % R-1234yf Composition CO2IR-l 234yf/R- 1234ze(E) % by weight _______ 0110190 2/10/88 4/10/86 6/10/84 8/10/82 10/10/80 12/10/78 14/10/76 COP (heating) 1.98 2.05 2.09 2.12 2.15 2.17 2.18 2.20 COP (heating) relative to Reference 94.0% 97.0% 99.2% 100.8% 102.0% 102.9% 103.6% 104.1% Volumetric heating capacity at suction kJ/m3 661 747 835 927 1022 1119 1219 1322 Capacity relative to Reference 75.2% 85.0% 95.1% 105.5% 116.3% 127.3% 138.7% 150,5% Critical temperature 108.37 104.45 100.77 97.30 94.03 90.94 88.01 85.24 Critical pressure bar 37.22 38.12 39.00 39.88 40.75 41.62 42.47 43.32 Condenserenthalpychange kJlkg 205.7 219.1 230.2 239.7 247.7 254.8 261.0 266.7 Pressure ratio 18.07 18.35 18.42 18.33 18.09 17.78 1740 16.99 Refrigerant mass flow kg/hr 35.0 32.9 31.3 30.0 29.1 28.3 27.6 27.0 Compressordischargetemperature °C 111.4 115.7 119.7 123.3 126.5 129.4 132.2 134.8 Evaporator inlet pressure bar 0.70 0.75 0.81 0.87 0.95 1.03 1.11 1.21 0 Condenserinletpressure bar 11.3 12.6 13.9 15.1 16.4 17.6 18.8 20.0 Evaporator inlet temperature -29.1 -29.8 -30.5 -31.3 -32.1 -32.9 -33.8 -34.8 Evaporator dewpoint °C -29.8 -29.3 -28.6 -27.9 -27.1 -26.3 -25.5 -24.8 Evaporator exit gas temperature -24.8 -24.3 -23.6 -22.9 -22.1 -21.3 -20.5 -19.8 Evaporator mean temperature -29.4 -29.5 -29.6 -29.6 -29.6 -29.6 -29.7 -29.8 Evaporatorglide(out-in) K -0.7 0.5 1.9 3.4 5.0 6.6 8.3 10.0 Compressor suction pressure bar 0.63 0.69 0.75 0.83 0.90 0.99 1.08 1.18 Compressordischarge pressure bar 11.3 12.6 13.9 15.1 16.4 17.6 18.8 20.0 Suction line pressure drop Pa/rn 437 369 318 278 246 220 198 180 Pressure drop relative to reference 149.7% 126.3% 108.8% 95.2% 84.2% 75.3% 67.9% 61.6% Condenser dew point 53,5 55.4 57.0 58.3 59.3 60.0 60.5 60.7 Condenser bubble point 52.6 46.8 42.2 38.7 35.9 33.7 31.9 30.4 Condenser exit liquid temperature °C 51.6 45.8 41.2 37.7 34.9 32.7 30.9 29.4 Condenser mean temperature 53.1 51.1 49.6 48.5 47.6 46.8 46.2 45.6 Condenserglide (in-out) K 0.9 8.6 -14.8 19.6 23.4 26.3 28.6 30.3 : . * * * : *. ** *.: : : * .:. *:.
Table 30: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends contaIning 16-30 % R-744 and 10 % R-1234yf Composftion C02/R-1 234yf/R-I 234ze(E) % by weight 16/10/74 18/10/72 20/10/70 22/10168 24110166 26110164 28110162 30I1 0I60 COP (heating) I 2.20 2.21 2.22 2.22 2.22 2.22 2.22 2.22 COP (heating) relative to Reference 104.6% 104.9% 105.1% 105.3% 105.3% 105.3% 105.3% 105.2% Volumetric heating capacity at suction kJ/m3 1427 1535 1644 1754 1866 1979 2093 2207 Capacity relative to Reference 162.4% 174.7% 187.1% 199.7% 212.4% 225.2% 238.2% 251.2% Critical temperature °C 82.60 80.10 77.71 75.44 73.28 71.21 69.23 67.34 Critical pressure bar 44.17 45.00 45.84 46.66 47.49 48.30 49.12 49.93 Condenserenthalpychange kJlkg 271.9 276.8 281.4 285.7 289.9 293.9 297.9 301.7 Pressure ratio 16.56 16.13 15.71 15.30 14.91 14.53 14.18 13.84 Refrigerant mass flow kg/hr 26.5 26.0 25.6 25.2 24.8 24.5 24.2 23.9 Compressor discharge temperature C 137.2 139.5 141.8 144.0 146.2 148.3 150.4 152.5 Evaporator inlet pressure bar 1.30 1.41 1.51 1.62 1.74 1.86 1.98 2.10 Condenser inlet pressure bar 21.1 22.3 23.4 24.5 25.6 26.7 27.8 28.8 Evaporatorinlettemperature °C -35.7 -36.7 -37.8 -38.8 -39.9 -40.9 -41.9 -42.9 Evaporator dewpoint °C -24.1 -23.4 -22.9 -22.3 -21.9 -21.5 -21.1 -20.9 Evaporatorexitgastemperature °C -19.1 -18.4 -17.9 -17.3 -16.9 -16.5 -16.1 -15.9 Evaporator mean temperature °C -29.9 -30.1 -30.3 -30.6 -30,9 -31.2 -31.5 -31.9 Evaporatorglide (out-in) K 11.7 13.3 14.9 16.5 18.0 19.4 20.8 22.0 Compressorsuction pressure bar 1.28 1.38 1.49 1.60 1.72 1.84 1.96 2.08 Compressordischargepressure bar 21.1 22.3 23.4 24.5 25.6 26.7 27.8 28.8 Suction line pressure drop Palm 164 151 139 129 120 112 105 98 Pressure drop relative to reference 56.2% 51.6% 47.6% 44.1% 41.0% 38.2% 35.8% 33.6% Condenser dew point 60.8 60.8 60.6 60.3 60.0 59.5 59.0 58.4 Condenser bubble point C 29.2 28.2 27.4 26.7 26.1 25.6 25.1 24.8 Condenser exit liquid temperature °C 28.2 27.2 26.4 25.7 25.1 24.6 24.1 23.8 Condensermeantemperature °C 45.0 44.5 44.0 43.5 43.0 42.6 42.1 41.6 Condenserglide (in-out) K 31.6 32.6 33.2 33.7 33.9 33.9 33.8 33.6 : * * * * * . ** ** : : *.. : : * : .:. *:.
Table 31: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 0-14% R-744 and 20 % R-1234yf Composition C02/R-1 234yf/R-I 234ze(E) % by weight ________ 0/20/80 2120/78 4/20176 6120/74 8/20/72 10120/70 12/20/68 14/20/66 COP (heating) 1.97 2.03 2.08 2.11 2.14, 2.16 2.17 2.18 COP (heating) relative to Reference 93.4% 96.5% 98.7% 100.2% 101.4% 102.2% 102.9% 103.4% Volumetric heating capacity at suction kJ/m3 706 798 892 989 1089 1192 1297 1405 Capacity relative to Reference 80.3% 90.8% 101.5% 112.5% 123.9% 135.6% 147.6% 159.9% Critical temperature °C 106.85 102.98 99.34 95.92 92.68 89.63 8674 83.99 Critical pressure bar 37.65 38.69 39.70 40.70 41.68 42.65 43.61 44.55 Condenserenthalpychange kJ/kg 201.1 214.5 225.5 234.7 242.5 249.2 255.2 260.5 Pressure ratio 17.42 17.73 17.83 17.75 17.53 17.22 16.85 16.44 Refrigerant mass flow kg/hr 35.8 33.6 31.9 30.7 29.7 28.9 28.2 27.6 Compressordischargetemperature °C 110.0 114.4 118.4 121.9 125.1 128.0 130.7 133.2 Evaporator inlet pressure bar 0.76 0.81 0.87 0.94 1.02 1.11 1.21 1.31 Condenserinletpressure bar 11.9 13.2 14.6 15.9 17.2 18.5 19.8 21,0 Evaporator inlet temperature °c -29.2 -29.9 -30.6 -31.4 -32.2 -33.0 -33.9 -34.8 Evaporator dewpoint °C -29.5 -29.0 -28.3 -27.6 -26.8 -26.1 -25.3 -24.6 Evaporator exit gas temperature °C -24.5 -24.0 -23.3 -22.6 -21.8 -21.1 -20.3 -19.6 Evaporator mean temperature -29.3 -29.4 -29.5 -29.5 -29.5 -29.5 -29.6 -29.7 Evaporatorglide(out-in) K -0.3 0.9 2.3 3.8 5.4 7.0 8.6 10.2 Compressor suction pressure bar 0.68 0.75 0.82 0.90 0.98 1.08 1.17 1.28 Compressordischargepressure bar 11.9 13.2 14.6 15.9 17.2 18.5 19.8 21.0 Suction line pressure drop Pa/rn 416 351 302 265 235 210 190 172 Pressure drop relative to reference 142.6% 120.2% 103.5% 90.6% 80.3% 71.9% 64.9% 59.0% Condenser dew point °C 53.7 55.6 57.2 58.4 59.3 59.9 60.3 60.5 Condenser bubble point 52.6 46.6 42.0 38.5 35.8 33.6 31.9 30.5 Condenser exit liquid temperature °C 51.6 45.6 41.0 37.5 34.8 32.6 30.9 29.5 Condenser mean temperature 53.2 51.1 49.6 48.5 47.5 46.8 46.1 45.5 Condenserglide (in-out) K 1.1 9.0 15.2 19.9 23.6 26.3 28.4 29.9 : * :. :.: .: :. :i Table 32: Theoretical Performance Data of Selected R-744IR-1234yfIR-1234ze(E) blends containing 16-30 % R-744 and 20 % R-1234yf Composition CO2IR-l 234yf/R-I 234ze(E) % by weight 16/20/64 18/20162 20120/60 22/20/58 24/20/56 26I20!54 28/20I52 30/20/50 COP (heating) I 2.19 2.19 2.20 2.20 2.20 2.20 2.20 2.20 COP (heating) relative to Reference 103.7% 104.0% 104.2% 104.3% 104.4% 104.4% 104.3% 104.2% Volumetric heating capacity at suction kJ/m3 1516 1629 1745 1862 1981 2101 2223 2347 Capacity relative to Reference 172.6% 185.4% 198.6% 211.9% 225.5% 239.2% 253.0% 267.1% Critical temperature 81.39 78.92 76.56 74.32 72.18 70.13 68.18 66.31 Critical pressure bar 45.48 46.40 47.31 48.21 49.10 49.99 50.87 51.74 Condenser enthalpy change kJ/kg 265.4 269.9 274.1 278.1 281.8 285.5 288.9 292.3 Pressure ratio 16.01 15.58 15.15 14.74 14.34 13.96 13.60 13.25 Refrigerant mass flow kg/hr 27.1 26.7 26.3 25.9 25.5 25.2 24.9 24.6 Compressor distharge temperature °C 135.5 137.7 139.9 142.0 144.0 146,0 147.9 149.8 Evaporatorinletpressure bar 1.41 1.53 1.64 1.77 1.89 2.02 2.16 2.30 Condenser inlet pressure bar 22.2 23.4 24.6 25.7 26.9 28.0 29.1 30.2 Evaporatorinlettemperature °C -35.8 -36.8 -37.8 -38,8 -39.8 -40.8 -41.8 -42.7 Evaporator dewpoint °C -23.9 -23.3 -22.8 -22.3 -21.8 -21.5 -21.1 -20.9 Evaporatorexitgastemperature °C -18.9 -18.3 -17.8 -17.3 -16.8 -16.5 -16.1 -15.9 Evaporator mean temperature -29.9 -30.0 -30.3 -30.5 -30.8 -31.1 -31.4 -31.8 Evaporatorglide (out-in) K 11.8 13.4 15.0 16.5 18.0 19.3 20.6 21.8 Compressor suction pressure bar 1.39 1.50 1.62 1.74 1.87 2.00 2,14 2.28 Compressordischarge pressure bar 22.2 23.4 24.6 25.7 26.9 28.0 29.1 30.2 Suction line pressure drop Pa/rn 157 145 134 124 115 108 101 95 Pressure drop relative to reference 53.9% 49.5% 45.7% 42.4% 39.4% 36.8% 34.5% 32.4% Condenser dew point 60.5 60.3 60.0 59.6 59.2 58.6 58.0 57.3 Condenser bubble point °C 29.4 28.5 27.7 27.1 26.5 26.1 25.7 25.4 Condenserexitliquidtemperature °C 28.4 27.5 26.7 26.1 25.5 25.1 24.7 24.4 Condensermeantemperature °C 44.9 44.4 43.9 43.4 42.9 42.4 41.8 41.3 Condenserglide(in-out) K 31.1 31.8 32.3 32.6 32.6 32.5 32.2 31.8 : * * * : ** ** *: : *.: : * : *:. *:.
Table 33: Theoretical Performance Data of Selected R-744/R-1234yf1R-1234ze(E) blends contaIning 0-14 % R-744 and 30 % R-1234yf Composition CO21R-1 234yf1R- 1234ze(E) % by weight _______ 0/30/70 2/30/68 4/30/66 6I30/64 8130/62 10/30/60 12/30/58 14/30/56 COP (heating) 1.96 2.02 2.07 2.10 2.12 2.14 2.15 2.16 COP (heating) relative to Reference 92.8% 95.9% 98.1% 99.7% 100.8% 101.6% 102.1% 102.6% Volumetric heating capacity at suction kJ/m3 749 847 947 1049 1155 1263 1374 1488 Capacity relative to Reference 85.2% 96.4% 107.8% 119.4% 131.4% 143.7% 156.4% 169.4% Critical temperature °C 105.33 101.51 97.92 94.53 91.34 88.32 85.46 82.75 Critical pressure bar 37.87 39.05 40.20 41.32 42.42 43.50 4456 45.60 Condenserenthalpychange kJ/kg 196.5 210.0 221.1 230.1 237.7 244.1 249.8 254.8 Pressure ratio 16.80 17.16 17.30 17.24 17.03 16.72 16.35 15.94 Refrigerant mass flow kg/hr 36.6 34.3 32.6 31.3 30.3 29.5 28.8 28.3 Compressordischargetemperature °C 108.6 113.1 117.1 120.7 123.8 126.7 129.3 131.7 Evaporator inlet pressure bar 0.81 0.87 0.93 1.01 1.10 1.20 1.30 1.41 -1 Condenser inlet pressure bar 12.5 13.9 15.3 16.7 18.1 19.4 20.7 22.0 Evaporator inlet temperature °C -29.2 -29.9 -30.6 -31.4 -32.2 -33.0 -33.8 -34.7 Evaporator dewpoint °C -29.3 -28.8 -28.2 -27.4 -26.7 -26.0 -25,2 -24.6 Evaporator exit gas temperature -24.3 -23.8 -23.2 -22.4 -21.7 -21.0 -20.2 -19.6 Evaporator mean temperature -29.2 -29.3 -29.4 -29.4 -29.4 -29.5 -29.5 -29.6 Evaporatorglide(out-in) K -0.1 1.1 2.5 3.9 5.5 7.0 8.6 10.2 Compressor suction pressure bar 0.74 0.81 0.89 0.97 1.06 1.16 1.27 1.38 Compressor discharge pressure bar 12.5 13.9 15.3 16.7 18.1 19.4 20.7 22.0 Suction tine pressure drop Pa/rn 399 336 289 253 225 201 182 165 Pressure drop relative to reference 136.8% 115.0% 99.0% 86.7% 76.9% 68.9% 62.2% 56.6% Condenser dew point °C 53.8 55.8 57.3 58.5 59.3 59.9 60.1 60.2 Condenser bubble point 52.7 46.6 41.9 38.3 35.6 33.5 31.9 30.6 Condenser exit liquid temperature 51.7 45.6 40.9 37.3 34.6 32.5 30.9 29.6 Condenser mean temperature 53.3 51.2 49.6 48.4 47.5 46.7 46.0 45.4 Condenserglide(in-out) K 1.1 9.2 15.4 20.2 23.7 26.3 28.3 29.7 * * * * * * : * ** ** : : *,: Table 34: Theoretical Performance Data of Selected R-7441R-l 234yf1R-l 234ze(E) blends containIng 16-30 % R-744 and 30 % R-1234yf Composition C02/R-1234yf1R- 1234ze(E) % by weight _______ 16/30/54 18/30/52 20130/50 22/30/48 24/30146 26/30/44 28I30I42 30I30I40 COP (heating) 2.17 2.17 2.18 2.18 2.18 2.18 2.18 2.18 COP (heating) relative to Reference 102.9% 103.1% 103.3% 103.4% 103.4% 103.4% 103.3% 103.2% Volumetric heating capacity at suction kJ/m3 1605 1724 1847 1971 2098 2227 2358 2492 Capacity relative to Reference 182.7% 196.3% 210.2% 224. 3% 238.8% 253.5% 268.4% 283.6% Critical temperature °C 80.18 77.74 75.41 73.19 71.08 69.06 67.13 65.28 Critical pressure bar 46.62 47.63 48.62 49.60 50.57 51.52 52.47 53.40 Condenserenthalpychange kJ/kg 259.3 263.4 267.2 270.7 274.1 277.2 280.3 283.1 Pressure ratio 15.51 15.07 14.64 14.22 13.81 13.42 13.04 12,68 Refrigerant mass flow kg/hr 27.8 27.3 26.9 26.6 26.3 26.0 25.7 25.4 Compressordischargetemperature °C 133.9 136.0 138.0 140.0 141.8 143.7 145.4 147.2 Evaporatorinietpressure bar 1.53 1.65 1.78 1.91 2.05 2.20 2.35 2.51 Condenser inlet pressure bar 23.3 24.5 25.7 26.9 28.1 29.3 30.4 31.6 Evaporatorinlettemperature °C -35.7 -36.6 -37.6 -38.6 -39.6 -40.5 -41.4 -42.3 Evaporator dewpoint °C -23.9 -23.3 -22.8 -22.3 -21.9 -21.5 -21.2 -20.9 Evaporatorexitgastemperature °C -18.9 -18.3 -17.8 -17.3 -16.9 -16.5 -16.2 -15.9 Evaporator mean temperature -29.8 -30.0 -30.2 -30.4 -30.7 -31.0 -31.3 -31.6 Evaporatorglide (out-in) K 11.8 13.3 14.8 16.3 17.7 19.0 20.3 21.4 Compressor suction pressure bar 1.50 1.63 1.76 1.89 2.03 2.18 2.33 2.49 Compressordischarge pressure bar 23.3 24.5 25.7 26.9 28.1 29.3 30.4 31.6 Suction line pressure drop Palm 151 139 129 119 111 104 97 91 Pressure drop relative to reference 51.8% 47.7% 44.0% 40.8% 38.0% 35.5% 33.3% 31.2% Condenser dew point 60.1 59.8 59.5 59.0 58.4 57.7 57.0 56.2 Condenser bubble point 29.5 28.7 28.0 27.4 26.9 26.6 26.3 26.0 Condenser exit liquid temperature 28.5 27.7 27.0 26.4 25.9 25.6 25.3 25.0 Condenser mean temperature 44.8 44.2 43.7 43.2 42.7 42.1 41.6 41.1 Condenserglide(in-out) K 30.6 31.2 -31.5 31.6 31.4 31.1 30.7 30.1 : * *. ..
:.: : Table 35: Theoretical Performance Data of Selected R-744/R-1234yf/R-1234ze(E) blends containing 0-14 % R-744 and 40 % R-1234yf Composition CO2IR-l234yf1R-I 234ze(E) % by weight ________ 0/40/60 2/40158 4/40/56 6/40154 8/40/52 10/40/50 12/40/48 14/40/46 COP (heating) 1.94 2.01 2.06 2.09 2.11 2.13 2.14 2.15 COP (heating) relative to Reference 92.0% 95.4% 97.6% 99.1% 100.2% 100.9% 101.4% 101.8% Volumetric heating capacity at suction kJ/m3 789 893 999 1107 1218 1332 1449 1568 CapacityrelativetoReference 89.8% 101.6% 113.7% 126.0% 138.7% 151.6% 164.9% 178.5% Critical temperature uç 103.81 100.04 96.49 93.14 89.99 87.01 84.18 81.51 Critical pressure bar 37.88 39.21 40.50 41.75 42.98 44.17 45.34 46.48 Condenserenthalpychange kJlkg 192.1 206.0 217.1 226.1 233.4 239.6 244.9 249.6 Pressure ratio 16.25 16.66 16.83 16.80 16.60 16.30 1593 15.51 Refrigerant mass floW kg/hr 37.5 34.9 33.2 31.8 30.8 30.0 29.4 28.8 Compressordischargeternperature °C 107.4 112.0 116.0 119.6 122.7 125.5 128.1 130.4 Evaporator inlet pressure bar 0.86 0.92 1.00 1.08 1.18 1.28 1.39 1.51 Condenserinletpressure bar 13.0 14.5 16.0 17.5 18.9 20.3 21.7 23.0 Evaporatorinlettemperature °C -29.1 -29.8 -30.6 -31.3 -32.1 -32.9 -33.7 -34.6 Evaporator dewpoint °C -29.2 -28.7 -28.1 -27.4 -26.7 -26.0 -25.3 -24.6 Evaporatorexitgastemperature °C -24.2 -23.7 -23.1 -22.4 -21.7 -21.0 -20.3 -19.6 Evaporator mean temperature -29.1 -29.3 -29.3 -29.4 -29.4 -29.4 -29.5 -29.6 Evaporator glide (out-in) K -0.1 1.1 2.4 3.9 5.4 6.9 8.4 10.0 Compressor suction pressure bar 0.80 0.87 0.95 1.04 1.14 1.25 1.36 1.48 Compressordischarge pressure bar 13.0 14.5 16.0 17.5 18.9 20.3 21.7 23.0 Suction line pressure drop Pa/rn 386 323 278 243 216 193 175 159 Pressure drop relative to reference 132,1% 110.7% 95.1% 83.2% 73.9% 66.2% 59.9% 54.6% Condenserdew point 53.9 55.9 57.5 58.6 59.4 59.9 60.1 60.0 Condenserbubblepoint °C 53.0 46.6 41.7 38.1 35.4 33.3 31.7 30.5 Condenser exit liquid temperature °C 52.0 45.6 40.7 37.1 34.4 32.3 30.7 29.5 Condenser mean temperature 535 51.2 49.6 48.4 47.4 46.6 45.9 45.3 Condensergfide (in-out) K 0.9 9.3 15.7 20.5 24.0 26.5 28.3 29.5 : :. :.: **. S..
Table 36: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 16-30 % R-744 and 40 % R-1234yf Composition C02/R-1234yf1R- 1234ze(E) % by weight _______ 16/40/44 18/40/42 20140/40 22/40138 24/40/36 26/40134 28140I32 30/40/30 COP (heating) 2.15 2.16 2.16 2.16 2.16 2.16 2.16 2.15 COP (heating) relative to Reference 102.1% 102.3% 102.4% 102.5% 102.4% 102.4% 102.3% 102.2% Volumetric heating capacity at suction kJ/m3. 1691 1817 1946 2078 2213 2350 2491 2634 Capacity relative to Reference 192.5% 206.8% 221.5% 236.5% 251.8% 267.5% 283.5% 299.7% Critical temperature °C 78.97 76.56 74.26 72.07 69.98 67.99 66.08 64.25 Critical pressure bar 47.60 48.70 49.78 50.84 51.88 52.91 53.92 54.92 Condenser enthalpy change kJ/kg 253.7 257.5 260.9 264.0 266.9 269.6 272.1 274.5 Pressure ratio 15.08 14.63 14.19 13.76 13.34 12.93 12.54 12.17 Refrigerant mass flow kg/hr 28.4 28.0 27.6 27.3 27.0 26.7 26.5 26.2 Compressor discharge temperature °C 132.5 134.5 136.4 138.2 139.9 141.5 143.1 144.7 Evaporator inlet pressure bar 1.64 1.77 1.91 2.06 2.22 2.38 2.55 2.73 Condenser inlet pressure bar 24.3 25.6 26.9 28,1 29.3 30.6 31.8 33.0 Evaporatoririlettemperature °C -35.5 -36.4 -37.3 -38.3 -39.2 -40.2 -41.1 -41.9 Evaporator dewpoint °C -23.9 -23.4 -22.8 -22.3 -21.9 -21.5 -21.2 -21.0 Evaporatorexitgastemperature °C -18.9 -18.4 -17.8 -17.3 -16.9 -16.5 -16.2 -16.0 Evaporator mean temperature °C -29.7 -29.9 -30.1 -30.3 -30.6 -30.9 -31.2 -31.5 Evaporatorglide(out-in) K 11.5 13.0 14.5 15.9 17.3 18.6 19.9 21.0 Compressor suction pressure bar 1.61 1.75 1.89 2.04 2.20 2.36 2.53 2.71 Compressordischarge pressure bar 24.3 25.6 26.9 28.1 29.3 30.6 31.8 33.0 Suction line pressure drop Pa/rn 146 134 124 115 107 100 94 88 Pressure drop relative to reference 50.0% 46.0% 42.5% 39.5% 36.8% 34.4% 322% 30.3% Condenserdew point °C 59.8 59.5 59.0 58.4 57.7 56.9 56.1 55.1 Condenser bubble point °C 29.5 28.7 28.1 27.6 27.2 26.9 26.7 26.5 Condenser exit liquid temperature 28.5 27.7 27.1 26.6 26.2 25.9 25.7 25.5 Condensermeantemperature °C 44.7 44.1 43.5 43.0 42.5 41.9 41.4 40.8 Condenser glide (in-out) K 30.3 30.7 30.9 30.8 30.5 30.0 29.4 28.6 : :. :.: * * *** *.* Table 37: Theoretical Performance Data of Selected R-744IR-1234yfIR1234ze(E) blends containing 0-14 % R-744 and 50 % R-1234yf Composition C02/R-1234yf/R-I I 234ze(E) % by weight ________ 0/50150 2/50/48 4/50/46 6/50/44 8/50/42 10/50/40 12/50/38 14/50/36 COP (heating) 1.93 2.00 2.05 2.08 2.10 2.12 2.13 2.13 COP (heating) relative to Reference 91.4% 94.9% 97.2% 98.7% 99.7% 100.3% 100.8% 101.1% Volumetric heating capacity at suction kJ/m3 825 935 1048 1162 1278 1397 1519 1644 Capacity relative to Reference 93.9% 106.5% 119.2% 132.2% 145.4% 159.0% 172.8% 187.0% Critical temperature °C 102.30 98.57 95.06 91.76 88.64 85.70 82.91 80.27 Critical pressure bar 37.69 39.17 40.61 42.00 43.35 44.66 45,94 47.19 Condenser enthalpy change kJlkg 188.2 202.5 213.8 222.8 230.0 235.9 240.9 245.2 Pressure ratio 15.75 16.23 16.46 16.45 16.27 15.97 15.60 15.18 Refrigerant mass flow kg/hr 38.3 35.5 33.7 32.3 31.3 30.5 29.9 29.4 Compressordischargetemperature °C 106.2 110.9 115.1 118.7 121.8 124.6 127.1 129.3 Evaporatorinletpressure bar 0.91 0.98 1.06 1.15 1.25 1.36 1.48 1.61 Go Condenser inlet pressure bar 13.4 15.0 16.6 18.2 19.7 21.2 22.6 24.0 Evaporatorinlettemperature °C -29.0 -29.7 -30.4 -31.2 -31.9 -32.7 -33.5 -34.3 Evaporator dewpoint °C -29.2 -28.8 -28.2 -27.5 -26.8 -26.0 -25.3 -24.7 Evaporator exit gas temperature -24.2 -23.8 -23.2 -22.5 -21.8 -21.0 -20.3 -19.7 Evaporator mean temperature -29.1 -29.2 -29.3 -29.3 -29.3 -29.4 -29.4 -29.5 Evaporatorglide(out-jn) K -0.2 1.0 2.3 3.7 5.1 6.6 8.2 9.7 Compressor suction pressure bar 0.85 0.92 1.01 1.11 1.21 1.33 1.45 1.58 Compressordischargepressure bar 13.4 15.0 16.6 16,2 19.7 21.2 226 24.0 Suction line pressure drop Pa/rn 375 313 268 234 208 187 169 154 Pressure drop relative to reference 128.3% 107.0% 91.7% 80.2% 71.2% 63.9% 57.9% 52.8% Condenserdewpoint °C 53.9 56.0 57.6 58.8 59.6 60.0 60.1 60.0 Condenser bubble point °C 53.3 46.5 41.5 37.6 35.0 33.0 31.4 30.2 Condenser exit liquid temperature °C 52.3 45.5 40.5 36.8 34.0 32.0 30,4 29.2 Condensermeantemperature °C 53.6 51.2 49.5 48.3 47.3 46.5 45.8 45.1 Condensergtide (in-out) K 0.6 9.5 16.2 21.0 24.5 27.0 28.7 29.7
S
* * * * * S. *.. S.. * * . S * : Table 38: TheoretIcal Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 16-30 % R-744 and 50 % R-1234yf Composition CO2IR-1234yf1R-I 234ze(E) % by weight _______ 16/50/34 18/50/32 20150/30 22/50/28 24/50126 26150I24 28150I22 30/50120 COP (heating) 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.13 COP(heating)relativetoReferen 101.4% 101.5% 101.5% 101.6% 101.5% 101.4% 101.3% 101.1% Volumetric heating capacity at suction kJ/m3 1772 1903 2038 2175 2316 2460 2607 2757 Capacity relative to Reference 201.6% 216.6% 231.9% 247.6% 263.6% 280.0% 296.7% 313.7% Critical temperature 77.76 75.37 73.11 70.94 68.88 66.91 65.03 63.23 Critical pressure bar 48.41 49.60 50.77 51.91 53.04 54.14 55.23 56.30 Condenserenthalpychange kJ/kg 249.0 252.4 255.4 258.1 260.7 263.0 265.1 267.1 Pressure ratio 14.73 14.28 13.83 13.39 12.96 12.55 12.16 11,79 Refrigerant mass flow kg/hr 28.9 28,5 28.2 27.9 27.6 27.4 27.2 27.0 Compressor discharge temperature °C 131.3 133.2 135.0 136.7 138.3 139.8 141.3 142.7 Evaporatorinletpressure bar 1.74 1.89 2.04 2.20 2.37 2.55 2.73 2.92 Condenserinletpressure bar 25.3 26.6 27.9 29.2 30.5 31.8 33.0 34.3 Evaporatorinlettemperature °C -35.2 -36.1 -37.1 -38.0 -39.0 -39.9 -40.9 -41.8 Evaporator dewpoint °C -24.0 -23.4 -22.9 -22.4 -21.9 -21.6 -21.2 -21.0 Evaporator exit gas temperature -19.0 -18.4 -17.9 -17.4 -16.9 -16.6 -16.2 -16.0 Evaporator mean temperature -29.6 -29.8 -30.0 -30.2 -30.5 -30.7 -31.0 -31.4 Evaporatorglide(out-in) K 11.2 12.7 14.2 15.6 17.0 18.4 19.6 20.8 Compressor suction pressure bar 1.72 1.87 2.02 2.18 2.35 2.53 2.72 2.91 Compressor discharge pressure bar 25.3 26.6 27.9 29.2 30.5 31.8 33.0 34.3 Suction line pressure drop Pa/rn 141 130 121 112 104 98 92 86 Pressure drop relative to reference 48.4% 44.6% 41.3% 38.4% 35.8% 33.4% 314% 29.5% Condenser dew point 59.7 59.2 58.7 58.0 57.2 56.3 55.3 54.3 Condenser bubble point 29.3 28.6 28.1 27.6 27.3 27.1 26.9 26.8 Condenserexitliquidtemperature °C 28.3 27.6 27.1 26.6 26.3 26.1 25.9 25.8 Condenser mean temperature 44.5 43.9 43.4 42.8 42.2 41.7 41.1 40.5 Condenserglide (in-out) I K 30.4 30.6 -30.6 30.3 29.8 29.2 28.4 27.5 *. ..
* * . . * * * *. S.. *�* * S * : : *:..:.
Table 39: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 0-14 % R-744 and 60 % R-1234yf Composition C02/R-1234yf/R.
I 234ze(E) % by weight ________ 0/60/40 2/60/38 4/60/36 6/60/34 8/60/3 2 10/60/30 12/60/28 14/60/26 COP (heating) 1.91 1.99 2.04 2.07 2.09 2.11 2.11 2.12 COP (heating) relative to Reference 90.7% 94.4% 96.8% 98.3% 99.3% 99.9% 100.3% 100.5% Volumetricheatingcapacityatsuction kJ/m3 855 973 1091 1211 1332 1455 1581 1710 Capacity relative to Reference 97.4% 110.7% 124.2% 137.8% 151.6% 165.6% 179.9% 194.6% Critical temperature 100.78 97.09 93.63 90.37 87.29 84.39 81.63 79.02 Critical pressure bar 37.30 38.94 40.52 42.05 43.53 44.97 46.37 47.72 Condenserenthalpychange kJ/kg 184.7 199.8 211.4 220.3 227.4 233.1 237.8 241.9 Pressure ratio 15.33 15.90 16.19 16.21 16.05 15.76 15.38 14.96 Refngerant mass flow kg/hr 39.0 36.0 34.1 32.7 31.7 30.9 30.3 29.8 Compressordischargetemperature °C 105.1 110,1 114.4 118.1 121.2 124.0 126.4 128.6 Evaporator inlet pressure bar 0.96 1.03 1.11 1.20 1.31 1.43 1.55 1.69 o Condenserinletpressure bar 13.8 15.5 17.2 18.9 20.5 22.0 23.5 24.9 Evaporator inlet temperature -28.9 -29.6 -30.3 -31.0 -31.8 -32.5 -33.4 -34.2 Evaporator dewpoint CC -29.2 -28.8 -28.3 -27.6 -26.9 -26.1 -25.4 -24.7 Evaporatorexitgastemperature °C -24.2 -23.8 -23.3 -22.6 -21.9 -21.1 -20.4 -19.7 Evaporator mean temperature -29.0 -29.2 -29.3 -29.3 -29.3 -29.3 -29.4 -29.4 Evaporator glide (out-in) K -0.3 0.8 2.0 3.4 4.9 6.4 8.0 9.5 Compressorsuction pressure bar 0.90 0.97 1.06 1.16 1.28 1.40 1.53 1.66 Compressordischarge pressure bar 13.8 15.5 17.2 18.9 20.5 22.0 23.5 24.9 Suction line pressure drop Pa/m 366 304 259 227 201 181 164 150 Pressure drop relative to reference 125.4% 104.0% 88.8% 77.6% 68.9% 61.9% 56.1% 51.3% Condenser dew point °C 53.9 56.2 57.9 59.1 59.9 60.2 60.3 60.1 Condenser bubble point 53.5 46.3 41.0 37.2 34.5 32.4 30.9 29.8 Condenserexit liquid temperature 52.5 45.3 40.0 36.2 33.5 31.4 29.9 28.8 Condenser mean temperature °C 53.7 51.2 49.5 48.2 47.2 46.3 45.6 45.0 Condenserglide (in-out) K 0.4 9.9 -16.9 21.9 25.4 27.8 29.4 30.4 *. ..
* . * * * * * *.. *** .** 0 * * . . S S *.* S., Table 40: Theoretical Performance Data of Selected R-7441R-1234yf/R-1234ze(E) blends containing 16-30 % R-744 and 60 % R-1234yf Composition C02/R-1234yf/R-I 234ze(E) % by weight ________ 16/60/24 18/60/22 20160/20 22160118 24160116 26160114 28160112 30160110 COP(heating) 2.12 2.12 2.12 2.12 2.12 2.12 2.11 2,11 COP (heating) relative to Reference 100.7% 100.7% 100.7% 100.7% 100.6% 100.4% 100.2% 100.0% Volumetric heating capacity at suction kJ/m3 1841 1976 2114 2254 2398 2544 2692 2842 Capacity relative to Reference 209.5% 224. 9% 240. 5% 256.6% 272.9% 289. 5% 306.4% 323. 5% Critical temperature °C 76.55 74.19 71.95 69.82 67.78 65.84 63.98 62.20 Critical pressure bar 49.05 50.34 51.60 52.84 54.05 55.23 56.39 57.53 Condenser enthalpy change kJ/kg 245.4 248.4 251.2 253.6 255.9 257.9 259.8 261.5 Pressure ratio 14.52 14.06 13.61 13.17 12.74 12.33 11.95 11.58 Refrigerant mass flow kg/hr 29.3 29.0 28.7 28.4 28.1 27.9 27.7 27.5 __ Compressor discharge temperature 130.6 132.4 134.1 135.7 137.2 138.7 140.1 141.5 I. Evaporator inlet pressure bar 1.83 1.99 2.15 2.32 2.50 2.68 2.87 3.07 Condenser inlet pressure bar 26.3 27.6 29.0 30.3 31.6 32.9 34.1 35.4 Evaporatorinlettemperature °C -35.1 -36.0 -36.9 -37.9 -38.9 -39.9 -40.9 -42.0 Evaporator dewpoint °C -24.0 -23.4 -22.9 -22.4 -21.9 -21.5 -21.1 -20.9 Evaporatorexitgastemperature °C -19.0 -18.4 -17.9 -17.4 -16.9 -16.5 -16.1 -15.9 Evaporator mean temperature -29.5 -29.7 -29.9 -30.1 -30.4 -30.7 -31.0 -31.4 Evaporatorglide(out-in) K 11.0 12.5 14.0 15.5 17.0 18.4 19.8 21.1 Compressor suction pressure bar 1.81 1.97 2.13 2.30 2.48 2.66 2.86 3.06 Compressordischargepressure bar 26.3 27.6 29.0 30.3 31.6 32.9 34.1 35.4 Suction line pressure drop Palm 138 127 118 110 102 96 90 85 Pressure drop relative to reference 47.1% 43.5% 40.3% 37.5% 35.0% 32.8% 30.8% 29.1% Condenser dew point °C 59.8 59.2 58.5 57.7 56.8 55.8 54.8 53.6 Condenser bubble point °C 28.9 28.2 27.7 27.4 27.1 26.9 26.8 26.7 Condenser exit liquid temperature °C 27.9 27.2 26.7 26.4 26.1 25.9 25.8 25.7 Condenser mean temperature 44.3 43.7 43.1 42.6 42.0 41.4 40.8 40.1 Condenserglide (in-out) K 30.9 31.0 30.8 30.4 29.7 28.9 28.0 26.9
S -S
* **5 *5*
S
Table 41: Theoretical Performance Data of Selected R-744/propane/R-1234ze(E) blends containIng 0-14 % R-744 and 4 % propane Composition C02/propane/R.
1234ze(E) % by weight _______ 0/4/96 2/4/94 4/4/92 6/4/90 8/4/88 10/4/86 1214/84 14/4182 COP (heating) 2.01 2.06 2.10 2.13 2.15 2.17 2.19 2.20 COP (heating) relative to Reference 95.5% 97.9% 99.7% 101.1% 102.2% 103.0% 103.7% 104.2% Volumetric heating capacity at suction kJ/m3 719 802 888 978 1071 1166 1264 1363 Capacity relative to Reference 81.8% 91.2% 101.1% 111.4% 121.9% 132.7% 143.8% 155.2% Critical temperature 108.61 104.95 101.45 98.11 94.94 91.92 89.05 86.32 Critical pressure bar 39.97 40.74 41.51 42.27 43.03 43.77 44.50 45.23 Condenserenthalpychange kJ/kg 220.6 232.1 242.3 251.0 258.8 265.6 271.8 277.5 Pressure ratio 17.88 17.95 17.93 17.77 17.53 17.23 16.88 16.51 Refrigerant mass flow kg/hr 32.6 31.0 29.7 28.7 27.8 27.1 26.5 25.9 Compressordischarge temperature °C 114.0 117.7 121.3 124.5 127.5 130.3 132.9 135.4 Evaporatorinletpressure bar 0.74 0.79 0.85 0.92 1.00 1.08 1.16 1.25 NJ Condenserinletpressure bar 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.2 Evaporatorinlettemperature °C -29.7 -30.4 -31.1 -31.9 -32.7 -33.6 -34.5 -35.4 Evaporator dewpoint °C -29.1 -28.5 -27.9 -27.1 -26.4 -25.6 -24.9 -24.3 Evaporator exit gas temperature °C -24.1 -23.5 -22.9 -22.1 -21.4 -20.6 -19.9 -19.3 Evaporator mean temperature -29.4 -29.5 -29.5 -29.5 -29.5 -29.6 -29.7 -29.8 Evaporatorglide(out-in) K 0,5 1.8 3.2 4.8 6.3 7.9 9.6 11.2 Compressor suction pressure bar 0.68 0.74 0.80 0.88 0.96 1.04 1.13 1.23 Compressor discharge pressure bar 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.2 Suction line pressure drop Palm 382 329 288 254 227 205 186 169 Pressure drop relative to reference 130.6% 112.7% 98.5% 87.1% 77.8% 70.1% 63.5% 58.0% Condenser dew point 54.3 55.8 57.1 58.2 59.0 59.6 60.0 60.3 Condenser bubble point 49.4 44.9 41.1 36.0 35.5 33.5 31.9 30.5 Condenser exit liquid temperature °C 48.4 43.9 40.1 37.0 34.5 32.5 30.9 29.5 Condenser mean temperature 51.9 50.3 49.1 48.1 47.3 46.6 46.0 45.4 Condenserglide(in-out) K 4.9 11.0 -16.1 20.2 23.5 26.1 282 29.8 * . I * * I Is *s * I I * * I I III III I.. I S * I S I I S **I **I Table 42: Theoretical Performance Data of Selected R-744/propane/R-1234ze(E) blends containing 16-30 % R-744 and 4 % propane Composition CO2lpropanelR- 1234ze(E) % by weight _______ 16/4/80 1814/78 2014176 22/4/74 2414/72 26/4/70 28/4/68 30/4/66 COP (heating) 2.21 2.21 2.22 2.22 2.22 2.22 2.22 2.22 COP (heating) relative to Reference 104.6% 104.9% 105.1% 105.2% 105.3% 105.3% 105.2% 105.1% Volumetric heating capacity at suction kJ/m3 1465 1568 1672 1778 1884 1992 2099 2207 Capacity relative to Reference 166.7% 178.5% 190.3% 202.4% 214.5% 226.7% 238.9% 251.2% Critical temperature °C 83.71 81.23 78.85 76.58 74.41 72.34 70.35 68.44 Critical pressure bar 45.95 46.67 47.38 48.08 48.78 49.48 50.18 50.87 Condenser enthalpy change kJlkg 282.8 287.7 292.4 296.9 301.2 305.4 309.5 313.4 Pressure ratio 16.13 15.75 15.38 15.02 14.67 14.34 1402 13.72 Refrigerant mass flow kg/hr 25.5 25.0 24.6 24.3 23.9 23.6 23.3 23.0 Compressor discharge temperature 137.7 140.0 142.2 144.4 146.5 148.6 150.7 152.8 Evaporatorinletpressure bar 1.35 1.45 1.55 1.66 1.77 1.88 1.99 2.11 U.) Condenser inlet pressure bar 21.3 22.4 23.5 24.6 25.6 26.6 27.7 28.7 Evaporatorinlettemperature °C -36.4 -37.4 -38.4 -39.4 -40.4 -41.4 -42.4 -43.3 Evaporator dewpoint °C -23.6 -23.0 -22.5 -22.1 -21.6 -21.3 -21.0 -20.8 Evaporatorexitgastemperature °C -18.6 -18.0 -17.5 -17.1 -16.6 -16.3 -16.0 -15.8 Evaporatormeantemperature °C -30.0 -30.2 -30.5 -30.7 -31.0 -31.4 -31.7 -32.0 Evaporatorglide (out-in) K 12.8 14.4 15.9 17.4 18.8 20.1 21.4 22.6 Compressor suction pressure bar 1.32 1.42 1.53 1.64 1.75 1.86 1.97 2.09 Compressordischarge pressure bar 21.3 22.4 23.5 24.6 25.6 26.6 27.7 28.7 Suction tine pressure drop Pa/rn 155 143 133 123 115 108 101 95 Pressure drop relative to reference 53.2% 49.1% 45.4% 42.3% 39.4% 36.9% 34.7% 32.7% Condenserdewpoint °C 60.4 60.3 60.2 59.9 59.5 59.1 58.6 58.1 Condenser bubble point 29.4 28.4 27.6 26.9 26,2 25.7 25.3 24.9 Condenser exit liquid temperature 28.4 27.4 26.6 25.9 25.2 24.7 24.3 23.9 Condensermeantemperature °C 44.9 44.3 43.9 43.4 42.9 42.4 41.9 41.5 Condenserglicie(in-out) K 31.0 31.9 32.6 33.0 33.3 33.4 33.4 33.2 * * * . S S * **. *.* ... * * * . . . S S S *S* **S Table 43: Theoretical Performance Data of Selected R-744lpropane/R-1234ze(E) blends containing 0-14 % R-744 and 6 % propane Composition C02/propaneJR- 1234ze(E) % by weight _______ 0/6/94 2/6/92 4/6/90 6/6/88 8/6/86 10/6/84 12/6/82 14/6/80 COP (heating) 2.02 2.06 2.10 2.13 2.15 2.17 2.18 2.19 COP (heating) relative to Reference 95.7% 97.9% 99.6% 101.0% 102.0% 102.8% 1034% 103.9% Volumetric heating capacity at suction kJ/m3 767 851 940 1031 1125 1222 1320 1421 Capacity relative to Reference 87.3% 96.9% 106.9% 117.4% 128.1% 139.0% 150.3% 161.7% Critical temperature °c 108.03 104.52 101.14 97.90 94.81 91.87 89.05 86.36 Critical pressure bar 41.33 42.11 42.89 43.66 44.41 45.16 45.89 46.62 Condenser enthalpy change kJlkg 224.4 235.3 245.0 253.5 261.0 267.8 273.9 279.5 Pressure ratio 17.34 17.37 17.31 17.15 16.93 16,65 16.33 15.99 Refrigerant mass flow kg/hr 32.1 30.6 29.4 28.4 27.6 26.9 26.3 25.8 Compressordischargetemperature °C 114.2 117.7 121.1 124,1 127.1 129.7 132.3 134.7 Evaporatorinletpressure bar 0.79 0.85 0.91 0.98 1.06 1.14 1.23 1.33 -r Condenserinletpressure bar 12.6 13.8 15.0 16.2 17.3 18.5 19.6 20.8 Evaporatorinlettemperature °C -30.0 -30.7 -31.4 -32.2 -33.1 -33.9 -34.8 -35.8 Evaporator dewpoint °C -28.6 -28.0 -27.4 -26.7 -26.0 -25.3 -24.6 -24.0 Evaporator exit gas temperature °C -23.6 -23.0 -22.4 -21.7 -21.0 -20.3 -19.6 -19.0 Evaporator mean temperature ec -29.3 -29.4 -29.4 -29.4 -29.5 -29.6 -29.7 -29.9 Evaporatorglide(out-in) K 1.3 2.7 4.1 5.6 7.1 8.7 10.3 11.8 Compressor suction pressure bar 0.73 0.79 0.86 0.94 1.02 1.11 1.20 1.30 Compressordischargepressure bar 12.6 13.8 15.0 16.2 17.3 18.5 19.6 20.8 Suction line pressure drop Pa/rn 353 307 270 240 215 194 177 162 Pressure drop relative to reference 120.8% 105.1% 92.4% 82.0% 73.5% 66.5% 60.5% 55.3% Condenser dew point 54.5 55.8 57.0 58.0 58.7 59.2 59.6 59.8 Condenser bubble point °c 48.6 44.5 41.0 38.1 35.7 33.8 32.2 30.8 Condenser exit liquid temperature °C 47.6 43.5 40.0 37.1 34.7 32.8 31.2 29,8 Condenser mean temperature °c 51.6 50.1 49.0 48.0 47.2 46.5 45.9 45.3 Condensergtide(in-out) K 5.8 11.3 16.0 19.9 23.0 25.5 27.4 29.0 S.. * I * 0 * * 0 *0. *** Table 44: Theoretical Performance Data of Selected R-T44lpropane/R-1234ze(E) blends containing 16-30 % R-744 and 6 % propane Composition C02/propane/R-I 234ze(E) % by weight ________ 16/6/78 18/6/76 20/6/74 22/6/72 2416/70 26/6/68 28/6/66 30/6/64 COP (heating) 2.20 2.20 2.21 2.21 2.21 2.21 2.21 2.21 COP (heating) relative to Reference 104.2% 104.5% 104.7% 104.8% 104.9% 104.8% 104,8% 104.7% Volumetric heating capacity at suction kJ/m3 1523 1627 1732 1838 1945 2053 2161 2270 Capacity relative to Reference 173.4% 185.2% 197.1% 209.2% 221.3% 233.6% 246.0% 258.4% Critical temperature 83.79 81.34 78.99 76.73 74.58 72.51 70.52 68.61 Critical pressure bar 47.33 48.03 48.73 49.42 50.10 50.78 51.45 52.11 Condenser enthalpy change kJ/kg 284.7 289.5 294.2 298.6 302.8 306.9 310.9 314.7 Pressure ratio 15.64 15.29 14.94 14.60 14.28 13.96 13.66 13.37 Refrigerant mass flow kg/hr 25.3 24.9 24.5 24.1 23.8 23.5 23.2 22.9 Compressordischarge temperature °C 137.0 139.2 141.4 143.5 145.5 147.6 149.6 151.6 Evaporator inlet pressure bar 1.42 1.52 1.63 1.74 1.85 1.96 2.08 2.20 Condenserinletpressure bar 21.9 22.9 24.0 25.1 26.1 27.2 28.2 29.2 Evaporator inlet temperature -36.7 -37.7 -38.7 -39.6 -40.6 -41.5 -42.4 -43,3 Evaporator dewpoint °C -23.4 -22.8 -22.4 -21.9 -21.6 -21.2 -21.0 -20.8 Evaporator exit gas temperature -18.4 -17.8 -17.4 -16.9 -16.6 -16.2 -16.0 -15.8 Evaporatormeantemperature °C -30.1 -30.3 -30.5 -30.8 -31.1 -31.4 -31.7 -32.0 Evaporatorglide(out-in) K 13.3 14.8 16.3 17.7 19.0 20.3 21.5 22.5 Compressor suction pressure bar 1.40 1.50 1.61 1.72 1.83 1.94 2.06 2.18 Compressordischargepressure bar 21.9 22.9 24.0 25.1 26.1 27.2 28.2 29.2 Suction line pressure drop Palm 149 137 128 119 111 104 98 93 Pressure drop relative to reference 50.9% 47.1% 43.7% 40.7% 38.1% 35.7% 33.6% 31.7% Condenser dew point °C 59.8 59.7 59.6 59.3 58.9 58.5 57.9 57.4 Condenser bubble point °C 29.7 28.8 27.9 27.3 26.7 26.1 25.7 25.3 Condenser exit liquid temperature °c 28.7 27.8 26.9 26.3 25.7 25.1 24.7 24.3 Condensermeantemperature °C 44.8 44.2 43.7 43.3 42.8 42.3 41.8 41.4 Condenser glide (in-out) K 30.1 31.0 -31.6 32.0 32.2 32.3 32.2 32.1 * * I * * S ** *.
* * * S * * * S.. **S *** S * * . . . * S * 0** *** Table 45: Theoretical Performance Data of Selected R-744/propane/R-1234ze(E) blends containing 0-14 % R-744 and 8 % propane Composition CO2lpropane/R- 1234ze(E) % by weight _______ 018192 2/8/90 -4/8/88 6/8/86 8/8/84 10/8/82 12/8/80 14/8/78 COP (heating) 2.02 2.06 2.10 2.12 2.15 2.16 2.17 2.18 COP (heating) relative to Reference 95.8% 97.8% 99.5% 100.8% 101.7% 102.5% 103.1% 103.6% Volumetric heating capacity at suction kJ/m3 814 900 989 1082 1178 1275 1375 1476 Capacity relative to Reference 92.7% 102.4% 112.6% 123.2% 134.0% 145.1% 156.5% 168.0% Critical temperature 107.48 104.11 100.85 97.72 94.72 91.84 89.09 86.45 Critical pressure bar 42.50 43.29 44.08 44.86 45.63 46.38 47.12 47.84 Condenserenthalpychange kJfkg 227.7 238.1 247.4 255.7 263.2 269.8 275.9 281.5 Pressure ratio 16.79 16.78 16.71 16.55 16.35 16.09 15.80 15.49 Refrigerant mass flow kg/hr 31.6 30.2 29.1 28.2 27.4 26.7 26.1 25.6 Compressor discharge temperature 114.2 117.5 120.7 123.7 126.5 129.2 131.6 134.0 Evaporatorinletpressure bar 0.84 0.90 0.97 1.04 1.12 1.21 1.30 1.40 Condenser inlet pressure bar 13.2 14.3 15.5 16.6 17.8 19.0 20.1 21.2 Evaporatorinlettemperature ec -30.3 -31.0 -31.8 -32.6 -33.4 -34.3 -35.1 -36.0 Evaporator dewpoint °C -28.2 -27.6 -26.9 -26.3 -25.6 -24.9 -24.3 -23.7 Evaporatorexitgastemperature °C -23.2 -22.6 -21.9 -21.3 -20.6 -19.9 -19.3 -18.7 Evaporator mean temperature -29.2 -29.3 -29.4 -29.4 -29.5 -29.6 -29.7 -29.9 Evaporatorglide (out-in) K 2.1 3.4 4.8 6.3 7.8 9.3 10.8 12.3 Compressor suction pressure bar 0.78 0.85 0.92 1.00 1.09 1.18 1.27 1.37 Compressor discharge pressure bar 13.2 14.3 15.5 16.6 17.8 19.0 20.1 21.2 Suction line pressure drop Pa/rn 329 288 254 227 204 185 169 155 Pressure drop relative to reference 112.6% 98.6% 87.1% 77.6% 69.8% 63.3% 57.7% 53.0% Condenser dew point °C 54.5 55.6 56.7 57.6 58.3 58.8 59.1 59.2 Condenser bubble point °C 48,2 44.4 41.1 38.3 36.0 34.1 32.5 31.2 Condenserexitliquidtemperature °C 47.2 43.4 40.1 37.3 35.0 33.1 31.5 30.2 Condenser mean temperature 51.3 50.0 48.9 48.0 47.1 46.4 45.8 45.2 Condenserglide (in-out) K 6.2 11.2 15.6 19.3 22.3 24.6 26.5 28.0 *: ;.; : : * : .:. *:.
Table 46: Theoretical Performance Data of Selected R-744/propane/R-1234ze(E) blends containing 16-30 % R-744 and 8 % propane Composition CO2lpropane/R-1 234ze(E) % by weight ________ 16/8/76 18/8/74 20/8/72 2218110 24/8/68 26/8/66 28/8164 3018/62 COP (heating) 2.19 2.20 2.20 2.20 2.20 2.20 2.20 2.20 COP (heating) relative to Reference 103.9% 104.2% 104.3% 104.4% 104.5% 104.5% 104.4% 104.3% Volumetric heating capacity at suction kJ/m3 1579 1683 1789 1895 2003 2112 2221 2332 Capacity relative to Reference 179,7% 191.6% 203.6% 215.7% 228.0% 240.3% 252.8% 265.4% Critical temperature °C 83.92 81.50 79.18 76.95 74.80 72.74 70.76 68.86 Critical pressure bar 48.55 49.25 49.94 50.62 51.29 51.95 52.60 53.24 Condenser enthalpy change kJlkg 286.6 291.5 296.0 300.4 304.5 308.5 312.4 316.1 Pressure ratio 15.17 14.85 14.53 14.21 13.90 13.61 13.32 13.04 Refrigerant mass floW kg/hr 25.1 24.7 24.3 24.0 23.6 23.3 23.0 22.8 Compressordischargetemperature °C 136.3 138.4 140.5 142.6 144.6 146.6 148.5 150.4 Evaporatorinletpressure bar 1.50 1.60 1.71 1.82 1.93 2.05 2.17 2.29 Condenser inlet pressure bar 22.3 23.4 24.5 25.5 26.6 27.6 28.6 29.7 Evaporatorinlettemperature C -37.0 -37.9 -38.8 -39.7 -40.6 -41.5 -42.3 -43.1 Evaporator dewpoint °C -23.2 -22.7 -22.3 -21.9 -21.5 -21.2 -21.0 -20.8 Evaporatorexitgastemperature °C -18.2 -17.7 -17.3 -16.9 -16.5 -16.2 -16.0 -15.8 Evaporator mean temperature -30.1 -30.3 -30.5 -30.8 -31.1 -31.4 -31.6 -31.9 Evaporator glide (out-in) i< 13.8 15.2 16.5 17.8 19.1 20.2 21.3 22.3 Compressor suction pressure bar 1.47 1.58 1.69 1.80 1.91 2.03 2.15 2.27 Compressor discharge pressure bar 22.3 23.4 24.5 25.5 26.6 27.6 28.6 29.7 Suction line pressure drop Pa/rn 143 132 123 115 107 101 95 90 Pressure drop relative to reference 48.9% 45.3% 42.1% 39.3% 36.8% 34.6% 32.6% 30.7% Condenser dew point °C 59.2 59.1 58.9 58.6 58.3 57.8 57.3 56.7 Condenser bubble point 30.1 29.2 28.4 27.7 27.1 26.6 26.2 25.8 Condenser exit liquid temperature 29.1 28.2 27.4 26.7 26.1 25.6 25.2 24.8 Condensermearternperature °C 44.7 44.2 43.7 43.2 42.7 42.2 41.7 41.3 Condenser glide (in-out) K 29.1 30.0 30.6 31.0 31.2 31.2 31.1 30.9 * . * 0 * 0 ** *.
* S S S S S * *.* .0* *5S S S * 0 * 0 0 0 * 0.0 *SI Table 47: Theoretical Performance Data of Selected R-744IpropaneIR-1234ze(E) blends containing 0-14 % R-744 and 10 % propane Composition CO2lpropanelR-1234ze(E) % by weight ________ 0/10/90 2/10/88 4/10/86 6/10/84 8/10/82 10/10/80 12/10/78 14110176 COP (heating) 2.02 2.06 2.09 2.12 2.14 2.16 2.17 2.18 COP (heating) relative to Reference 95.8% 97.7% 99.3% 100.6% 101.5% 102.3% 102.9% 103.3% Volumetric heating capacity at suction kJ/m3 860 946 1037 1132 1228 1327 1427 1529 Capacity relative to Reference 97.9% 107.7% 118,1% 128.8% 139.8% 151.0% 162.4% 174.0% Critical temperature Cc 106.95 103.72 100.58 97.56 94.64 91.84 89.16 86.57 Critical pressure bar 43.51 44.31 45.11 45.90 46.68 47.44 48.19 48.92 Condenser enthalpy change kJ/kg 230.7 240.7 249.8 257.9 265.3 272.0 278.0 283.5 Pressure ratio 16.25 16.22 16.14 15.99 15.81 15.58 15.31 15.03 Refrigerant mass flow kg/hr 31.2 29.9 28.8 27.9 27.1 26.5 25.9 25.4 Compressordischargetemperature °C 114.2 117.3 120.4 123.3 126.0 128.6 131.0 133.3 Evaporator inlet pressure bar 0.89 0.96 1.03 1.10 1.19 1.27 1.37 1.47 Condenser inlet pressure bar 13.6 14.7 15.9 17.1 18.2 19.4 20.5 21.6 Evaporator inlet temperature Cc -30.5 -31.3 -32.0 -32.8 -33.7 -34.5 -35.4 -36.2 Evaporator dewpoint °C -27.8 -27.2 -26.6 -25.9 -25.3 -24.7 -24.1 -23.6 Evaporatorexitgastemperature 0C -22.8 -22.2 -21.6 -20.9 -20.3 -19.7 -19.1 -18.6 Evaporator mean temperature °C -29.2 -29.2 -29.3 -29.4 -29.5 -29.6 -29.7 -29.9 Evaporatorglide (out-in) K 2.8 4.1 5.5 6.9 8.3 9.8 11.2 12.6 Compressor suction pressure bar 0.84 0.91 0.99 1.07 1.15 1.24 1.34 1.44 Compressordischargepressure bar 13.6 14.7 15.9 17.1 18.2 19.4 20.5 21.6 Suction line pressure drop Pa/rn 308 271 241 215 194 177 162 149 Pressure drop relative to reference 105.6% 92.9% 82.4% 73.8% 66.6% 60.5% 55.3% 50.9% Condenser dew point °C 54.3 55.4 56.4 57.2 57.8 58.3 58.5 58.7 Condenser bubble point °c 48.1 44.5 41.3 38.7 36.4 34.5 33.0 31.7 Condenser exit liquid temperature °c 47.1 43.5 40.3 37.7 35.4 33.5 32.0 30.7 Condenser mean temperature °c 51.2 49.9 48.9 47.9 47.1 46.4 45.8 45.2 Condenserglide (in-out) K 6.3 10.9 -15.0 18.5 21.4 23.7 25.6 27.0 1 *I * S a * * S * S.. *** a.. * * * : : .:..:.
Table 48: Theoretical Performance Data of Selected R-744/propane/R-1 234ze(E) blends containing 16-30 % R-744 and 10 % propane Composition C02/propane/R.1234z9(E) % by weight ________ 16/10/74 18/10/72 20110/70 22110168 24/10/66 26/10/64 28/10/62 30/10/60 COP (heating) 2.19 2.19 2.19 2.20 2.20 2.20 2.20 2.19 COP (heating) relative to Reference 103.7% 103.9% 104.0% 104.1% 104.2% 104.2% 104.1% 104.0% Volumetric heating capacity at suction kJIm3 1633 1737 1843 1951 2059 2169 2280 2393 Capacity relative to Reference 185.8% 197.7% 209.8% 222.0% 234.3% 246.8% 259.5% 272.4% Critical temperature °C 84,09 81.70 79.41 77.20 75.08 73.03 71.06 69.16 Critical pressure bar 49.64 50.34 51.02 51.69 52.35 53.00 53.64 54.27 Condenserenthalpychange kJfkg 288.7 293.5 298.0 302.3 306.4 310.4 314.1 317.7 Pressure ratio 14.74 14.44 14.14 13.85 13.56 13.27 12.99 12.72 Refrigerant mass flow kg/hr 24.9 24.5 24.2 23.8 23.5 23.2 22.9 22.7 Compressordischargetemperature °C 135.5 137.7 139.7 141.7 143.7 145.6 147.4 149.2 Evaporator inlet pressure bar 1.57 1.67 1.78 1.89 2.01 2.13 2.25 2.38 Condenser inlet pressure bar 22.7 23.8 24.9 26.0 27.0 28.0 29.1 30,1 Evaporator inlet temperature °C -37.1 -38.0 -38.8 -39.7 -40.5 -41.3 -42.0 -42.7 Evaporatordewpoint °C -23.1 -22.6 -22.2 -21.9 -21.5 -21.3 -21.0 -20.8 Evaporatorexitgastemperature °C -18.1 -17.6 -17.2 -16.9 -16.5 -16.3 -16.0 -15.8 Evaporator mean temperature °C -30.1 -30.3 -30.5 -30.8 -31.0 -31.3 -31.5 -31.8 Evaporator glide (out-in) K 14.0 15.3 16.6 17.8 18.9 20.0 21.0 21.9 Compressor suction pressure bar 1.54 1.65 1.76 1.87 1.99 2.11 2.24 2.37 Compressordischargepressure bar 22.7 23.8 24.9 26.0 27.0 28.0 29.1 30.1 Suction line pressure drop Palm 137 127 119 111 104 98 92 87 Pressure drop relative to reference 47.0% 43.6% 40.6% 38.0% 35.6% 33.5% 31.6% 29.8% Condenser dew point °C 58.7 58.6 58.3 58.0 57.6 57.2 56.7 56.1 Condenser bubble point °C 30.6 29.6 28.8 28.1 27.5 27.0 26.6 26.2 Condenser exit liquid temperature C 29.6 28.6 27.8 27.1 26.5 26.0 25.6 25.2 Condenser mean temperature °C 44.6 44.1 43.6 43.1 42.6 42.1 41.6 41.2 Condenserglide(in..out) K 28.1 28.9 -29.5 29.9 30.1 30.2 30.1 29.9 : .: * S * * * S * S.. **, S.. * * * . . . S S *S* .5.
Table 49: Theoretical Performance Data of Selected R-744/propane/R-1234ze(E) blends containing 0-14 % R-744 and 12 % propane Composition CO2lpropane/R.1234ze(E) % by weight ________ 0112188 2112186 4112/84 6/12182 8/12180 10/12178 12112176 14/12/74 COP (heating) 2.02 2.O6 2.09 2.12 2.14 2.15 2.16 2.17 COP (heating) relative to Reference 95.8% 97.7% 99.2% 100.4% 101.3% 102.1% 102.6% 103.1% Volumetric heating capacity at suction kJ/m3 905 992 1084 1180 1277 1376 1477 1579 Capacity relative to Reference 103.0% 112.9% 123.4% 134.2% 145.3% 156.6% 1681% 179.8% Critical temperature °C 106.46 103.35 100.33 97.40 94.58 91.86 89.24 86.71 Critical pressure bar 44.37 45.19 46.00 46.80 47.60 48.37 49.13 49.87 Condenserenthalpychange kJlkg 233.5 243.2 252.1 260.2 267.5 274.1 280.2 285.8 Pressure ratio 15.75 15.69 15.60 15.47 15.30 15.10 14.86 14.61 Refrigerant mass flow kg/hr 30.8 29.6 28.6 27.7 26.9 26.3 25.7 25.2 Compressordischargetemperature °C 114.1 117.1 120.0 122.8 125.5 128.0 130.4 132.7 Evaporator inlet pressure bar 0.95 1.01 1.08 1.16 1.25 1.34 1.43 1.53 00 Condenser inlet pressure bar 14.1 15.2 16.3 17.5 18.6 19.8 20,9 22.0 Evaporatorinlettemperature °C -30.8 -31.5 -32.3 -33.1 -33.9 -34.7 -35.5 -36.3 Evaporator dewpoint °C -27.4 -26.9 -26.3 -25.7 -25.1 -24.5 -24.0 -23.5 Evaporatorexitgastemperature °C -22.4 -21.9 -21.3 -20.7 -20.1 -19.5 -19.0 -18.5 Evaporator mean temperature °C -29.1 -29.2 -29.3 -29.4 -29.5 -29.6 -29.7 -29.9 Evaporatorglide (out-in) K 3.4 4.7 6.0 7.4 8.8 10.2 11.5 12.8 Compressor suction pressure bar 0.90 0.97 1.05 1.13 1.22 1.31 1.41 1.51 Compressordischarge pressure bar 14.1 15.2 16.3 17.5 18.6 19.8 20.9 22.0 Suction line pressure drop Palm 290 257 229 205 186 169 155 143 Pressure drop relative to reference 99.5% 88.0% 78.3% 70.3% 63.6% 58.0% 53.1% 49.0% Condenserdew point °C 54.2 55.1 56.0 56.7 57.3 57.7 58.0 58.1 Condenser bubble point DC 48.1 447 41.7 39.1 36.9 35.0 33.4 32.1 Condenserexitliquidtemperature °C 47.1 43.7 40.7 38.1 35.9 34.0 32.4 31.1 Condenser mean temperature 51.1 49.9 48.8 47.9 47.1 46.4 45.7 45.1 Condenserglide (in-out) K 6.1 10.4 -14.3 17.7 20.5 22.7 24.6 26.0 : .: .: * . * . . * * **. *** S.. * * * * . I S I * S.. *** Table 50: Theoretical Performance Data of Selected R-744lpropanefR-1234ze(E) blends containing 16-30 % R-744 and 12 % propane Composition C02/propane/R-1 234ze(E) % by weight ________ 16/12/72 18/12170 20112168 22112166 24I12164 26112162 28I12I60 30112158 COP (heating) 2.18 2.18 2.19 2.19 2.19 2.19 2.19 2.19 COP (heating) relative to Reference 103.4% 103.6% 103.8% 103.9% 103.9% 103.9% 103.9% 103.8% Volumetric heating capacity at suction kJ/m3 1683 1789 1895 2003 2113 2224 2338 2452 Capacity relative to Reference 191.6% 203.6% 215.7% 228.0% 240.5% 253.1% 266.0% 279.1% Critical temperature 84.28 81.93 79.67 77.49 75.39 73.36 71.40 69.51 Critical pressure bar 50.59 51.30 51.98 52.65 53.31 53.95 54.58 55.20 Condenserenthalpychange kJ/kg 290.9 295.7 300.2 304.5 308.5 312.3 316,0 319.4 Pressure ratio 14.34 14.06 13.79 13.51 13.23 12.96 12.68 12.41 Refrigerant mass flow kg/hr 24.8 24.3 24.0 23.6 23.3 23.1 22.8 22.5 oo Compressordischargetemperature °C 134.9 136.9 139.0 140.9 142.8 144.6 146.4 148.1 -Evaporator inlet pressure bar 1.64 1.74 1.85 1.97 2.09 2.21 2.34 2.47 Condenser inlet pressure bar 23.1 24.2 25.3 26.3 27.4 28.4 29.5 30.5 Evaporatorinlettemperature °C -37.1 -37.9 -38.7 -39.5 -40.2 -40.9 -41.6 -42.3 Evaporator dewpoint °C -23.0 -22.6 -22.3 -21.9 -21.6 -21.4 -21.1 -21.0 Evaporatorexitgastemperature °C -18.0 -17.6 -17.3 -16.9 -16.6 -16.4 -16.1 -16.0 Evaporator mean temperature -30.1 -30.3 -30.5 -30.7 -30.9 -31.2 -31.4 -31.6 Evaporatorglide(out-in) K 14.1 15.3 16.5 17.6 18.6 19.6 20.5 21.3 Compressor suction pressure bar 1.61 1.72 1.83 1.95 2.07 2.19 2.32 2.45 Compressor discharge pressure bar 23.1 24.2 25.3 26.3 27.4 28.4 29.5 30.5 Suction line pressure drop Palm 132 123 115 107 101 95 90 85 Pressure drop relative to reference 45.3% 42.1% 39.3% 36.8% 34.6% 32.5% 30.7% 29.0% Condenser dew point °C 58.1 58.0 57.8 57.5 57.1 56.6 56.1 55.6 Condenser bubble point °C 31.0 30.1 29.2 28.6 28.0 27.5 27.0 26.7 Condenser exit liquid temperature 30.0 29.1 28.2 27.6 27.0 26.5 26.0 25.7 Condenser mean temperature °C 44.6 44.0 43.5 43.0 42.5 42.0 41.6 41.1 Condenserglide(in-out) K 27.1 27.9 -28.5 28.9 29.1 29.2 29.1 28.9 .; * S * * * S * S., *** S.. * * * : : *:..:.
Table 51: Theoretical Performance Data of Selected R-744lpropanelR-1234ze(E) blends containing 0-14 % R-744 and 20 % propane Composition CO2lpropanefR-1 234ze(E) % by weight ________ 0/20/80 2/20/78 4/20/76 6/20174 8120172 10120170 12/20/68 14/20/66 COP(heating) 2.02 2.05 2.08 2.10 2.12 2.14 2.15 2,16 COP (heating) relative to Reference 95.7% 97.3% 98.6% 99.8% 100.6% 101.3% 101.9% 102.3% Volumetric heating capacity at suction kJ/m3 1072 1162 1255 1351 1449 1549 1651 1755 Capacity relative to Reference 122.0% 132.2% 142.8% 153.7% 164.9% 176.3% 187.9% 199.7% Critical temperature 00 104.73 102.05 99.43 96.87 94.38 91.96 89.61 87.32 Critical pressure bar 46.70 47.56 48.43 49.29 50.14 50.98 51.79 52.59 Condenser enthalpy change kJ/kg 244.4 253.5 262.2 270.2 277.7 284.4 290.6 296,3 Pressure ratio 13.94 13.91 13.86 13.79 13.70 13.57 13.42 13.24 Refrigerant mass flow kg/hr 29.5 28.4 27.5 26.6 25.9 25.3 24.8 24.3 Compressordischargetemperature 00 113.3 116.0 118.6 121.2 123.8 126.1 128.4 130.5 Evaporator inlet pressure bar 1.16 1.23 1.31 1.39 1.48 1.57 1.67 1.78 Condenserinletpressure bar 15.6 16.6 17.7 18.8 19.9 21.0 22.1 23.2 Evaporator inlet temperature -31.5 -32.1 -32.7 -33.4 -34.0 -34.6 -35.2 -35.7 Evaporator dewpoint 00 -26.5 -26.1 -25.7 -25.3 -24.9 -24.5 -24.1 -23.8 Evaporator exit gas temperature -21.5 -21.1 -20.7 -20.3 -19.9 -19.5 -19.1 -18.8 Evaporator mean temperature -29.0 -29.1 -29.2 -29.3 -29.4 -29.5 -29.6 -29.8 Evaporatorglide(out-in) K 5.0 6.0 7.1 8.1 9.1 10.1 11.0 12.0 Compressor suction pressure bar 1.12 1.19 1.28 1.36 1.45 1.55 1.65 1.75 Compressordischargepressure bar 15.6 16.6 17.7 18.8 19.9 21.0 22.1 23.2 Suction line pressure drop Pa/rn 237 213 192 174 159 146 135 125 Pressure drop relative to reference 81.1% 72,8% 65.7% 59.7% 54.5% 50.1% 46.2% 42.9% Condenserdewpoint °C 53.1 53.8 54.5 55.1 55.5 55.9 56.1 56.2 Condenser bubble point 48.8 45.9 43.2 40.7 38.6 36.8 35.2 33.8 Condenser exit liquid temperature °c 47.8 44.9 42.2 39.7 37.6 35.8 34.2 32.8 Condenser mean temperature 51.0 49.8 48.8 47.9 47.1 46.3 45.6 45.0 Condenserglide(in-out) K 4.3 7.9 11.3 14.3 16.9 19.1 20.9 22.4 *. ..
* ** * . * * *I. *** **. * * * : : *:..:. * Table 52: Theoretical Performance Data of Selected R-744lpropane/R-1234ze(E) blends containing 16-30 % R-744 and 20 % propane Composition C02/propanelR.1 234ze(E) % by weight ________ 16/20/64 18120/62 20/20/60 22120158 24/20156 26I20I54 28/20/52 30120150 COP (heating) 2.16 2.17 2.17 2.18 2.18 2.18 2.18 2.18 COP (heating) relative to Reference 102.6% 102.9% 103.0% 103.2% 103.3% 103.3% 103.3% 103.3% Volumetric heating capacity at suction kJ/m3 1861 1969 2079 2192 2308 2426 2547 2671 Capacity relative to Reference 211.8% 224.1% 236.7% 249.5% 262.6% 276.1% 289.9% 304.0% Critical temperature 85.10 82.94 50.84 78.80 7681 74.88 73.00 71.17 Critical pressure bar 53.36 54.11 54.83 55.53 56.21 56.87 57.50 58.11 Condenserenthalpychange kJlkg 301.5 306.3 310.7 314.8 318.6 322.1 325.3 328.3 Pressure ratio 13.05 12.83 12.61 12.37 12.13 11.88 11.63 11.38 Refrigerantmassflow kg/hr 23.9 23.5 23.2 22.9 22.6 22.4 22.1 21.9 Compressordischargetemperature °C 132.6 134.5 136.3 138.0 139.6 141.1 142.6 144.0 U.) Evaporatorinletpressure bar 1.88 2.00 2.12 2.24 2.37 2.51 2.65 2.80 Condenserinletpressure bar 24.3 25.4 26.5 27.5 28.6 29.6 30.7 31.7 Evaporator inlet temperature -36.3 -36.8 -37.4 -37.9 -38.4 -38.9 -39.4 -39.9 Evaporator dewpoint °C -23.4 -23.1 -22.8 -22.6 -22.3 -22.1 -21,9 -21.7 Evaporatorexitgastemperature °C -18.4 -18.1 -17.8 -17.6 -17.3 -17.1 -16.9 -16.7 Evaporator mean temperature -29.9 -30.0 -30.1 -30.2 -30.4 -30.5 -30.7 -30.8 Evaporatorglide(out-in) K 12.8 13.7 14.5 15.3 16.1 16.8 17.5 18.1 Compressor suction pressure bar 1.86 1.98 2.10 2.22 2.36 2.49 2.64 2.79 Compressordischarge pressure bar 24.3 25.4 26.5 27.5 28.6 29.6 30.7 31.7 Suction line pressure drop Pa/rn 117 109 102 96 90 85 80 76 Pressure drop relative to reference 39.9% 37.3% 34.9% 32.8% 30.9% 29.1% 27.5% 26.1% Condenserdew point °C 56.2 56.1 56.0 55.7 55.4 55.0 54.6 54.1 Condenser bubble point 32.6 31.6 30.8 30.1 29.5 28.9 28.5 28.1 Condenserexitliquidtemperature °C 31.6 30.6 29.8 29.1 28.5 27.9 27.5 27.1 Condensermeantemperature °C 44.4 43.9 43.4 42.9 42.4 42.0 41.5 41.1 Condenserglide(in-out) K 23.6 24.5 25.2 25.6 25.9 26.1 26.1 26.0 a.; .: * I a * , a *** a.. *** I a * I * I * a * a.. .,.
Table 53: Theoretical Performance Data of Selected R-744/propene/R.1234ze(E) blends containing 0-14 % R-744 and 4 % propene Composition CO2lpropene/R-1234ze(E) % by weight _______ 0/4/96 2/4/94 4/4/92 614/90 8/4/88 10/4186 12/4/84 14/4/82 COP (heating) 2.03 2.08 2.11 2.14 2.16 2.18 2.20 2.21 COP (heating) relative to Reference 96.0% 98.5% 100.2% 101.6% 102.7% 103.5% 104.2% 104.7% Volumetric heating capacity at suction kJ/m3 718 802 888 977 1069 1163 1260 1360 Capacity relative to Reference 81.7% 91.2% 101.0% 111.2% 121.6% 132.4% 143.4% 154.7% Critical temperature °C 107.98 104.32 100.84 97.55 94.43 91.47 88.66 85.98 Critical pressure bar 39.10 39.88 40.64 41.39 42.14 42.88 43.61 44.35 Condenser enthalpy change kJ/kg 222.7 234.5 244.6 253.4 261.0 267.9 274.1 279.8 Pressure ratio 17.75 17.86 17.83 17.67 17.42 17.11 16.77 16.40 Refrigerant mass flow kg/hr 32.3 30.7 29.4 28.4 27.6 26.9 26.3 25.7 Compressordischargetemperature DC 114.8 118.7 122.2 125.5 128.5 131,2 133.8 136.3 Evaporatorinletpressure bar 0.74 0.79 0.85 0.92 0.99 1.07 1.16 1.25 0O Condenser inlet pressure bar 11.9 13.1 14.3 15.4 16.6 17.7 18.9 20.0 Evaporator inlet temperature °C -29.7 -30.4 -31.1 -31.9 -32.7 -33.6 -34.4 -35.4 Evaporator dewpoint °C -29.3 -28.7 -28.0 -27.2 -26.5 -25.7 -25.0 -24.4 Evaporator exit gas temperature -24.3 -23.7 -23.0 -22.2 -21.5 -20.7 -20.0 -19.4 Evaporator mean temperature °C -29.5 -29.5 -29.5 -29.6 -29.6 -29.7 -29.7 -29.9 Evaporator glide (out-in) K 0.4 1.7 3.1 4.7 6.2 7.8 9.4 11.0 Compressor suction pressure bar 0.67 0.73 0.80 0.87 0.95 1.04 1.12 1.22 Compressordischargepressure bar 11.9 13.1 14.3 15.4 16.6 17.7 18.9 20.0 Suction line pressure drop Pa/rn 379 327 286 253 226 204 185 169 Pressure drop relative to reference 129.8% 111.9% 97.9% 86.6% 77.4% 69.8% 63.3% 57.8% Condenser dew point °C 54.0 55.6 56.9 58.0 58.8 59.4 59.8 60.0 Condenser bubble point 49.9 45.1 41.3 38.3 35.8 33.8 32.2 30.8 Condenser exit liquid temperature 48.9 44.1 40.3 37.3 34.8 32.8 31.2 29.8 Condenser mean temperature °C 51.9 50.3 49.1 48.1 47.3 46.6 46.0 45.4 Condenser glide (in-out) K 4.1 10.5 15.6 19.7 23.0 25.6 27.6 29.3 : .: * * * . * S ** *** *** a * * * . S I S S IS.
Table 54: Theoretical Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 16-30 % R-744 and 4 % propene Composition C02/propene/R.1234ze(E) -________ _______ _______ ________ % by weight _______ 16/4180 18/4/78 20/4/76 22/4/74 24/4/72 26/4/70 28/4/68 30/4/66 COP (heating) 2.22 2.22 2.23 2.23 2.23 2.23 2.23 2.23 COP (heating) relative to Reference 105.1% 105.4% 105.6% 105.8% 105.8% 105.8% 105.8% 105.7% Volumetric heating capacity at suction kJ/m3 1461 1563 1668 1773 1879 1986 2093 2201 Capacity relative to Reference 166.2% 177.9% 189.8% 201.8% 213.8% 226.0% 238.2% 250.5% Critical temperature °C 83.44 81.01 78.70 76.49 74.38 72.35 70.42 68.56 Critical pressure bar 45.08 45.81 46.54 47.27 47.99 48.72 49.44 50.16 Condenserenthalpychange kJ/kg 285.1 290.1 294.9 299.4 303.8 308.0 312.1 316.2 Pressure ratio 16.02 15.65 15.28 14.92 14.58 14.25 13.94 13.64 Refrigerant mass floW kg/hr 25.3 24.8 24.4 24.0 23.7 23.4 23.1 22.8 Compressordischargetemperature °C 138.7 141.0 143.2 145.4 147.6 149.7 151.8 153.9 Evaporatorinletpressure bar 1.34 1.44 1.54 1.64 1.75 1.86 1,98 2.09 Condenserinletpressure bar 21.0 22.1 23.2 24.2 25.3 26.3 27.3 28.3 Evaporatorinlettemperature °C -36.3 -37.3 -38.3 -39.3 -40.3 -41.3 -42.2 -43.1 Evaporatordewpoint °C -23.7 -23.2 -22.6 -22.2 -21.7 -21.4 -21.1 -20.8 Evaporator exit gas temperature -18.7 -18.2 -17.6 -17.2 -16.7 -16.4 -16.1 -15.8 Evaporatormeantemperature °C -30.0 -30.2 -30.5 -30.7 -31.0 -31.3 -31.6 -32.0 Evaporatorglide (out-in) K 12.6 14.2 15.7 17.2 18.5 19.9 21.1 22.2 Compressor suction pressure bar 1.31 1.41 1.52 1.62 1.73 1.84 1.96 2.07 Compressordischargepressure bar 21.0 22.1 23.2 24.2 25.3 26.3 27.3 28.3 Suction line pressure drop Palm 155 143 132 123 115 108 101 95 Pressure drop relative to reference 53.0% 48.9% 45.3% 42.1% 39.3% 36.8% 34.6% 32.6% Condenserdewpoint °C 60.1 60.1 60.0 59.8 59.4 59.0 58.6 58.1 Condenser bubble point 29.6 28.7 27.8 27.1 26.5 25.9 25.5 25.1 Condenserexitliquidtemperature °C 28.6 27.7 26.8 26.1 25.5 24.9 24.5 24.1 Condenser mean temperature °C 44.9 44.4 43.9 43.4 43.0 42.5 42.0 41.6 Condenserglide (in-out) K 30.5 31.5 -32.2 32.7 33.0 33.1 33.1 33.0 -. . *. S. * S. * . S **b *5* *** S * * * t* S S * **S*** Table 55: TheoretIcal Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 0-14 % R-744 and 6 % propene Composition C02/propene/R-1 234ze(E) % by weight ________ 0/6/94 2/6192 4/6/90 6/6/88 8/6/86 10/6/84 12/6/82 14/6/80 COP (heating) 2.04 2.08 2.12 2.15 2.17 2.18 2.20 2.21 COP (heating) relative to Reference 96.6% 98.8% 100.4% 101.7% 102.7% 103.5% 104.1% 104.6% Volumetric heating capacity at suction kJ/m3 768 853 941 1031 1124 1220 1317 1417 Capacity relative to Reference 87,4% 97.1% 107.0% 117.4% 127.9% 138.8% 149.9% 161.3% Critical temperature °C 107.11 103.60 100.25 97.07 94.04 91.16 88.42 85.81 Critical pressure bar 40.14 40.94 41.71 42.46 43.21 43.95 44.68 45.41 Condenser enthalpy change kJ/kg 227.9 239.2 248.9 257.3 264.7 271.4 277.5 283.1 Pressure ratio 17.22 17.29 17.23 17.06 16.82 16.53 16.21 15.87 Refrigerant mass flow kg/hr 31.6 30.1 28.9 28.0 27.2 26.5 25.9 25.4 Compressordischargetemperature °C 115.6 119.2 122.6 125.7 128.6 131.3 133.8 136.2 Evaporatorinletpressure bar 0.78 0.84 0.90 0.97 1.05 1.13 1.22 1.31 Condenserinletpressure bar 12.5 13.6 14.8 15.9 17.1 18.2 19.3 20.4 Evaporatorinlettemperature °C -30.0 -30.7 -31.5 -32.2 -33.1 -33.9 -34.8 -35.7 Evaporator dewpoint °C -28.8 -28.2 -27.5 -26.8 -26.1 -25.4 -24.7 -24.1 Evaporatorexitgastemperature °C -23.8 -23.2 -22.5 -21.8 -21.1 -20.4 -19.7 -19.1 Evaporator mean temperature -29.4 -29.5 -29.5 -29,5 -29.6 -29.7 -29.8 -29.9 Evaporatorglide (out-in) K 1.2 2.5 4.0 5.5 7.0 8.5 10.1 11.6 Compressor suction pressure bar 0.72 0.79 0.86 0.93 1.01 1.10 1.19 1.29 Compressor discharge pressure bar 12.5 13.6 14.8 15.9 17.1 18.2 19.3 20.4 Suction line pressure drop Pa/rn 348 303 266 237 213 192 175 160 Pressure drop relative to reference 119.3% 103.6% 91.2% 81.1% 72.8% 65.9% 60.0% 54.9% Condenser dew point °C 54.1 55.6 56.8 57.7 58.5 59.0 59.4 59.5 Condenserbubblepoint °C 49.0 446 41.0 38.2 35.9 34.0 32.4 31.1 Condenser exit liquid temperature 48.0 43.6 40.0 37.2 34.9 33.0 31.4 30.1 Condenser mean temperature 51.6 50.1 48.9 48.0 47.2 46.5 45.9 45.3 Condenserglide (in-out) K 5.1 11.0 -15.7 19.5 22.6 25.0 26.9 28.5 *.. -. S ** . . * : *:. *:.
Table 56: Theoretical Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 16-30 % R-744 and 6 % propene Composition CO2lpropene/R-1234ze(E) % by weight ________ 1616178 18/6/76 2016174 22/6/72 24/6/70 26/6/68 28/6/66 30/6/64 COP (heating) 2.21 2.22 2.22 2.23 2.23 2.23 2.23 2.23 COP (heating) relative to Reference 105.0% 105.3% 105.4% 105.6% 105.6% 105.6% 105.6% 105.5% Volumetric heating capacity at suction kJ/m3 1519 1622 1726 1832 1938 2045 2154 2263 Capacity relative to Reference 172,8% 184.6% 196.4% 208.5% 220.6% 232.8% 245.1% 257.6% Critical temperature °C 83.32 80.94 78.67 76.50 74.42 72.44 70.53 68.70 Critical pressure bar 46.13 46.85 47.57 48.28 48.99 49.70 50.41 51.11 Condenserenthalpychange kJfkg 288.3 293.2 297.9 302.4 306.7 310.8 314.9 318.8 Pressure ratio 15.52 15.17 14.82 14.49 14.17 13.86 13.56 13.28 Refrigerant mass flow kg/hr 25.0 24.6 24.2 23.8 23.5 23.2 22.9 22.6 Compressordischargetemperature °C 138.5 140.7 142.9 145.1 147.1 149.2 151.3 153.3 Evaporatorinletpressure bar 1.41 1.51 1.61 1.72 1.83 1.94 2.06 2.18 Condenser inlet pressure bar 21.5 22.5 23.6 24.6 25.7 26.7 27.7 28.7 Evaporator inlet temperature -36.7 -37.6 -38.6 -39.5 -40.4 -41.3 -42.2 -43.0 Evaporatordewpoint °C -23.5 -23.0 -22.5 -22.1 -21.7 -21.4 -21.1 -20.8 Evaporatorexitgastemperature °C -18.5 -18.0 -17.5 -17.1 -16.7 -16.4 -16.1 -15.8 Evaporator mean temperature °C -30.1 -30.3 -30,5 -30.8 -31.1 -31.3 -31.6 -31.9 Evaporator glide (out-in) K 13.1 14.6 16.1 17.4 18.7 20.0 21.1 22.2 Compressor suction pressure bar 1.38 1.49 1.59 1.70 1.81 1.92 2.04 2.16 Compressordischargepressure bar 21.5 22.5 23.6 24.6 25.7 26.7 27.7 28.7 Suction line pressure drop Pa/rn 148 137 127 118 111 104 97 92 Pressure drop relative to reference 50.6% 46.8% 43.4% 40.5% 37.8% 35.5% 33.4% 31.5% Condenserdewpoint °C 59.6 59.5 59.4 59.1 58.8 58.4 57.9 57.4 Condenser bubble point °C 30.0 29.0 28.2 27.5 26.9 26.4 25.9 25.6 Condenser exit liquid temperature 29.0 28.0 27.2 26.5 25.9 25.4 24.9 24.6 Condensermeantemperature °C 44.8 44.3 43.8 43.3 42.9 42.4 41.9 41.5 Condenserglide(in-out) K 29.6 30.5 -31.2 31.6 31.9 32.0 32.0 31.8 * *** ; : * : .:. .:.
Table 57: Theoretical Performance Data of Selected R-744/propene/R-1234ze(E) blends containing 0-14 % R-744 and 8 % propene Composition C02!propene!R.1 234ze(E) % by weight ________ 0/8/92 2/8/90 4/8/88 6/8/86 8/8/84 10/8/82 12/8/80 14/8/78 COP (heating) 2.05 2.09 2.12 2.15 2.17 2.18 2.19 2.20 COP (heating) relative to Reference 97.0% 99.1% 100.6% 101.8% 102.7% 103.5% 104.1% 104.5% Volumetric heating capacity at suction kJ/m3 816 903 992 1084 1178 1274 1373 1473 Capacity relative to Reference 92.9% 102.8% 112.9% 123.4% 134.1% 145.0% 156.2% 167.6% Critical temperature °C 106.30 102.93 99.70 96.62 93.68 90.88 88.21 85.66 Critical pressure bar 41.05 41.87 42.66 43.42 44.17 44.91 45.64 46.36 Condenserenthalpychange kJlkg 232.8 243.6 253.0 261.1 268.4 274.9 280.9 286.4 Pressure ratio 16.69 16.73 16.66 16.49 16,27 15.99 15.69 15.37 Refrigerant mass flow kg/hr 30.9 29.6 28.5 27.6 26.8 26.2 25.6 25.1 Compressordischarge temperature °C 116.1 119.7 122.9 125.9 128.7 131.3 133.7 136.1 Evaporator inlet pressure bar 0.83 0.89 0.96 1.03 1.11 1.20 1.29 1.38 00 Condenserinletpressure bar 13.0 14.1 15.3 16.4 17.5 18.6 19.7 20.8 00 Evaporatorinlettemperature °C -30.3 -31.1 -31.8 -32.6 -33.4 -34.2 -35.1 -36.0 Evaporator dewpoint °C -28.4 -27.8 -27.1 -26.4 -25.8 -25.1 -24.5 -23.9 Evaporatorexitgastemperature -23.4 -22.8 -22.1 -21.4 -20.8 -20.1 -19.5 -18.9 Evaporator mean temperature °C -29.4 -29.4 -29.5 -295 -29.6 -29.7 -29.8 -29.9 Evaporator glide (out-in) K 2.0 3,3 4.7 6.2 7.6 9.1 10.6 12.1 Compressor suction pressure bar 0.78 0.84 0.92 0.99 1.08 1.17 1.26 1.35 Compressor discharge pressure bar 13.0 14.1 15.3 16.4 17.5 18.6 19.7 20.8 Suction line pressure drop Pa/rn 323 282 249 223 201 182 167 153 Pressure drop relative to reference 110.4% 96.5% 85.4% 76.3% 68.8% 62.5% 57.1% 52.4% Condenserdew point °C 54.1 55.5 56.6 57.4 58.1 58.6 58.9 59.0 Condenser bubble point 48.4 44.3 40.9 38.2 36.0 34.2 32.7 31.4 Condenserexitliquidtemperature °C 47.4 43.3 39.9 37.2 35.0 33.2 31.7 30.4 Condenser mean temperature 51.3 49.9 48.8 47.8 47.1 46.4 45.8 45.2 Condenser glide (in-out) K 5.7 11.2 15.6 19.2 22.1 24.4 26.2 27.6
I
*S. *** Table 58: Theoretical Performance Data of Selected R-744/propene/R-1234ze(E) blends contaIning 16-30 % R-744 and 8 % propene Composition CO2lpropene/R-1 234ze(E) % by weight ________ 16/8/76 18/8/74 20/8/72 22/8/70 24/8/68 26/8/66 28/8/64 30/8/62 COP (heating) 2.21 2.22 2.22 2.22 2.22 2.22 2.22 2.22 COP (heating) relative to Reference 104.9% 105.1% 105.3% 105.4% 105.5% 105.5% 105.4% 105.4% Volumetric heating capacity at suction kJ/m3 1575 1678 1783 1889 1996 2104 2213 2324 Capacity reiative to Reference 179.2% 191.0% 202.9% 215.0% 227.1% 239.4% 251.9% 264.5% Critical temperature °C 83.23 80.90 78.67 76.54 74.50 72.54 70.66 68.85 Critical pressure bar 47.08 47.79 48.50 49.20 49.90 50.60 51.29 51.98 Condenserenthalpychange kJlkg 291.5 296.4 301.0 305.4 309.6 313,7 317.6 321.4 Pressure ratio 15.05 14.72 14.40 14.09 13.79 13.49 13.21 12.93 Refrigerant mass flow kg/hr 24.7 24.3 23.9 23.6 23.3 23.0 22.7 22.4 Compressordischargetemperature °C 138.3 140.5 142.6 144.7 146.7 148.7 150.7 152.6 Evaporator inlet pressure bar 1.48 1.58 1.69 1.79 1.91 2.02 2.14 2.26 Condenser inlet pressure bar 21.9 22.9 24.0 25.0 26.0 27.0 28.0 29.0 Evaporatorinlettemperature °C -36.9 -37.8 -38.7 -39.6 -40.5 -41.3 -42.1 -42.9 Evaporator dewpoint °C -23.3 -22.8 -22.4 -22.0 -21.6 -21.3 -21.1 -20,9 Evaporatorexitgastemperature °C -18.3 -17.8 -17.4 -17.0 -16.6 -16.3 -16.1 -15.9 Evaporator mean temperature °C -30.1 -30.3 -30.6 -30.8 -31.1 -31.3 -31.6 -31.9 Evaporatorglide (out-in) K 13.6 15.0 16.3 17.6 18.8 20.0 21.0 22.0 Compressor suction pressure bar 1.45 1.56 1.66 1.77 1.89 2.00 2.12 2.24 Compressordischarge pressure bar 21.9 22.9 24.0 25.0 26.0 27.0 28.0 29.0 Suction tine pressuredrop Pa/rn 141 131 122 114 107 100 94 89 Pressure drop relative to reference 48.4% 44.8% 41.7% 38.9% 36.5% 34.3% 32.3% 30.5% Condenser dew point °C 59.1 59.0 58.8 58.5 58.2 57.8 57.3 56.7 Condenser bubble point 30.3 29.4 28.6 27.9 27.3 26.8 26.4 26.0 Condenser exit liquid temperature 29.3 28.4 27.6 26.9 26.3 25.8 25.4 25.0 Condenser mean temperature °C 44.7 44.2 43.7 43.2 42.8 42.3 41.8 41.4 Condenser glide (in-out) K 28.7 29.6 30.2 30.6 30.8 30.9 30.9 30.7 L *q * **. *.* Table 59: Theoretical Performance Data of Selected R-744/propene/R-1234ze(E) blends containing 0-14 % R-744 and 10 % propene Composition C02/propene/R-1 234ze(E) % by weight ________ 0/10/90 2/10/90 4/10/88 6/10186 8/10/84 10/10/82 12/10/80 14/10/78 COP (heating) 2.05 2.09 2.12 2.15 2.17 2.18 2.19 2.20 COP (heating) relative to Reference 97.4% 99.3% 100.7% 101.9% 102.8% 103.5% 104.0% 104.4% Volumetric heating capacity at suction kJ/m3 864 952 1043 1136 1230 1327 1426 1527 Capacity relative to Reference 98.3% 108.3% 118.6% 129.2% 140.0% 151.1% 162.3% 173.8% Critical temperature °C 105.53 102.30 99.18 96.21 93.36 90.64 88.03 85.55 Critical pressure bar 41.86 42.70 43.51 4428 45.04 45.78 46.51 47.23 Condenser enthalpy change kJ/kg 237.4 247.8 256.9 264.9 272.0 278.4 284.3 289.8 Pressure ratio 16.18 16.20 16.12 15.96 15.75 15.49 15.21 14.92 Refrigerant mass flow kg/hr 30.3 29.1 28.0 27.2 26.5 25.9 25.3 24.8 Compressordischargetemperature °C 116.6 120.0 123.1 126.0 128.7 131.3 133.7 136.0 Evaporatorinletpressure bar 0.88 0.94 1.01 1.09 1.17 1.26 1,35 1.45 Condenser inlet pressure bar 13.4 14.6 15.7 16.8 17.9 19.0 20.1 21.2 Evaporator inlet temperature -30.6 -31.4 -32.1 -32.9 -33.7 -34.5 -35.4 -36.2 Evaporator dewpoint °C -28.0 -27.4 -26.8 -26.1 -25.5 -24.9 -24.3 -23.7 Evaporatorexitgastemperature C -23.0 -22.4 -21.8 -21.1 -20.5 -19.9 -19.3 -18.7 Evaporator mean temperature °c -29.3 -29.4 -29.4 -29.5 -29.6 -29.7 -29.8 -30.0 Evaporatorglide(out.in) K 2.6 4.0 5.3 6.8 8.2 9.6 11.1 12.5 Compressorsuctionpressure bar 0.83 0.90 0.97 1.05 1.14 1.23 1.32 1.42 Compressordischarge pressure bar 13.4 14.6 15.7 16.8 17.9 19.0 20.1 21.2 Suction line pressure drop Pa/rn 300 264 235 211 190 173 159 146 Pressure drop relative to reference 102.8% 90.4% 80.3% 72.1% 65.2% 59.4% 54.4% 50.1% Condenserdewpoint °C 54.1 55.3 56.3 57.1 57.7 58.1 58.4 58.5 Condenser bubble point °C 48.0 44.1 40.9 38.4 36.2 34.5 33.0 31.7 Condenser exit liquid temperature 47.0 43.1 39.9 37.4 35.2 33.5 32.0 30.7 Condenser mean temperature 51.0 49.7 48.6 47.7 47.0 46.3 45.7 45.1 Condenserglide(in-out) K 6.0 11.2 -15.4 18.8 21.5 23.7 25.4 26.8 S * * * * * : . ** * *: : *.* : : S *.** S..
Table 60: Theoretical Performance Data of Selected R-744/propene/R-1234ze(E) blends contaIning 16-30 % R-744 and 10 % propene Composition CO2lpropenelR-1 234ze(E) % by weight _______ 16/10/76 18/10174 20110172 22110170 24/10168 26110166 28!10164 30/10/62 COP (heating) 2.21 2.21 2.22 2.22 2.22 2.22 2.22 2.22 COP (heating) relative to Reference 104.8% 105.0% 105.2% 105.3% 105.3% 105.3% 105.3% 105.2% Volumetric heating capacity at suction kJ/m3 1629 1733 1838 1944 2052 2161 2271 2383 Capacity relative to Reference 185.4% 197.2% 209.2% 221.3% 233.5% 245.9% 258.5% 271.3% Critical temperature 83.16 80.88 78.70 76.60 74.59 72.66 70.81 69.03 Criticalpressure bar 47.95 48.65 49.35 50.05 50.74 51.42 52.11 52.78 Condenserenthalpychange kJfkg 294.8 299.6 304.2 308.5 312.6 316.6 320.5 324.2 Pressure ratio 14.62 14.31 14.01 13.72 13.43 13.15 12.87 12.61 Refrigerant mass flow kg/hr 24.4 24.0 23.7 23.3 23.0 22.7 22.5 22.2 Compressordischarge temperature °C 138.2 140.3 142.4 144.4 146.4 148.3 150.2 152.0 -Evaporatorinletpressure bar 1.55 1.65 1.76 1.87 1.98 2.10 2.22 2.3.4 Condenser inlet pressure bar 22.3 23.3 24.3 25.4 26.4 27.4 28.4 29.4 Evaporatorinlettemperature °C -37.1 -37.9 -38.8 -39.6 -40.4 -41.2 -41.9 -42.6 Evaporatordewpoint °C -23.2 -22.8 -22.3 -22.0 -21.7 -21.4 -21.1 -20.9 Evaporatorexitgastemperature °C -18.2 -17.8 -17.3 -17.0 -16.7 -16.4 -16.1 -15.9 Evaporator mean temperature -30.1 -30.3 -30.6 -30.8 -31.0 -31.3 -31.5 -31.8 Evaporatorglide (out-in) K 13.8 15.2 16.4 17.6 18.8 19.8 20.8 21.7 Compressor suction pressure bar 1.52 1.63 1.74 1.85 1.96 2.08 2.20 2.33 Compressor discharge pressure bar 22.3 23.3 24.3 25.4 26.4 27.4 28.4 29.4 Suction line pressure drop Pa/rn 135 126 117 110 103 97 91 86 Pressure drop relative to reference 46.4% 43.1% 40.1% 37.5% 35.2% 33.1% 31.2% 29.5% Condenser dew point °C 58.5 58.4 58.2 57.9 57.6 57.2 56.7 56.1 Condenser bubble point °C 30.7 29.8 29.0 28.3 27.8 27.3 26.8 26.5 Condenser exit liquid temperature °C 29.7 28.8 28.0 27.3 26.8 26.3 25.8 25.5 Condenser mean temperature °C 44.6 44.1 43.6 43.1 42.7 42.2 41.8 41.3 Condenser glide (in-out) K 27.8 28.6 29.2 29.6 29.8 29.9 29.8 29.7 : . :.: : *.. S..
Table 61: Theoretical Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 0-14% R-744 and 12% propene Composition CO2lpropenelR- 1234ze(E) % by weight _______ 0/12188 2112186 4/12/84 6/12/82 8/12180 10112/78 12/12/76 14112174 COP (heating) 2.06 2.10 2.13 2.15 2.17 2.18 2.19 2.20 COP (heating) relative to Reference 97.6% 99.5% 100.8% 101.9% 102.8% 103.4% 104.0% 104.4% Volumetric heating capacity at suction kJIm3 911 1000 1092 1186 1281 1379 1478 1579 Capacity relative to Reference 103.6% 113.8% 124.2% 134.9% 145.8% 156.9% 168.2% 179.7% Critical temperature 104.81 101.70 98.70 95.82 93.06 90.41 87.88 85.45 Critical pressure bar 42.57 43.44 44.26 45.05 45.81 46.56 47.30 48.02 Condenserenthalpychange kJ/kg 241.8 252.0 260.8 268.6 275.7 282.0 287.8 293.2 Pressure ratio 15.70 15.70 15.62 15.47 15.27 15.04 14.78 14.50 Refrigerant mass flow kg/hr 29.8 28.6 27.6 26.8 26.1 25.5 25.0 24.6 Compressordischargetemperature °C 117.1 120.3 123.4 126.2 128.8 131.3 133.6 135,9 Evaporator inlet pressure bar 0.93 1.00 1.07 1.15 1.23 1.32 1.41 1.51 Condenser inlet pressure bar 13.8 15.0 16.1 17.2 18.3 19.4 20.5 21.6 Evaporator inlet temperature °C -30.9 -31.6 -32.4 -33.1 -33.9 -34.7 -35.5 -36.3 Evaporator dewpoint 00 -27.7 -27.1 -26.5 -25.9 -25.3 -24.7 -24.1 -23.6 Evaporator exit gas temperature 00 -22.7 -22.1 -21.5 -20.9 -20.3 -19.7 -19.1 -18.6 Evaporator mean temperature °C -29.3 -29.4 -29.4 -29.5 -29.6 -29.7 -29.8 -30.0 Evaporatorglide (out-in) K 3.2 4.5 5.9 7.3 8.7 10.0 11.4 12.7 Compressorsuctionpressure bar 0.88 0.95 1.03 1.11 1.20 1.29 1.39 1.49 Compressordischargepressure bar 13.8 15.0 16.1 17.2 18.3 19.4 20.5 21.6 Suction line pressure drop Palm 281 248 222 200 181 165 152 140 Pressure drop relative to reference 96.2% 85.0% 75.9% 68.3% 62.0% 56.6% 52.0% 48.0% Condenserdewpoint °C 53.9 55.1 56.0 56.8 57.3 57.7 57.9 58.0 Condenserbubblepoint 47.8 44.1 41.0 38.5 36.5 34.7 33.3 32.1 Condenser exit liquid temperature °C 46.8 43.1 40.0 37.5 35.5 33.7 32.3 31.1 Condenser mean temperature oc 50.9 49.6 48.5 47.6 46.9 46.2 45.6 45.1 Condenserglide(in-out) K 6.1 11.0 15.0 18.2 20.8 22.9 24.6 25.9 * * .; S.. *** . . . S * : : ** : *q Table 62: Theoretical Performance Data of Selected R-744/propenelR-1234ze(E) blends containing 16-30 % R-744 and 12 % propene Composition C02/propene/R.
1234ze(E) % by weight _______ 16112172 18/12/70 20/12/68 22112/66 24/12/64 26/12162 28/12160 30/12/58 COP (heating) 2.21 2.21 2.21 2.22 2.22 2.22 2.22 2.22 COP (heating) relative to Reference 104.7% 104.9% 105.0% 105.1% 105.2% 105.2% 105.2% 105.1% Volumetric heating capacity at suction kJ/m3 1682 1786 1891 1998 2107 2217 2329 2442 Capacity relative to Reference 191.4% 203.2% 215.2% 227.4% 239.8% 252.3% 265.0% 277.9% Critical temperature 83.12 80.88 78.74 76.68 74.70 72.80 70.97 69.21 Critical pressure bar 48.73 49.44 50.13 50.82 51.50 52.18 52.85 53.52 Condenserenthalpychange kJ/kg 298.2 302.9 307.4 311.7 315.7 319.6 323.4 326.9 Pressure ratio 14.22 13.93 13.65 13.37 13.09 12.82 12.56 12.30 Refrigerant mass flow kg/hr 24.1 23.8 23.4 23.1 22.8 22.5 22.3 22.0 Compressordischargetemperature °C 138.0 140.1 142.1 144.1 146.0 147.8 149.6 151.4 Evaporator inlet pressure bar 1.61 1.72 1.83 1.94 2.05 2.17 2.30 2.43 U.) Condenser inlet pressure bar 22.6 23.6 24.7 25.7 26.7 27.7 28.7 29.7 Evaporatorinlettemperature °C -37.2 -38.0 -38.8 -39.5 -40.3 -41.0 -41.7 -42.3 Evaporator dewpoint °C -23.2 -22.7 -22.3 -22.0 -21.7 -21.4 -21.2 -21.0 Evaporatorexitgastemperature °C -18.2 -17.7 -17.3 -17.0 -16.7 -16.4 -16.2 -16.0 Evaporator mean temperature -30.2 -30.4 -30.6 -30.8 -31.0 -31.2 -31.4 -31.7 Evaporatorglide(out-in) K 14.0 15.2 16.4 17.5 18.6 19,6 20.5 21.3 Compressorsuctionpressure bar 1.59 1.70 1.81 1.92 2.04 2.16 2.28 2.41 Compressor discharge pressure bar 22.6 23.6 24.7 25.7 26.7 27.7 28.7 29.7 Suction line pressure drop Palm 130 121 113 106 99 94 88 84 Pressure drop relative to reference 44.5% 41.4% 38.7% 36.3% 34.1% 32.1% 30.3% 28.6% Condenserdewpoint °C 58.0 57.9 57.7 57.4 57.0 56.6 56.1 55.6 Condenser bubble point 31.0 30.2 29.4 28.7 28.2 27.7 27.3 26.9 Condenser exit liquid temperature °C 30.0 29.2 28.4 27.7 27.2 26.7 26.3 25.9 Condensermeantemperature °C 44.5 44.0 43.5 43.1 42.6 42.1 41.7 41.3 Condenserglide (in-out) K 27.0 27.7 -28.3 28.6 28.8 28.9 28.8 28.7 * :. .; *: *.* **. . S * * * : ** : *q Table 63: Theoretical Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 0-14 % R-744 and 20 % propene Composition C02/propene/R-I 234ze(E) % by weight ________ 0/20/80 2/20/78 4/20/76 6/20/74 8/20/72 10/20/70 12/20/68 14/20/66 COP (heating) 2.08 2.11 2.13 2.15 2.17 2.18 2.19 2.20 COP (heating) relative to Reference 98.5% 100.0% 101.1% 102.0% 102.8% 103.3% 103.8% 104.1% Volumetric heating capacity at suction kJ/m3 1086 1179 1273 1369 1467 1566 1667 1770 Capacity relative to Reference 123.6% 134.2% 144.9% 155.8% 166.9% 178.2% 189.7% 201.4% Critical temperature 102.29 99.61 97.01 94.49 92.04 89.68 87.40 85.20 Critical pressure bar 44.66 45.61 46.50 47.36 48.18 48.97 49.73 50.48 Condenserenthalpychange kJlkg 258.7 268.2 276.6 284.1 290.8 297.0 302.6 307.8 Pressure ratio 14.03 14.03 13.97 13.87 13.73 13.55 13.35 13.14 Refngerant mass floW kg/hr 27.8 26.8 26.0 25.3 24.8 24.2 23.8 23.4 Compressordischargetemperature 118.4 121.3 124.1 126.7 129.1 131.4 133.5 135.6 Evaporator inlet pressure bar 1.13 1.20 1.28 1,37 1.46 1.55 1.65 1.75 -1 Condenser inlet pressure bar 15.3 16.4 17.5 18.6 19.6 20.7 21.7 22.8 Evaporator inlet temperature -31,7 -32.4 -33.0 -33.7 -34.3 -35.0 -35.6 -36.3 Evaporator dewpoint °C -26.8 -26.3 -25.9 -25.4 -24.9 -24.5 -24.1 -23.7 Evaporator exit gas temperature °C -21.8 -21.3 -20.9 -20.4 -19.9 -19.5 -19.1 -18.7 Evaporator mean temperature °C -29.3 -29.3 -29.4 -29.5 -29.6 -29.7 -29.8 -30.0 Evaporatorglide(out.in) K 4.9 6.0 7.2 8.3 9.4 10.5 11.6 12.6 Compressorsuction pressure bar 1.09 1.17 1.25 1.34 1.43 1.53 1.63 1.73 Compressordischargepressure bar 15.3 16.4 17.5 18.6 19.6 20.7 21.7 22.8 Suction line pressuredrop Pa/rn 224 201 182 166 152 140 130 121 Pressure drop relative to reference 76.7% 68.8% 62.2% 56.7% 52.0% 48.0% 44.4% 41.3% Condenser dew point 53.1 54.0 54.7 55.3 55.7 56.0 56.1 56.2 Condenser bubble point 47.6 44.3 41.6 39.4 37.5 35.9 34.5 33.4 Condenser exit liquid temperature °C 46.6 43.3 40.6 38.4 36.5 34.9 33.5 32.4 Condenser mean temperature 50.3 49.2 48.2 47.3 46.6 45.9 45.3 44.8 Condenserglide(in-out) K 5.5 9.6 13.1 15.9 18.2 20.1 21.6 22.8 * , .; .: : Table 64: Theoretical Performance Data of Selected R-744lpropene/R-1234ze(E) blends containing 16-30 % R-744 and 20 % propene Composition C02/propene/R-I 234ze(E) % by weight ________ 16/20/64 18120/62 20/20/60 22/20/58 24/20/56 26/20/54 28/20/52 30/20/50 COP (heating) 2.20 2.21 2.21 2.21 2.21 2.21 2.21 2.21 COP (heating) relative to Reference 104.4% 104.6% 104.7% 104.8% 104.9% 104.9% 105.0% 104.9% Volumetric heating capacity at suction kJ/m3 1874 1981 2089 2200 2312 2427 2545 2665 Capacity relative to Reference 213.3% 225.4% 237.8% 250.3% 263.2% 276.2% 289.6% 303.3% Critical temperature 83.07 81.01 79.03 77.11 75.26 73.47 71.74 70.07 Critical pressure bar 51.21 51.92 52.61 53.29 53.96 54.62 55.27 55.91 Condenserenthalpychange kJ/kg 312.6 317.1 321.3 325.2 328.9 332.4 335.7 338.8 Pressure ratio 12.91 12.68 12.44 12.20 11.96 11.72 11.48 11.24 Refrigerantmassflow kg/hr 23.0 22.7 22.4 22.1 21.9 21.7 21.4 21.2 Compressordischargetemperature °C 137.5 139.4 141.2 142.9 144.5 146.1 147.7 149.1 Evaporator inlet pressure bar 1.86 1.97 2.09 2.21 2.34 2.47 2.61 2.75 u-i Condenser inlet pressure bar 23.8 24.8 25.8 26.8 27.8 28.8 29.8 30.7 Evaporatorinlettemperature °C -36.9 -37.5 -38.1 -38.7 -39.2 -39.7 -40.2 -40.6 Evaporatordewpoint °C -23.3 -23.0 -22.6 -22.4 -22.1 -21.9 -21.7 -21.5 Evaporatorexitgastemperature °C -18.3 -18.0 -17.6 -17.4 -17.1 -16.9 -16.7 -16.5 Evaporator mean temperature -30.1 -30.2 -30.4 -30.5 -30.7 -30.8 -30.9 -31.1 Evaporatorglide (out-in) K 13.6 14.5 15.4 16.3 17.1 17.8 18.5 19.1 Compressor suction pressure bar 1.84 1.96 2.07 2.20 2.32 2.46 2.59 2.74 Compressor discharge pressure bar 23.8 24.8 25.8 26.8 27.8 28.8 29.8 30.7 Suction line pressure drop Palm 113 105 99 93 88 83 79 75 Pressure drop relative to reference 38.6% 36.1% 33.9% 31.9% 30.1% 28.4% 26.9% 25.5% Condenserdewpoint °C 56.1 56.0 55.8 55.5 55.1 54.7 54.3 53.8 Condenser bubble point 32.4 31.5 30.8 30.2 29.7 29.2 28.8 28.5 Condenser exit liquid temperature °C 31.4 30.5 29.8 29.2 28.7 28.2 27.8 27.5 Condenser mean temperature °c 44.2 43.8 43.3 42.8 42.4 42,0 41.5 41.1 Condenser glide (in-out) K 23.7 24.4 24.9 25.3 25.5 25.5 25.4 25.3 * :. : .: *: : : :.: : : Table 65: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 0-14 % R-744 and 5 % R-161 Composition CO2IR-l 611R-1234ze(E) % by weight ________ 015/95 215/93 4/5/91 6/5/89 8/5/87 10/5/85 12/5183 14/5/81 COP (heating) 2.04 2.09 2.13 2.16 2.19 2.21 2.22 2.23 COP (heating) relative to Reference 96.7% 99.2% 101.2% 102.6% 103.7% 104.6% 105.3% 105.9% Volumetric heating capacity at suction kJ/m3 670 750 832 918 1007 1098 1193 1290 Capacity relative to Reference 76.2% 85.3% 94.7% 104.4% 114.6% 125.0% 135.8% 146.8% Cntical temperature 109.03 105.33 101.85 98.56 95.44 92.48 89.68 87.01 Critical pressure bar 37.75 38.50 39.24 39.98 40.73 41.47 42.20 42.94 Condenser enthalpy change kJ/kg 226.9 239.7 250.7 260.2 268.3 275.6 282.2 288.2 Pressure ratio 18.03 18.23 18.27 18.16 17.94 17.65 17.30 16.93 Refrigerant mass flow kg/hr 31.7 30.0 28.7 27.7 26.8 26.1 25.5 25.0 Compressordischarge temperature °C 116.2 120.3 124.1 127.5 130.6 133.5 136.3 138.8 Evaporator inlet pressure bar 0.69 0.73 0.78 0.85 0.91 0.99 1.07 1.15 Condenser inlet pressure bar 11.1 12.2 13.4 14.5 15.7 16.8 17.9 19.0 Evaporatoririlettemperature °C -29.3 -30.0 -30.7 -31.4 -32.1 -32.9 -33.8 -34.7 Evaporator dewpoint °C -30.1 -29.5 -28.9 -28.1 -27.3 -26.6 -25.8 -25.1 Evaporator exit gas temperature °C -25.1 -24.5 -23.9 -23.1 -22.3 -21.6 -20.8 -20.1 Evaporator mean temperature °C -29.7 -29.8 -29.8 -29.7 -29.7 -29.8 -29.8 -29.9 Evaporator glide (out-in) K -0.8 0.4 1.8 3.2 4.8 6.4 8.0 9.6 Compressor suction pressure bar 0.62 0.67 0.73 0.80 0.87 0.95 1.04 1.12 Compressor discharge pressure bar 11.1 12.2 13.4 14.5 15.7 16.8 17.9 19.0 Suction line pressure drop Palm 401 344 299 264 235 211 191 174 Pressure drop relative to reference 137.2% 117.7% 102.5% 90.4% 80.5% 72.3% 65.4% 59.6% Condenserdewpoint °C 52.8 54.6 56.1 57.3 58.3 59.1 59.6 60.0 Condenser bubble point 51.9 46.6 42.4 39.0 36.3 34.1 32.3 30.8 Condenser exit liquid temperature °C 50.9 45.6 41.4 38.0 35.3 33.1 31.3 29.8 Condenser mean temperature 52.4 50.6 49.2 48.2 47.3 46.6 46.0 45,4 Condenserglide (in-out) K 0.9 8.0 -13.7 18.3 22.0 25.0 27.4 29.2 * *: *: : : *. : : Table 66: Theoretical Performance Data of Selected R-744/R-161/R-1234z(E) blends containing 16-30 % R-744 and 5 % R-161 Composition C02/R-1611R-1 234ze(E) % by weight ________ 1615179 18/5/77 20/5/75 22/5/73 24/5/71 26/5/69 28/5/67 30/5/65 COP (heating) 2.24 2.25 2.25 2.26 2,26 2.26 2.26 2.26 COP (heating) relative to Reference 106.3% 106.7% 106.9% 107.1% 107.2% 107.2% 107.2% 107.2% Volumetric heating capacity at suction kJ/m3 1389 1490 1593 1697 1802 1907 2014 2121 Capacity relative to Reference 158.1% 169.6% 181.3% 193.1% 205.1% 217.1% 229.2% 241.4% Critical temperature 84.47 82.05 79.74 77.53 75.42 73.40 71.47 69.61 Critical pressure bar 43.68 44.41 45.14 45.88 46.61 47.34 48.06 48.79 Condenserenthalpychange kJlkg 293.7 298.9 303.8 308.5 313.0 317.4 321.6 325.8 Pressure ratio 16.54 16.14 15.76 15.38 15.02 14.67 14,35 14.03 Refrigerant mass flow kg/hr 24.5 24.1 23.7 23.3 23.0 22.7 22.4 22.1 Compressordischargetemperature °C 141.3 143.6 145.9 148.1 150.3 152.5 154.6 156.7 Evaporator inlet pressure bar 1.24 1.34 1.43 1.53 1.64 1.74 1.85 1.96 -Condenser inlet pressure bar 20.1 21.2 22.2 23.2 24.3 25.3 26.3 27.3 Evaporatorinlettemperature °C -35.6 -36.6 -37.6 -38.6 -39.5 -40.5 -41.5 -42.4 Evaporator dewpoint °C -24.4 -23.8 -23.2 -22.6 -22.2 -21.8 -21.4 -21.1 Evaporatorexitgastemperature °C -19.4 -18.8 -18.2 -17.6 -17.2 -16.8 -16.4 -16.1 Evaporatormeantemperature °C -30.0 -30.2 -30.4 -30.6 -30.9 -31.1 -31.4 -31.8 Evaporatorglide(out-in) K 11.2 12.8 14.4 15.9 17.4 18.8 20.1 21.3 Compressor suction pressure bar 1.21 1.31 1.41 1.51 1.62 1.72 1.83 1.94 Compressor discharge pressure bar 20.1 21.2 22.2 23.2 24.3 25.3 26.3 27.3 Suction line pressure drop Pa/rn 159 147 135 126 117 109 103 97 Pressure drop relative to reference 54.5% 50.2% 46.4% 43.0% 40.1% 37.5% 35.1% 33.0% Condenserdew point °C 60.3 60.4 60.3 60.2 60.0 59.7 59.3 58.9 Condenser bubble point 29.5 28.5 27.6 26.8 26.2 25.6 25.1 24.7 Condenser exit liquid temperature °C 28.5 27.5 26.6 25.8 25.2 24.6 24.1 23.7 Condenser mean temperature 44.9 44.4 44.0 43.5 43.1 42.6 42.2 41.8 Condenserglide(in-out) K 30.7 31.9 -32.7 33.4 33.8 34.1 34.2 34.2
L
* ** *** Table 67: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 0-14 % R-744 and 10 % R-161 Composition CO2IR-1 611R- 1234ze(E) % by weight _______ 0/10190 2/10/88 4/10186 6/10/84 8/10/82 10/10/80 12110/78 14/10/76 COP (heating) 2.08 2.13 2.16 2.19 2.21 2.23 2.24 2.25 COP (heating) relative to Reference 98.6% 100.8% 102.5% 103.7% 104.8% 105.6% 106.2% 106,7% Volumetric heating capacity at suction kJ/m3 724 803 885 971 1059 1150 1244 1340 Capacity relative to Reference 82.4% 91.4% 100.8% 110.5% 120.5% 130.9% 141.6% 152.5% Critical temperature 108.26 104.81 101.54 98.44 95.49 92.69 90.02 87.48 Critical pressure bar 38.95 39.67 40.39 41.10 41.81 42.52 43.23 43.94 Condenser enthalpy change kJ/kg 243.0 255.3 265.8 275.0 283.0 290.2 296.6 302.6 Pressure ratio 17.40 17.54 17.55 17.44 17.23 16.96 1664 16.30 Refrigerant mass flow kg/hr 29.6 28.2 27.1 26.2 25.4 24.8 24.3 23.8 Compressordischargetemperature °C 119.4 123.2 126.8 130.1 133.1 135.9 138.5 140.9 Evaporator inlet pressure bar 0.72 0.77 083 0.89 0.96 1.03 1.11 1.20 Go Condenser inlet pressure bar 11.5 12.6 13.7 14.8 15.9 17.0 18.0 19.1 Evaporatorinlettemperature °C -29.7 -30.3 -31.0 -31.6 -32.4 -33.1 -34.0 -34.8 Evaporator dewpoint °C -29.9 -29.3 -28.7 -28.0 -27.2 -26.5 -25.8 -25.1 Evaporator exit gas temperature °C -24.9 -24.3 -23.7 -23.0 -22.2 -21.5 -20.8 -20.1 Evaporator mean temperature -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 -30.0 Evaporator glide (out-in) K -0.2 1.0 2.3 3.7 5.1 6.6 8.2 9.7 Compressor suction pressure bar 0.66 0.72 0.78 0.85 0.92 1.00 1.08 1.17 Compressordischargepressure bar 11.5 12.6 13.7 14.8 15.9 17.0 18.0 19.1 Suction line pressure drop Pa/rn 352 306 269 239 215 194 177 161 Pressure drop relative to reference 120.6% 104.8% 92.2% 82.0% 73.5% 66.5% 60.4% 55.3% Condenser dew point 52.4 54.1 55.4 56.6 57.5 58.2 58.7 59.1 Condenser bubble point 51.0 46.1 42.2 39.1 36.5 34.4 32,7 31.3 Condenser exit liquid temperature °C 50.0 45;1 41.2 38.1 35.5 33.4 31.7 30.3 Condenser mean temperature °C 51.7 50.1 48.8 47.8 47.0 46.3 45.7 45.2 Condenserglide (in-out) K 1.5 7.9 13.2 17.5 21.0 23.8 26.0 27.8 :. :: : : .:, :.
Table 68: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 16-30 % R-744 and 10 % R-161 Composition CO2IR-161/R.
1234ze(E) % by weight _______ 16/10/74 18/10/72 20/10/70 22/10/68 24/10/66 26/10/66 28/10/62 30/10/60 COP (heating) 2.26 2.27 2.27 2.27 2.28 2.28 2.28 2.28 COP (heating) relative to Reference 107.1% 107.5% 107.7% 107.9% 108.0% 108.0% 108.0% 108.0% Volumetric heating capacity at suction kJ/m3 1438 1538 1640 1743 1847 1952 2057 2164 Capacity relative to Reference 163.7% 175.1% 186.6% 198.3% 210.2% 222.1% 234.2% 246.3% Critical temperature °C 85.06 82.74 80.52 78.40 76.37 74.42 72.55 70.75 Critical pressure bar 44.65 45.36 46.06 46.76 47.46 48.17 48.86 49.56 Condenserenthalpychange kJ/kg 308.1 313.3 318.2 322.9 327.3 331.7 335.9 340.0 Pressure ratio 15.95 15.60 15.24 14.90 14.57 14.25 13.94 13.64 Refrigerantmassflow kg/hr 23.4 23.0 22.6 22.3 22.0 21.7 21.4 21.2 Compressordischargetemperature °C 143.3 145.6 147.8 149.9 152.0 154.1 156.1 158.2 Evaporator inlet pressure bar 1.29 1.38 1.47 1.57 1.68 1.78 1.89 2.00 Condenser inlet pressure bar 20.1 21.1 22.1 23.2 24.1 25.1 26.1 27.1 Evaporatorinlettemperature °C -35.7 -36.6 -37.5 -38.4 -39.3 -40.2 -41.1 -41.9 Evaporator dewpoint °C -24.5 -23.9 -23.3 -22.8 -22.4 -22.0 -21.6 -21.3 Evaporatorexitgastemperature °C -19.5 -18.9 -18.3 -17.8 -17.4 -17.0 -16.6 -16.3 Evaporator mean temperature -30.1 -30.2 -30.4 -30.6 -30.8 -31.1 -31.3 -31.6 Evaporatorglide(out-in) K 11.2 12.7 14.2 15.6 17.0 18.2 19.5 20.6 Compressorsuction pressure bar 1.26 1.36 1.45 1.55 1.66 1.76 1.87 1.98 Compressordischargepressure bar 20.1 21.1 22.1 23.2 24.1 25.1 26.1 27.1 Suction line pressure drop Palm 148 137 127 118 110 103 97 92 Pressure drop relative to reference 50.8% 46.9% 43.5% 40.5% 37.8% 35.4% 33.3% 31.4% Condenserdewpoint 59.3 59.5 59.5 59.4 59.2 58.9 58.6 58.2 Condenser bubble point 30.1 29.0 28.1 27.4 26.7 26.2 25.7 25.2 Condenser exit liquid temperature °C 29.1 28.0 27.1 26.4 25.7 25.2 24.7 24.2 Condenser mean temperature 44.7 44.2 43.8 43.4 42.9 42.5 42.1 41,7 Condenserglide(inout) K 29.3 30.4 -31.3 32.0 32.4 32.7 32.9 32.9 * . * .: *: :.: : 1 * *:. *:.
Table 69: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 0-14 % R-744 and 15 % R-161 Composition C02/R-161/R.
1234ze(E) % by weight _______ 0/15/85 2115/83 4/15/81 6/15/79 8/15/77 10/15/75 12/15/73 14/15/71 COP (heating) 2.11 2.15 2.18 2.21 2.23 2.24 2.26 2.27 COP (heating) relative to Reference 100.2% 102,1% 103.6% 104.7% 105.6% 106.4% 107.0% 107.4% Volumetric heating capacity at suction kJ/m3 777 856 938 1022 1110 1201 1293 1388 Capacity relative to Reference 88.5% 97.4% 106.7% 116.3% 126.3% 136.7% 147.2% 158.0% Critical temperature °C 107.59 104.35 101.26 98.33 95.54 92.88 90.34 87.91 Critical pressure bar 40.13 40.82 41.50 42.18 42.87 43.55 44.23 44.90 Condenserenthaipychange kJ/kg 258.7 270.3 280.5 289.3 297.2 304.2 310.7 316.6 Pressure ratio 16.81 16.90 16.88 16.77 16.57 16.32 16.04 15.73 Refrigerant mass flow kg/hr 27.8 26.6 25.7 24.9 24.2 23.7 23.2 22.7 Compressordischargetempera °C 122.3 126.0 129.3 132.5 135.3 138.0 140.5 142.9 _ Evaporatorinletpressure bar 0.76 0.81 0.87 0.93 1.00 1.08 1.16 1.24 I. o Condenserinletpressure bar 11.9 12.9 14.0 15.0 16.1 17.1 18.1 19.1 Evaporator inlet temperature °C -30.0 -30.6 -31.2 -31.9 -32.6 -33.3 -34.1 -34.9 Evaporator dewpoint °C -29.7 -29.2 -28.5 -27.9 -27.2 -26.5 -25.8 -25.2 Evaporatorexitgastemperature °C -24.7 -24.2 -23.5 -22.9 -22.2 -21.5 -20.8 -20.2 Evaporator mean temperature -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -30.0 Evaporator glide (out-in) K 0.3 1.4 2.7 4.0 5.4 6.8 8.3 9.7 Compressorsuctionpressure bar 0.71 0.76 0.83 0.90 0.97 1.05 1.13 1.22 Compressordischargepressure bar 11.9 12.9 14.0 15.0 16.1 17.1 18.1 19.1 Suction line pressure drop Pa/rn 313 275 244 219 198 179 164 151 Pressure drop relative to reference 107.2% 94.2% 83.6% 74.9% 67.6% 61.4% 56.2% 51.6% Condenserdew point °C 52.1 53.6 5.4.8 55.8 56.7 57.3 57.8 58.2 Condenser bubble point °C 50.1 45.7 42.2 39.2 36.8 34.8 33.2 31.8 Condenser exit liquid temperature 49.1 44.7 41.2 38.2 35.8 33.8 32.2 30.8 Condensermeantemperature °C 51.1 49.6 48.5 47.5 46.8 46.1 45.5 45.0 Condenserglide (in-out) K 2.0 7.8 12.6 16.6 19.8 22.5 24.7 26.4 :. .: .: : : :.: : : Table 70: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 16-30 % R-744 and 15 % R-161 Composition C02/R-161/R- 1234ze(E) % by weight _______ 16/15/69 18/15/67 20/15/65 22115/63 24/15/61 26/15/59 28/15/57 30/15/55 COP (heating) 2.27 2.28 2.28 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 107.8% 108.1% 108.4% 108.5% 108.6% 108,7% 108.7% 108.7% Volumetric heating capacity at suction kJ/m3 1486 1584 1685 1787 1890 1994 2099 2206 Capacity relative to Reference 169.1% 180.3% 191.8% 203.3% 215.1% 226.9% 238.9% 251.1% Critical temperature °C 85.59 83.37 81.24 79.20 77.24 75.35 73.54 71.80 Critical pressure bar 45.58 46.26 46.93 47.61 48.28 48.95 49.62 50.29 Condenserenthalpychange kJ/kg 322.1 327.2 332.1 336.8 341.3 345.6 349.7 353.8 Pressure ratio 15.41 15.08 14.76 14.45 14.14 13.84 13.55 13.27 Refrigerant mass flow kg/hr 22.4 22.0 21.7 21.4 21.1 20.8 20.6 20.4 Compressordischargetemperatur 145.1 147.3 149.4 151.5 153.5 155.5 157.5 159.5 Evaporatorinletpressure bar 1.33 1.42 1.52 1.62 1.72 1.82 1.93 2.04 o Condenserinletpressure bar 20.1 21.1 22.1 23.1 24.0 25.0 25.9 26.9 I. Evaporator inlet temperature °C -35.7 -36.5 -37.4 -38.2 -39.0 -39.8 -40.6 -41.3 Evaporatordewpoint °C -24.6 -24.0 -23.5 -23.0 -22.6 -22.2 -21.8 -21.5 °C -19.6 -19.0 -18.5 -18.0 -17.6 -17.2 -16.8 -16.5 Evaporatormeantemperature °C -30.1 -30.3 -30.4 -30.6 -30.8 -31.0 -31.2 -31.4 Evaporatorglide(outin) K 11.1 12.5 13.9 15.2 16.5 17.7 16.8 19.8 Compressor suction pressure bar 1.31 1.40 1.50 1.60 1.70 1.81 1.91 2.02 Compressordischargepressure bar 20.1 21.1 22.1 23.1 24.0 25.0 25.9 26.9 Suction line pressure drop Palm 139 129 120 112 105 98 92 87 Pressure drop relative to reference 47.6% 44.1% 41.0% 38.3% 35.8% 33.6% 31.7% 29.9% Condenser dew point °C 58.4 58.6 58.6 58.5 58.3 58.1 57.8 57.5 Condenser bubble point °C 30.6 29.6 28.7 28.0 27.3 26.8 26.3 25.8 Condenser exit liquid temperature °C 29.6 28.6 27.7 27.0 26.3 25.8 25.3 24.8 Condenser mean temperature DC 44.5 44.1 43.6 43.2 42.8 42.4 42.0 41.7 Lcpndensergtide(inout) K I 27.8 29.0 29.9 30.5 31.0 31.4 31.6 31.6 :1. :1.
Table 71: Theoretical Performance Data of Selected R-744/R-161/R-1234ze(E) blends containing 0-14% R-744 and 20% R-161 Composition CO2IR-161/R-I I 234ze(E) % by weight _______ 0/20/80 2/20/78 4/20/76 6/20/74 8/20/72 10/20/70 12/20/68 14120/66 COP (heating) 2.14 2.18 2.20 2.22 2.24 2.26 2.27 2.28 COP (heating) relative to Reference 101.6% 103.2% 104.5% 105.5% 106.4% 107.1% 107.6% 108.1% Volumetric heating capacity at suction kJ/m3 830 908 989 1073 1160 1249 1341 1435 Capacity relative to Reference 94.4% 103.3% 112.5% 122.1% 132.0% 142.2% 152.7% 163.3% Critical temperature °C 106.99 103.93 101.02 98.24 95.58 93.05 90.62 88.30 Critical pressure bar 41.26 41.92 42.57 43.22 43.87 44.52 45.16 45.81 Condenserenthalpychange kJ/kg 273.9 285.0 294.7 303.4 311.0 318.0 324.3 330.2 Pressure ratio 16.25 16.32 16.28 16.17 15.98 15.74 15.48 15.20 Refrigerant mass flow kg/hr 26.3 25.3 24.4 23.7 23.1 22.6 22.2 21,8 Compressordischargetemperature °C 125.0 128.5 131.7 134.7 137.4 139.9 142.3 14.4.6 Evaporatorinletpressure bar 0.80 0.85 0.91 0.98 1.05 1.12 1.20 1.29 Condenser inlet pressure bar 12.2 13.2 14.2 15.2 16.2 17.2 18.2 19.2 Evaporator inlet temperature -30.3 -30.9 -31.5 -32.1 -32.7 -33.4 -34.1 -34.9 Evaporator dewpoint °C -29.6 -29.0 -28.4 -27.8 -27.1 -26.5 -25.8 -25.2 Evaporatorexitgastemperatr °C -24.6 -24.0 -23.4 -22.8 -22.1 -21.5 -20.8 -20.2 Evaporator mean temperature -29.9 -29.9 -29.9 -29.9 -29.9 -30.0 -30.0 -30.1 Evaporatorglide(out.in) K 0.7 1.8 3.0 4.3 5.6 7.0 8.3 9.7 Compressor suction pressure bar 0.75 0.81 0.87 0.94 1.02 1.09 1.18 1.26 Compressordischargepressure bar 12.2 13.2 14.2 15.2 16.2 17.2 18.2 19.2 Suction fine pressure drop Palm 281 249 223 201 183 167 153 141 Pressure drop relative to reference 96.2% 85.4% 76.4% 68.9% 62.6% 57.1% 52.4% 48.3% Condenserdewpoint °C 51.7 53.1 54.2 55.1 55.9 56.5 57.0 57.3 Condenser bubble point °C 49.4 45.4 42.1 39.4 37.2 35.3 33.7 32.3 Condenserexitliquidtemperaure °C 48.4 4.4.4 41.1 38.4 36.2 34.3 32.7 31.3 Condenser mean temperature °C 50.6 49.2 48.2 47.3 46.5 45.9 45,3 44.8 Condenser glide (in-out) K 2.3 7.6 12.0 15.7 18.7 21.3 233 25.0 * * .: ** **. *.* S * * S : : Table 72: Theoretical Performance Data of Selected R-744/R-1611R-1234ze(E) blends containing 16-30 % R-744 and 20 % R-161 Composition CO2IR-1611R-I 234ze(E) % by weight ________ 16/20/64 18/20/62 20/20/60 22/20/58 24/20/56 26/20/54 28/20/52 30/20/50 COP (heating) 2.29 2.29 2.30 2.30 2.30 2.30 2.30 2.30 COP (heating) re'ative to Reference 108.4% 108.7% 108.9% 109.1% 109.2% 109.3% 109.3% 109.3% Volumetric heating capacity at suction kJ/m3 1531 1629 1728 1829 1931 2035 2140 2246 Capacity relative to Reference 174.2% 185.4% 196.7% 208.2% 219.8% 231.6% 243,5% 255.6% Critical temperature 86.08 83.94 81.89 79.93 78.03 76.21 74.46 72.77 Critical pressure bar 46.46 47.11 47.75 48.40 49.04 49.69 50.33 5097 Condenserenthalpychange kJ/kg 335.7 340.8 345.7 350.4 354.8 359.1 363.2 367.2 Pressure ratio 14.91 14.61 14.32 14.02 13.74 13.46 13.19 12.92 Refrigerantmassflow kg/hr 21.4 21.1 20.8 20.5 20.3 20.0 19.8 19.6 Compressordischargetemperature °C 146.8 148.9 151.0 153.0 155.0 156.9 158.8 160.6 Evaporatorinletpressure bar 1.37 1.47 1.56 1.66 1.76 1.86 1.97 2.08 I. Condenserinletpressure bar 20.2 21.1 22.1 23.0 23.9 24.9 25.8 26.7 o Evaporator inlet temperature -35.7 -36.4 -37.2 -37.9 -38.7 -39.4 -40.1 -40.8 Evaporator dewpoint °C -24.7 -24.1 -23.6 -23.2 -22.8 -22.4 -22.1 -21.8 Evaporator exit gas temperature -19.7 -19.1 -18.6 -18.2 -17.8 -17.4 -17.1 -16.8 Evaporator mean temperature -30.2 -30.3 -30.4 -30.6 -30.7 -30.9 -31.1 -31.3 Evaporatorglide(out-in) K 11.0 12.3 13.5 14.7 15.9 17.0 18.0 19.0 Compressor suction pressure bar 1.35 1.44 1.54 1.64 1.74 1.85 1.95 2.07 Compressor discharge pressure bar 20.2 21.1 22.1 23.0 23.9 24.9 25.8 26.7 Suction line pressure drop Palm 131 121 113 106 99 94 88 83 Pressure drop relative to reference 44.8% 41.6% 38.8% 36.3% 34.0% 32.0% 30.2% 28.5% Condenserdew point 57.6 57.7 57.7 57.7 57.5 57.3 57.1 56.8 Condenser bubble point 31.2 30.2 29.3 28.6 27.9 27.4 26.9 26.5 Condenser exit liquid temperature °C 30.2 29.2 28.3 27.6 26.9 26.4 25.9 25.5 Condenser mean temperature 44.4 43.9 43.5 43.1 42.7 42.3 42.0 41.6 Condenser glide (in-out) K 26.4 27.5 28.4 29.1 29.6 30.0 30.2 30.3 : .: .: :.: : : Table 73: Theoretical Performance Data of Selected R-7441R-161/R-1234ze(E) blends containing 0-14 % R-744 and 25 % R-161 Composition CO2IR-1 611R-I 234ze(E) % by weight ________ 0/25/75 2/25173 4/25/71 6/25/69 8/25/67 10/25/65 12/25/63 14/25/61 COP (heating) 2.17 2.20 2.22 2.24 2.26 2.27 228 2.29 COP (heating) relative to Reference 102.7% 104.2% 105.3% 106.2% 107.0% 107.6% 108.2% 108.6% Volumetric heating capacity at suction kJ/m3 880 958 1038 1122 1207 1296 1387 1480 Capacity relative to Reference 100.2% 109.0% 118.2% 127.6% 137.4% 147.5% 157.9% 168.4% Critical temperature 106.45 103.56 100.79 98.15 95.62 93.20 90.88 88.66 Critical pressure bar 42.33 42.95 43.57 44.19 44.81 45.43 46.05 46.67 Condenserenthalpychange kJ/kg 288.7 299.3 308.7 317.1 324.6 331.5 337.7 343.6 Pressure ratio 15.76 15.79 15.73 15.61 15.44 15.22 14.98 14.72 Refrigerant mass flow kg/hr 24.9 24.1 23.3 22.7 22.2 21.7 21.3 21.0 Compressordisctiarge temperature °C 127.6 130.8 133.9 136.7 139.3 141.8 144.1 146.3 Evaporator inlet pressure bar 0.84 0.90 0.96 1.02 1.09 1.17 1.25 1.33 Condenser inlet pressure bar 12.6 13.5 14.5 15.5 16,4 17.4 18.3 19.3 Evaporator inlet temperature °C -30.5 -31.1 -31.6 -32.2 -32.9 -33.5 -34.2 -34.9 Evaporator dewpoint °C -29.4 -28.9 -28.3 -27.7 -27.1 -26.5 -25.9 -25.3 Evaporatorexitgastemperature °C -24.4 -23.9 -23.3 -22.7 -22.1 -21.5 -20.9 -20.3 Evaporator mean temperature °C -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.1 Evaporator glide (out-in) K 1.1 2.2 3.3 4.5 5.8 7.0 8.3 9.5 Compressor suction pressure bar 0.80 0.86 0.92 0.99 1.06 1.14 1.22 1.31 Compressordischarge pressure bar 12.6 13.5 14.5 15.5 16.4 17.4 18.3 19.3 Suction line pressure drop Pa/rn 255 228 205 186 170 156 144 133 Pressure drop relative to reference 87.1% 78.0% 70.3% 63.8% 58.2% 53.4% 49.2% 45.5% Condenserdew point °C 51.4 52.6 53.6 54.4 55.1 55.7 56.2 56.5 Condenser bubble point °C 48.9 45.2 42.2 39.6 37.5 35.7 34.1 32.8 Condenser exit liquid temperature °C 47.9 442 41.2 38.6 36.5 34.7 33.1 31.8 Condenser mean temperature 50.1 48.9 47.9 47.0 46.3 45.7 45.2 44.7 Condenserglide(in-out) K 2.5 7.3 11.4 14.8 17.7 20.0 220 23.6 * : *:. :.: :.: .j * . **.
Table 74: Theoretical Performance Data of Selected R-7441R-1611R-1234ze(E) blends containing 16-30 % R-744 and 25 % R-161 Composition CO2IR-1611R-I 234ze( E) % by weight ________ 16/25159 18/25/57 20/25/55 22/25/53 24/25/51 26/25/49 28/25/47 30/25/45 COP (heating) 2.30 2.30 2.31 2.31 2.31 2.32 2.32 2.32 COP (heating) relative to Reference 108.9% 109.2% 109.4% 109.6% 109.7% 109.8% 109.8% 109.9% Vo'umetric heating capacity at suction kJ/m3 1575 1671 1770 1869 1971 2074 2178 2284 Capacity relative to Reference 179.2% 190.2% 201.4% 212.8% 224.3% 236.0% 247.9% 260.0% Critical temperature 86.52 84.47 82.49 80.59 78.76 77.00 75.30 73.66 Critical pressure bar 47.28 47.90 48.52 49.14 49.75 50.37 50.99 51.60 Condenserenthalpychange kJ/kg 349.0 354.2 359.0 363.7 368.1 372.4 376.5 380.4 Pressure ratio 14.45 14.18 13.90 13.63 13.37 13.10 12.85 12.59 Refrigerant mass flow kg/hr 20.6 20.3 20.1 19.8 19.6 19.3 19.1 18.9 Compressordischargetemperature °C 148.4 150.5 152.4 154.4 156.2 158.1 159.9 161.6 Evaporator inlet pressure bar 1.42 1.51 1.60 1.70 1.80 1.90 2.01 2.12 I. Condenser inlet pressure bar 20.2 21.1 22.0 22.9 23.8 24.7 25.6 26.5 o Evaporator inlet temperature DC -35.6 -36.3 -37.0 -37.6 -38.3 -39.0 -39.6 -40.2 Evaporator dewpoint °C -24.8 -24.3 -23,8 -23.4 -23.0 -22.7 -22.4 -22.1 Evaporatorexitgastemperature °C -19.8 -19.3 -18.8 -18.4 -18.0 -17.7 -17.4 -17.1 Evaporator mean temperature °C -30.2 -30.3 -30.4 -30.5 -30.7 -30.8 -31.0 -31.1 Evaporatorglide(out-in) K 10.8 12.0 13.1 14.2 15.3 16.3 17.2 18.1 Compressor suction pressure bar 1.40 1.49 1.58 1.68 1.78 1.89 200 2.11 Compressordischargepressure bar 20.2 21.1 22.0 22.9 23.8 24.7 25.6 26.5 Suction line pressure drop Palm 123 115 108 101 95 89 84 80 Pressure drop relative to reference 42.3% 39.4% 36.8% 34,5% 32.4% 30.6% 28.9% 27.3% Condenser dew point 56.7 56.8 56.9 56.8 56.7 56.6 56.3 56.0 Condenser bubble point 31.7 30.7 29.9 29.2 28.5 28.0 27.5 27.1 Condenser exit liquid temperature °C 30.7 29.7 28.9 28.2 27.5 27.0 26.5 26.1 Condensermeantemperature °C 44.2 43.8 43.4 43.0 42.6 42.3 41.9 41.6 Condenser glide (in-out) K 25.0 26.1 27.0 27.7 28.2 28.6 28.8 29.0 * * *:. :.: ;,. : : * *.. *** Table 75: Theoretical Performance Data of Selected R-7441R-1611R-1234ze(E) blends containing 0-14 % R-744 and 30 % R-161 Composition CO2IR-1611R- 1234ze(E) % by weight _______ 0/30/70 2/30/68 4/30/66 6130/64 8/30/62 10/30/60 12/30/58 14/30/56 COP (heating) 2.19 2.21 2.24 2.25 2.27 2.28 229 2.30 COP (heating) relative to Reference 103.7% 105.0% 106.0% 106.9% 107.5% 108.1% 108.6% 109.0% Volumetric heating capacity at suction kJ/m3 930 1006 1086 1168 1253 1341 1431 1523 Capacity relative to Reference 105.8% 114.5% 123.6% 133.0% 142.6% 152.6% 162.8% 173.3% Critical temperature 105.96 103.22 100.59 98.07 95.66 93.34 91.12 88.98 Critical pressure bar 43.33 43.92 44.50 45.10 45.69 46.28 46.87 47.46 Condenserenthalpychange kJ/kg 303.1 313.3 322.4 330.6 338.0 344.7 351.0 356.7 Pressure ratio 15.30 15.30 15.24 15.11 14.95 14.75 14.52 14.28 Refrigerant mass 110W kg/hr 23.8 23.0 22.3 21.8 21.3 20.9 20,5 20.2 Compressordischarge temperature °C 129.9 133.0 135.9 138.6 141.1 143.5 145.7 147.8 Evaporator inlet pressure bar 0.88 0.94 1.00 1.07 1.14 1.21 1.29 1.37 Condenserinletpressure bar 12.9 13.8 14.7 15.7 16.6 17.5 18.4 19.3 o Evaporatorinlettemperature °C -30.7 -31.3 -31.8 -32.4 -32.9 -33.5 -34.2 -34.8 Evaporator dewpoint C -29.3 -28.8 -28.3 -27.7 -27.1 -26.6 -26.0 -25.5 Evaporator exit gas temperature °C -24.3 -23.8 -23.3 -22.7 -22.1 -21.6 -21.0 -20.5 Evaporator mean temperature -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.1 -30.1 Evaporator glide (out-in) K 1.4 2.4 3.5 4.7 5.8 7.0 8.2 9.3 Compressor suction pressure bar 0.84 0.90 0.97 1.04 1.11 1.19 1.27 1.35 Compressordischarge pressure bar 12.9 13.8 14.7 15.7 16.6 17.5 18.4 19.3 Suction line pressure drop Pa/rn 232 209 190 173 159 146 135 126 Pressure drop relative to reference 79.6% 71.7% 65.0% 59.3% 54.4% 50.1% 46.3% 43.0% Condenserdewpoint °C 51.0 52.1 53.0 53.8 54.4 55.0 55.4 55.7 Condenser bubble point 48.4 45.0 42.2 39.8 37.8 36.1 34.6 33.3 Condenser exit liquid temperature °C 47.4 44.0 41.2 38.8 36.8 35.1 33.6 32.3 Condenser mean temperature °C 49.7 48.6 47.6 46.8 46.1 45.5 45.0 44.5 Condenserglide(in-out) K 2.6 7.0 10.8 13.9 16.6 18.9 20.8 22.3 *;. :.: i.: : *A Table 76: Theoretical Performance Data of Selected R-7441R-1611R-1234ze(E) blends contaIning 16-30 % R-744 and 30 % R-161 Composition CO2IR-161/R-I 234ze(E) % by weight ________ 16/30/54 18/30/52 20/30150 22/30/48 24/30/46 26/30/44 28/30/42 30/30/40 COP (heating) 231 2.31 2.32 2.32 2.32 2.32 2.33 2.33 COP (heating) relative to Reference 109.4% 109.6% 109.9% 110.0% 110.2% 110.3% 110.3% 110.4% Volumetric heating capacity at suction kJ/m3 1617 1712 1810 1909 2009 2111 2215 2320 Capacity relative to Reference 184.0% 194.9% 206.0% 217.2% 228.7% 240.3% 252.1% 264.1% Critical temperature 86.93 84.95 83.05 81.21 79.44 77.73 76.08 74.48 Critical pressure bar 48.05 48.64 49.24 49.83 50.42 51.01 51.60 52,19 Condenserenthalpychange kJ/kg 362.2 367.3 372.1 376.8 381.2 385.4 389.5 393.4 Pressure ratio 14.03 13.78 13.52 13.27 13.02 12.77 12.53 12.29 Refrigerant mass flow kg/hr 19.9 19.6 19.3 19.1 18.9 18.7 18.5 18.3 Compressordischargetemperature °C 149.9 151.8 153.7 155.6 157.4 159.2 160.9 162.6 Evaporator inlet pressure bar 1.46 1.55 1.64 1.74 1.84 1.94 2.05 2.16 Condenserinletpressure bar 20.2 21.1 22.0 22.9 23.8 24.6 25.5 26.4 o Evaporator inlet temperature °C -35.4 -36.1 -36.7 -37.3 -37.9 -38.5 -39.1 -39.6 Evaporator dewpoint °C -25.0 -24.5 -24.1 -23.7 -23.3 -23.0 -22.7 -22.4 Evaporator exit gas temperature °C -20.0 -19.5 -19.1 -18.7 -18.3 -18.0 -17.7 -17.4 Evaporator mean temperature -30.2 -30.3 -30.4 -30.5 -30.6 -30.7 -30.9 -31.0 Evaporatorglide(out-in) K 10.5 11.6 12.6 13.7 14.6 15.5 16.4 17.2 Compressor suction pressure bar 1.44 1.53 1.63 1.72 1.82 1.93 2.04 2.15 Compressordischargepressure bar 20.2 21.1 22.0 22.9 23.8 24.6 25.5 26.4 Suction line pressure drop Pa/rn 117 109 102 96 91 85 81 77 Pressure drop relative to reference 40.0% 37.4% 35.0% 32.9% 31.0% 29.3% 27.7% 26.2% Condenser dew point 55.9 56.0 56.1 56.0 56.0 55.8 55.6 55.4 Condenser bubble point °C 32.3 31.3 30.5 29.7 29.1 28.6 28.1 27.7 Condenserexitliquidtemperature °C 31.3 30.3 29.5 28.7 28.1 27.6 27.1 26.7 Condenser mean temperature °C 44.1 43.7 43.3 42.9 42.5 42.2 41.8 41.5 Condenser glide (in-out) K 23.6 24.7 25.6 26.3 26.8 27.2 27.5 27.7 : * * **� **.
Table 77: Theoretical Performance Data of Selected R-744/R-152aIR-1234ze(E) blends containing 0-14 % R-744 and 5 % R-152a Composition C02/R-1 52aIR- 1234ze(E) % by weight _______ 0/5/95 2/5/93 4/5/91 6/5/89 8/5/87 10/5/85 12/5/83 1415/81 COP (heating) 2.02 2.08 2.12 2.15 2.18 2.20 221 2.22 COP (heating) relative to Reference 95.6% 98,4% 100,5% 102.0% 103.2% 104.2% 104.9% 105.5% Volumetric heating capacity at suction kJ/m3 635 714 796 881 970 1061 1156 1253 Capacity relative to Reference 72.3% 81.3% 90.6% 100.3% 110.4% 120.8% 131.5% 142.6% Critical temperature °C 110.17 106.33 102.72 99.31 96.08 93.03 90.13 87.38 Critical pressure bar 37.46 38.22 38.98 39.74 40.49 41.24 42.00 4275 Condenserenthalpychange kJ/kg 219.5 232.8 244.1 253.7 262.1 269.5 276.1 282.1 Pressure ratio 18.43 18.67 18.73 18.63 18.40 18.10 17.74 17.34 Refrigerant mass flow kg/hr 32.8 30.9 29.5 28.4 27.5 26.7 26.1 25.5 Compressordischargetemperature °C 115.1 119.3 123.2 126.8 130.0 133.0 135.8 138.4 Evaporatorinletpressure bar 0.66 0.70 0.75 0.81 0.88 0.95 1.03 1.12 Condenserinletpressure bar 10.8 11.9 13.1 14.3 15.4 16.6 17.7 18.8 Evaporatorinlettemperature -29.1 -29.8 -30.4 -31.2 -31.9 -32.8 -33.6 -34.5 00 Evaporator dewpoint °C -30.3 -29.7 -29.0 -28.3 -27.5 -26.7 -25.9 -25.2 Evaporatorexitgastemperature °C -25.3 -24.7 -24.0 -23.3 -22.5 -21.7 -20.9 -20.2 Evaporator mean temperature -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 Evaporator glide (out-in) K -1.2 0.0 1.4 2.9 4.4 6.0 7,7 9.4 Compressorsuctionpressure bar 0.59 0.64 0.70 0.77 0.84 0.92 1.00 1.09 Compressordischarge pressure bar 10.8 11.9 13.1 14.3 15.4 16.6 17.7 18.8 Suction line pressure drop Pa/rn 434 369 319 280 248 222 201 182 Pressure drop relative to reference 148.4% 126.3% 109.3% 95.9% 85.0% 76.1% 68.7% 62.3% Condenser dew point 52.7 54.6 56.2 57.5 58.6 59.4 60.0 60.4 Condenser bubble point 52.4 46.8 42.3 38.8 36.0 33.7 31.9 30.4 Condenser exit liquid temperature 51.4 45.8 41.3 37.8 35.0 32.7 30.9 29.4 Condenser mean temperature 52.6 50.7 49.3 48.2 47.3 46.6 45.9 45.4 Condenser glide (in-out) K 0.3 7.8 13.9 18.7 22.6 25.6 28.1 30.0 * *. ** * * * * . . S S.. *** S.. * 0 * : : .:..:.
Table 78: Theoretical Performance Data of Selected R-7441R-152a/R-1234ze(E) blends containing 16-30 % R-744 and 5 % R-152a Composition CO2IR-1 52a/R-1234ze(E) % by weight ________ 16/5/79 18/5/77 20/5/75 22/5/73 24/5/71 26/5/69 28/5/67 30/5/65 COP (heating) 2.23 2.24 2.25 2.25 2.25 2.25 2.25 2.25 COP (heating) relative to Reference 105.9% 106.3% 106.5% 106.7% 106.8% 106.9% 106.9% 106.8% Volumetric heating capacity at suction kJIm3 1352 1453 1556 1660 1765 1870 1976 2083 Capacity relative to Reference 153.8% 165.3% 177.0% 188.9% 200.8% 212.8% 224.9% 237.0% Critical temperature °C 84.77 82.28 79.91 77.65 75.49 73.43 71.45 69.56 Critical pressure bar 43.50 44.25 45.00 45.74 46.49 47.24 47.98 48.72 Condenserenthalpychange kJ/kg 287.6 292.8 297.8 302.5 307.0 311.4 315.6 319.8 Pressure ratio 16.93 16.51 16.10 15.70 15.32 14.96 14.62 14.30 Refrigerant mass flow kg/hr 25.0 24.6 24.2 23.8 23.5 23.1 22.8 22.5 Compressordischargetemperature °C 140.9 143.3 145.6 147.9 150.1 152.3 154.6 156.8 Evaporator inlet pressure bar 1.21 1.30 1.40 1.50 1.60 1.70 1.81 1.92 Condenser inlet pressure bar 19.9 21.0 22.1 23.1 24.2 25.2 26.2 27.2 i-Evaporatorinlettemperature °C -35.5 -36.5 -37.5 -38.6 -39.6 -40.6 -41.7 -42.7 Evaporator dewpoint 00 -24.4 -23.8 -23.2 -22.6 -22.1 -21.7 -21.3 -21.0 Evaporatorexitgastemperature °C -19.4 -18.8 -18.2 -17.6 -17.1 -16.7 -16.3 -16.0 Evaporatormeantemperature °C -30.0 -30.1 -30.3 -30.6 -30.9 -31.2 -31,5 -31.8 Evaporatorglide (out-in) K 11.1 12.7 14.4 15.9 17.5 19.0 20.4 21.7 Compressor suction pressure bar 1.18 1.27 1.37 1.47 1.58 1.68 1.79 1.90 Compressordischargepressure bar 19.9 21.0 22.1 23.1 24.2 25.2 26.2 27.2 Suction line pressuredrop Pa/rn 166 153 141 130 121 113 106 100 Pressure drop relative to reference 56.9% 52.3% 48.2% 44.6% 41.5% 38.8% 36.3% 34.1% Condenser dew point °C 60.6 60.7 60.7 60.6 60.3 60.0 59.6 59.2 Condenser bubble point °C 29.1 28.0 27.1 26.4 25.7 25.1 24.6 24.2 Condenser exit liquid temperature 28.1 27.0 26.1 25.4 24.7 24.1 23.6 23.2 Condenser mean temperature DC 44,9 44.4 43.9 43.5 43.0 42.6 42.1 41.7 Condenser glide (in-out) K 31.5 32.7 33.6 34.2 34.7 34.9 35.0 35.0 * *. *.
*:. :.: :.: : : Table 79: Theoretical Performance Data of Selected R-7441R-152aJR-1234ze(E) blends containing 0-14 % R-744 and 10 % R-152a Composition CO2IR-I52aJR- 1234ze(E) % by weight _______ 0/10/90 2/10/88 4110186 6/10/84 8/10/82 10/10/80 12/10/78 14/10/76 COP (heating) 2.04 2.10 2.14 2.17 2.19 2.21 2.22 2.24 COP (heating) relative to Reference 96.8% 99.4% 101.3% 102.8% 103.9% 104.8% 105.5% 106.0% Volumetric heating capacity at suction kJ/m3 653 732 813 897 985 1076 1169 1265 Capacity relative to Reference 74.4% 83.3% 92.5% 102.1% 112.1% 122.4% 133.1% 144.0% Critical temperature 110.43 106.71 103.20 99.89 96.74 93.76 90.93 88.24 Critical pressure bar 38.27 39.02 39.78 40.53 41.27 42.02 42.76 43.51 Condenser enthalpy change kJ/kg 228.7 241.8 253.1 262.7 271.0 278.4 285.0 291.0 Pressure ratio 18.14 18.37 18.43 18.35 18.13 17.84 17,49 17.11 Refrigerant mass flow kg/hr 31.5 29.8 28.5 27.4 26.6 25.9 25.3 24.7 Compressordischargetemperature °C 117.3 121.5 125.4 128.9 132.1 135.0 137.8 140.4 Evaporatorinletpressure bar 0.67 0.71 0.76 0.82 0.89 0.96 1.04 1.12 Condenserinletpressure bar 10.9 12.0 13.1 14.3 15.4 16.5 17.6 18.7 Evaporatorinlettemperature °C -29.2 -29.9 -30.5 -31.3 -32.0 -32.8 -33.7 -34.5 Evaporator dewpoint °C -30.3 -29.7 -29.1 -28.3 -27.5 -26.8 -26.0 -25.2 Evaporator exit gas temperature °C -25.3 -24.7 -24.1 -23.3 -22.5 -21.8 -21.0 -20.2 Evaporator mean temperature -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 Evaporatorglide (out-in) K -1.0 0.1 1.5 2.9 4.4 6.0 7.7 9.3 Compressor suction pressure bar 0.60 0.65 0.71 0.78 0.85 0.93 1.01 1.09 Compressordischargepressure bar 10.9 12.0 13.1 14.3 15.4 16.5 17.6 18.7 Suction line pressure drop Palm 408 350 304 268 238 214 194 176 Pressure drop relative to reference 139.9% 119.8% 104.2% 91.8% 81.6% 73.3% 66.3% 60.3% Condenser dew point 52.3 54.1 55.7 57.0 58.0 58.8 59.4 59.9 Condenser bubble point 52.0 46.5 42.2 38.7 35.9 33.7 31.9 30.4 Condenserexitliquidtemperature °C 51.0 45.5 41.2 37.7 34.9 32,7 30.9 29.4 Condensermeantemperature °C 52.1 50.3 48.9 47.8 47.0 46.3 45.7 45.1 Condenserglide (in-out) K 0.3 7.6 13.5 18.3 22.1 25.1 27.6 29.5 p. as * S. * S * * * S.. *.. S S * : : *:. .:.
Table 80: Theoretical Performance Data of Selected R-7441R-152a/R-1234ze(E) blends containing 16-30 % R-744 and 10 % R-152a Composition C02/R-1 52a/R-1 234ze(E) % by weight ________ 16/10/74 18/10/72 20/10/70 22/10/68 24/10/66 26/10/64 28/10/62 30/10/60 COP (heating) 2,24 2.25 2.26 2.26 2.26 2.26 2.26 2.26 COP (heating) relative to Reference 106.5% 106.8% 107.1% 107.2% 107.3% 107.4% 107.4% 107.3% Volumetric heating capacity at suction kJ/m3 1363 1463 1565 1668 1772 1877 1982 2087 Capacity relative to Reference 155.1% 166.5% 178.1% 189.8% 201.7% 213.6% 225.5% 237.6% Critical temperature 85.68 83.24 80.91 78.68 76.55 74.51 72.56 70.69 Critical pressure bar 44.25 44.99 45.73 46.46 47.20 47.93 48.66 49.40 Condenserenthalpychange kJlkg 296.6 301.8 306.7 311.4 315.9 320.3 324.5 328.7 Pressure ratio 16.72 16.32 15.92 15.54 15.17 14.82 14.48 14.17 Refrigerant mass flow kg/hr 24.3 23.9 23.5 23.1 22.8 22.5 22.2 21.9 Compressor discharge temperature °c 142.8 145.2 147.5 149.7 151.9 154.1 156.2 158.4 Evaporatorinletpressure bar 1.21 1.30 1.40 1.50 1.60 1.70 1.81 1.92 Condenser inlet pressure bar 19.8 20.9 21.9 22.9 23.9 24.9 25.9 26.9 Evaporatorinlettemperature °C -35.5 -36.4 -37.4 -38.5 -39.5 -40.5 -41.5 -42.5 Evaporator dewpoint °C -24.5 -23.9 -23.3 -22.7 -22.2 -21.8 -21.4 -21.1 Evaporatorexitgastemperature °C -19.5 -18.9 -18.3 -17.7 -17.2 -16.8 -16.4 -16.1 Evaporator mean temperature -30.0 -30.2 -30.4 -30.6 -30.8 -31.1 -31.4 -31.8 Evaporatorglide (out-in) K 10.9 12.6 14.2 15.7 17.2 18.7 20.1 21.4 Compressor suction pressure bar 1.18 1.28 1.38 1.48 1.58 1.68 1.79 1.90 Compressordischarge pressure bar 19.8 20.9 21.9 22.9 23.9 24.9 25.9 26.9 Suction line pressuredrop Palm 161 148 137 127 118 110 104 97 Pressure drop relative to reference 55.2% 50.7% 46.9% 43.5% 40.5% 37.8% 35.5% 33.3% Condenserdewpoint °C 60.1 60.3 60.3 60.2 60.0 59.7 59.3 58.9 Condenserbubblepoint °C 29.1 28.0 27.1 26.4 25.7 25.1 24.6 24.2 Condenser exit liquid temperature 28.1 27.0 26.1 25.4 24.7 24.1 23.6 23.2 Condenser mean temperature °C 44.6 44.1 43.7 43.3 42.8 42.4 42.0 41.5 Condenser glide (in-out) K 31.0 32.2 33.1 33.8 34.3 34.6 34.7 34.7 * * * . * . I *** S.. *** S S * : : .:. .:.
Table 81: Theoretical Performance Data of Selected R-7441R-152a/R-1234ze(E) blends containing 0-14% R-744 and 15% R-152a Composition CO2IR-1 52alR- 1234ze(E) % by weight _______ 0/15/85 2/15/83 4115/81 6/15/79 8/15/77 10/15/75 12115/73 14/15/71 COP (heating) 2.06 2.11 2.15 2.18 2.20 2.22 2.24 2.25 COP (heating) relative to Reference 97.8% 100.3% 102.1% 103.4% 104.5% 105.4% 106.0% 1066% Volumetric heating capacity at suction kJ/m3 671 748 829 912 999 1089 1181 1276 Capacity relative to Reference 76,3% 85.1% 94.3% 103.8% 113.7% 123.9% 134.4% 145.2% Critical temperature 110.68 107.07 103.66 100.43 97.36 94.45 91.69 89.05 Critical pressure bar 39.01 39.76 40.50 41.25 41.99 42.73 43.46 44.20 Condenserenthalpychange lcJ/kg 237.8 250.9 262.1 271.7 280.0 287.4 294.0 300.0 Pressure ratio 17.87 18.10 18.16 18.08 17.87 17.60 17.27 16.91 Refrigerant mass flow kgfhr 30.3 28.7 27.5 26.5 25.7 25.1 24.5 24.0 Compressordischargetemperature °C 119.5 123.7 127.5 131.0 134.1 137.0 139.7 142.3 Evaporatorinletpressure bar 0.68 0.72 0.77 0.83 0.90 0.97 1.05 1.13 Condenser inlet pressure bar 10.9 12.0 13.1 14.2 15.4 16.5 17.5 18.6 Evaporator inlettemperature °C -29.4 -30.0 -30.6 -31.3 -32.1 -32.8 -33.7 -34.5 NJ Evaporator dewpoint °C -30.3 -29.8 -29.1 -28.4 -27.6 -26.8 -26.1 -25.3 Evaporator exit gas temperature -25.3 -24.8 -24.1 -23.4 -22.6 -21.8 -21.1 -20.3 Evaporator mean temperature -29.8 -29.9 -29.9 -29.9 -29.8 -29.8 -29.9 -29.9 Evaporatorglide(out-in) K -0.9 0.2 1.5 2.9 4.5 6.0 7.6 9.2 Compressor suction pressure bar 0.61 0.66 0.72 0.79 0.86 0.93 1.02 1.10 Compressor discharge pressure bar 10.9 12.0 13.1 14.2 15.4 16.5 17.5 18.6 Suction line pressure drop Palm 386 333 291 257 229 207 187 171 Pressure drop relative to reference 132.3% 113.9% 99.6% 88.0% 78.6% 70.7% 641% 58.4% Condenserdewpoint °C 51.9 53.7 55.2 56.5 57.5 58.3 59.0 59.4 Condenser bubble point 51.5 46.2 42.0 38.6 35.9 33.7 31.8 30.3 Condenser exit liquid temperature 50.5 45.2 41.0 37.6 34.9 32.7 30.8 29.3 Condensermeantemperature °C 51.7 49.9 48.6 47.5 46.7 46.0 45.4 44.9 Condenserglide (in-out) K 0.4 7.5 13.2 17.9 21.7 24.7 27.1 29.0 * * S S S 0 5 *5* 505 **. S 5 * : .:. *:. * Table 82: Theoretical Performance Data of Selected R-744/R-1 52a/R-1 234ze(E) blends containing I 6-30 % R-744 and 15 % R-1 52a Composition CO2IR-152aIR-1 234ze(E) % by weight ________ 16/15/69 18/15/67 20115165 22/15163 24/15/61 26/15/59 28/15/57 30/15/55 COP (heating) 2.26 2.26 2.27 2.27 2.27 2.27 2.27 2.27 COP (heating) relative to Reference 107.0% 107.3% 107.6% 107.7% 107.8% 107.9% 107.9% 107.8% Volumetric heating capacity at suction kJ/m3 1373 1472 1573 1675 1778 1882 1986 2090 Capacity relative to Reference 156.3% 167.6% 179.0% 190.6% 202.3% 214.1% 226.0% 237.9% Critical temperature °C 86.54 84.14 81.85 79.66 77.56 75.55 73.62 71.77 Critical pressure bar 44.93 45.66 46.39 47.12 47.84 48.57 49.29 50.01 Condenser enthalpy change kJ/kg 305.6 310.8 315.7 320.4 324.9 329.3 333.5 337.7 Pressure ratio 16.53 16.14 15.76 15.39 15.03 14.69 14.36 14.05 Refrigerant mass flow kg/hr 23.6 23.2 22.8 22.5 22.2 21.9 21.6 21.3 Compressordischargetemperature °C 144.7 147.0 149.3 151.5 153.7 155.8 157.9 160.0 Evaporator inlet pressure bar 1.22 1.31 1.40 1.50 1.60 1.70 1.80 1.91 Condenser inlet pressure bar 19.7 20.7 21.7 22.7 23.7 24,7 25.7 26.6 Evaporator inlet temperature -35.5 -36.4 -37.4 -38.3 -39.3 -40.3 -41.3 -42.3 Evaporator dewpoint °C -24.6 -24.0 -23.4 -22.8 -22.3 -21.9 -21.5 -21.2 Evaporatorexitgastemperature °C -19.6 -19.0 -18.4 -17.8 -17.3 -16.9 -16.5 -16.2 Evaporatormeantemperature °C -30.0 -30.2 -30.4 -30.6 -30.8 -31.1 -31.4 -31.7 Evaporatorglide(out-in) K 10.8 12.4 14.0 15.5 17.0 18.4 19.8 21.1 Compressor suction pressure bar 1.19 1.28 1.38 1.48 1.58 1.68 1.79 1.90 Compressordischarge pressure bar 19.7 20.7 21.7 22.7 23.7 24.7 25.7 26.6 Suction line pressure drop Pa/rn 156 144 133 124 115 108 101 95 Pressure drop relative to reference 53.5% 49.3% 45.6% 42.4% 39.5% 36.9% 34.7% 32.6% Condenser dew point 59.7 59.8 59.9 59.8 59.6 59.4 59.0 58.6 Condenser bubble point °C 29.1 28.0 27.1 26.4 25.7 25.1 24.6 24.2 Condenserexitliquidtemperature °C 28.1 27.0 26.1 25.4 24.7 24.1 23.6 23.2 Condenser mean temperature 44,4 43.9 43.5 43.1 42.7 42.2 41.8 41.4 Condenserglide(in-out) K 30.6 31.8 32.7 33.4 33.9 34.2 34,4 34.4 S S. * a a * * a a S.. *55 S5* a S * a. S S a a a.. .*s Table 83: Theoretical Performance Data of Selected R-744/R-152a/R-1234ze(E) blends containing 0-14 % R-744 and 20 % R-152a Composition CO2IR-1 52aIR-1 234ze(E) % by weight ________ 0/20/80 2/20/78 4/20/76 6120/74 8/20/72 10/20170 12/20/68 14/20/66 COP (heating) 2.08 2.13 2.17 2.19 2.22 2.23 2.25 2.26 COP (heating) relative to Reference 98.8% 101.1% 102.8% 104.1% 105.1% 105.9% 106.5% 107.1% Volumetric heating capacity at suction kJ/m3 687 763 843 926 1012 1101 1192 1286 Capacity relative to Reference 78.2% 86.9% 95.9% 105.4% 115.2% 125.3% 135,7% 146.4% Critical temperature °C 110.91 107.40 104.09 100.94 97.95 95.11 92.40 89.82 Critical pressure bar 39.69 40.43 41.17 41.91 42.64 43.37 44.10 44.83 Condenserenthalpychange kJ/kg 247.0 260.0 271.1 280.7 289.0 296,4 303.0 309.1 Pressure ratio 17.62 17.84 17.91 17.83 17.64 17.38 17.06 16.72 Refrigerant mass flow kg/hr 29.1 27.7 26.6 25.7 24.9 24.3 23.8 23.3 Compressordischargetemperature °C 121.6 125.8 129.5 133.0 136.1 139.0 141.7 144.2 Evaporatorinletpressure bar 0.68 0.73 0.78 0.84 0.91 0.98 1.05 1.13 Condenserinletpressure bar 11.0 12.0 13.1 14.2 15.3 16.4 17.4 18.5 Evaporator inlet temperature °C -29.5 -30.1 -30.7 -31.4 -32.1 -32.9 -33.7 -34.5 Evaporator dewpoint °C -30.4 -29.8 -29.2 -28.4 -27.7 -26.9 -26.1 -25.4 Evaporator exit gas temperature -25.4 -24.8 -24.2 -23.4 -22.7 -21.9 -21.1 -20.4 Evaporator mean temperature -29.9 -30.0 -29.9 -29.9 -29.9 -29.9 -29.9 -30.0 Evaporator glide (out-in) K -0.9 0.3 1.6 3.0 4.4 6.0 7.5 9.1 Compressor suction pressure bar 0.62 0.67 0.73 0.80 0.87 0.94 1.02 1.11 Compressordischarge pressure bar 11.0 12.0 13.1 14.2 15.3 16.4 17.4 18.5 Suction line pressure drop Pa/rn 367 318 279 247 221 200 181 166 Pressure drop relative to reference 125.6% 108.7% 95.4% 84.7% 75.8% 68.3% 62.1% 56.7% Condenserdewpoint °C 51.5 53.2 54.8 56.0 57.1 57.9 58.5 58.9 Condenserbubble point °C 51.1 45.9 41.8 38.5 35.8 33.6 31.8 30.3 Condenser exit liquid temperature 50.1 44.9 40.8 37.5 34.8 32.6 30.8 29.3 Condenser mean temperature °C 51.3 49.6 48.3 47.3 46.4 45.7 45.2 44.6 Condenserglide(in..out) K 0.4 7.3 12.9 17.5 21.3 24.3 26.7 28.6 S S ** 55 * . S S S S S 5*0 **S 5.. 5 5 * . S S S 5 *55 **S Table 84: Theoretical Performance Data of Selected R-7441R-I52aJR-1234ze(E) blends containing 16-30 % R-744 and 20 % R-152a Composition CO2IR-152a/R-1234ze(E) % by weight ________ 16/20/64 18/20/62 20/20(60 22/20/58 24/20/56 26/20/54 28/20/52 30/20/50 COP (heating) 2.27 2.27 2.28 2.28 2.28 2.28 228 2.28 COP (heating) relative to Reference 107.5% 107.8% 108.0% 108.2% 108.3% 108,4% 108.3% 108.3% Volumetric heating capacity at suction kJ/m3 1382 1480 1580 1681 1783 1885 1988 2092 Capacity relative to Reference 157.3% 168.5% 179.8% 191.3% 202.9% 214.6% 226.3% 238.1% Critical temperature °C 87.35 85.00 82.74 80.59 78.52 76.54 74.63 72.80 Critical pressure bar 45.55 46.27 47.00 47.71 48.43 49.15 49.86 50.57 Condenser enthalpy change kJ/kg 314.7 319.9 324.8 329.5 334.0 338.3 342.6 346.7 Pressure ratio 16.35 15.98 15.61 15.25 14.90 14.57 14.25 13.95 Refrigerant mass flow kg/hr 22.9 22.5 22.2 21.9 21.6 21.3 21.0 20.8 Compressor discharge temperature °C 146.6 148.9 151.1 153.3 155.4 157.5 159.6 161.7 Evaporatorinletpressure bar 1.22 1.31 1.40 1.50 1.60 1.70 1.80 1.91 Condenser inlet pressure bar 19.5 20.5 21.5 22.5 23.5 24.5 25.4 26.4 i-Evaporatorinlettemperature °C -35.4 -36.3 -37.3 -38.3 -39.2 -40.2 -41.1 -42.1 Evaporatordewpoint °C -24.7 -24.1 -23.5 -22.9 -22.4 -22.0 -21.6 -21.3 Evaporatorexitgastemperature °C -19.7 -19.1 -18.5 -17.9 -17.4 -17.0 -16.6 -16.3 Evaporator mean temperature -30.1 -30.2 -30.4 -30.6 -30.8 -31.1 -31.4 -31.7 Evaporatorglide(out-in) K 10.7 12.3 13.8 15.3 16.8 18.2 19.5 20.8 Compressor suction pressure bar 1.19 1.28 1.38 1.48 1.58 1.68 1.78 1.89 Compressor discharge pressure bar 19.5 20.5 21.5 22.5 23.5 24.5 25.4 26.4 Suction line pressuredrop Palm 152 140 130 121 113 106 99 93 Pressure drop relative to reference 52.0% 48.0% 44.5% 41.3% 38.6% 36.1% 33.9% 32.0% Condenserdewpoint °C 59.3 59.4 59.5 59.4 59.3 59.1 58.8 58.4 Condenser bubble point °C 29.1 28.0 27.1 26.4 25.7 25.1 24.6 24.2 Condenser exit liquid temperature 26.1 27.0 26.1 25.4 24.7 24.1 23.6 23.2 Condensermeantemperature °C 442 43.7 43.3 42.9 42.5 42.1 41.7 41.3 Condenserglide(in-out) K 30.2 31.4 -32.4 33.1 33.6 34.0 342 34.2 * -* * I *I ** *:. :.: :.: : : * Table 85: TheoretIcal Performance Data of Selected R-744/R-152a/R-1234ze(E) blends containing 0-14 % R-744 and 25 % R-152a Composition C02/R-l 52aIR-1 234ze(E) % by weight ________ 0/25/75 2/25/73 4/25/71 6/25/69 8/25/67 10/25/65 12/25/63 14/25/61 COP (heating) 2.10 2.15 2.18 2.21 2.23 2.24 2.26 2.27 COP (heating) re'ative to Reference 99.7% 101.8% 103.4% 104.7% 105.7% 106.4% 107.0% 107.5% Volumetric heating capacity at suction kJ/m3 702 777 856 938 1024 1112 1202 1295 Capacity relative to Reference 79.9% 88.5% 97.5% 106.8% 116.5% 126,5% 136.8% 147.4% Critical temperature °C 111.12 107.72 104.49 101.42 98.50 95.72 93.07 90.54 Critical pressure bar 40.30 41.04 41.78 42.51 43.24 43.96 44.68 45.40 Condenser enthalpy change kJ/kg 256.2 269.1 280.2 289.7 298.1 305.5 312.1 318.2 Pressure ratio 17.40 17.61 17.67 17.61 17.42 17.18 16.87 16.54 Refrigerant mass flow kg/hr 28.1 26.8 25.7 24.9 24.2 23.6 23.1 22.6 Compressordischargetemperature °C 123.8 127.8 131.6 135.0 138.0 140.9 143.5 146.0 Evaporatorinletpressure bar 0.69 0.74 0.79 0.85 0.91 0.98 1.06 1.14 Condenserinletpressure bar 11.0 12.0 13.1 14.2 15.2 16.3 17.3 18.4 -Evaporator inlet temperature °C -29.6 -30.2 -30.8 -31.5 -32.1 -32.9 -33.7 -34.5 Evaporator dewpoint °C -30.4 -29.8 -29.2 -28.5 -27.7 -27.0 -26.2 -25.5 Evaporatorexitgastemperature °C -25.4 -24.8 -24.2 -23.5 -22.7 -22.0 -21.2 -20.5 Evaporator mean temperature -30,0 -30.0 -30.0 -30.0 -29.9 -29.9 -30.0 -30.0 Evaporatorgilde (out-in) K -0.8 0.3 1.6 3.0 4.4 5.9 7.5 9.0 Compressor suction pressure bar 0.63 0.68 0.74 0.81 0.88 0.95 1.03 1.11 Compressordischarge pressure bar 11.0 12.0 13.1 14.2 15.2 16.3 17.3 18.4 Suction line pressure drop Pa/rn 349 304 268 238 214 193 176 161 Pressure drop relative to reference 119.6% 104.0% 91.6% 81.6% 73.2% 66.2% 60.2% 55.1% Condenserdew point 51.1 52.8 54.3 55.6 56.6 57.4 58.1 58.5 Condenser bubble point 50.7 45.7 41.6 38.4 35.7 33.6 31.8 30.3 Condenser exit liquid temperature °C 49.7 44.7 40.6 37.4 34.7 32.6 30.8 29.3 Condenser mean temperature 50.9 49.3 48.0 47.0 46.2 45.5 44.9 44.4 Condenser glide (in-out) K 0.4 7.1 -12.7 17.2 20.9 23.9 26.3 28.2 * * . * * . *. .* * . * . . * * *** S.. *** I S * : : *:. *:.
Table 86: Theoretical Performance Data of Selected R-744/R-152a/R-1234ze(E) blends contaIning 16-30 % R-744 and 25 % R-152a Composition C02!R-1 52aIR-1 234ze(E) % by weight ________ 16/25159 18/25/57 20/25/55 22/25/53 24/25/51 26/25/49 28/25/47 30/25/45 COP (heating) 2.28 2.28 2.29 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 107.9% 108.2% 108.5% 108.6% 108.7% 108.8% 108.8% 108.8% Volumetric heating capacity at suction kJ/m3 1390 1487 1586 1685 1786 1888 1990 2092 Capacity relative to Reference 158.2% 169.3% 180.5% 191.8% 203.3% 214.8% 226.4% 238.1% Critical temperature °C 88.12 85.81 83.59 81.47 79.43 77.48 75.60 73.79 Critical pressure bar 46.12 46.84 47.55 48.26 48.97 49.67 50.38 51.08 Condenserenthalpychange kJ/kg 323.7 329,0 333.9 338.6 343.1 347.4 351.7 355.8 Pressure ratio 16.19 15.83 15.47 15.12 14.79 14.46 14.15 13.86 Refrigerant mass flow kg/hr 22.2 21.9 21.6 21.3 21.0 20.7 20.5 20.2 Compressordischargeternperature °C 148.4 150.7 152.9 155.0 157.1 159.2 161.2 163.3 Evaporatorinletpressure bar 1.22 1.31 1.40 1.50 1.59 1.69 1.79 1.90 Condenserinletpressure bar 19.4 20.4 21.4 22.3 23.3 24.2 25.2 26.1 i-Evaporatorinlettemperature °C -35.4 -36.3 -37.2 -38.2 -39.1 -40.1 -41.0 -41.9 Evaporator dewpoint °C -24.8 -24.2 -23.6 -23.0 -22.5 -22.1 -21.7 -21.3 Evaporatorexitgastemperature °C -19.8 -19.2 -18.6 -18.0 -17.5 -17.1 -16.7 -16.3 Evaporatormeantemperature C -30.1 -30.2 -30.4 -30.6 -30.8 -31.1 -31.3 -31.6 Evaporatorglide(out-in) K 10.6 12.1 13.7 15.1 16.6 18.0 19.3 20.6 Compressorsuction pressure bar 1.20 1.29 1.38 1.48 1.57 1.67 1.78 1.88 Compressordischargepressure bar 19.4 20.4 21.4 22.3 23.3 24.2 25.2 26.1 Suction line pressure drop Palm 148 137 127 118 110 103 97 92 Pressure drop relative to reference 50.6% 46.8% 43.4% 40.4% 37.7% 35.4% 33.3% 31.4% Condenser dew point °C 58.9 59.1 59.1 59.1 59.0 58.8 58.6 58.2 Condenser bubble point °C 29.1 28.0 27.1 26.3 25.7 25.1 24.6 24.2 Condenser exit liquid temperature °C 28.1 27.0 26.1 25.3 24.7 24.1 23.6 23.2 Condensermeantemperature °C 44.0 43.5 43.1 42.7 42.3 42.0 41.6 41.2 Condenserglide (in-out) K 29.8 31.0 32.0 32.8 33.3 33.7 34.0 34.1 * * * * * . ** *.
*:. :.: * Table 87: Theoretical Performance Data of Selected R-744/R-152aIR-1234ze(E) blends containing 0-14 % R-744 and 30 % R-152a Composition CO2IR-l 52a1R-1234ze(E) % by weight ________ 0/30/70 2/30/68 4/30/66 6/30/64 8/30/64 10/30/60 12/30/58 14/30/56 COP (heating) 2.12 2.16 2.19 2.22 2.24 2.25 2.27 2.28 COP (heating) relative to Reference 100.5% 102.5% 104.1% 105.2% 106.2% 106.9% 107.5% 108.0% Volumetricheatingcapacityatsuctjon kJ/m3 716 791 869 950 1034 1121 1211 1303 Capacity relative to Reference 81.5% 90.0% 98.9% 108.1% 117.7% 127.6% 137.8% 148.3% Critical temperature 111.32 108.01 104.87 101.88 99.03 96.31 93.71 91.23 Critical pressure bar 40.87 41.60 42.33 43.06 43.78 44.50 45.21 45.93 Condenserenthalpychange kJlkg 265.3 278.2 289.2 298.8 307.1 314.5 321.2 327.3 Pressure ratio 17.20 17.39 17.45 17.40 17.22 16.99 16.70 16.38 Refrigerant mass flow kg/hr 27.1 25.9 24.9 24.1 23.4 22.9 22.4 22.0 Compressor discharge temperature 125.9 129.9 133.6 136.9 140.0 142.8 145.4 147.9 Evaporatorinletpressure bar 0.70 0.74 0.79 0.85 0.92 0.99 1.06 1.14 Condenserinletpressure bar 11.0 12.1 13.1 14.1 15.2 16.2 17.2 18.2 i Evaporatorinlettemperature °C -29.7 -30.3 -30.9 -31.5 -32.2 -32.9 -33.7 -34.5 Evaporator dewpoint °C -30.4 -29.9 -29.2 -28.5 -27.8 -27.0 -26.3 -25.6 Evaporatorexitgastemperature °C -25.4 -24.9 -24.2 -23.5 -22.8 -22.0 -21.3 -20.6 Evaporator mean temperature -30.1 -30.1 -30.0 -30.0 -30.0 -30.0 -30.0 -30.1 Evaporator glide (out-in) K -0.7 0.4 1.6 3.0 4.4 5.9 7.4 8.9 Compressor suction pressure bar 0.64 0.69 0.75 0.81 0.88 0.95 1.03 1.11 Compressordischargepressure bar 11.0 12.1 13.1 14.1 15.2 16.2 17.2 18.2 Suction line pressure drop Pa/rn 334 291 258 230 207 187 171 157 Pressure drop relative to reference 114.2% 99.8% 88.2% 78.7% 70.8% 64.2% 58.5% 53.6% Condenser dew point 50.8 52.4 53.9 55,2 56.2 57.0 57.7 58.1 Condenserbubblepoint °C 50.4 45.5 41.5 38.3 35.7 33.5 31.8 30.3 Condenser exit liquid temperature 49,4 44.5 40.5 37,3 3.4.7 32.5 30.8 29.3 Condenser mean temperature °C 50.6 49.0 47.7 46.7 45.9 45.3 44.7 44.2 Condenser glide (in-out) K 0.4 7.0 12.4 16.9 20.5 23.5 25.9 27.9 *. ..
* S 5 5 I S *5* *SS 5.. 5 * : : *:..:.
Table 88: Theoretical Performance Data of Selected R-744/R-152aIR-1234ze(E) blends containing 16-30 % R-744 and 30 % R-152a Composition C02/R-1 52aIR-1 234ze(E) % by weight ________ 16/30154 18/30/52 20/30/50 22/30/48 24/30/46 26/30/44 28/30/42 30/30/40 COP (heating) 2.28 2.29 2.30 2.30 2.30 2.30 2.30 2.30 COP (heating) relative to Reference 108.4% 108.7% 108.9% 109.1% 109.2% 109.2% 109.2% 109.2% Volumetric heating capacity at suction kJ/m3 1397 1493 1591 1689 1789 1889 1990 2091 Capacity relative to Reference 159.0% 169.9% 181.0% 192.2% 203.6% 215.0% 226.5% 238.0% Critical temperature 88.86 86.58 84.41 82.31 80.31 78.38 76.52 74.74 Critical pressure bar 46.64 47.35 48.05 48.76 49.46 50.15 50.85 51.55 Condenserenthalpychange kJlkg 332.9 338.1 343.0 347.7 352.3 356.6 360.9 365.0 Pressure ratio 16.04 15.69 15.35 15.01 14.68 14.36 14.06 13.77 Refrigerant mass flow kg/hr 21.6 21.3 21.0 20.7 20.4 20.2 20.0 19.7 Compressordischargeternperature °C 150.2 152.5 154.6 156.7 158.8 160.9 162.9 164,9 Evaporatorinletpressure bar 1.22 1.31 1.40 1.49 1.59 1.69 1.79 1.89 Condenser inlet pressure bar 19.2 20.2 21.2 22.1 23.1 24.0 24.9 25.8 -Evaporator inlet temperature -35.4 -36.2 -37.2 -38.1 -39.0 -39.9 -40.8 -41.7 Evaporator dewpoint °C -24.9 -24.3 -23.7 -23.1 -22.6 -22.2 -21.8 -21.4 Evaporatorexitgastemperature °C -19.9 -19.3 -18.7 -18.1 -17.6 -17.2 -16.8 -16.4 Evaporator mean temperature -30.1 -30.3 -30.4 -30.6 -30.8 -31.0 -31.3 -31.6 Evaporatorgllde (out-in) K 10.5 12.0 13.5 15.0 16.4 17.8 19.1 20.3 Compressor suction pressure bar 1.20 1.29 1.38 1.47 1.57 1.67 1.77 1.87 Compressor discharge pressure bar 19.2 20.2 21.2 22.1 23.1 24.0 24.9 25.8 Suction line pressure drop Pa/rn 144 133 124 115 108 101 95 90 Pressure drop relative to reference 49.4% 45.6% 42.4% 39.5% 36.9% 34.7% 32.6% 30.8% Condenserdewpoint °C 58.5 58.7 58.8 58.8 58.7 58.6 58.3 58.1 Condenser bubble point °C 29.0 28.0 27.1 26.3 25.7 25.1 24.6 24.1 Condenser exit liquid temperature °C 28.0 27.0 26.1 25.3 24.7 24.1 23.6 23.1 Condensermeantemperature °C 43.8 43.3 43.0 42.6 42.2 41.8 41.5 41.1 Condenserglide(in-.out) -K 29.5 30.7 -31.7 32.5 33.1 33.5 33.8 33.9 * . a * a * a.
* a e a a * * PSS eI.** I * * I * * a * a *m Table 89: Theoretical Performance Data of Selected R-7441R-32IR-134a/R1234ze(E) blends containing 0-14 % R-744, 5 % R-32 and 5% R-134a Composition CO2IR-32JR-1 34aIR-I 234ze(E) % by weight ________ 0/5/5190 2/5/5/88 4I515I86 61515/84 8/515/82 10/515/80 12/5/5/78 14/5/5/76 COP (heating) 2,07 2.12 2.15 2.18 2.20 2.21 2.22 2.23 COP (heating) relative to Reference 98.2% 100.3% 101.9% 103.2% 104.1% 104.9% 105.5% 106.0% Volumetric heating capacity at suction kJ/m3 748 833 920 1012 1106 1203 1302 1405 Capacity relative to Reference 85.2% 94.8% 104.7% 115.1% 125.8% 136.9% 148.2% 159.8% Cntical temperature 106.20 102.70 99.37 96.19 93.18 90.31 87.59 84.99 Critical pressure bar 39.52 40.32 41.10 41.86 42.62 43.37 44.11 44.86 Condenserenthalpychange kJIkg 227.4 238.4 247.9 256.2 263.7 270.3 276.5 282.1 Pressure ratio 17.76 17.77 17.68 17.47 17.19 16.87 16.51 16.14 Refrigerant mass flow kg/hr 31.7 30.2 29.0 28.1 27.3 26.6 26.0 25.5 Compressordischargetemperature °C 1185 122.3 125.8 129.0 132.0 134.8 137.5 140.0 Evaporator inlet pressure bar 0.75 0.80 0.86 0.93 1.01 1.09 1.18 1.27 Condenserinletpressure bar 12.1 13.3 14.4 15.6 16.7 17.9 19.0 20.1 Evaporator inlet temperature -29.9 -30.6 -31.3 -32.1 -32.9 -33.7 -34.6 -35.5 Evaporator dewpoint °C -29.4 -28.7 -28.0 -27.3 -26.5 -25.8 -25.1 -24.4 Evaporatorexitgastemperature °C -24.4 -23.7 -23.0 -22.3 -21.5 -20.8 -20.1 -19.4 Evaporator mean temperature °C -29.6 -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 Evaporatorglide (out-in) K 0.5 1.9 3.3 4.8 6.3 7.9 9.5 11.1 Compressor suction pressure bar 0.68 0.75 0.82 0.89 0.97 1.06 1.15 1.24 Compressordischarge pressure bar 12.1 13.3 14.4 15.6 16.7 17.9 19.0 20.1 Suction line pressure drop Pa/rn 358 311 273 242 217 196 178 162 Pressure drop relative to reference 122.7% 106.4% 93.5% 83.0% 74.3% 67.0% 60.9% 55.6% Condenserdewpoint °C 53.6 55.1 56.3 57.2 58.0 58.5 58.9 59.1 Condenser bubble point 48.6 442 40.7 37.9 35.6 33.7 32,1 30.8 Condenser exit liquid temperature 47.6 43.2 39.7 36.9 34.6 32.7 31.1 29.8 Condenser mean temperature 51.1 49.7 48.5 47.6 46.8 46.1 45.5 44.9 Condenserglide(in.-out) K 5.0 10.8 -15.5 19.3 22.4 24.9 26.8 28.4 * S * * S *� 55 S 55 55 S S : : : : : S * *5* 555 Table 90: Theoretical Performance Data of Selected R-7441R-32/R-1 34aJR-1 234ze(E) blends containing 16-30 % R-744, 5 % R-32 and 5 % R-134a Composition C02/R-321R-l 34aIR-I 234ze(E) % by weight ________ 1615/5/74 18/5/5/72 201515/70 22/5/5/68 24/515/66 26/5/5164 28/5/5/62 30/5/5/60 COP (heating) 2.24 2.25 2.25 2.25 2.26 2.26 2.25 2.25 COP (heating) relative to Reference 106.3% 106.6% 106.8% 106.9% 107.0% 107.0% 106.9% 106.8% Volumetric heating capacity at suction kJ/m3 1509 1615 1722 1831 1941 2052 2164 2277 Capacity relative to Reference 171.7% 183.7% 196.0% 208.4% 220.9% 233.5% 246.2% 259.1% Critical temperature 82.52 80.17 77.92 75.76 73.71 71.74 69.85 68.04 Critical pressure bar 45.60 46.34 47.08 47.82 48.56 49.30 50.04 50.78 Condenserenthalpychange kJlkg 287.4 292.4 297.2 301.7 306.1 310.4 314.5 318.5 Pressure ratio 15.77 15.40 15.03 14.68 14.35 14.02 13.72 13.42 Refrigerant mass flow kg/hr 25.1 24.6 24.2 23.9 23.5 23.2 22.9 22.6 Compressordischargetemperature °C 142.4 144.8 147.1 149.3 151.6 153.8 155,9 158.1 Evaporator inlet pressure bar 1.37 1.47 1.57 1.68 1.79 1.90 2.02 2.14 Condenser inlet pressure bar 21.2 22.2 23.3 24.4 25.4 26.5 27.5 28.5 -Evaporatorinlettemperature °C -36.5 -37.4 -38.4 -39.3 -40.2 -41.1 -42.0 -42.8 Evaporator dewpoint °C -23.8 -23.2 -22.7 -22.3 -21.9 -21.5 -21.2 -21.0 Evaporator exit gas temperature -18.8 -18.2 -17.7 -17.3 -16.9 -16.5 -16.2 -16.0 Evaporator mean temperature -30.1 -30.3 -30.5 -30.8 -31.0 -31.3 -31.6 -31.9 Evaporatorglicle (out-in) K 12.7 14.2 15.6 17.0 18.4 19.6 20.8 21.8 Compressor suction pressure bar 1.34 1.45 1.55 1.66 1.77 1.89 2.00 2.12 Compressordischargepressure bar 21.2 22.2 23.3 24.4 25.4 26.5 27.5 28.5 Suction line pressure drop Pa/rn 149 137 127 118 111 103 97 91 Pressure drop relative to reference 51.0% 47.1% 43.6% 40.5% 37.8% 35.4% 33.3% 31.3% Condenser dew point °C 59.2 59.2 59.0 58.8 58.5 58.1 57.7 57.2 Condenser bubble point °C 29.6 28.7 27.9 27.1 26.5 26.0 25.5 25.2 Condenser exit liquid temperature 28.6 27.7 26.9 26.1 25.5 25.0 24.5 24.2 Condenser mean temperature 44.4 43.9 43.5 43.0 42.5 42.1 41.6 41.2 Condenserglide (in-out) K 29.6 30.5 31.2 31.7 32.0 32.1 32.1 32.0 a a a.
* a.. a.
* . . . . . . a.. aa. ... a * * * a a * a. *., *.a Table 91: Theoretical Performance Data of Selected R-744/R-321R.134a/R-1234ze(E) blends containing 0-14 % R-744, 5 % R-32 and % R-134a Composition C02/R-321R-j 34aIR- 1234ze(E) % by weight ________ 0/5/10185 2/5/10/83 4/5110181 6I5110179 8(5I10177 1015110175 1215110173 14/5110/71 COP (heating) 2.08 2.12 2.15 2.18 2.20 2.21 2.23 2.24 COP (heating) relative to Reference 98.5% 100.5% 102.0% 103.3% 104.2% 105.0% 105.5% 106.0% Volumetric heating capacity at suction kJ/m3 766 852 940 1032 1127 1226 1326 1430 Capacity relative to Reference 87.2% 96.9% 107.0% 117.5% 128.3% 139.5% 151.0% 162.7% Critical temperature 105,78 102.29 98.97 95.82 92.83 89.99 87.28 84.71 Critical pressure bar 39.92 40.71 41.48 42.23 42.99 43.73 44.48 45.22 Condenserenthalpychange kJ/kg 228.3 239.1 248.6 256.8 264.2 270.9 276.9 282.5 Pressure ratio 17.57 17.58 17.48 17.27 17.00 16.68 16.33 15.97 Refrigerant mass flow kg/hr 31.5 30.1 29.0 28.0 27.3 26.6 26.0 25.5 Compressordischargetemperature °C 119.0 122.7 126.2 129.4 132.4 135.2 137.8 140.3 Evaporatorinletpressure bar 0.76 0.82 0.88 0.95 1.03 1.11 1.20 1.30 Condenserinletpressure bar 12.3 13.5 14.6 15.8 16.9 18.0 19.2 20.3 Evaporatorinlettemperature °C -30.0 -30.6 -31.4 -32.1 -32.9 -33.7 -34.6 -35.5 Evaporator dewpoint °C -29.4 -28.7 -28.0 -27.3 -26.6 -25.8 -25.1 -24.5 Evaporator exit gas temperature °C -24.4 -23.7 -23.0 -22.3 -21.6 -20.8 -20.1 -19.5 Evaporator mean temperature °C -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 Evaporatorglide (out-in) K 0.6 1.9 3.3 4.8 6.3 7.9 9.4 11.0 Compressor suction pressure bar 0,70 0.77 0.84 0.91 0.99 1.08 1.17 1.27 Compressordischargepressure bar 12.3 13.5 14.6 15.8 16.9 18.0 19.2 20.3 Suction line pressure drop Palm 349 303 267 237 212 192 174 159 Pressure drop relative to reference 119.4% 103.8% 91.3% 81.1% 72.7% 65.7% 59.7% 54.5% Condenser dew point °C 53.4 548 56.0 56.9 57.6 58.2 58.5 58.7 Condenser bubble point °C 48.6 44.3 40.8 38.0 35.7 33.9 32.3 31.0 Condenser exit liquid temperature 47.6 43.3 39.8 37.0 34.7 32.9 31.3 30.0 Condenser mean temperature 51.0 49.6 48.4 47.5 46.7 46.0 45.4 44.8 Condenserglide (in-out) K 4.9 10.5 -15.2 18.9 21.9 24.3 26.2 27.8 * e.
* * ** ** * * * * . * S *.a S.. *S* * * * S S S S a S *.* 555 Table 92: Theoretical Performance Data of Selected R-744/R-32/R-134a/R1234ze(E) blends containing 16-30 % R-744, 5 % R-32 and 10% R-134a Composition C02/R-32/R-134afR-I 234ze(E) % by weight ________ 16/5/10/69 18/5/10/67 20/5/10165 2215110163 2415I10161 2615110/59 2815110157 30/5/10/55 COP (heating) 2.24 2.25 2.25 2.26 2.26 2.26 2.26 2.25 COP (heating) relative to Reference 106.4% 106.7% 106.8% 107.0% 107.0% 107.0% 107,0% 106.9% Volumetric heating capacity at suction kJ/m3 1535 1643 1752 1862 1974 2088 2202 2318 Capacity relative to Reference 174.7% 187.0% 199.4% 212.0% 224.7% 237,6% 250.6% 263.8% Critical temperature °C 82.25 79.91 77.68 75.54 73.50 71.55 69.67 67.87 Critical pressure bar 45.96 46.71 47.45 48.19 48.93 49.67 50.40 51.14 Condenserenthalpychange kJ/kg 287.8 292.8 297.5 302.0 306.3 310.5 314.6 318.5 Pressure ratio 15.60 15.23 14.87 14.52 14.18 13.86 13.55 13.25 Refrigerant mass flow kg/hr 25.0 24.6 24.2 23.8 23.5 23.2 22.9 22.6 Compressordischargetemperature °C 142.8 145.1 147.4 149.6 151.8 154.0 156.1 158.2 Evaporator inlet pressure bar 1.40 1.50 1.60 1.71 1.83 1.94 2.06 2.19 Condenserintetpressure bar 21.4 22.5 23.5 24.6 25.6 26.7 27.7 28.8 Evaporator inlet temperature °C -36.4 -37.3 -38.2 -39.1 -40.0 -40.9 -41.7 -42.5 Evaporatordewpoint °C -23.9 -23.3 -22.8 -22.4 -22.0 -21.6 -21.3 -21.1 Evaporator exit gas temperature -18.9 -18.3 -17.8 -17.4 -17.0 -16.6 -16,3 -16.1 Evaporator mean temperature °C -30.1 -30.3 -30.5 -30.7 -31.0 -31.2 -31.5 -31.8 Evaporator glide (out-in) K 12.5 14.0 15.4 16.8 18.1 19.3 20.4 21.4 Compressor suction pressure bar 1.37 1.47 1.58 1.69 1.81 1.93 2.05 2.17 Compressordischarge pressure bar 21.4 22.5 23.5 24.6 25.6 26.7 27.7 28.8 Suction line pressure drop Palm 146 135 125 116 109 102 95 90 Pressure drop relative to reference 50.1% 46.2% 42.8% 39.8% 37.2% 34.8% 32.7% 30.7% Condenser dew point °C 58.8 58.8 58.6 58.4 58.1 57.7 57.2 56.7 Condenser bubble point °C 29.9 28.9 28.1 27.4 26.8 26.3 25.8 25,4 Condenser exit liquid temperature °C 28.9 27.9 27.1 26.4 25.8 25.3 24.8 24.4 Condensermeantemperature °C 4.4.3 43.8 43.4 42.9 42.4 42.0 41.5 41.1 Condenserglide(in-out) -K 29.0 29.9 30.5 31.0 31.3 31.4 31.4 31.3 * . * * * ** ..
* * . * . * . ** .** **. * * * * * S S 5* *** Table 93: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containIng 0-14 % R-744, 5 % R-32 and 20% R-134a Composition CO2IR-321R-l34aIR-I 234ze(E) % by weight _______ 0/5/20/75 2/5/20/73 4/5120171 615120/69 815/20/67 1015120165 1215/20163 1415120161 COP (heating) 2.08 2.13 2.16 2.18 2.20 2.22 2.23 2.24 COP (heating) relative to Reference 98.9% 100.8% 102.3% 103.5% 104.4% 105.1% 105.7% 106.1% Volumetric heating capacity at suction kJ/m3 801 888 978 1072 1170 1270 1373 1479 Capacity relative to Reference 91.2% 101.1% 111.3% 122,0% 133.1% 144.5% 156.2% 168.3% Critical temperature 104.94 101.49 98.21 95.11 92.16 89.36 86.70 84.16 Critical pressure bar 40.64 41.40 42.16 42.91 43.66 44.41 45.15 45.90 Condenser enthalpy change kJlkg 230.1 240.7 250.0 258.2 265.5 272.1 278.1 283.6 Pressure ratio 17.21 17.22 17.12 16.93 16.65 16.35 16.00 15.65 Refrigerant mass flow kg/hr 31.3 29.9 28.8 27.9 27.1 26.5 25.9 25.4 Compressordischargetemperature °C 120.0 123.7 127.1 130.3 133.3 136.1 138.7 141.2 I. Evaporatorinletpressure bar 0.79 0.85 0.92 0.99 1.07 1.16 1.25 1.35 Condenser inlet pressure bar 12.7 13.8 14.9 16.1 17.3 18.4 19.5 20.6 Evaporatorinlettemperature °C -30.0 -30.7 -31.4 -32.1 -32.8 -33.6 -34.5 -35.3 Evaporator dewpoint °C -29.3 -28.7 -28.1 -27.3 -26.6 -25.9 -25.3 -24.6 Evaporatorexitgastemperature °C -24.3 -23.7 -23.1 -22.3 -21.6 -20.9 -20.3 -19.6 Evaporator mean temperature °C -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 Evaporatorglide (out-in) K 0.7 2.0 3.3 4.7 6.2 7.7 9.2 10.7 Compressor suction pressure bar 0.74 0.80 0.87 0.95 1.04 1.13 1.22 1.32 Compressor discharge pressure bar 12.7 13.8 14.9 16.1 17.3 18.4 19.5 20.6 Suction line pressure drop Pa/rn 332 289 255 227 204 185 168 154 Pressure drop relative to reference i 13.6% 99.0% 87.4% 77.8% 69.9% 63.2% 57.5% 52.6% Condenser dew point 53.0 54.3 55.4 56.3 57.0 57.5 57.8 58.0 Condenser bubble point °C 48.5 44.4 41.0 38.3 36.0 34.2 32.6 31.3 Condenser exit liquid temperature °C 47.5 43.4 40.0 37.3 35.0 33.2 31.6 30.3 Condenser mean temperature 50.8 49.3 48.2 47.3 46.5 45.8 45.2 44.7 Condenser glide (in-out) K 4.5 9.9 14.4 18.0 20.9 23.3 25.2 26.7 * . . . * S ** .* S S * * S S.. 5.5 5S* S * S S S * S * *.. *5S Table 94: Theoretical Performance Data of Selected R-7441R-32jR-j 34aIR-l 234ze(E) blends containing 16-30 % R-744, 5 % R-32 and 20 % R-134a Composition CO2IR-32/R-1 34a/R- 1 234ze(E) % by weight ________ 16/5120/59 1815/20/57 20/5/20/55 22/5120/53 2415120151 2615I20l49 2815/20/47 3015120145 COP (heating) 2.24 2,25 2.25 2.26 2.26 2.26 2.26 2.26 COP (heating) relative to Reference 106.5% 106.7% 106.9% 107.1% 107.1% 107.2% 107.1% 107.1% Volumetric heating capacity at suction kJ/m3 1587 1697 1810 1924 2040 2158 2277 2398 Capacity relative to Reference 180.6% 193.2% 206.0% 219.0% 232.2% 245.6% 259.1% 272.9% Critical temperature °C 81.74 79.43 77.23 75.12 73.11 71.18 69.32 67.55 Critical pressure bar 46.64 47.38 48.12 48.86 49.61 50.35 51.09 51.83 Condenserenthalpychange kJ/kg 288.8 293.7 298.3 302.7 307.0 311.0 315.0 318.8 Pressure ratio 15.28 14.92 14.57 14.22 13.89 13.56 13.25 12.95 Refrigerant mass flow kg/hr 24.9 24.5 24.1 23.8 23.5 23.1 22.9 22.6 Compressordischargetemperature °C 143.6 145.9 148.1 150.3 152.4 154.5 156.6 158.6 Evaporator inlet pressure bar 1.45 1.55 1.66 1.78 1.90 2.02 2.14 2.27 Condenser inlet pressure bar 21.7 22.8 23.9 25.0 26.1 27.1 28.2 29.2 Lfl Evaporatorinlettemperature °C -36.2 -37.0 -37.9 -38.8 -39.6 -40.4 -41.2 -41.9 Evaporatordewpoint °C -24.0 -23.5 -23.0 -22.5 -22.1 -21.8 -21.5 -21.2 Evaporatorexitgastemperature °C -19.0 -18.5 -18.0 -17.5 -17.1 -16.8 -16.5 -16.2 Evaporator mean temperature °C -30.1 -30.3 -30.4 -30.6 -30.9 -31.1 -31.3 -31.6 Evaporatorglide (out-in) K 12.1 13.5 14.9 16.2 17.4 18.6 19.7 20.7 Compressor suction pressure bar 1.42 1.53 1.64 1.76 1.88 2.00 2.13 2.26 Compressordischargepressure bar 21.7 22.8 23.9 25.0 26.1 27.1 28.2 29.2 Suction linepressuredrop Palm 141 130 121 112 105 98 92 87 Pressure drop relative to reference 48.3% 44.6% 41.4% 38.5% 35.9% 33.6% 31.6% 29.7% Condenser dew point °C 58.0 58.0 57.8 57.6 57.3 56.9 56.4 55.9 Condenser bubble point °C 30.2 29.3 28.5 27.8 27.2 26.7 26.3 25.9 Condenser exit liquid temperature 29.2 28.3 27.5 26.8 26.2 25.7 25.3 24.9 Condensermeantemperature °C 44.1 43.6 43.2 42.7 42.3 41.8 41.4 40.9 Condenserglide (in-out) K 27.8 28.7 29.4 29.8 30.1 30.2 30.2 30.0 * I * S * S *S ** * S S S S * S *55 **S *SS * * * . S * * S S *** *51 Table 95: Theoretical Performance Data of Selected R-744/R-321R-134a/R-1234ze(E) blends containing 014 % R-744, 5 % R-32 and 30% R-134a Composition CO2IR-321R-1 34alR-I 234ze(E) % by weight ________ 0/5/30/65 215130163 415130161 615130159 815130157 1012130155 1215/30/53 14/5130/51 COP (heating) 2.09 2.13 -2.16 2.19 2.20 2.22 2.23 2.24 COP (heating) relative to Reference 99.2% 101.1% 102.5% 103.7% 104.5% 105.2% 105.8% 106.2% Volumetric heating capacity at suction kJ/m3 833 922 1014 1109 1209 1311 1417 1525 Capacity relative to Reference 94.9% 104.9% 115.4% 126.3% 137.6% 149.2% 161.2% 173.6% Critical temperature 104.11 100.71 97.48 94.43 91.52 88.76 86.14 83.64 Critical pressure bar 41.22 41.98 42.74 43.49 44.24 44.99 45.74 46.49 Condenserenthalpychange kJ/kg 232.0 242.5 251.7 259.9 267.1 273.6 279.5 285.0 Pressure ratio 16.90 16.91 16.81 16,63 16.36 16.06 15.72 15.37 Refrigerant mass flow kg/hr 31.0 29.7 28.6 27.7 27.0 26.3 25.8 25.3 Compressordischargetemperature 121.0 124.7 128.2 131.3 134.3 137.0 139.6 142.1 I. Evaporator inlet pressure bar 0.82 0.88 0.95 1.03 1.11 1.20 1.29 1.39 Condenser inlet pressure bar 13.0 14.1 15.3 16.4 17.6 18.7 19.9 21.0 Evaporatorinlettemperature -30.1 -30.7 -31.4 -32.1 -32.8 -33.5 -34.3 -35.1 Evaporator dewpoint 00 -29.4 -28.8 -28.1 -27.4 -26.7 -26.1 -25.4 -24.8 Evaporator exit gas temperature -24.4 -23.8 -23.1 -22.4 -21.7 -21,1 -20.4 -19.8 Evaporator mean temperature -29.7 -29.7 -29.7 -29.7 -29.8 -29.8 -29.9 -30.0 Evaporator glide (out-in) K 0.7 1.9 3.2 4.6 6.0 7.5 8.9 10.4 Compressor suction pressure bar 0.77 0.83 0.91 0.99 1.07 1.17 1.26 1.37 Compressordischargepressure bar 13.0 14.1 15.3 16.4 17.6 18.7 19.9 21.0 Suction line pressure drop Palm 317 277 245 219 197 178 162 148 Pressure drop relative to reference 108.5% 94.9% 83.9% 74.8% 67.3% 60.9% 55.5% 50.8% Condenserdewpoint °C 52.6 53.8 54.9 55.7 56.3 56.8 57.1 57,3 Condenser bubble point °C 48.5 44.4 41.1 38.4 36.2 34.4 32.9 31.6 Condenser exit liquid temperature °C 47.5 43.4 40.1 37.4 35.2 33.4 31.9 30.6 Condenser mean temperature oc 50.5 49.1 48.0 47.1 46.3 45.6 45.0 44.4 Condenserglide(in-out) K 4.1 9.4 -13.7 17.3 20.1 22.4 24.3 25.7 * S a * S ** *.
* . a * S * * *5* Se. ..* * a a a a a S S a *aa *a.
Table 96: Theoretical Performance Data of Selected R-744/R-321R-134a/R-1234ze(E) blends containing 16-30 % R-744, 5 % R-32 and 30 % R-134a Composition C02!R-32/R-j34a/R-I 234ze(E) % by weight ________ 16/5/30/49 18/5/30/47 20I5130145 22/5130143 24/5130141 2615130139 2815!30137 3015!30I35 COP (heating) 2.25 2.25 2.26 2.26 2.26 2.26 2.26 2.26 COP (heating) relative to Reference 106.6% 106.9% 107.1% 107.2% 107.3% 107,3% 107.3% 107.3% Volumetric heating capacity at suction kJ/m3 1636 1749 1865 1983 2102 2224 2347 2473 Capacity relative to Reference 186.2% 199.1% 212.3% 225.6% 239.3% 253.1% 267.1% 281.4% Cntical temperature °C 81.25 78.98 76.80 74.72 72.73 70.82 68.99 67.24 Critical pressure bar 47.24 47.98 48.73 49.47 50.22 50.96 51.71 52.45 Condenserenthalpychange kJfkg 290.1 294.9 299.5 303.8 308.0 311.9 315.7 319.4 Pressure ratio 15.02 14.66 14.31 13.96 13.63 13.30 12.99 12.69 Refrigerant mass flow kg/hr 24.8 24.4 24.0 23.7 23.4 23.1 22.8 22.5 Compressordischargetemperature 144.5 146.7 148.9 151.1 153.1 155.2 157.2 159.2 Evaporatorinletpressure bar 1.50 1.61 1.72 1.84 1.96 2.09 2.22 2.35 Condenser inlet pressure bar 22.1 23.2 24.3 25.4 26.5 27.6 28.6 29.7 Evaporatorinlettemperature °C -36.0 -36.8 -37.6 -38.4 -39.2 -40.0 -40.7 -41.4 Evaporatordewpoint °C -24.2 -23.7 -23.2 -22.7 -22.3 -22.0 -21.7 -21.4 Evaporatorexitgastemperature °C -19.2 -18.7 -18.2 -17.7 -17.3 -17.0 -16.7 -16.4 Evaporatormeantemperature °C -30.1 -30.2 -30.4 -30.6 -30.8 -31.0 -31.2 -31.4 Evaporatorglide(out-in) K 11.8 13.1 14.4 15.7 16.9 18.0 19.1 20.0 Compressor suction pressure bar 1.47 1.58 1.70 1.82 1.94 2.07 2.20 2.34 Compressordischarge pressure bar 22.1 23.2 24.3 25.4 26.5 27.6 28.6 29.7 Suction line pressure drop Palm 136 126 117 109 102 95 89 84 Pressure drop relative to reference 46.7% 43.2% 40.0% 37.2% 34.8% 32.6% 30.6% 28.8% Condenserdew point 57.4 57.3 57.1 56.9 56.6 56.2 55.8 55.2 Condenser bubble point °C 30.5 29.6 28.8 28.1 27.6 27.1 26.7 26.3 Condenser exit liquid temperature 29.5 28.6 27.8 27.1 26.6 26.1 25.7 25.3 Condenser mean temperature 43.9 43.4 43.0 42.5 42.1 41.6 41.2 40.8 Condenser glide (in-out) K 26.9 27.7 28.3 28.8 29.0 29.1 29.1 28.9 * * a * * * a. .a * * S * * * * S'* *.* *5* S S * a a. S * a 55* 555 Table 97: Theoretical Performance Data of Selected R-7441R-3VR-134a/R-1234ze(E) blends containing 0-14 % R-744, 5 % R-32 and % R-134a Composition CO2IR-321R-134aIR.
I 234ze(E) % by weight ________ 0/5/40/55 215140153 415140151 6/5140/49 815140147 10/5140/45 12/5140/43 1415140141 COP (heating) 2.10 2.14 2.17 2.19 2.21 2.22 2.23 2,24 COP (heating) relative to Reference 99.6% 101.4% 102.8% 103.9% 104.7% 105.4% 106.0% 106.4% Volumetric heating capacity at suction kJ/m3 863 953 1047 1144 1245 1350 1457 1568 Capacity relative to Reference 98.2% 108.5% 119.1% 130.2% 141.7% 153.7% 165.9% 178.5% Critical temperature °C 103.30 99.95 96.78 93.77 90.91 88.19 85.60 83.14 Critical pressure bar 41.67 42.44 43.21 43.97 44.73 45.49 46.24 47.00 Condenserenthalpy change kJlkg 234.1 244.6 253.7 261.8 269.0 275.4 281.3 286.8 Pressure ratio 16.63 16.64 16.55 16.37 16.11 15.81 15.49 15.14 Refrigerant mass flow kg/hr 30.8 29.4 28.4 27.5 26.8 26.1 25.6 25.1 Compressordischargeternperature °C 122.1 125.8 129.3 132.5 135.4 138.1 140.7 143.1 I. Evaporatorinletpressure bar 0.85 0.91 0.98 1.06 1.14 1.23 1.33 1.43 Condenser inlet pressure bar 13.2 14.4 15.5 16.7 17.9 19.0 20.2 21.3 00 Evaporator inlet temperature -30.1 -30.7 -31.3 -32.0 -32.7 -33.4 -34.2 -35.0 Evaporator dewpoint °C -29.4 -28.9 -28.2 -27.6 -26.9 -26.2 -25.5 -24.9 Evaporatorexitgastemperature °C -24.4 -23.9 -23.2 -22.6 -21.9 -21.2 -20.5 -19.9 Evaporator mean temperature °C -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 -30.0 Evaporatorglide (out-in) K 0.7 1.8 3.1 4.5 5.8 7.2 8.6 10.0 Compressor suction pressure bar 0.79 0.86 0.94 1.02 1.11 1.20 1.30 1.41 Compressor discharge pressure bar 13.2 14.4 15.5 16.7 17.9 19.0 20.2 21.3 Suction line pressure drop Pa/rn 304 266 236 211 190 172 157 144 Pressure drop relative to reference 104.0% 91.2% 80,8% 72.2% 65.0% 58.9% 53.7% 49.2% Condenserdewpoint °C 52.1 53.3 54.3 55.1 55.8 56.2 56.5 56.7 Condenser bubble point 48.5 44.5 41.2 38.5 36.4 34.5 33.0 31.8 Condenser exit liquid temperature 47.5 43.5 40.2 37.5 35.4 33.5 32.0 30.8 Condenser mean temperature °C 50.3 48.9 47.8 46.8 46.1 45.4 44.8 44.2 Condenser glide (in-out) K 3.6 8.8 -13.1 16.6 19.4 21.7 23.5 24.9 * S * S * S *, Si S S S * S S S S.. *** S.. * S S * S S S * .5* *SS Table 98: Theoretical Performance Data of Selected R-744/R-321R-134a/R-1234ze(E) blends containing 16-30 % R-744, 5 % R-32 and 40 % R-134a Composition CO2IR-32/R-1 34alR-I 234ze(E) % by weight ________ 16/5/40/39 18/5/40/37 20/5/40/35 22/5/40/33 24/5/40/31 26/5/40129 28/5/40/27 30/5/40/25 COP (heating) 2.25 2.26 2.26 2.26 2.27 2.27 2.27 2.27 COP (heating) relative to Reference 106.7% 107.0% 107.2% 107.3% 107.4% 107.5% 107.5% 107.4% Volumetric heating capacity at suction kJ/m3 1682 1798 1916 2037 2160 2284 2411 2540 Capacity relative to Reference 191.4% 204.6% 218.1% 231.8% 245.8% 260.0% 274.4% 289.1% Critical temperature 80.79 78.54 76.39 74.34 72.38 70.49 68.68 66.95 Critical pressure bar 47.75 48.51 49.26 50.01 50.76 51.51 52.26 53.01 Condenserenthalpychange kJ/kg 291.8 296.6 301.0 305.3 309.4 313.2 317.0 320.6 Pressure ratio 14.79 14.44 14.09 13.74 13.41 13.09 12.78 12.48 Refrigerant mass flow kgfhr 24.7 24.3 23.9 23.6 23.3 23.0 22.7 22.5 Compressordischargetemperature °C 145.5 147.7 149.9 152.0 154.0 156.0 158.0 159.9 Evaporator inlet pressure bar 1.54 1.65 1.77 1.89 2.02 2.15 2.29 2.43 CondenserinletpressUre bar 22.4 23.6 24.7 25.8 26.9 27.9 29.0 30.1 Evaporatorinlettemperature °C -35.8 -36.6 -37.4 -38.2 -38.9 -39.7 -40.4 -41.1 Evaporator dewpoint °C -24.4 -23.8 -23.3 -22.9 -22.5 -22.1 -21.8 -21.6 Evaporatorexitgastemperature °C -19.4 -18.8 -18.3 -17.9 -17.5 -17.1 -16.8 -16.6 Evaporator mean temperature -30.1 -30.2 -30.4 -30.5 -30.7 -30.9 -31.1 -31.3 Evaporator glide (out-in) K 11.4 12.8 14.1 15.3 16.5 17.6 18.6 19.5 Compressor suction pressure bar 1.52 1.63 1.75 1.87 2.00 2.13 2.27 2.41 Compressor discharge pressure bar 22.4 23.6 24.7 25.8 26.9 27.9 29.0 30.1 Suction line pressure drop Palm 132 122 113 106 99 92 87 82 Pressure drop relative to reference 45.3% 41.8% 38.8% 36.1% 33.7% 31.6% 29.7% 27.9% Condenser dew point °C 56.7 56.7 56.5 56.3 56.0 55.6 55.2 54.7 Condenser bubble point °C 30.7 29.8 29.0 28.3 27.8 27.3 26.9 26.6 Condenser exit liquid temperature °C 29.7 28.8 28.0 27.3 26.8 26.3 25.9 25.6 Condensermean temperature °C 43.7 43.2 42.8 42.3 41.9 41.5 41.0 40.6 Condenser glide (in-out) K 26.1 26.9 27.5 28.0 28.2 28.3 28.3 28.1 * I S 5 * S S. *I * S * S S * I 1* **S.5. S S * S S S S S S 5.5 S*.
Table 99: Theoretical Performance Data of Selected R-7441R-321R-134a/R-1234ze(E) blends containing 0-14 % R-744, 5 % R-32 and % R-134a Composition C02/R-32/R-1 34a!R-I 234ze(E) % by weight ________ 0/5/50/45 2/5/50/43 415/50/41 6/5/50/39 8/5150/37 1015/50/35 12/5150/33 14/5/50131 COP (heating) 2.11 2.15 2.17 2.20 2.21 2.23 2.24 2.25 COP (heating) relative to Reference 100.0% 101.7% 103.1% 104.1% 105.0% 105.6% 106.2% 106.6% Volumetric heating capacity at suction kJ/m3 890 981 1076 1176 1278 1385 1495 1607 Capacity relative to Reference 101.3% 111.7% 122.5% 133.8% 145.5% 157.6% 170.1% 182.9% Critical temperature 102.50 99.21 96.09 93.13 90.31 87.63 85.09 82.66 Critical pressure bar 42.02 42.80 43.58 44.35 45.12 45.89 46.66 47.43 Condenser enthalpy change kJ/kg 236.4 246.8 256.0 264.0 271,2 277.6 283.5 288.9 Pressure ratio 16.40 16.42 16.33 16.15 15.91 15.61 15.30 14.95 Refrigerantmassflow kg/hr 30.5 29.2 28.1 27.3 26.6 25.9 25.4 24.9 Compressordischargeternperature °C 123.3 127.1 130.5 133.7 136.6 139.3 141.9 144.3 I. Evaporator inlet pressure bar 0.87 0.93 1.01 1.08 1.17 1.26 1.36 1.47 U.) Condenserinletpressure bar 13.4 14.6 15.8 17.0 18.1 19.3 20.5 21.6 Evaporatoriniettemperature °C -30.1 -30.7 -31.3 -32.0 -32.6 -33.3 -34.1 -34.9 Evaporatordewpoint °C -29.5 -29.0 -28.3 -27.7 -27.0 -26.3 -25.7 -25.1 Evaporatorexitgastemperature C -24.5 -24.0 -23.3 -22.7 -22.0 -21.3 -20.7 -20.1 Evaporator mean temperature °C -29.8 -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 -30.0 Evaporator glide (out-in) K 0.6 1.7 3.0 4.3 5.6 7.0 8,4 9.8 Compressor suction pressure bar 0.82 0.89 0.97 1.05 1.14 1.24 1.34 1.44 Compressordischargepressure bar 13.4 14.6 15.8 17.0 18.1 19.3 20.5 21.6 Suction line pressure drop Pa/rn 293 257 228 204 184 167 152 139 Pressure drop relative to reference 100.2% 87.9% 78.0% 69.8% 62.9% 57.0% 52.0% 47.7% Condenserdewpoint °C 51.6 52.8 53.8 54.6 55.3 55.7 56.0 56.2 Condenser bubble point °C 48.5 44.5 41.2 38.6 36.4 34.6 33.1 31.8 Condenserexitliquidtemperature °C 47.5 43.5 40.2 37.6 35.4 33.6 32.1 30.8 Condenser mean temperature 50.0 48.6 47.5 46.6 45.8 45.1 44.5 44.0 Condenserglide(in-out) K 3.2 8.3 12.6 16.1 18.9 21.1 22.9 24.4 * * . * * * *1 *S * * . S S 5 5* *** S.. S I * . * S * * 5*S *** Table 100: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containIng 16-30 % R-744, 5 % R-32 and 50% R-134a Composition CO2IR-321R-134aIR-I 234ze(E) % by weight ________ 16/5150/29 18/5150127 2015150125 2215150123 2415150121 2615150119 2815150117 3015150/15 COP (heating) 225 2.26 2.26 2.27 2.27 2.27 2.27 2.27 COP (heating) relative to Reference 106.9% 107.2% 107.4% 107.5% 107.6% 107.7% 107.7% 107.6% Volumetricheatingcapacityatsuction kJ/m3 1723 1841 1962 2085 2211 2338 2467 2599 Capacity relative to Reference 196.1% 209.6% 223.3% 237.3% 251.6% 266.1% 280.8% 295.8% Critical temperature 80.34 78.12 76.00 73.98 72.04 70.17 68.39 66.67 Critical pressure bar 48.19 48.96 49.72 50.48 51.24 52.00 52.76 53.52 Condenserenthalpychange kJ/kg 293.9 298.6 303.0 307.2 311.2 315.1 318.7 322.3 Pressure ratio 14.61 14.26 13.91 13.57 13.24 12.93 12.62 12.32 Refrigerant mass flow kg/hr 24.5 24.1 23.8 23.4 23.1 22.9 22.6 22.3 Compressordischargetemperature °C 146.6 148.9 151.0 153.1 155.1 157.1 159.0 160.9 I. Evaporatorinletpressure bar 1.58 1.69 1.81 1.94 2.07 2.20 2.34 2.48 U.) Condenser inlet pressure bar 22.7 23.9 25.0 26.1 27.2 28.3 29.4 30.4 I. Evaporator inlet temperature -35.6 -36.4 -37,2 -38.0 -38.8 -39.5 -40.2 -40.9 Evaporatordewpoint °C -24.5 -23.9 -23.4 -23.0 -22.6 -22.2 -21.9 -21.6 Evaporatorexitgastemperature °C -19.5 -18.9 -18.4 -18.0 -17.6 -17.2 -16.9 -16.6 Evaporator mean temperature °C -30.1 -30.2 -30.3 -30.5 -30.7 -30.9 -31.1 -31.3 Evaporatorglide (out-in) K 11.2 12.5 13.8 15.0 16.2 17.3 18.3 19.2 Compressor suction pressure bar 1.56 1.67 1.80 1.92 2.05 2.19 2.33 2.47 Compressordischarge pressure bar 22.7 23.9 25.0 26.1 27.2 28.3 29.4 30.4 Suction line pressure drop Pa/rn 128 119 110 103 96 90 84 79 Pressure drop relative to reference 43.9% 40.6% 37.7% 35.1% 32.8% 30.7% 28.9% 27.2% Condenser dew point 56.2 56.2 56.0 55.8 55.5 55.1 54.7 54.2 Condenser bubble point 30.8 29.9 29.1 28.4 27.9 27.4 27.0 26.7 Condenser exit liquid temperature °C 29.8 28.9 28.1 27.4 26.9 26.4 26.0 25.7 Condensermeantemperature °C 43.5 43.0 42.6 42.1 41.7 41.3 40.9 40.4 Condenser glide (in-out) K 25.5 26.3 -26.9 27.4 27.6 27.7 27.7 27.5 * . * * * * *. ** * * * * * . * *** **. S.. * * * S * S S I III *II Table 101: Theoretical Performance Data of Selected R-744/R-321R-j 34aIR-1 234ze(E) blends containing 0-14 % R-744, 10 % R-32 and 5% R-134a Composition C02/R-321R-1 34aIR.
1234ze(E) % by weight ________ 0/10/5/85 2/10/5183 411015/81 6I10i5179 8!10I5177 10110I5I75 12!10I5!73 14I10I5171 COP (heating) 2.13 2.16 2.18 2.21 2.22 2.23 2.25 2.25 COP (heating) relative to Reference 100.8% 102.4% 103.6% 104.6% 105.4% 106.0% 106.5% 106.9% Volumetric heating capacity at suction kJ/m3 865 953 1044 1139 1237 1337 1439 1544 Capacity relative to Reference 98.4% 108.5% 118.9% 129.7% 140.7% 152.1% 1638% 175.7% Critical temperature 103.31 100.13 97.08 94.18 91.40 88.76 86.23 83.82 Critical pressure bar 41.66 42.48 43.26 44.03 44.79 45.54 46.28 47.03 Condenser enthalpy change kJ/kg 240.9 250.5 258.9 266.5 273.3 279.6 285.4 290.8 Pressure ratio 16.85 16.76 16.59 16.35 16.07 15.77 15.44 15.12 Refrigerant mass flow kg/hr 29.9 28.7 27.8 27.0 26.3 25.8 25.2 24.8 Compressordischargetemperature °C 123.1 126.5 129.7 132.7 135.6 138,2 140.8 143.2 I. Evaporator inlet pressure bar 0.84 0.90 0.97 1.05 1.13 1.22 1.31 1.41 Condenserinletpressure bar 13.2 14.3 15.5 16.6 17.7 18.8 19.9 20.9 Evaporatorinlettemperature °C -30.8 -31.5 -32.2 -33.0 -33.8 -34.6 -35.4 -36.3 Evaporator dewpoint °C -28.6 -27.9 -27.2 -26.5 -25.8 -25.2 -24.6 -24.0 Evaporatorexitgastemperature °C -23.6 -22.9 -22.2 -21.5 -20.8 -20.2 -19.6 -19.0 Evaporator mean temperature -29.7 -29.7 -29.7 -29.7 -29.8 -29.9 -30.0 -30.1 Evaporatorglide(out-in) K 2.2 3.5 5.0 6.4 7.9 9.4 10.9 12.3 Compressor suction pressure bar 0.79 0.86 0.93 1.01 1.10 1.19 1.29 1.39 Compressordischarge pressure bar 13.2 14.3 15.5 16.6 17.7 18.8 19.9 20.9 Suction line pressure drop Pa/rn 297 262 233 209 189 172 157 144 Pressure drop relative to reference 101.6% 89.6% 79.7% 71.5% 64.7% 58.8% 53.8% 49.4% Condenser dew point 53.6 54.7 55.7 56.4 56.9 57.3 57.6 57.7 Condenser bubble point °C 46.0 42.5 39.6 37.2 35.2 33.6 32.2 31.0 Condenser exit liquid temperature °C 45.0 41.5 38.6 36.2 34.2 32.6 31.2 30.0 Condenser mean temperature °C 49.8 48.6 47.6 46.8 46.1 45.5 44.9 44.3 Condenserglide(in-out) K 7.7 12.3 16.1 19.2 21.7 23.7 25.4 26.7 -. . * * ** *1 * *1 * * S * *5S *** ... . * * * S * S * *** *** Table 102: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 5 % R-134a Composition CO2IR-32!R-l34aJR-I 234ze(E) % by weight ________ 16/10/5/69 18110/5/67 2011015165 2211015163 2411015161 2611 0I5159 2811015/57 30/10/5155 COP (heating) 2.26 2.26 2.27 2.27 2.27 2.27 2.27 2.26 COP (heating) relative to Reference 107.1% 107.3% 107.5% 107.5% 107.6% 107.5% 107.5% 107.4% Volumetric heating capacity y at suction kJ/m3 1650 1758 1868 1979 2092 2206 2323 2440 Capacity relative to Reference 187.8% 200.1% 212.6% 225.3% 238.1% 251.1% 264.3% 277.7% Critical temperature 81.51 79.31 77.20 75.17 73.24 71.38 69.59 67.88 Critical pressure bar 47.77 48.51 49.25 49.99 50.72 51.46 52.19 52.93 Condenserenthalpychange kJ/kg 295.9 300.8 305.4 309.9 314.1 318.3 322.3 326.1 Pressure ratio 14.79 14.46 14.14 13.84 13.54 13.25 12,96 12.69 Refrigerant mass flow kg/hr 24.3 23.9 23.6 23.2 22.9 22.6 22.3 22.1 Compressordischargetemperature °C 145.6 147.9 150.2 152.4 154.6 156.7 158.8 160.9 I. Evaporator inlet pressure bar 1.51 1.62 1.72 1.84 1.95 2.07 2.19 2.32 Condenser inlet pressure bar 22.0 23.1 24.1 25.1 26.2 27.2 28.2 29.3 Evaporator inlet temperature -37.2 -38.0 -38.9 -39.7 -40.5 -41.2 -41.9 -42.6 Evaporatordewpoint °C -23.4 -23.0 -22.5 -22.1 -21.8 -21.5 -21.3 -21.0 Evaporatorexitgastemperature DC -18.4 -18.0 -17.5 -17.1 -16.8 -16.5 -16.3 -16.0 Evaporatormeantemperature °C -30.3 -30.5 -30.7 -30.9 -31.1 -31.4 -31.6 -31.8 Evaporatorglide(out-in) K 13.7 15.1 16.3 17.5 18.7 19.7 20.7 21.5 Compressor suction pressure bar 1.49 1.59 1.70 1.82 1.93 2.05 2.18 2.30 Compressordischarge pressure bar 22.0 23.1 24.1 25.1 26.2 27.2 28.2 29.3 Suction line pressure drop Palm 133 124 115 107 101 94 89 84 Pressure drop relative to reference 45.6% 42.3% 39.4% 36.8% 34.4% 32.3% 30.4% 28.7% Condenserdewpoint °C 57.7 57.6 57.4 57.1 56.8 56.4 55.9 55.4 Condenser bubble point °C 30.0 29.1 28.3 27.7 27.1 26.6 26.2 25.9 Condenser exit liquid temperature °C 29.0 28.1 27.3 26.7 26.1 25.6 25.2 24.9 Condenser mean temperature 43.8 43.3 42.9 42.4 42.0 41.5 41.1 40.6 Condenserglide(in-out) K 27.7 28.5 29.1 29.4 29.7 29.7 29.7 29.5 * . S * * . .. *5 * * S * * S S *45 *S* * S * S S S S S * .5S *CS Table 103: Theoretical Performance Data of Selected R-744/R-321R-134aJR-1234ze(E) blends containing 0-14 % R-744, 10 % R-32 and 10% R-134a Composition C02/R-32IR-1 34aIR- 1234ze(E) % by weight ________ 0110/10/80 2/10/10/78 4/10/10/76 6/10/10(74 8/10(10(72 10I10l10I70 12/10/10168 14(10/10/66 COP (heating) 2.13 2.16 -2.19 2.21 2.22 2.24 2.25 2.25 COP (heating) relative to Reference 100.9% 102.5% 103.7% 104.7% 105.4% 106.0% 106.5% 106.9% Volumetric heating capacity at suction kJ/m3 883 972 1064 1160 1258 1359 1463 1569 Capacity relative to Reference 100.5% 110.6% 121.1% 132.0% 143.2% 154.7% 166.5% 178.6% Critical temperature. °C 102.94 99.76 96.73 93.84 91.08 88.45 85.94 83.55 Critical pressure bar 42.01 42.80 43.57 44.34 45.09 45.84 46.59 47.33 Condenserenthalpychange kJ/kg 241.7 251.1 259.6 267.1 273.9 280.1 285.9 291.3 Pressure ratio 16.67 16.58 16.42 16.18 15.91 15.61 15.29 14.97 Refrigerant mass flow kg/hr 29.8 28.7 27.7 27.0 26.3 25.7 25.2 24.7 Compressordischargetemperature °C 123.6 127.0 130.2 133.2 136.0 138.6 141.2 143.6 Evaporator inlet pressure bar 0.85 0.92 0.99 1.07 1.15 1.24 1.34 1.44 Condenserinletpressure bar 13.4 14.5 15.6 16.7 17.8 18.9 20.0 21.1 -Evaporatorinlettemperature DC -30.8 -31.5 -32.2 -32.9 -33.7 -34.5 -35.3 -36.2 Evaporator dewpoint °C -28.6 -28.0 -27.3 -26.6 -25.9 -25.3 -24.7 -24.1 Evaporator exit gas temperature °C -23.6 -23.0 -22.3 -21.6 -20.9 -20.3 -19.7 -19.1 Evaporator mean temperature -29.7 -29.7 -29.7 -29.8 -29,8 -29.9 -30.0 -30.1 Evaporatorglide (out-in) K 2.2 3.5 4.9 6.3 7.8 9.2 10.7 12.1 Compressor suction pressure bar 0.80 0.87 0.95 1.03 1.12 1.21 1.31 1.41 Compressordischarge pressure bar 13.4 14.5 15.6 16.7 17.8 18.9 20.0 21.1 Suction line pressure drop Pa/rn 290 256 228 205 185 169 154 142 Pressure drop relative to reference 99.3% 87.7% 78.1% 70.1% 63.4% 57.7% 52.8% 48.6% Condenser dew point 53.4 54.4 55.3 56.0 56.6 57.0 57.2 57.3 Condenser bubble point 46.1 42.6 39.7 37.4 35.4 33.8 32.4 31.2 Condenser exit liquid temperature 45.1 41.6 38.7 36.4 34.4 32.8 31.4 30.2 Condenser mean temperature °C 49.7 48.5 47.5 46.7 46.0 45.4 44.8 44.2 Condenserglide (in-out) K 7.3 11.9 15.6 18.7 21.2 23.2 24.8 26.1
-U
a a ** a, * I I I I * * ** *.a... a a * , S a a a a *a* a,.
Table 104: Theoretical Performance Data of Selected R-744/R-321R-1 34a/R-1 234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 10% R-134a Composition C02/R-32/R-1 34aIR-I 234ze(E) % by weight _____ 16/10/10/64 18/10/10/62 20110110160 22110110158 24/10110156 2611 OIl 0154 28110110152 30/10/10150 COP (heating) 2.26 2.26 2.27 2.27 2.27 2.27 2.27 2.27 COP (heating) relative to Reference 107.2% 107.4% 107.5% 107.6% 107.6% 107.6% 107.6% 107.5% Volumetric heating capacity at suction kJ/m3 1677 1787 1898 2011 2126 2243 2362 2483 Capacity relative to Reference 190.8% 203.3% 216.0% 228.9% 242.0% 255.3% 268.8% 282.5% Critical temperature 81.26 79.07 76.97 74.96 73.03 71.19 69.41 67.71 Critical pressure bar 48.07 48.81 49.55 50.29 51.03 51.76 52.50 53.23 Conderiserenthalpychange kJ/kg 296.3 301.2 305.8 310.2 314.4 318.5 322.4 326.2 Pressure ratio 14.64 14.32 14.00 13.69 13.39 13.10 12.81 12.54 Refrigerant mass flow kg/hr 24.3 23.9 23.5 23,2 22.9 22.6 22.3 22.1 Compressordischarge temperature C 146.0 148.3 150.5 152.7 154.9 157.0 159.0 161.1 I. Evaporator inlet pressure bar 1.54 1.64 1.76 1.87 1.99 2.11 2.24 2.37 U.) Condenser inlet pressure bar 22.2 23.3 24.3 25.4 26.4 27.4 28.5 29.5 Ui Evaporatorinlettemperature,C -37.0 -37.8 -38.6 -39.4 -40.2 -40.9 -41.6 -42.2 Evaporator dewpoint °C -23.6 -23.1 -22.6 -22.3 -21.9 -21.6 -21.4 -21.2 Evaporatorexitgastemperature °C -18.6 -18.1 -17.6 -17.3 -16.9 -16.6 -16.4 -16.2 Evaporator mean temperature °C -30.3 -30.5 -30.6 -30.8 -31.1 -31.3 -31.5 -31.7 Evaporatorglide (out-in) K 13.5 14.8 16.0 17.2 18.3 19.3 20.2 21.1 Compressor suction pressure bar 1.52 1.62 1.74 1.85 1.97 2.09 2.22 2.35 Compressor discharge pressure bar 22.2 23.3 24.3 25.4 26.4 27.4 28.5 29.5 Suction line pressure drop Pa/rn 131 122 113 106 99 93 87 82 Pressure drop relative to reference 44.9% 41.6% 38.7% 36.1% 33.8% 31.8% 29.9% 28.2% Condenser dew point 57.3 57.2 57.0 56.7 56.4 56.0 55.5 55.0 Condenser bubble point °C 30.2 29.3 28.6 27.9 27.4 26.9 26.5 26.1 Condenser exit liquid temperature °C 29.2 28.3 27.6 26.9 26.4 25.9 25.5 25.1 Condensermean temperature °C 43.7 43.3 42.8 42.3 41.9 41.4 41.0 40.6 Condenserglide(in-out) K 27.1 27.9 28.4 28.8 29.0 29.1 29.0 28.9 -S 0 0 S S.5 *0 * *. ,. S S 5S *05 *** S S * S * . S 0*) 5*5 Table 105: Theoretical Performance Data of Selected R-7441R-32/R.134a/R-1234ze(E) blends containing 0-14 % R-744, 10 % R-32 and 20% R-134a Composition CO2IR-32/R-1 34aIR-I 234zo(E) % by weight ________ 0/10/20/70 2110/20168 4110120166 6110120164 8110120162 10110120160 12110120158 14110120156 COP (heating) 2.13 2.17 2.19 2.21 2.23 2.24 2.25 2.26 COP (heating) relative to Reference 101.2% 102.7% 103.9% 104.6% 105.6% 106.2% 106.6% 107.0% Volumetric heating capacity at suction kJ/m3 917 1007 1101 1198 1299 1403 1509 1617 Capacity relative to Reference 104.3% 114.6% 125.3% 136.4% 147.9% 159.7% 171.7% 184.1% Critical temperature 102.20 99.05 96.05 93.19 90.47 87.87 85.40 83.03 Critical pressure bar 42.60 43.37 44.14 44.89 45.65 46.39 47.14 47.89 Condenserenthalpychange kJ/kg 243.2 252.7 261.0 268.5 275.2 281.4 287.1 292.5 Pressure ratio 16.35 16.27 16.12 15.89 15.62 15.33 15.02 14.70 Refrigerant mass flow kg/hr 29.6 28.5 27.6 26.8 26.2 25.6 25.1 24.6 Compressordischargetemperature °C 124.5 127.9 131,1 134.1 136.9 139.5 142.1 144.5 I. Evaporator inlet pressure bar 0.89 0.95 1.03 1.11 1.19 1.29 1.38 1.48 Condenser inlet pressure bar 13.7 14.8 15.9 17.0 18.2 19.3 20.4 21.5 Evaporator inlet temperature -30.8 -31.4 -32.1 -32.8 -33.6 -34.3 -35.1 -35.9 Evaporator dewpoint -28.7 -28.0 -27.4 -26.7 -26.1 -25.4 -24.8 -24.3 Evaporator exit gas temperature -23.7 -23.0 -22.4 -21.7 -21.1 -20.4 -19.8 -19.3 Evaporator mean temperature °C -29.7 -29.7 -29.8 -29.8 -29.8 -29.9 -30.0 -30.1 Evaporatorglide(out-in) K 2.1 3.4 4.7 6.1 7.5 8.9 10.3 11.6 Compressor suction pressure bar 0.84 0.91 0.99 1.07 1.16 1.26 1.36 1.46 Compressordischargepressure bar 13.7 14.8 15.9 17.0 18.2 19.3 20.4 21.5 Suction line pressure drop Pa/rn 278 246 220 197 179 163 149 137 Pressure drop relative to reference 95.2% 84.2% 75.2% 67.6% 61.2% 55.8% 51.1% 47.0% Condenser dew point oc 52.8 53.9 54.7 55.4 55.9 56.2 56.5 56.6 Condenser bubble point 46.2 42.8 40.0 37.7 35.7 3.4.1 32.7 31.5 Condenser exit liquid temperature 00 45.2 41.8 39.0 36.7 34.7 33.1 31.7 30.5 Condenser mean temperature 49.5 48.3 47.4 46.5 45.8 45.2 44.6 44.1 Condenserglide(in-out) K 6.6 11.0 14.7 17.7 20.2 22.2 23.8 25.0 * * *. S. * S * * * . S *** .*. *SS S * * * S S S * .5S *S* Table 106: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 20% R-134a Composition CO2IR-32/R-l 34aIR-I 234ze(E) % by weight _____ 16/1 0/20I54 18/10/20/52 20110120150 22110120(48 24110120146 26110120144 28/1 0120/42 30(10120(40 COP (heating) 2.26 2.27 2.27 2.27 2.27 2.27 2.27 2.27 COP (heating) relative to Reference 107.3% 107.5% 107.6% 107.7% 107.7% 107.7% 107.7% 107.7% Volumetric heating capacity at suction kJ/m3 1728 1841 1956 2073 2193 2314 2438 2563 Capacity relative to Reference 196.7% 209.5% 222.6% 236.0% 249.5% 263.3% 277.4% 291.7% Critical temperature °c 80.77 78.61 76.54 74.56 72.66 70.83 69.08 67.39 Critical pressure bar 48.63 49.37 50.12 50,86 51.60 52.34 53.08 53.82 Condenserenthalpychange kJ/kg 297.5 302.2 306.7 311.0 315.1 319.1 322.9 326.5 Pressure ratio 14.38 14.06 13.74 13.43 13.13 12.84 12.55 12.27 Refrigerant mass flow kg/hr 24.2 23.8 23.5 23.2 22.8 22.6 22.3 22.1 Compressordischargetemperature °C 146.8 149.1 151.3 153.4 155.5 157.5 159.5 161.5 I. Evaporator inlet pressure bar 1.59 1.70 1.82 1.94 2.06 2.19 2.32 2.46 U.) Condenser inlet pressure bar 22.6 23.6 24.7 25.8 26.8 27.9 28.9 30.0 Evaporator inlet temperature °C -36.7 -37.5 -38.2 -39.0 -39.7 -40.4 -41.0 -41.6 Evaporatordewpoint °C -23.8 -23.3 -22.9 -22.5 -22.1 -21.9 -21.6 -21.4 Evaporatorexitgastemperature °C -18.8 -18.3 -17.9 -17.5 -17.1 -16.9 -16.6 -16.4 Evaporator mean temperature °C -30.2 -30.4 -30.6 -30.7 -30.9 -31.1 -31.3 -31.5 Evaporatorglide (out-in) K 12.9 14.2 15.4 16.5 17.6 18.5 19.4 20.2 Compressor suction pressure bar 1.57 1.68 1.80 1.92 2.04 2.17 2.30 2.44 Compressor discharge pressure bar 22.6 23.6 24.7 25.8 26.8 27.9 28.9 30.0 Suction line pressure drop Pa/rn 127 118 109 102 96 90 85 80 Pressure drop relative to reference 43.4% 40.3% 37.5% 35.0% 32.8% 30.8% 28.9% 27.3% Condenser dew point °C 56.6 56.4 56.3 56.0 55.6 55.2 54.8 54.3 Condenser bubble point 30.5 29.7 28.9 28.3 27.8 27.3 26.9 26.6 Condenser exit liquid temperature °C 29.5 28.7 27.9 27.3 26.8 26.3 25.9 25.6 Condenser mean temperature 43.5 43.1 42.6 42.1 41.7 41.3 40.8 40.4 Condenser glide (in-out) K 26.0 26.8 27.3 27.7 27.9 27.9 27.9 27.7 0 0 * * . *0 ** * . * . . 0 * *.* 0** *** 0 * * 0 * . * 0 * OS* *0 Table 107: Theoretical Performance Data of Selected R-744/R-32/R-I34aJR-1234ze(E) blends containing 0-14 % R-744, 10 % R-32 and 30% R-134a Composition COz!R-321R-134aiR-I 234ze(E) % by weight _____ 0/10/30/60 2/10/30/58 4110130156 6I1 0/30I54 8110130152 10110130150 12/10/30/48 14110130/46 COP (heating) 2.14 2.17 2.19 2.21 2.23 2.24 2.25 2,26 COP (heating) relative to Reference 101.5% 102.9% 104.1% 105.0% 105.7% 106.3% 106.7% 107.1% Volumetric heating capacity at suction kJ/m3 948 1040 1135 1234 1337 1443 1551 1662 Capacity relative to Reference 107.8% 118.3% 129.2% 140.5% 152.2% 164.2% 176.5% 189.2% Critical temperature 101.47 98.35 95.39 92.57 89.89 87.33 84.88 82.55 Critical pressure bar 43.07 43.84 44.60 45.36 46.12 46.87 47.63 48.38 Condenser enthalpy change kJ/kg 245.0 254.4 262.7 270.2 276.9 283.0 288.7 294.0 Pressure ratio 16.08 16.00 15.85 15.64 15.38 15.09 14.79 14.47 Refrigerant mass flow kglhr 29.4 28.3 27.4 26.6 26.0 25,4 24.9 24.5 I. Compressordischargeternperature °C 125.6 129.0 132.2 135,2 137.9 140.6 143.1 145.5 Evaporator inlet pressure bar 0.91 0.98 1.06 1.14 1.23 1.32 1.42 1.53 Condenser inlet pressure bar 14.0 15.1 16.2 17.3 18.5 19.6 20.7 21.8 Evaporator inlet temperature -30.8 -31.4 -32.0 -32.7 -33.4 -34.1 -34.9 -35.6 Evaporator dewpoint °C -28.8 -28.2 -27.5 -26.9 -26.3 -25.6 -25.0 -24.5 Evaporator exit gas temperature °C -23.8 -23.2 -22.5 -21.9 -21.3 -20.6 -20.0 -19.5 Evaporator mean temperature °C -29.8 -29.8 -29.8 -29.8 -29.8 -29.9 -30.0 -30.1 Evaporatorglide(out-in) K 2.0 3.2 4.5 5.8 7.2 8.5 9.8 11.2 Compressor suction pressure bar 0.87 0.94 1.02 1.11 1.20 1.30 1.40 1.51 Compressordischargepressure bar 14.0 15.1 16.2 17.3 18.5 19.6 20.7 21.8 Suction line pressure drop Palm 267 237 212 191 173 158 144 133 Pressure drop relative to reference 91.6% 81.1% 72.5% 65.3% 59.2% 54.0% 49.5% 45.5% Condenserdewpoint °C 52.3 53.3 54.1 54.8 55.3 55.6 55.8 55.9 Condenser bubble point °C 46.4 43.0 40.2 37.9 35.9 34.3 33.0 31.8 Condenser exit liquid temperature °C 45.4 42.0 39.2 36.9 34.9 33.3 32.0 30.8 Condenser mean temperature 49.3 48.1 47.2 46.3 45.6 45.0 44.4 43.8 Condenserglide (in-out) K 5.9 10.3 13.9 16.9 19.3 21.3 22.9 24.1 I : .: .: * * S 5 * S 5 S.. *** *5* * * * * . . . * S *.* **, Table 108: Theoretical Performance Data of Selected R-7441R-32/R-I34aJR-1234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 30% R-134a Composition CO2IR-321R-134a/R-I 234ze(E) % by weight ______ 16/10130144 18110/30/42 20/10130140 22/10/30/38 24110130136 26110130134 28/10/30132 30110130130 COP (heating) 2.26 2.27 2.27 2.27 2.27 2.28 2.27 2.27 COP (heating) relative to Reference 107.4% 107.6% 107.7% 107.8% 107.9% 107.9% 107.9% 107.8% Volumetric heating capacity at suction kJ/m3 1776 1892 2011 2131 2254 2379 2507 2637 Capacity relative to Reference 202.1% 215.4% 228.8% 242.6% 256.5% 270.8% 285. 3% 300.1% Critical temperature 80.32 78.19 76.15 74.19 72.31 70.50 68.77 67.11 Critical pressure bar 49.13 49.88 50.62 51.37 52.12 52.87 53.61 5436 Condenserenthalpychange kJ/kg 298.9 303.6 308.0 312.2 316.3 320.1 323.8 327.3 Pressure ratio 14,15 13.83 13.52 13.21 12.91 12.61 12.33 12.05 Refrigerant mass 110W kg/hr 24.1 23.7 23.4 23.1 22.8 22.5 22.2 22.0 I. Compressordischargetemperature °C 147.8 150.0 152.1 154.2 156.3 158.2 160.2 162.1 U.) Evaporatorinletpressure bar 1.64 1.75 1.87 1.99 2.12 2.26 2.39 2.54 Condenser inlet pressure bar 22.9 24.0 25.0 26.1 27.2 28.3 29.3 30.4 Evaporatorinlettemperature °C -36.4 -37.1 -37,9 -38.6 -39.3 -39.9 -40.5 -41.1 Evaporatordewpoint °C -24.0 -23.5 -23.1 -22.7 -22.4 -22.1 -21.8 -21.6 Evaporatorexitgastemperature °C -19.0 -18.5 -18.1 -17.7 -17.4 -17.1 -16.8 -16.6 Evaporatormeantemperature °C -30.2 -30.3 -30.5 -30.6 -30.8 -31.0 -31.2 -31.3 Evaporatorglide(out-in) K 12.4 13.6 14.8 15.9 16.9 17.9 18.8 19.5 Compressor suction pressure bar 1.62 1.73 1.85 1.98 2.11 2.24 2.38 2.52 Compressor discharge pressure bar 22.9 24.0 25.0 26.1 27.2 28.3 29.3 30.4 Suction line pressure drop Pa/rn 123 114 106 99 93 87 82 77 Pressure drop relative to reference 42.1% 39.0% 36.3% 33.9% 31.8% 29.8% 28.1% 26.5% Condenser dew point 55.9 55.8 55.6 55.3 55.0 54.6 54.2 53.7 Condenser bubble point °C 30.8 29.9 29.2 28.6 28.1 27.6 27.2 26.9 Condenser exit liquid temperature °C 29.8 28.9 28.2 27.6 27.1 26.6 26.2 25.9 Condenser mean temperature 43,3 42.9 42.4 42.0 41.5 41.1 40.7 40.3 Condenserglide (in-out) K 25.1 25.8 26.4 26.7 26.9 27.0 26.9 26.8 0. S * * *. S. * . . . S * * S.. .5. 0S* * * * S * . S S * *.. S..
Table 109: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 0-14 % R-744, 10 % R-32 and 40 % R-134a Composition CO2IR-321R-j 34aIR-I 234ze(E) % by weight -______ 0/10/40/50 2/10/40/48 4/10140146 6110140144 8110140142 10/10/40/40 12/10/40138 14/10/40/36 COP (heating) 2.14 2.17 2.20 2.22 2.23 2.24 2.25 2.26 COP (heating) relative to Reference 101.7% 103.2% 104.3% 105.1% 105.9% 106.4% 106.9% 107.2% Volumetric heating capacity at suction kJ/m3 976 1069 1167 1267 1372 1480 1591 1704 CapacityrelativetoReference 111.1% 121.7% 132.8% 144.2% 156.1% 168.4% 181.1% 193.9% Critical temperature °c 100.75 97.68 94.76 91.98 89.33 86.81 84,40 82.10 Critical pressure bar 43.42 44.20 44.97 45.74 46.51 47.27 48.04 48.80 Condenserenthalpychange kJ/kg 247.0 256.4 264.8 272.2 278.9 285.0 290.6 295.9 Pressure ratio 15.84 15.77 15.63 15.43 15.18 14.89 14.59 14.28 Refrigerant mass 00W kg/hr 29.1 28.1 27.2 26.5 25.8 25.3 24.8 24.3 Compressor discharge temperature °C 126.7 130.1 133.3 136.3 139.1 141.7 144.2 146.6 i Evaporator inlet pressure bar 0.94 1.01 1.09 1.17 1.26 1.36 1.46 1,57 Condenseririletpressure bar 14.2 15.3 16.4 17.6 18.7 19.8 21.0 22.1 Evaporatorinlettemperature °C -30.7 -31.3 -31.9 -32.6 -33.3 -34.0 -34.7 -35.4 Evaporator dewpoint °C -28.9 -28.3 -27.7 -27.1 -26.4 -25.8 -25.2 -24.7 Evaporator exit gas temperature -23.9 -23.3 -22.7 -22.1 -21.4 -20.8 -20.2 -19.7 Evaporator mean temperature °C -29.8 -29.8 -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 Evaporator glide (out-in) K 1.8 3.0 4.2 5.5 6.9 8.2 9.5 10.8 Compressor suction pressure bar 0.90 0.97 1.05 1.14 1.23 1.33 1.44 1.55 Compressordischarge pressure bar 14.2 15.3 16.4 17.6 18.7 19.8 21.0 22.1 Suction line pressure drop Pa/rn 258 229 205 185 168 153 140 129 Pressure drop relative to reference 88.4% 78.4% 70.2% 63.3% 57.4% 52.3% 48.0% 44.2% Condenser dew point °C 51.7 52.7 53.5 54.2 54.7 55.0 55.2 55.3 Condenser bubble point 46.5 43.1 40.3 38.0 36.1 34.5 33.1 31.9 Condenserexitliquidtemperature °C 45.5 42.1 39.3 37.0 35.1 33.5 32.1 30.9 Condenser mean temperature °C 49.1 47.9 46.9 46.1 45.4 44.7 44.2 43.6 Condenser glide (in-out) K 5.3 9.6 -13.2 16.2 18.6 20.6 22.1 23.4 : : .: .: *: : : : : 0 * 0S* Table 110: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 16-30% R-744, 10% R-32 and 40% R-134a Composition C02/R-32/R-134a/R-I 234ze(E) % by weight ______ 16/10/40/34 18/10/40(32 20/10/40/30 22/10140/28 24/10(40126 26110/40124 28/10/40/22 30/10/40120 COP (heating) 2.27 2.27 2.27 2.28 2.28 2.28 2.28 2.28 COP (heating) relative to Reference 107.5% 107.7% 107.9% 108.0% 108.1% 108.1% 108.1% 108.0% Volumetric heating capacity at suction kJ/m3 1820 1939 2060 2184 2309 2437 2569 2701 Capacity relative to Reference 207.2% 220.7% 234.5% 248.5% 2628% 277.4% 2923% 307.4% Critical temperature °C 79.90 77.79 75.77 73.84 71.98 70.20 68.49 66.84 Critical pressure bar 49.56 50.32 51.07 51,83 52.59 53.34 54.10 54.85 Condenserenthalpychange kJ/kg 300.8 305.4 309.8 313.9 317.9 321.6 325.2 328.7 Pressure ratio 13.97 13.65 13.34 13.03 12.73 12.44 12.15 11.87 Refrigerantmassflow kg/hr 23.9 23.6 23.2 22.9 22.7 22.4 22.1 21.9 I. Compressordischarge temperature °C 148.8 151.0 153.1 155.2 157.2 159.2 161.0 162.9 -i Evaporatorinletpressure bar 1,68 1.80 1.92 2.05 2.18 2.31 2.46 2.60 I. Condenser inlet pressure bar 23.2 24.3 25.4 26.5 27.5 28.6 29.7 30.8 Evaporator inlet temperature -36.2 -36.9 -37.6 -38.3 -39.0 -39.6 -40.2 -40.8 Evaporatordewpoint °C -24.2 -23.7 -23.3 -22.9 -22.5 -22.2 -21.9 -21.7 Evaporatorexitgastemperature °C -19.2 -18.7 -18.3 -17.9 -17.5 -17.2 -16.9 -16.7 Evaporatormeantemperature °C -30.2 -30.3 -30.4 -30.6 -30.8 -30.9 -31.1 -31.2 Evaporatorglide(outin) K 12.0 13.2 14.3 15.4 16.5 17.4 18.3 19.1 Compressor suction pressure bar 1.66 1.78 1.90 2.03 2.16 2.30 2.44 2.59 Compressor discharge pressure bar 23.2 24.3 25.4 26.5 27.5 28.6 29.7 30.8 Suction line pressure drop Pa/rn 119 111 103 96 90 85 80 75 Pressure drop relative to reference 40.9% 37.9% 35.3% 33.0% 30.9% 29.0% 27,3% 25.8% Condenser dew point 55.3 55.2 55.1 54.8 54.5 54.1 53.6 53.2 Condenserbubblepoint °C 31.0 30.1 29.4 28.8 28.3 27.8 27.4 27.1 Condenser exit liquid temperature °C 30.0 29.1 28.4 27.8 27.3 26.8 26.4 26.1 Condensermeantemperature °C 43.1 42.7 42.2 41.8 41.4 40.9 40.5 40.1 Condenser glide (in-out) K 24.4 25.1 25.7 26.0 26.2 26.3 -26.2 26.1 * *: *: *** *** ... : : * S * S * * *S* *5s Table 111: Theoreflcal Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 014% R-744, 10% R-32 and 50% R-134a Composition C02/R-321R-1 34aIR-I 234ze(E) % by weight ______ 0110/50/40 2110150138 4110150136 6110150134 8I10150!32 10110/50130 12/10/50128 14/10/50/26 COP (heating) 2.15 2.18 2.20 2.22 2.24 2.25 2.26 2.26 COP (heating) relative to Reference 102.0% 103.4% 104.5% 105.4% 106.1% 106.6% 107.1% 107.4% Volumetric heating capacity at Suction kJ/m3 1001 1096 1195 1297 1403 1513 1626 1741 Capacity relative to Reference 113.9% 124.7% 136.0% 147.6% 159.7% 172.2% 185.0% 198.1% Critical temperature °c 100.04 97.02 94.14 91.41 88,80 86.31 83.94 81.67 Critical pressure bar 43.67 44.47 45.25 46.04 46.82 47.60 48.37 49.15 Condenser enthalpy change kJlkg 249.3 258.7 267.1 274.5 281.2 287.3 293.0 298.2 Pressure ratio 15.64 15.58 15.45 15.26 15.01 14.74 14.44 14.13 Refrigerant mass flow kg/hr 28.9 27.8 27.0 26.2 25.6 25.1 24.6 24.1 Compressor discharge temperature °C 127.9 131.4 134.6 137.6 140.4 143.0 145.4 147.8 Evaporator inlet pressure bar 0.96 1.03 1.11 1.20 1.29 1.39 1.49 1.60 Condenserinletpressure bar 14.4 15.5 16.6 17.8 18.9 20.1 21.2 22.3 Evaporatorinlettemperature °C -30.7 -31.3 -31.9 -32.5 -33.2 -33.9 -346 -35.3 Evaporator dewpoint °C -29.0 -28.5 -27.8 -27.2 -26.6 -26.0 -25,4 -24.8 Evaporator exit gas temperature °C -24.0 -23.5 -22.8 -22.2 -21.6 -21.0 -20.4 -19.8 Evaporator mean temperature °C -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -30.0 -30.1 Evaporatorglide(out-in) K 1.6 2.8 4.0 5.3 6.6 7.9 9.2 10.4 Compressor suction pressure bar 0.92 0.99 1.08 1.17 1.26 1.36 1.47 1.58 Compressordischarge pressure bar 14.4 15.5 16.6 17.8 18.9 20.1 21.2 22.3 Suction line pressure drop Pa/rn 250 222 199 179 163 149 136 126 Pressure drop relative to reference 85.6% 76.0% 68.1% 61.4% 55.8% 50.9% 46.7% 43.0% Condenserdewpoint °C 51.2 52.2 53.0 53.7 54.2 54.5 54.8 54,9 Condenser bubble point 46.6 43.2 40.4 38.1 36.1 34.5 33.1 32.0 Condenser exit liquid temperature °C 45.6 42.2 39.4 37.1 35.1 33.5 32.1 31.0 Condenser mean temperature 48.9 47.7 46.7 45.9 45.2 44.5 43.9 43.4 Condenserglide (in-out) K 4.7 9.0 -12.7 15.6 18.1 20.0 21.6 22.9 : .: .: :. :.: :.: : : * *** *..
Table 112: Theoretical Performance Data of Selected R-744/R-32/R-134aIR-1234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 50 % R-134a Composition CO2IR-32JR-134a/R-I 234ze(E) % by weight ______ 16/10150/24 18/10/50122 20/10150/20 22/10/50(18 24110(50116 26110150/14 28/10150112 30/10150110 COP (heating) 2.27 2.28 2.28 2.28 2.28 2,28 2.28 2.28 COP (heating) relative to Reference 107. 7% 107.9% 108.1% 108.2% 108.2% 108.3% 108.3% 108.2% Volumetric heating capacity at suction kJ/m3 1859 1980 2103 2229 2357 2487 2620 2755 Capacity relative to Reference 211.6% 225.4% 239.4% 253.7% 268.2% 283.1% 298.2% 313.5% Critical temperature 79.50 77.42 75.43 73.52 71.69 69.93 68.24 66.61 Critical pressure bar 49.92 50.69 51.46 52.23 53.00 53.77 54.53 55.30 Condenserenthalpychange kJ/kg 303.0 307.6 311.9 316.0 320.0 323.7 327.3 330.7 Pressure ratio 13.82 13.50 13.19 12.89 12.59 12.31 12.02 11.75 Refrigerant mass flow kg/hr 23.8 23.4 23.1 22.8 22.5 22.2 22.0 21.8 I. Compressordischargetemperature °C 150.1 152.2 154.3 156.4 158.3 160.3 162.1 164.0 Evaporatorinletpressure bar 1.72 1.84 1.96 2.09 2.22 2.36 2.51 2.66 Condenserinletpressure bar 23.4 24.5 25.6 26.7 27.8 28.9 30.0 31.1 Evaporator inlet temperature -36.0 -36.7 -37.4 -38.1 -38.8 -39.4 -40.0 -40.6 Evaporator dewpoint °C -24.3 -23.8 -23.4 -23.0 -22.6 -22.3 -22.0 -21.8 Evaporator exit gas temperature -19.3 -18.8 -18.4 -18.0 -17.6 -17.3 -17.0 -16.8 Evaporatormeantemperature °C -30.2 -30.3 -30.4 -30.6 -30.7 -30.9 -31.0 -31.2 Evaporatorglide(out-in) K 11.7 12.9 14.0 15.1 16.2 17.1 18.0 18.8 Compressor suction pressure bar 1.70 1.82 1.94 2.07 2.21 2.35 2.49 2.64 Compressor discharge pressure bar 23.4 24.5 25.6 26.7 27.8 28.9 30.0 31.1 Suction line pressure drop Pa/rn 116 108 101 94 88 83 78 73 Pressure drop relative to reference 39.8% 36.9% 34.4% 32.2% 30.1% 28.3% 26.7% 25.2% Condenser dew point 54.9 54.8 54.6 54.4 54.0 53.7 53.2 52.8 Condenser bubble point 31.0 30.2 29.4 28.8 28.3 27.9 27.5 27.2 Condenser exit liquid temperature °C 30.0 29.2 28.4 27.8 27.3 26.9 26.5 26.2 Condenser mean temperature 42.9 42.5 42.0 41.6 41.2 40.8 40.4 40.0 Condenser glide (in-out) K 23.9 24.6 25.2 25.5 25.7 25.8 25.8 25.6 * *: *: : : * * *.. *** Table 113: Theoretical Performance Data of Selected R-7441R-32/R-134a/R.1234ze(E) blends containIng 0-14% R-744, 15% R-32 and 5 % R-134a Composition CO2IR-321R-1 34a/R-I 234ze(E) % by weight ________ 0115/5180 2/15/5178 4(15/5176 6115/5/74 811515172 1011515170 12/15/5/68 14115/5/66 COP (heating) 2.17 2.19 2.21 2.23 2.24 2.26 2.26 2.27 COP (heating) relative to Reference 102.8% 104.0% 105.0% 105.8% 106.5% 107.0% 107.3% 107.6% Volumetric heating capacity at suction kJ/m3 983 1075 1170 1267 1368 1471 1575 1682 Capacity relative to Reference 111.9% 122.3% 133.1% 144.2% 155.7% 167.4% 179.2% 191.4% Critical temperature °C 100.70 97.79 94.99 92.31 89.74 87.29 84.94 82.70 Critical pressure bar 43.58 44.39 45.17 45.95 46.71 47.47 48.22 48.97 Condenserenthalpychange kJ/kg 253.1 261.7 269.4 276.4 282.8 288.7 294.3 299.5 Pressure ratio 15.94 15.80 15.61 15.37 15.11 14.82 14.54 14.25 Refrigerant mass flow kg/hr 28.4 27.5 26.7 26.1 25.5 24.9 24.5 24.0 Compressor discharge temperature 127.4 130.5 133.5 136.4 139.1 141.6 144.1 146.5 I. Evaporatorinletpressure bar 0.94 1.01 1.09 1,17 1.26 1.35 1.45 1.55 Condenserinletpressure bar 14.3 15.3 16.4 17.5 18.6 19.6 20.7 21.8 Evaporator inlet temperature °C -31.5 -32.2 -33.0 -33.7 -34.5 -35.3 -36.0 -36.8 Evaporator dewpoint °C -27.9 -27.2 -26.6 -26.0 -25.3 -24.8 -24.2 -23.7 Evaporatorexitgastemperature °C -22.9 -22.2 -21.6 -21.0 -20.3 -19.8 -19.2 -18.7 Evaporator mean temperature -29.7 -29.7 -29.8 -29.8 -29.9 -30.0 -30.1 -30.3 Evaporator glide (out-in) K 3.7 5.0 6.4 7.8 9.1 10.5 11.8 13.1 Compressor suction pressure bar 0.89 0.97 1.05 1.14 1.23 1.32 1.42 1.53 Compressordischargepressure bar 14.3 15.3 16.4 17.5 18.6 19.6 20.7 21.8 Suction line pressure drop Palm 251 224 202 183 166 152 140 130 Pressure drop relative to reference 86.1% 76.8% 69.1% 62.6% 57.0% 52.2% 48.0% 44.4% Condenser dew point °C 53.3 54.2 54.9 55.4 55.8 56.1 56.2 56.2 Condenserbubblepoint °C 44.2 41.3 38.9 36.8 35.1 33.6 32.4 31.3 Condenser exit liquid temperature 43.2 40.3 37.9 35.8 34.1 32,6 31.4 30.3 Condensermean temperature °C 48.8 47.7 46.9 46.1 45.4 44.8 44.3 43.8 Lcpndenserglide (in-out) K I 9.0 12.8 16.0 18.6 20.7 22.5 23.9 25.0 : .: .: :. :.: :.: : : Table 114: TheoretIcal Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 16-30 % R-744, 15 % R-32 and 5 % R-134a Composition C02/R-321R-1 34a/R-I 234ze(E) % by weight ______ 16/15/5/64 18/15/5/62 2011515160 22/15/5(58 2411515156 26115/5/54 28/1515/52 30/1515150 COP (heating) 2.27 2.28 2.28 2.28 2.28 2.28 2.28 2.28 COP (heating) relative to Reference 107.8% 108.0% 108.1% 108.1% 108.1% 108.1% 108.0% 107.9% Volumetric heating capacity at suction kJ/m3 1790 1901 2014 2128 2244 2362 2483 2606 Capacity relative to Reference 203.8% 216.4% 229.2% 242.2% 255.4% 268.9% 282.6% 296.5% Critical temperature 80.54 78.48 76.50 74.60 72.77 71.02 69.33 67.70 Critical pressure bar 49.71 50.46 51.20 51.94 52.68 53.42 54.16 54.90 Condenserenthalpychange kJ/kg 304.5 309.2 313.7 318.1 322.2 326.2 330.1 333.8 Pressure ratio 13.96 13.67 13.38 13.10 12.83 12.56 12.30 1205 Refrigerant mass flow kg/hr 23.6 23.3 22.9 22.6 22,3 22.1 21.8 21.6 Compressor discharge temperature °C 148.9 151.1 153.3 155.5 157.6 159.7 161.7 163.7 i-Evaporator inlet pressure bar 1.65 1.76 1.88 1.99 2.11 2.24 2.37 2.50 Condenser inlet pressure bar 22.8 23.8 24.9 25.9 26.9 27.9 29.0 30.0 Evaporatorinlettemperature °C -37.6 -38.3 -39.1 -39.8 -40.4 -41.0 -41.6 -42.1 Evaporator dewpoint °C -23.3 -22.8 -22.5 -22.1 -21.9 -21.6 -21.4 -21.2 Evaporatorexitgastemperature °C -18.3 -17.8 -17.5 -17.1 -16.9 -16.6 -16.4 -16.2 Evaporator mean temperature °C -30.4 -30.6 -30.8 -30.9 -31.1 -31.3 -31.5 -31.7 Evaporatorglide (out-in) K 14.3 15.5 16.6 17.6 18.5 19.4 20.2 20.9 Compressor suction pressure bar 1.63 1.74 1.86 1.98 2.10 2.22 2.35 2.49 Compressor discharge pressure bar 22.8 23.8 24.9 25.9 26.9 27.9 29.0 30.0 Suction line pressure drop Palm 120 112 105 98 92 87 82 77 Pressure drop relative to reference 41.2% 38.3% 35.8% 33.5% 31.5% 29.6% 28.0% 26.4% Condenser dew point 56.2 56.0 55.8 55.5 55.1 54.7 54.3 53.7 Condenser bubble point °C 30.3 29.5 28.8 28.2 27.7 27.3 26.9 26.5 Condenser exit liquid temperature °C 29.3 28.5 27.8 27.2 26.7 26.3 25.9 25.5 Condensermeantemperature °C 43.3 42.8 42.3 41.9 41.4 41.0 40.6 40.1 Condenser glide (in-out) K 25.8 26.5 27.0 27.3 27.4 27.5 27.4 27.2 : : :.: : * : *:. .:, Table 115: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 0-14 % R-744, 15 % R-32 and 10 % R-134a Composition CO2IR-321R-1 34aIR- 1234ze(E) % by weight ______ 0115110175 2115110173 4115110171 6115110169 8115/10167 10115110165 12115110163 14115110161 COP (heating) 2.17 2.20 2.22 2.23 2.25 2.26 2.26 2.27 COP (heating) relative to Reference 102.9% 104.1% 105.1% 105.9% 106.5% 107.0% 107.4% 107.7% Volumetric heating capacity at suction kJ/m3 1001 1093 1188 1287 1389 1493 1599 1707 Capacity relative to Reference 113.9% 124.4% 135.2% 146.5% 158.0% 169.9% 182.0% 194.3% Critical temperature oc 100.38 97.46 94.67 92.00 89.45 87.01 84.68 82.44 Critical pressure bar 43.87 44.66 45.43 46.20 46.96 47.71 48.47 49.22 Condenserenthalpychange kJlkg 253.8 262,3 270.0 277.0 283.4 289.3 294.9 300.1 Pressure ratio 15.79 15.65 15.47 15.24 14.97 14.70 14.41 14.12 Refrigerant mass flow kg/hr 28.4 27.4 26.7 26.0 25.4 24.9 24.4 24.0 Compressor discharge temperature 00 127.8 131.0 134.0 136.8 139.5 142.1 144.5 146.9 Evaporator inlet pressure bar 0.95 1.03 1.10 1.19 1.28 1.37 1.47 1.57 Condenserinletpressure bar 14.4 15.5 16.6 17.6 18.7 19.8 20.9 21.9 Evaporatorinlettemperature °C -31.5 -32.2 -32.9 -33.6 -34.4 -35.1 -35.9 -36.6 Evaporator dewpoint °C -28.0 -27.3 -26.7 -26.1 -25.5 -24.9 -24.3 -23.8 Evaporatorexitgastemperature C -23.0 -22.3 -21.7 -21.1 -20.5 -19.9 -19.3 -18.8 Evaporator mean temperature °C -29.7 -29.8 -29.8 -29.8 -29.9 -30.0 -30.1 -30.2 Evaporatorglide (out-in) K 3.6 4.9 6.2 7.6 8.9 10.2 11.5 12.8 Compressorsuction pressure bar 0.91 0.99 1.07 1.16 1.25 1.35 1.45 1.55 Compressordischarge pressure bar 14.4 15.5 16.6 17.6 18.7 19.8 20.9 21.9 Suction line pressure drop Pa/rn 247 220 198 180 164 150 138 128 Pressure drop relative to reference 84.5% 75.4% 67.9% 61.5% 56.0% 51.3% 47.2% 43.7% Condenser dew point °C 53.0 53.8 54.5 55.0 55.4 55.7 55.8 55.9 Condenser bubble point °c 44.4 41.5 39.0 37.0 35.3 33.8 32.5 31.5 Condenser exit liquid temperature °c 43. 40.5 38.0 36.0 34.3 32.8 31.5 30.5 Condenser mean temperature °c 48.7 47.6 46.8 46.0 45.4 44.7 44.2 43.7 Condenser glide (in-out) K 8.6 12.3 15.5 18.0 20.2 21.9 23.3 24.4 I : .:.. .:.
Table 116: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 16-30% R-744, 15% R-32 and 10%R-134a Composition CO2IR-321R-134a/R.
I 234ze(E) % by weight ______ 16/15/10/59 18/15110/57 20/1 5(1 0155 22115110153 24/15110/51 26115/10/49 28115110/47 30115110/45 COP (heating) 2.27 2.28 2.28 2.28 2.28 2.28 2.28 2.28 COP (heating) relative to Reference 107.9% 108.0% 108.1% 108.2% 108.2% 108.1% 108.1% 108.0% Volumetric heating capacity at suction kJ/m3 1817 1930 2044 2161 2279 2400 2523 2648 Capacity relative to Reference 206.8% 219.6% 232.7% 245.9% 259.4% 273.1% 287.1% 301.4% Critical temperature 80.30 78.25 76.28 74.40 72.58 70.84 69.16 67.54 Critical pressure bar 49.96 50.71 51.45 52.19 52.94 53.68 54.42 55.16 Condenserenthalpychange kJ/kg 305.0 309.7 314.1 318.4 322.5 326.4 330.2 333.8 Pressure ratio 13.83 13.54 13.25 12.97 12.70 12.43 12.17 11.91 Refrigerant mass flow kg/hr 23.6 23.3 22.9 22.6 22.3 22.1 21.8 21.6 I. Compressordischargetemperature °C 149.3 151.5 153.7 155.8 157.9 159.9 161.9 163.9 -1 Evaporatorinletpressure bar 1.68 1.79 1.91 2.03 2.15 2.28 2.41 2.55 Condenser inlet pressure bar 23.0 24.0 25.1 26.1 27.1 28.2 29.2 30.2 Evaporatorinlettemperature °C -37.4 -38.1 -38.8 -39.5 -40.1 -40.7 -41.2 -41.7 Evaporator dewpoint °C -23.4 -23.0 -22.6 -22.3 -22.0 -21.7 -21.5 -21.4 Evaporatorexitgastemperature C -18.4 -18.0 -17.6 -17.3 -17.0 -16.7 -16.5 -16.4 Evaporator mean temperature °C -30.4 -30.5 -30.7 -30.9 -31.1 -31.2 -31.4 -31.5 Evaporatorglide(out-in) K 14.0 15.1 16.2 17.2 18,1 18.9 19.7 20.4 Compressor suction pressure bar 1.66 1.77 1.89 2.01 2.14 2.27 2.40 2.54 Compressor discharge pressure bar 23.0 24.0 25.1 26.1 27.1 28.2 29.2 30.2 Suction line pressure drop Pa/rn 118 110 103 96 90 85 80 76 Pressure drop relative to reference 40.5% 37.7% 35.2% 33.0% 31.0% 29.2% 27.5% 26.0% Condenser dew point °C 55.8 55.6 55.4 55.1 54.8 54.3 53.9 53.4 Condenser bubble point °C 30.5 29.7 29.0 28.4 27.9 27.5 27.1 26.8 Condenser exit liquid temperature °C 29.5 28.7 28.0 27.4 26.9 26.5 26.1 25.8 Condensermeantemperature °C 43.2 42.7 42.2 41,8 41.3 40.9 40.5 40.1 Condenser glide (in-out) K 25.3 25.9 26.4 26.7 26.8 26.9 26.8 26.6 : * * : .:..:.
Table 117: TheoretIcal Performance Data of Selected R-7441R-32/R-134aIR-1234ze(E) blends containing 0-14% R-744, 15% R-32 and 20 % R-134a Composition CO2IR-321R-1 34aIR-I 234ze(E) % by weight _______ 0115120165 2/15/20163 4115120161 6115120159 8115120157 10/15/20/55 lvi 5/20/53 14/15/20/51 COP (heating) 2.17 2.20 2.22 2.23 2.25 2.26 2,27 2.27 COP (heating) relative to Reference 103.1% 104.3% 105.2% 106.0% 106.6% 107.1% 107.4% 107.7% Volumetric heating capacity at suction kJ/m3 1033 1127 1224 1325 1428 1534 1643 1755 Capacity relative to Reference 117.6% 128.3% 139.3% 150.7% 162.5% 174.6% 187.0% 199.7% Critical temperature 99.72 96.82 94.05 91.41 88.89 86.48 84.18 81.97 Critical pressure bar 44.35 45.12 45.89 46.65 47.41 48.17 48.92 49.67 Condenserenthalpychange kJ/kg 255.3 263.9 271.6 278.5 284.9 290.8 296.3 301.4 Pressure ratio 15.52 15.39 15.22 14.99 14.74 14.46 14.18 13.89 Refrigerant mass flow kg/hr 28.2 27.3 26.5 25.9 25.3 24.8 24.3 23.9 Compressor discharge temperature °C 128.8 132.0 135.0 137.8 140.5 143.0 145.5 1478 Evaporatorinletpressure bar 0.99 1.06 1.14 1.23 1.32 1.41 1.52 1.62 Condenser inlet pressure bar 14.7 15.7 16.8 17.9 19.0 20.1 21.2 22.2 Evaporator inlet temperature °C -31.4 -32.1 -32.8 -33.4 -34.1 -34.8 -35.6 -36.3 Evaporator dewpoint °C -28.1 -27.5 -26.9 -26.3 -25.7 -25.1 -24.6 -24.1 Evaporator exit gas temperature -23.1 -22.5 -21.9 -21.3 -20.7 -20.1 -19.6 -19.1 Evaporator mean temperature -29.8 -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 -30.2 Evaporator glide (out-in) K 3.3 4.6 5.9 7.2 8.4 9.7 11.0 12.2 Compressor suction pressure bar 0.94 1.02 1.11 1.20 1.29 1.39 1.49 1.60 Compressordischarge pressure bar 14.7 15.7 16.8 17.9 19.0 20.1 21.2 22.2 Suction line pressure drop Pa/rn 238 213 192 174 158 145 134 124 Pressure drop relative to reference 81.4% 72.8% 65.6% 59.5% 54.3% 49.7% 45.8% 42.3% Condenserdew point °C 52.4 53.2 53.8 54.4 54.7 55.0 55.1 55.2 Condenser bubble point 44.7 41.8 39.3 37.3 35.6 34.1 32.9 31.8 Condenserexit liquid temperature 43.7 40.8 38.3 36.3 34.6 33.1 31.9 30.8 Condenser mean temperature °C 48.5 47.5 46.6 45.8 45.2 44.6 44.0 43.5 Condenserglide(inout) K 7.7 11.4 14.5 17.1 19.2 20.9 22.3 23.4 S.; .; * . * . * * . **. *** S.. * * * : : .:..:.
Table 118: Theoretical Performance Data of Selected R-744/R-32/R-134aJR-l2Mze(E) blends containing 16-30% R-744, 15% R-32 and 20 % R-134a Composition C02/R-321R-I 34alR-1 234ze(E) % by weight ______ 16115/20/49 18/15/20147 20/15/20/45 22/15120/43 24115120141 26/15/20/39 28/15120/37 30/15/20135 COP (heating) 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 COP (heating) relative to Reference 108.0% 108.1% 108.2% 108.3% 108.3% 108.3% 108.3% 108.2% Volumetric heating capacity at suction kJ/m3 1868 1984 2102 2222 2345 2470 2598 2729 Capacity relative to Reference 212.6% 225.8% 239.2% 252.9% 266.9% 281.1% 295.7% 310.5% Critical temperature 79.86 77.83 75.88 74.02 72.22 70.50 68,84 67.24 Critical pressure bar 50.42 51.17 51.92 52.67 53.42 54.16 5491 55.65 Condenserenthalpychange kJ/kg 306.2 310.8 315.2 319.4 323.4 327.2 330.8 334.3 Pressure ratio 13.60 13.31 13.02 12.74 12.47 12.20 11.93 11.67 Refrigerant mass flow kg/hr 23.5 23.2 22.8 22.5 22.3 22.0 21.8 21.5 Compressor discharge temperature °C 150.1 152.3 154.4 156.5 158.5 160.5 162.4 164.3 Evaporator inlet pressure bar 1.73 1.85 1.97 2.09 2.22 2.36 2.49 2.64 Condenser inlet pressure bar 23.3 24.4 25.4 26.5 27.5 28.6 29.6 30.7 Evaporator inlet temperature °C -37.0 -37.7 -38.3 -39.0 -39.6 -40.1 -40.6 -41.1 Evaporatordewpoint °C -23.7 -23.2 -22.9 -22.5 -22.3 -22.0 -21.8 -21.6 Evaporatorexitgastemperature °C -18.7 -18.2 -17.9 -17.5 -17.3 -17.0 -16.8 -16.6 Evaporator mean temperature °C -30.3 -30.5 -30.6 -30.8 -30.9 -31.1 -31.2 -31.3 Evaporatorglide(out-in) K 13.3 14.4 15.5 16.4 17.3 18.1 18.9 19.5 Compressor suction pressure bar 1.71 1.83 1.95 2.08 2.21 2.34 2.48 2.63 Compressor discharge pressure bar 23.3 24.4 25.4 26.5 27.5 28.6 29.6 30.7 Suction line pressure drop Pa/m 115 107 100 93 88 83 78 74 Pressure drop relative to reference 39.3% 36.6% 34.2% 32.0% 30.0% 28.3% 26.7% 25.2% Condenserdewpoint °C 55.1 54.9 54.7 54.4 54.1 53.7 53.2 52.7 Condenser bubble point °C 30.9 30.1 29.4 28.8 28.3 27.9 27.5 27.2 Condenserexitliquidtemperature °C 29.9 29.1 28.4 27.8 27.3 26.9 26.5 26.2 Condensermeantemperature 43.0 42.5 42.1 41.6 41.2 40.8 40.4 40.0 Condenser glide (in-out) K 24.2 24.9 25.3 25.6 25.8 25.8 -25.7 25.5
-S
S ** ** * S. * * * . **5 **S *.* . * * : .:..:.
Table 119: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-l 234ze(E) blends containing 0-14 % R-744, 15 % R-32 and 30 % R-134a Composition C02/R-321R-1 34aIR-I 234ze(E) % by weight _______ 0/15/30/55 2/15/30/53 4/15/30151 6115130149 8115130147 10/15130145 12/15/30143 14/15/30/41 COP (heating) 2.18 2.20 2.22 2.24 2.25 2.26 2.27 2.27 COP (heating) relative to Reference 103.2% 104.4% 105.3% 106.1% 106.7% 107.2% 107.5% 107.8% Volumetric heating capacity at suction kJ/m3 1063 1158 1257 1359 1465 1573 1685 1799 Capacity relative to Reference 120.9% 131.8% 143.1% 154.7% 166.7% 179.0% 191.7% 204.7% Critical temperature 99.07 96.20 93.47 90.86 88.37 85.99 83.71 81.53 Critical pressure bar 44.72 45.49 46.26 47.03 47.79 48.55 49.31 50.07 Condenserenthaipychange kJ/kg 257.1 265.7 273.4 280.3 286.7 292.5 298.0 303.1 Pressure ratio 15.28 15.17 15.00 14.79 14.54 14.27 13.99 13.70 Refrigerant mass floW kg/hr 28.0 27.1 26.3 25.7 25.1 24.6 24.2 23.8 Compressor discharge temperature °C 129.9 133.1 136.1 138,9 141.6 144.1 146.5 148.9 Evaporator inlet pressure bar 1.01 1.09 1.17 1.26 1.35 1.45 1.56 1.67 Condenser inlet pressure bar 14.9 16.0 17.1 18.2 19.3 20.4 21.5 22.5 Evaporatorinlettemperature °C -31.3 -32.0 -32.6 -33.3 -33.9 -34.6 -35.3 -36.0 Evaporator dewpoint °C -28.3 -27.7 -27.1 -26.5 -25.9 -25.4 -24.8 -24.4 Evaporator exit gas temperature DC -23.3 -22.7 -22.1 -21.5 -20.9 -20.4 -19.8 -19.4 Evaporator mean temperature -29.8 -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 -30.2 Evaporatorglide(out-in) K 3.1 4.3 5.5 6.7 8.0 9.2 10.4 11.6 Compressor suction pressure bar 0.97 1.05 1.14 1.23 1.33 1.43 1.53 1.65 Compressordischargepressure bar 14.9 16.0 17.1 18.2 19.3 20.4 21.5 22.5 Suction line pressure drop Pa/rn 230 206 186 169 154 141 130 120 Pressure drop relative to reference 78.8% 70.5% 63.6% 57.7% 52.7% 48.3% 44.5% 41.1% Condenser dew point °C 51.8 52.6 53.2 53.7 54.1 54.4 54.5 54.5 Condenser bubble point °C 44.9 42.0 39.6 37.5 35.8 34.3 33.1 32.0 Condenser exit liquid temperature DC 43.9 41.0 38.6 36.5 34.8 33.3 32.1 31.0 Condenser mean temperature °C 48.3 47.3 46.4 45.6 45.0 44.3 43.8 43.3 Condenserglide(in-out) K 6.9 10.6 -13.7 16.2 18.3 20.0 21.4 22.5
-S S
S S. 55 * S * * * S * S.. *** ... S * : : .:..:.
Table 120: TheoretIcal Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 16-30% R-744, 15% R-32 and 30 % R-134a Composition CO2IR-32/R-134aIR.
I 234ze(E) % by weight ______ 16/15130/39 18/15130/37 20/15/30/35 22/15130133 24115130131 26115130129 28/15/30/27 30/15/30/25 COP (heating) 2.28 2.28 2.28 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 108.1% 108.2% 108.4% 108.4% 108.5% 108.5% 108,4% 108.4% Volumetric heating capacity at suction kJ/m3 1915 2034 2155 2279 2405 2534 2665 2800 Capacity relative to Reference 218.0% 231.5% 245.3% 259.4% 273.7% 288.4% 303.3% 318.6% Critical temperature 79.44 77.44 75.52 73.68 71.90 70.20 68.56 66.98 Critical pressure bar 50.83 51.59 52.34 53.10 53.85 54.61 55.36 56.12 Condenser enthalpy change kJlkg 307.9 312.4 316.7 320.8 324.7 328.4 332.0 335.4 Pressure ratio 13.41 13.12 12.83 12.55 12.28 12.01 11.74 11.49 Refrigerant mass flow kg/hr 23.4 23.0 22.7 22.4 22.2 21.9 21.7 21.5 I. Compressordischargetemperature °C 151.1 153.3 155.4 157.4 159.4 161.3 163.2 165.0 Ln Evaporatorinletpressure bar 1.78 1.90 2.02 2.15 2.28 2.42 2.57 2.72 I. Condenser inlet pressure bar 23.6 24.7 25.8 26.8 27.9 28.9 30.0 31.0 Evaporator inlet temperature -36.6 -37.3 -37.9 -38.5 -39.1 -39.7 -40.2 -40.6 Evaporator dewpoint °C -23.9 -23.5 -23.1 -22.8 -22.5 -22.2 -22.0 -21.8 Evaporatorexitgastemperature °C -18.9 -18.5 -18.1 -17.8 -17.5 -17.2 -17.0 -16.8 Evaporator mean temperature -30.3 -30.4 -30.5 -30.7 -30.8 -30.9 -31.1 -31.2 Evaporatorglide(out-in) K 12.7 13.8 14.8 15.8 16.7 17.5 18.2 18.8 Compressor suction pressure bar 1.76 1.88 2.01 2.14 2.27 2.41 2.55 2.70 Compressor discharge pressure bar 23.6 24.7 25.8 26.8 27.9 28.9 30.0 31.0 Suction line pressure drop Palm 112 104 97 91 85 80 76 72 Pressure drop relative to reference 38.2% 35.6% 33.2% 31.1% 29.2% 27.5% 25.9% 24.5% Condenser dew point 54.5 54.3 54.1 53.8 53.5 53.1 52.7 52.2 Condenser bubble point 31.1 30.3 29.6 29.1 28.6 28.1 27.8 27.5 Condenser exit liquid temperature °C 30.1 29.3 28.6 28.1 27.6 27.1 26.8 26.5 Condenser mean temperature 42.8 42.3 41.9 41.4 41.0 40.6 40.2 39.8 Condenser glide (in-out) K 23.4 24.0 24.5 24.8 25.0 25.0 24.9 24.7 -. . *. ..
* * . . * * * **. *.. .1* * * * : : *:.:.
Table 121: Theoretical Performance Data of Selected R-744/R-321R-134a/R-1234ze(E) blends containing 0-14 % R-744, 15 % R-32 and 40 % R-134a Composition CO2IR-32JR-134aIR.
I 234ze(E) % by weight ______ 0/15140145 2/15/40/43 4/15/40141 6/15/40/39 8/15140/37 10/15140135 12/15/40/33 14/15/40131 COP (heating) 2.18 2.21 2.22 2.24 2.25 2.26 2.27 2.28 COP (heating) relative to Reference 103.4% 104.6% 105.5% 106.2% 106.8% 107.3% 107.7% 108.0% Volumetric heating capacity at suction kJ/m3 1089 1186 1286 1390 1498 1608 1722 1838 Capacity relative to Reference 124.0% 135.0% 146.4% 158.2% 170.4% 183.0% 196.0% 209.2% Critical temperature 98.43 95.60 92.90 90.33 87.87 85.52 83.27 81.12 Critical pressure bar 44.98 45.76 46.54 47.32 48.10 48.87 49.64 50.41 Condenserenthalpychange kJ/kg 259.2 267.8 275.5 282.5 288.8 294.7 300.1 305.1 Pressureratlo 15.09 14.98 14.82 14.61 14,37 14.11 13.83 13.54 Refrigerant mass flow kg/hr 27.8 26.9 26.1 25.5 24.9 24.4 24.0 23.6 Compressordischargetemperature °C 131.0 134.2 137.3 140.1 142.8 145.3 147.7 150.0 Evaporatorinletpressure bar 1.04 1.11 1.20 1.29 1.38 1.48 1.59 1.70 Condenserinletpressure bar 15.1 16.2 17.3 18.4 19.5 20.6 21.7 22.8 Evaporator inlet temperature -31.3 -31.8 -32.5 -33.1 -33.7 -34.4 -35.0 -35.7 Evaporator dewpoint °C -28.5 -27.9 -27.3 -26.7 -26.1 -25.6 -25.1 -24.6 Evaporator exit gas temperature °C -23.5 -22.9 -22.3 -21.7 -21.1 -20.6 -20.1 -19.6 Evaporator mean temperature -29.9 -29.9 -29.9 -29.9 -29.9 -30.0 -30.1 -30.1 Evaporator glide (out-in) K 2.8 4.0 5.1 6.4 7.6 8.8 10.0 11.1 Compressor suction pressure bar 1.00 1.08 1,17 1.26 1.36 1.46 1.57 1.68 Compressordischarge pressure bar 15.1 16.2 17.3 18.4 19.5 20.6 21.7 22.8 Suction line pressure drop Palm 223 200 180 164 150 137 126 117 Pressure drop relative to reference 76.4% 68.5% 61.8% 56.1% 51.2% 47.0% 43.3% 40.0% Condenser dew point 51.2 52.0 52.7 53.2 53.6 53.8 54.0 54.0 Condenser bubble point 45.0 42.1 39.7 37.6 35.9 34.4 33.2 32.1 Condenser exit liquid temperature °C 44.0 41.1 38.7 36.6 34.9 33.4 32.2 31.1 Condenser mean temperature 48.1 47.1 46.2 45.4 4,4.7 44.1 43.6 43.1 Condenserglide(in-out) K 6.1 9.9 -13.0 15.5 17.7 19.4 20.8 21.9 -. . S * . ** S. * S * * * . . S.. *,* ,.. S * * : : .:..:.
Table 122: Theoretical Performance Data of Selected R-744/R-321R-134aJR-1234ze(E) blends containing 16-30 % R-744, 15 % R-32 and 40 % R-134a Composition CO2IR-321R-1 34aIR-I 234ze(E) % by weight ______ 16/15/40/29 18/15/40/27 20/15140125 22115(40/23 24115140121 26/15/40119 28115140117 30/15140115 COP (heating) 2.28 2.29 2.29 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 108.2% 108.4% 108.5% 108.6% 108.6% 108.7% 108.6% 108.6% Volumetric heating capacity at suction kJ/ni3 1957 2078 2202 2329 2457 2589 2723 2859 Capacity relative to Reference 222.7% 236.5% 250.6% 265.0% 279.7% 294.6% 309.9% 325.4% Critical temperature 79.06 77.08 75.19 73.36 71.61 69.93 68.31 66.75 Critical pressure bar 51.18 51.95 52.72 53.48 5425 55.02 55.78 56.54 Condenserenthalpychange kJ/kg 309.9 314.4 318.6 322.6 326.5 330.2 333.7 337.1 Pressure ratio 13.26 12,97 12.68 12.40 12.13 11.86 11.60 11.35 Refrigerant mass flow kg/hr 23.2 22.9 22.6 22.3 22.1 21.6 21.6 21.4 I. Compressordischargetemperature °C 152.2 154.4 156.4 158.4 160.4 162.3 164.1 165.9 Ui Evaporatorintetpressure bar 1.82 1.94 2.07 2.20 2.34 2.48 2.62 2.78 Condenserinletpressure bar 23.9 25.0 26.0 27.1 28.2 29.2 30.3 31.4 Evaporator inlet temperature °C -36.4 -37.0 -37.6 -38.3 -38.8 -39.4 -39.9 -40.3 Evaporator dewpoint °C -24.1 -23.7 -23.3 -23.0 -22.6 -22.4 -22.1 -21.9 Evaporator exit gas temperature C -19.1 -18.7 -18.3 -18.0 -17.6 -17.4 -17.1 -16.9 Evaporatormeantemperature °C -30.2 -30.3 -30.5 -30.6 -30.7 -30.9 -31.0 -31.1 Evaporatorglide(out.iri) K 12.3 13.3 14.3 15.3 16.2 17.0 17.7 18.4 Compressor suction pressure bar 1.80 1.92 2.05 2.19 2.32 2.46 2.61 2.76 Compressor discharge pressure bar 23.9 25.0 26.0 27.1 28.2 29.2 30.3 31.4 Suction line pressure drop Palm 109 101 95 89 83 78 74 70 Pressure drop relative to reference 37.2% 34.6% 32.4% 30.3% 28.5% 26.8% 25.3% 23.9% Condenserdewpoint °C 54.0 53.8 53.6 53.4 53.0 52.7 52.2 51.8 Condenserbubblepoint °C 31.2 30.4 29.8 29.2 28.7 28.3 27.9 27.6 Condenser exit liquid temperature DC 30.2 29.4 28.8 28.2 27.7 27.3 26.9 26.6 Condenser mean temperature °C 42.6 42.1 41.7 41.3 40.9 40.5 40.1 39.7 Condenserglide(in-out) K 22.8 23.4 23.9 24.2 24.4 24.4 24.3 24.1 : .: .: * * * . S * * **. S.. S S * : : .:..:.
Table 123: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 0-14 % R-744, 20 % R-32 and 5 % R-134a Composition C02!R-321R-1 34aIR-I 234ze(E) % by weight 0/20/5/75 2/20/5/73 412015171 612015169 8120/5167 1012015165 12/20/5163 14/20/5/61 COP (heating) 2.20 2.22 2.24 2.25 2.26 2.27 2.28 2.28 COP (heating) relative to Reference 104.4% 105.4% 106.2% 106.8% 107.3% 107.7% 108.0% 108.3% Volumetric heating capacity at suction kJ/m3 1103 1197 1294 1394 1497 1602 1709 1818 Capacity relative to Reference 125.5% 136.2% 147.3% 158.7% 170.4% 182.3% 194.5% 206.9% Critical temperature °C 98.35 95.65 93.07 90.59 88.21 85.93 83,74 81.64 Critical pressure bar 45.29 46.10 46.88 47.66 48.43 49.20 49.96 50.71 Condenserenthalpychange kJ/kg 264.5 272.4 279.5 286.1 292.2 298.0 303.3 308.4 Pressure ratio 15.11 14.95 14.76 14.53 14.29 14.03 13.77 13.50 Refrigerant mass flow kg/hr 27.2 26.4 25.8 25.2 24.6 24.2 23.7 23.3 Compressor discharge temperature 131.4 134.4 137.3 140.0 142.6 145.1 147.5 149.9 Evaporator inlet pressure bar 1.04 1.12 1.20 1.29 1.38 1.48 1.58 1.69 Condenser inlet pressure bar 15.2 16.3 17.3 18.4 19.4 20.5 21.5 22.5 Evaporator inlet temperature °C -32.2 -32.9 -33.6 -34.3 -35.0 -35.7 -36.4 -37.1 Evaporator dewpoint °C -27.3 -26.7 -26.2 -25.6 -25.0 -24.5 -24.1 -23.6 Evaporatorexitgastemperature °C -22.3 -21.7 -21.2 -20.6 -20.0 -19.5 -19.1 -18.6 Evaporator mean temperature -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 -30.2 -30.4 Evaporatorglide (out-in) K 4.9 6.2 7.5 8.7 10.0 11.2 12.3 13.5 Compressorsuction pressure bar 1.01 1.09 1.17 1.26 1.36 1.46 1.56 1.67 Compressordischarge pressure bar 15.2 16.3 17.3 18.4 19.4 20.5 21.5 22.5 Suction line pressure drop Pa/rn 217 196 177 162 148 137 126 117 Pressure drop relative to reference 74.3% 67.0% 60.7% 55.4% 50.8% 46.8% 43.3% 40.2% Condenser dew point °C 52.7 53.4 53.9 54.3 54.6 54.8 54.8 54.8 Condenser bubble point 43.0 40.5 38.4 36.6 35.0 33.7 32.6 31.6 Condenser exit liquid temperature 42.0 39.5 37.4 35.6 34.0 32.7 31.6 30.6 Condenser mean temperature °C 47.9 46.9 46.2 45.5 44.8 44.2 43.7 43.2 Condenserglide(,n-out) K 9.6 12.8 15.5 17.7 19.6 21.1 22.3 23.2
I
I S. ** * I * * * . S 5*5 151 *** * I * : .:..:.
Table 124: Theoretical Performance Data of Selected R-7441R-32JR-1 34a/R-1 234ze(E) blends containing 16-30 % R-744, 20 % R-32 and 5 % R-134a Composition C02/R-32/R-134a/R-I 234ze(E) % by weight ______ 16/20/5/59 18/20/5/57 20/20/5/55 22120/5153 24120(5/51 2612015149 2812015147 30/20/5/45 COP (heating) 2.29 2.29 2,29 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 108.4% 108.5% 108.6% 108.6% 108.6% 108.6% 108.5% 108.4% Volumetric heating capacity at suction kJ/m3 1930 2043 2159 2276 2396 2519 2645 2773 Capacity relative to Reference 219.6% 232.5% 245.7% 259.1% 272.7% 286.7% 301.0% 315.6% Critical temperature °C 79.63 77.69 75.84 74.05 72.33 70.67 69.07 67.53 Critical pressure bar 51.47 52.22 52.97 53.72 54.47 55.22 55.96 56.71 Condenserenthalpychange kJ/kg 313.2 317.8 322.2 326.4 330.4 334.2 337.9 341.4 Pressureratio 13.24 12.98 12.72 12.46 12.21 11.96 11.71 11.47 Refrigerant mass flow kg/hr 23.0 22.7 22.3 22.1 21.8 21.5 21.3 21.1 Compressordischargetemperature °C 152.2 154.4 156.5 158.6 160.7 162.7 164.6 166.5 Evaporator inlet pressure bar 1.80 1.91 2.03 2.15 2.28 2.41 2.55 2.69 Condenser inlet pressure bar 23.6 24.6 25.6 26.6 27.6 28.7 29.7 30.7 Evaporatorinlettemperature °C -37.8 -38.4 -39.0 -39.6 -40.1 -40.6 -41.1 -41.4 Evaporatordewpoint °C -23.2 -22.9 -22.6 -22.3 -22.0 -21.8 -21.6 -21.5 Evaporatorexitgastemperature °C -18.2 -17.9 -17.6 -17.3 -17.0 -16.8 -16.6 -16.5 Evaporator mean temperature -30.5 -30.6 -30.8 -30.9 -31.1 -31.2 -31.3 -31.5 Evaporator glide (out-in) K 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 Compressor suction pressure bar 1.78 1.89 2.01 2.14 2.26 2.40 2.53 2.68 Compressor discharge pressure bar 23.6 24.6 25.6 26.6 27.6 28.7 29.7 30.7 Suction line pressure drop Pa/m 109 102 96 90 85 80 75 71 Pressure drop relative to reference 37.4% 34.9% 32.7% 30.7% 28.9% 27.3% 25.8% 24.4% Condenser dew point °C 54.7 54.5 54.3 53.9 53.6 53.1 52.7 52.2 Condenser bubble point 30.7 30.0 29.3 28.8 28.3 27.9 27.5 27.2 Condenser exit liquid temperature 29.7 29.0 28.3 27.8 27.3 26.9 26.5 26.2 Condensermeantemperature °C 42.7 42.2 41.8 41.3 40.9 40.5 40.1 39.7 Condenser glide (in-out) K 24.0 24.5 24.9 I 25.2 25.3 25.3 25.2 25.0 -. . * * .1 *I * . * ** * S *S* * G** * * * : : *:..:.
Table 125: Theoretical Performance Data of Selected R-744/R-321R-I34aJR-1234ze(E) blends containing 0-14 % R-744, 20 % R-32 and 10% R-134a Composition C02/R-321R-134a/R-I 234ze(E) % by weight ______ 0120110170 2/20/10/68 4/20/10/66 6/20/10164 8/20/10/64 10/20/10160 12/20/10/58 14/20110/56 COP (heating) 2.20 2.22 2.24 2.25 2.26 2.27 2.28 2.28 COP (heating) relative to Reference 104.5% 105.5% 106.2% 106.9% 107.4% 107.8% 108.1% 108.3% Volumetric heating capacity at suction kJ/m3 1119 1214 1312 1413 1517 1624 1732 1843 Capacity relative to Reference 127.4% 138.2% 149.3% 160.9% 172.7% 184.8% 197.1% 209.7% Critical temperature 98.06 95.36 92.78 90.31 87.94 85.67 83.49 81.41 Critical pressure bar 45.53 46.31 47.09 47.87 48.63 49.40 50.16 50.91 Condenserenthalpychange kJ/kg 265.2 273.1 280.3 286.8 292.9 298.6 304.0 309.0 Pressure ratio 14.98 14.83 14.64 14.42 14.17 13.92 13.66 13.39 Refrigerant mass flow kg/hr 27.1 26.4 25.7 25.1 24.6 24.1 23.7 23.3 Compressordischarge temperature °C 131.9 134.9 137.8 140.5 143.1 145.6 148.0 150.3 Evaporatorinletpressure bar 1.06 1.14 1.22 1.31 1,40 1.50 1.61 1.71 Condenserinletpressure bar 15.3 16.4 17.4 18.5 19.5 20.6 21.6 22.7 Evaporator inlet temperature °c -32.2 -32.8 -33.5 -34.2 -34.8 -35.5 -36.2 -36.9 Evaporator dewpoint °C -27.4 -26.9 -26.3 -25.7 -25.2 -24.7 -24.2 -23.8 Evaporator exit gas temperature °C -22.4 -21.9 -21.3 -20.7 -20.2 -19.7 -19.2 -18.8 Evaporator mean temperature -29.8 -29.8 -29.9 -29.9 -30.0 -30.1 -30.2 -30.3 Evaporator glide (out-in) K 4.7 6.0 7.2 8.4 9.7 10.8 12.0 13.1 Compressor suction pressure bar 1.02 1.10 1.19 1.28 1.38 1.48 1.58 1.69 Compressor discharge pressure bar 15.3 16.4 17.4 18.5 19.5 20.6 21.6 22.7 Suction line pressure drop Pa/rn 213 192 175 159 146 135 124 116 Pressure drop relative to reference 73.1% 65.9% 59.8% 54.5% 50.0% 46.1% 42.6% 39.6% Condenser dew point C 52.4 53.0 53.6 54.0 54.2 54.4 54.5 54.4 Condenser bubble point 43.2 40.7 38.6 36.8 35.2 33.9 32.7 31.8 Condenserexitliquidtemperature 42.2 39.7 37.6 35.8 34.2 32.9 31.7 30.8 Condenser mean temperature °C 47.8 46.9 46.1 45.4 44.7 44.1 43.6 43.1 Condenser glide (in_out) K 9.1 12.3 15.0 17.2 19.0 20.5 21.7 22.7 * : .: .: * S * * * S S *.S S.. *55 * * : : .:..:.
Table 126: Theoretical Performance Data of Selected R-744/R-32/R-134a/R-1234ze(E) blends containing 16-30 % R-744, 20 % R-32 and 10%R-134a Composition C02/R-321R-j 34aIR-I 234ze(E) % by weight ______ 16/20/10/54 18120/10/52 20/20110150 22/20110/48 24/20110(46 26120110/44 28/20/10/42 30120/10/40 COP (heating) 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 108.5% 108.6% 108.6% 108.7% 108.7% 108.6% 108.6% 108.5% Volumetric heating capacity at suction kJ/m3 1956 2071 2189 2309 2431 2556 2684 2816 Capacity relative to Reference 222.6% 235.7% 249.1% 262.8% 276.7% 290.9% 305.5% 320.4% Critical temperature 79.40 77.48 75.63 73.85 72.14 70.50 68.91 67.38 Critical pressure bar 51.67 52.42 53.17 53.93 5468 55.43 56.18 56.93 Condenserenthalpychange kJ/kg 313.8 318.3 322.6 326.8 330.7 334.5 338.1 341.5 Pressure ratio 13.13 12.87 12.60 12.35 12.09 11.84 11.59 11.35 Refrigerant mass flow kg/hr 22.9 22.6 22.3 22.0 21.8 21.5 21.3 21.1 I. Compressordischargetemperature °C 152.6 154.8 156.9 159.0 161.0 162.9 164.8 166.6 ri Evaporator inlet pressure bar 1.83 1.94 2.06 2.19 2.32 2.45 2.59 2.74 Condenserinletpressure bar 23.7 24.8 25.8 26.8 27.8 28.9 29.9 30.9 Evaporator inlet temperature -37.5 -38.1 -38.7 -39.3 -39.8 -40.3 -40.7 -41.1 Evaporatordewpoint °C -23.4 -23.0 -22.7 -22.4 -22.2 -22.0 -21.8 -21.6 Evaporatorexitgastemperature °C -18.4 -18.0 -17.7 -17.4 -17.2 -17.0 -16.8 -16.6 Evaporator mean temperature °C -30.4 -30.6 -30.7 -30.9 -31.0 -31.1 -31.2 -31.4 Evaporator glide (out-in) K 14.1 15.1 16.0 16.9 17.6 18.3 18.9 19,5 Compressorsuction pressure bar 1.81 1.92 2.05 2.17 2.30 2.44 2.58 2.73 Compressor discharge pressure bar 23.7 24.8 25.8 26.8 27.8 28.9 29.9 30.9 Suction line pressure drop Palm 108 101 94 88 83 78 74 70 Pressure drop relative to reference 36.9% 34.4% 32.2% 30.3% 28.5% 26.9% 25.4% 24.0% Conderiserdewpoint °C 54.3 54.1 53.9 53.6 53.2 52.8 52.3 51.8 Condenser bubble point 30.9 30.2 29.5 29.0 28.5 28.1 27.7 27.4 Condenser exit liquid temperature °C 29.9 29.2 28.5 28.0 27.5 27.1 26.7 26.4 Condenser mean temperature °C 42.6 42.2 41.7 41.3 40.9 40.4 40.0 39.6 Condenser gUde (in-out) K 23.4 24.0 24.4 24.6 24.7 24.7 24.6 24.4 : .: .: * * a * * . a a.. **. .*. I S * : : .:..:.
Table 127: TheoretIcal Performance Data of Selected R-744/R-32/R-134aIR.1234ze(E) blends containing 0-14% R-744, 20% R-32 and 20% R-134a Composition C02/R-32!R-1 34aIR-I 234ze(E) % by weight 0/20/20/60 2120120I58 4120/20/56 6120120154 8/20/20/52 10120120/50 12/20/20/48 14/20/20/46 COP (heating) I 2.20 2.23 2.24 2.25 2.27 2.27 2.28 2.29 COP (heating) relative to Reference 104.6% 105.5% 106.3% 106.9% 107.4% 107.8% 108.1% 108.4% Volumetric heating capacity at suction kJ/m3 1150 1247 1347 1449 1556 1664 1776 1890 Capacity relative to Reference 130.9% 141.9% 153.3% 165.0% 177.0% 189.4% 202.1% 215.1% Critical temperature 97.47 94.79 92.23 89.78 87,43 85.19 83.03 80.97 Critical pressure bar 45.91 46.68 47.46 48.23 48.99 49.76 50.52 51.28 Condenserenthalpychange kJ/kg 266.8 274.7 281.9 288.5 294.5 300.2 305.5 310.5 Pressure ratio 14.75 14.61 14.42 14.21 13.98 13.72 13.46 13.20 Refrigerant mass flow kg/hr 27.0 26.2 25.5 25.0 24.4 24.0 23.6 23.2 Compressor discharge temperature °C 132.9 135.9 138.8 141.5 144.1 146.6 149.0 151.3 i Evaporatorinletpressure bar 1.09 1.17 1.25 1.35 1.44 1.54 1.65 1.76 Condenser inlet pressure bar 15.6 16.6 17.7 18.7 19.8 20.9 21.9 23.0 Evaporator inlet temperature -32.0 -32.6 -33.2 -33.9 -34.5 -35.2 -35.8 -36.4 Evaporator dewpoint °C -27.7 -27.1 -26.5 -26.0 -25.5 -25.0 -24.5 -24.1 Evaporatorexitgastemperature °C -22.7 -22.1 -21.5 -21.0 -20.5 -20.0 -19.5 -19.1 Evaporator mean temperature -29.8 -29.9 -29.9 -29.9 -30.0 -30.1 -30.2 -30.3 Evaporatorglide (out-in) K 4.3 5.5 6.7 7.9 9.1 10.2 11.3 12.4 Compressor suction pressure bar 1.05 1.14 1.23 1.32 1.42 1.52 1.63 1.74 Compressordischargepressure bar 15.6 16.6 17.7 18.7 19.8 20.9 21.9 23.0 Suction line pressuredrop Pa/rn 207 187 169 155 142 131 121 112 Pressure drop relative to reference 70.8% 63.9% 58.0% 53.0% 48.6% 44.8% 41.4% 38.5% Condenserdewpoint °C 51.7 52.4 52.9 53.3 53.6 53.7 53.8 53.8 Condenser bubble point 43.5 41.0 38.9 37.1 35.5 34.2 33.0 32.0 Condenserexittiquidtemperature °C 42.5 40.0 37.9 36.1 34.5 33.2 32.0 31.0 Condenser mean temperature 47.6 46.7 45.9 45.2 44.5 44.0 43.4 42.9 Condenserglide(in-out) I K 8.2 11.3 14.0 16.2 18.1 19.6 20.8 21.7 : : .: .: :.: .L i.
Table 128: Theoretical Performance Data of Selected R-744/R-321R-134a/R.1234ze(E) blends containing 16-30% R-744, 20% R-32 and 20 % R-134a Composition CO2IR-321R-134aIR-I 234ze(E) % by weight 16/20/20144 18/20120142 20120120140 22/20120138 24120120/38 26120/20/34 28120/20/32 30/20/20/30 COP (heating) 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 COP (heating) relative to Reference 108.6% 108.7% 108.8% 108.8% 108.8% 108.8% 108.8% 108.7% Volumetric heating capacity at suction kJ/m3 2006 2125 2246 2370 2496 2626 2758 2894 Capacity relative to Reference 228.3% 241.8% 255.6% 269.7% 284.1% 298.8% 313.9% 329.3% Critical temperature 78.99 77.09 75.26 73.50 71.81 70.18 68.61 67.10 Critical pressure bar 52.04 52.80 53.56 54.32 55.07 55.83 56.59 57.34 Condenserenthalpchange kJ/kg 315.2 319.6 323.8 327.9 331.7 335.4 338.9 342.2 Pressure ratio 12.93 12.67 12.41 12.15 11,89 11.64 11.39 11.14 Refrigerantmassflw kg/hr 22.8 22.5 22.2 22.0 21.7 21.5 21.2 21.0 I. Compressordischargetemperature °C 153.5 155.6 157.7 159.7 161.6 163.5 165.4 167.1 Ui Evaporator inlet pressure bar 1.88 2.00 2.12 2.25 2.39 2.53 2.67 2.82 Condenser inlet pressure bar 24.0 25.1 26.1 27.2 28.2 29.2 30.3 31.3 Evaporator inlet temperature °C -37.1 -37.6 -38.2 -38.8 -39.3 -39.7 -40.1 -40.5 Evaporator dewpoint °C -23.7 -23.3 -23.0 -22.7 -22.5 -22.2 -22.0 -21.9 Evaporatorexitgas temperature -18.7 -18.3 -18.0 -17.7 -17.5 -17.2 -17.0 -16.9 Evaporator mean temperature -30.4 -30.5 -30.6 -30.7 -30.9 -31.0 -31.1 -31.2 Evaporatorglide (out-in) K 13.4 14.3 15.2 16.0 16.8 17.5 18.1 18.6 Compressor suction pressure bar 1.86 1.98 2.11 2.24 2.37 2.51 2.66 2.81 Compressor discharge pressure bar 24.0 25.1 26.1 27.2 28.2 29.2 30.3 31.3 Suction line pressure drop Palm 105 98 92 86 81 76 72 68 Pressure drop relative to reference 35.8% 33.5% 31.3% 29.4% 27.7% 26.1% 24.7% 23.3% Condenserdewpoint °C 53.7 53.5 53.3 53,0 52.6 52.2 51.8 51.3 Condenser bubble point 31.2 30.5 29.8 29.3 28.8 28.4 28.1 27.8 Condenser exit liquid temperature °C 30.2 29.5 28.8 28.3 27.8 27.4 27.1 26.8 Condenser mean temperature 42.4 42.0 41.5 41.1 40.7 40.3 39.9 39.5 Condenser glide (in-out) K I 22.5 23.0 23.4 23.7 23.8 23.8 23.7 23.5 * :e: : *.. e. *., * * * . * . I I * I.. *** Table 129: Theoretical Performance Data of Selected R-7441R-321R-134a/R-1234ze(E) blends contaIning 0-14 % R-744, 20 % R-32 and 30 % R-134a Composition CO2IR-32JR-134a/R-I 234ze(E) % by weight ______ 0/20/30/50 2/20130/48 4120130146 6120130144 8120/30/42 10120130/40 12120/30138 14/20/30/36 COP (heating) 2.21 2.23 2.24 2.26 2.27 2.28 2.28 2.29 COP (heating) relative to Reference 104.7% 105.7% 106.4% 107.0% 107.5% 107.9% 108.3% 108.5% Volumetric heating capacity at suction kJ/m3 1178 1276 1378 1482 1590 1702 1815 1932 Capacity relative to Reference 134,1% 145.2% 156.8% 168.7% 181.0% 193.6% 206.6% 219.9% Critical temperature °C 96.89 94.24 91.70 89.28 86.96 84.74 82.61 80.57 Critical pressure bar 46.18 46.96 47.74 48.51 49.29 50.06 50.83 51.60 Condenserenthalpychange kJ/kg 268.7 276.6 283.8 290.4 296.5 302.1 307.4 312.3 Pressure ratio 14.56 14.42 14.24 14.04 13.81 13.56 13.30 13.04 Refrigerant mass flow kg/hr 26.8 26.0 25.4 24.8 24.3 23.8 23.4 23.1 Compressor discharge temperature °C 134.0 137.1 139.9 142.7 145.3 147.7 150.1 152.3 i Evaporatorinletpressure bar 1.12 1.20 1.28 1.38 1.48 1.58 1.69 1.80 Condenser inlet pressure bar 15.8 16.8 17.9 19.0 20.0 21.1 22.2 23.2 Evaporator inlet temperature -31.8 -32.4 -33.0 -33.6 -34.3 -34.9 -35.5 -36.1 Evaporator dewpoint °C -27.9 -27.4 -26.8 -26.3 -25.7 -25.2 -24.8 -24.3 Evaporator exit gas temperature °C -22.9 -22.4 -21.8 -21.3 -20.7 -20.2 -19.8 -19.3 Evaporator mean temperature -29.9 -29.9 -29.9 -30.0 -30.0 -30.1 -30.1 -30.2 Evaporatorglide(out-in) K 3.9 5.1 6.2 7.4 8.5 9.6 10.7 11.8 Compressor suction pressure bar 1.08 1.17 1.26 1.35 1.45 1.56 1.67 1.78 Compressordischarge pressure bar 15.8 16.8 17.9 19.0 20.0 21.1 22.2 23.2 Suctionlinepressuredrop Pa/rn 201 181 165 151 138 127 118 109 Pressure drop relative to reference 68.8% 62.1% 56.4% 51.5% 47.3% 43.6% 40.3% 37.4% Coridenserdewpoint °C 51.1 51.7 52.3 52.7 53.0 53.1 53.2 53.2 Condenser bubble point 43.8 41.2 39.1 37.3 35.7 34.4 33.2 32.2 Condenser exit liquid temperature 42.8 40.2 38.1 36.3 34.7 33.4 32.2 31.2 Condenser mean temperature 47.4 46.5 45.7 45.0 44.3 43.8 43.2 42.7 Condenserglide (in-out) K 7.3 10.5 -13.2 15.4 17.3 18.8 20.0 21.0 * :. *: *: *.: : : : : *:. *:.
Table 130: Theoretical Performance Data of Selected R-7441R-37JR-1 34aJR-1 234ze(E) blends containing 16-30 % R-744, 10 % R-32 and 30% R-134a Composition CO2IR-321R-1 34aIR-I 234ze(E) % by weight _____ 16120130134 18/20/20/32 20/20/30/30 22/20130128 24/20130126 26120130124 28120130122 30/20130/20 COP (heating) 2.29 2.29 2.30 2.30 2.30 2,30 2.30 2.30 COP (heating) relative to Reference 108.7% 108.8% 108.9% 109.0% 109.0% 109.0% 109.0% 108.9% Volumetric heating capacity at suction kJ/m3 2051 2173 2297 2424 2554 2686 2822 2961 Capacity relative to Reference 233.4% 247.3% 261.4% 275.9% 290.7% 305.7% 321.2% 336.9% Critical temperature °c 78.61 76.73 74.93 73.19 71.52 69.91 68.36 66.86 Critical pressure bar 52.37 53.14 53.91 54.67 55.44 56.21 56.97 57.74 Condenserenthalpychange kJlkg 316.9 321.3 325.5 329.5 333.2 336.8 340.3 343.5 Pressure ratio 12.77 12.51 12.24 11.98 11.73 11.48 11.23 10.99 Refrigerantmassflow kg/hr 22.7 22.4 22.1 21.9 21.6 21.4 21.2 21.0 Compressordischargeternperature °C 154.5 156.6 158.6 160.6 162.5 164.4 166.2 167.9 Evaporator inlet pressure bar 1.92 2.04 2.17 2.31 2.45 2.59 2.74 2.89 Condenserinletpressure bar 24.3 25.4 26.4 27.5 28.5 29.6 30.6 31.7 Evaporatorinlettemperature °C -36.7 -37.3 -37.8 -38.3 -38.8 -39.3 -39.7 -40.1 Evaporator dewpoint °C -23.9 -23.6 -23.2 -22.9 -22.7 -22.5 -22.3 -22.1 Evaporatorexitgastemperature °C -18.9 -18.6 -18.2 -17.9 -17.7 -17.5 -17.3 -17.1 Evaporator mean temperature °c -30.3 -30.4 -30.5 -30.6 -30.8 -30.9 -31.0 -31.1 Evaporatorglide(out-en) K 12.8 13.7 14.6 15.4 16.2 16.8 17.4 18.0 Compressor suction pressure bar 1.90 2.03 2.16 2.29 2.43 2.58 2.73 2.88 Compressor discharge pressure bar 24.3 25.4 26.4 27.5 28.5 29.6 30.6 31.7 Suction line pressure drop Pa/rn 102 95 89 84 79 74 70 66 Pressure drop relative to reference 34.9% 32.6% 30.5% 28.7% 27.0% 25.4% 24.0% 22.7% Condenserdewpoint °C 53.1 53.0 52.7 52.4 52.1 51.7 51.3 50.8 Condenser bubble point °C 31.4 30.7 30.0 29.5 29.0 28.6 28.3 28.0 Condenser exit liquid temperature 30.4 29.7 29.0 28.5 28.0 27.6 27.3 27.0 Condenser mean temperature 42.3 41.8 41.4 41.0 40.6 40.2 39.8 39.4 Condenserglide(in-out) K 21.7 22.3 22.7 23.0 23.1 23.1 -23.0 22.8 * * . * * ** S. * *1 * * S * S.. **. SI. * * * S * . S S S.. *5* Table 131: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 0-14% R-744, 20% R-32 and 40% R-134a Composition C02/R-321R-1 34aIR-I 234ze(E) % by weight ______ 0/20/40/40 2120!40I38 4120140136 6/20140134 8120140132 10!20I40I30 12120/40/28 14/20/40/26 COP (heating) 2.21 2.23 2.24 2.26 2.27 2.28 2.28 2.29 COP (heating) relative to Reference 104.9% 105,7% 106.4% 107.0% 107.5% 107.9% 108.3% 108.5% Volumetric heating capacity at suction kJ/m3 1202 1276 1378 1482 1590 1702 1815 1932 Capacity relative to Reference 136.8% 145.2% 156.8% 168.7% 181.0% 193.6% 206.6% 219.9% Critical temperature 96.33 94.24 91.70 89.28 86.96 84.74 82.61 80.57 Critical pressure bar 46.37 46.96 47.74 48.51 49.29 50.06 50.83 51.60 Condenserenthalpychange kJlkg 270.8 276.6 283.8 290.4 296.5 302.1 307,4 312.3 Pressure ratio 14.39 14.42 14.24 14.04 13.81 13.56 13.30 13.04 Refrigerant mass flow kg/hr 26.6 26.0 25.4 24.8 24.3 23.8 23.4 23.1 Compressordischarge temperature °C 135.2 137.1 139.9 142.7 145.3 147.7 150.1 152.3 Evaporatorinletpressure bar 1.14 1.20 1.28 1.38 1.48 1.58 1.69 1.80 Condenser inlet pressure bar 15.9 16.8 17.9 19.0 20.0 21.1 22.2 23.2 Evaporator inlet temperature °C -31.7 -32.4 -33.0 -33.6 -34.3 -34.9 -35.5 -36.1 Evaporator dewpoint °C -28.1 -27.4 -26.8 -26.3 -25.7 -25.2 -24.8 -24.3 Evaporator exit gas temperature -23.1 -22.4 -21.8 -21.3 -20.7 -20.2 -19.8 -19.3 Evaporator mean temperature -29.9 -29.9 -29.9 -30.0 -30.0 -30.1 -30.1 -30.2 Evaporatorglide (out-in) K 3.6 5.1 6.2 7.4 8.5 9.6 10.7 11.8 Compressor suction pressure bar 1.11 1.17 1.26 1.35 1.45 1.56 1.67 1.78 Compressordischargepressure bar 15.9 16.8 17.9 19.0 20.0 21.1 22.2 23.2 Suction line pressure drop Pa/rn 196 181 165 151 138 127 118 109 Pressure drop relative to reference 67.0% 62.1% 56.4% 51.5% 47.3% 43.6% 40.3% 37.4% Condenserdewpoint °C 50.5 51.7 52.3 52.7 53.0 53.1 53.2 53.2 Condenserbubblepoint °C 44.0 41.3 39.1 37,3 35.7 34.4 33.2 32.2 Condenser exit liquid temperature °C 43.0 40.3 38.1 36.3 34.7 33.4 32.2 31.2 Condenser mean temperature °C 47.2 46.5 45.7 45.0 44.3 43.8 43.2 42.7 Condenserglide(in-out) K 6.5 10.5 13.2 15.4 17.3 18.8 20.0 21.0 * I I I * I ** ** * I. * * I I *** I.. *.* I I * . I * * I * II. III Table 132: Theoretical Performance Data of Selected R-744/R-32/R-134a/R.1234ze(E) blends containing 16-30 % R-744, 20 % R-32 and 40 % R-134a Composition CO2IR-321R-1 34aIR-I 234ze(E) % by weight 16I20/40I24 18/20/40/22 20120140120 22120140118 24120/4011$ 28/20/40)14 28/20/40/12 30/20/40/10 COP (heating) 2.29 2.29 2.30 2.30 2.30 2.30 2.30 2.30 COP (heating) relative to Reference 108.7% 108.8% 108.9% 109.0% 109.0% 109.0% 109.0% 108.9% Volumetric heating capacity at suction kJ/m3 2051 2173 2297 2424 2554 2686 2822 2961 Capacity relative to Reference 233.4% 247.3% 261.4% 275.9% 290.7% 305.7% 321.2% 336.9% Cntical temperature °C 78.61 76.73 74.93 73.19 71.52 69,91 68.36 66.86 Critical pressure bar 52.37 53.14 53.91 54.67 55.44 56.21 56.97 57.74 Condenserenthalpychange kJ/kg 316.9 321.3 325.5 329.5 333.2 336.8 340.3 343.5 Pressure ratio 12.77 12.51 12.24 11.98 11.73 11.48 11.23 10.99 Refrigerant mass flow kg/hr 22.7 22.4 22.1 21.9 21.6 21.4 21.2 21.0 Compressordischargetemperature °C 154.5 156.6 158.6 160.6 162.5 164.4 166.2 167.9 I. Evaporatorinletpressure bar 1.92 2.04 2.17 2.31 2.45 2.59 2.74 2.89 Condenser inlet pressure bar 24.3 25.4 26.4 27.5 28.5 29.6 30.6 31.7 Evaporator inlet temperature °c -36.7 -37.3 -37.8 -38.3 -38.8 -39.3 -39.7 -40.1 Evaporator dewpoint °C -23.9 -23.6 -23.2 -22.9 -22.7 -22.5 -22.3 -22.1 Evaporatorexitgastemperature °C -18.9 -18.6 -18.2 -17.9 -17.7 -17.5 -17.3 -17.1 Evaporator mean temperature °c -30.3 -30.4 -30.5 -30.6 -30.8 -30.9 -31.0 -31.1 Evaporator glide (out-in) K 12.8 13.7 14.6 15.4 16.2 16.8 17.4 18.0 Compressor suction pressure bar 1.90 2.03 2.16 2.29 2.43 2.58 2.73 2.88 Compressordischargepressure bar 24.3 25.4 26.4 27.5 28.5 29.6 30.6 31.7 Suction line pressure drop Palm 102 95 89 84 79 74 70 66 Pressure drop relative to reference 34.9% 32.6% 30.5% 28.7% 27.0% 25.4% 24.0% 22.7% Condenserdewpoint °C 53.1 53.0 52.7 52.4 52.1 51.7 51.3 50.8 Condenserbubblepoint °C 31.4 30.7 30.0 29.5 29.0 28.6 28.3 28.0 Condenser exit liquid temperature °C 30.4 29.7 29.0 28.5 28.0 27.6 27.3 27.0 Condenser mean temperature 42.3 41.8 41.4 41.0 40.6 40.2 39.8 39.4 Condenserglide(in-out) K 21.7 22.3 22.7 23.0 23.1 23.1 23.0 22.8 : .: .: * . S * * S S *.* S., S * * : : .:..:, Table 133: Theoretical Performance Data of Selected R-744/R-321R-134afR-1234ze(E) blends containing 0-14 % R-744, 25 % R-32 and 5 % R-134a Composition C02/R-321R-1 34aIR-I 234ze(E} % by weight ________ 0/2515/70 2/25/5/68 4/2515166 6/2515164 812515/62 1012515160 1212515158 14/25/5/56 COP (heating) 2.23 2.25 2.26 2.27 2.28 2.29 2.29 2.29 COP (heating) relative to Reference 105.7% 106.5% 107.2% 107.7% 108.1% 108.4% 108.7% 108.8% Volumetric heating capacity at suction kJ/m3 1221 1318 1418 1520 1624 1732 1841 1953 Capacity relative to Reference 139.0% 150.0% 161.3% 172.9% 184.9% 197.1% 209.5% 222.3% Critical temperature °C 96.21 93.71 91.30 89.00 86.78 84.66 82.62 80.65 Critical pressure bar 46.83 47.63 48.42 49.20 49.98 50.75 51,52 52.29 Condenserenthalpychange kJ/kg 275.4 282.8 289.6 295.9 301.8 307.3 312.5 317.4 Pressure ratio 14.37 14.20 14.01 13.80 13.58 13.34 13.10 12.86 Refrigerant mass flow kg/hr 26.1 25.5 24.9 24.3 23.9 23.4 23.0 22.7 Compressordischargetemperature °C 135.4 138.2 141.0 143.7 146.2 148.7 151.0 153.3 Evaporator inlet pressure bar 1.15 1.23 1.32 1.41 1.51 1.61 1.72 1.83 Condenser inlet pressure bar 16.1 17.1 18.1 19.2 20.2 21.2 22.2 23.3 Evaporator inlettemperature °C -32.8 -33.4 -34.0 -34.7 -35.3 -35.9 -36.5 -37.1 Evaporator dewpoint °C -26.9 -26.4 -25.9 -25.4 -24.9 -24.5 -24.0 -23.7 Evaporatorexitgastemperature °C -21.9 -21.4 -20.9 -20.4 -19.9 -19.5 -19.0 -18.7 Evaporator mean temperature °C -29.9 -29.9 -30.0 -30.0 -30.1 -30.2 -30.3 -30.4 Evaporator glide (out-in) K 5.9 7.0 8.2 9,3 10.4 11.5 12.5 13.5 Compressor suction pressure bar 1.12 1.20 1.29 1.39 1.49 1.59 1.70 1.81 Compressordischargepressure bar 16.1 17.1 18.1 19.2 20.2 21.2 22.2 23.3 Suction line pressure drop Palm 190 173 158 145 133 124 115 107 Pressure drop relative to reference 65.1% 59.1% 54.0% 49.6% 45.7% 42.3% 39.3% 36.6% Condenserdewpoint °C 51.9 52.5 52.9 53.2 53.4 53.5 53.5 53.4 Condenser bubble point °C 42.2 40.0 38.1 36.5 35.1 33.9 32.8 31.9 Condenser exit liquid temperature °C 41.2 39.0 37.1 35.5 34.1 32.9 31.8 30.9 Condenser mean temperature °C 47.1 46.2 45.5 44.8 442 43.7 43.1 42.6 Condenserglide(in-out) K 9.7 12.5 14.8 16.7 18.3 19.6 20.7 21.5
I I
* :. :. : me *.p II. * * * . I * * I * I*. sis Table 134: TheoretIcal Performance Data of Selected R-744/R-32/R-134aJR-t234ze(E) blends containing 16-30 % R-744, 25 % R-32 and 5 % R-134a Composition CO2IR-321R-j 34aIR-I 234ze(E) % by weight ________ 16125/5/54 18/25/5/52 20/25(5/50 22/2515148 2412515/46 26125/5144 28/2515142 30/2515140 COP (heating) 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 COP (heating) relative to Reference 109.0% 109.0% 109.1% 109.1% 109.1% 109.0% 109.0% 108.9% Volumetric heating capacity at suction kJ/m3 2067 2184 2303 2425 2549 2677 2808 2942 Capacity relative to Reference 235.3% 248.6% 262.1% 276.0% 290.1% 304.6% 319.5% 334.8% Critica' temperature °C 78.77 76.95 75.20 73.52 71.90 70.33 68.83 67.37 Critical pressure bar 53.05 53.82 54.58 55.34 56.10 56.86 57.62 58.38 Condenser enthalpy change kJ/kg 322.0 326.5 330.7 334.7 338.6 342.2 345.7 349.0 Pressure ratio 12.62 12.37 12.13 11.89 11.65 11.41 11.18 10.95 Refrigerantmassflow kg/hr 22.4 22.1 21.8 21.5 21.3 21.0 20.8 20.6 Compressordischargetemperature °C 155.5 157.7 159.7 161.8 163.7 165.6 167.4 169.2 Evaporatorinletpressure bar 1.94 2.06 2.18 2.31 2.45 2.58 2.73 2,88 Condenserinletpressure bar 24.3 25.3 26.3 27.3 28.3 29.4 30.4 31.4 Lfl Evaporator inlet temperature °C -37.7 -38.2 -38.8 -39.2 -39.7 -40.0 -40.4 -40.7 Evaporator dewpoint C -23.3 -23.0 -22.7 -22.5 -22.3 -22.1 -22.0 -21.8 Evaporatorexitgastemperature °C -18.3 -18.0 -17.7 -17.5 -17.3 -17.1 -17.0 -16.8 Evaporator mean temperature °C -30.5 -30.6 -30.7 -30.9 -31.0 -31.1 -31.2 -31.3 Evaporatorglide(out-iri) K 14.4 15.2 16.0 16.7 17.4 17.9 18.4 18.9 Compressor suction pressure bar 1.92 2.04 2.17 2.30 2.43 2.57 2.72 2.87 Compressor discharge pressure bar 24.3 25.3 26.3 27.3 28.3 29.4 30.4 31.4 Suction line pressure drop Pa/rn 100 94 88 83 78 74 70 66 Pressure drop relative to reference 34.2% 32.0% 30.1% 28.3% 26.7% 25.2% 23.9% 22.6% Condenserdewpoint °C 53.3 53.0 52.8 52.4 52.1 51.7 51.2 50.7 Condenserbubblepoint °C 31.1 30.4 29.8 29.3 28.8 28.5 28.1 27.9 Condenserexitliquidtemperature °C 30.1 29.4 28.8 28.3 27.8 27.5 27.1 26.9 Condensermeantemperature °C 42.2 41.7 41.3 40.9 40.5 40.1 39.7 39.3 Condenserglide(in-out) K 22.2 22.6 -23.0 23.2 23.2 23.2 23.1 22.8 : .: $ . . . I : : : : 0 I.. *** Table 135: Theoretical Performance Data of Selected R-7441R-32/R-13451R-1234ze(E) blends containing 0-14 % R-744, 25 % R-32 and 10 % R-134a Composition CO2IR-32/R-134a!R I 234ze(E) % by weight _____ 0/25/10/65 2/25/10/63 4125110161 6125110/59 8125110157 10125110155 12/25110153 14125110151 COP (heating) 2.23 2.25 2.26 2.27 2.28 2.29 2.29 2.30 COP (heating) relative to Reference 105.8% 106.6% 107.2% 107.7% 108.1% 108.4% 108.7% 108.9% Volumetric heating capacity at suction kJ/m3 1237 1335 1435 1538 1644 1753 1864 1977 Capacity relative to Reference 140.8% 151.9% 163.3% 175.0% 187.1% 199.5% 212.1% 225.1% Critical temperature °c 95.95 93.44 91.04 88.74 86.54 84.42 82.39 80.44 Critical pressure bar 47.01 47.80 48.58 49.36 50.14 50.91 5168 52.45 Condenser enthalpy change kJ/kg 276.2 283.6 290.4 296.7 302.5 308.0 313.2 318.0 Pressure ratio 14.26 14.10 13.91 13.71 13.48 13.25 13.01 12.77 Refrigerant mass flow kg/hr 26.1 25.4 24.8 24.3 23.8 23.4 23.0 22.6 Compressordischargetemperature °C 135.9 138.8 141.5 144.2 146.7 149.1 151.5 153.7 Evaporator inlet pressure bar 1.17 1.25 1.34 1.43 1.53 1.63 1.74 1.85 Coridenserinietpressure bar 16.2 17.2 18.3 19.3 20.3 21.4 22.4 23.4 Evaporatorinlettemperature C -32.7 -33.3 -33.9 -34.5 -35.1 -35.7 -36.3 -36.9 Evaporator dewpoint °C -27.1 -26.5 -26.0 -25.5 -25.1 -24.6 -24.2 -23.8 Evaporatorexitgastemperature °C -22.1 -21.5 -21.0 -20.5 -20.1 -19.6 -19.2 -18.8 Evaporator mean temperature °C -29.9 -29.9 -30.0 -30.0 -30.1 -30.2 -30.3 -30.4 Evaporatorglide (out-in) K 5.6 6.7 7.9 9.0 10.0 11.1 12.1 13.0 Compressor suction pressure bar 1.14 1.22 1.31 1.41 1.51 1.61 1.72 1.83 Compressor discharge pressure bar 16.2 17.2 18.3 19.3 20.3 21.4 22.4 23.4 Suction line pressure drop Palm 187 170 155 143 132 122 113 105 Pressure drop relative to reference 64.1% 58.3% 53.2% 48.9% 45.1% 41.7% 38.7% 36.1% Condenserdewpoint °C 51.6 52.1 52.5 52.8 53.0 53.1 53.1 53.1 Condenser bubble point 42.4 40.2 38.3 36.6 35.2 34.0 33.0 32.1 Condenser exit liquid temperature °C 41.4 39.2 37.3 35.6 342 33.0 32.0 31.1 Condenser mean temperature 47.0 46.1 45.4 44.7 44.1 43.6 43.0 42.6 Condenser glide (in-out) K 9.2 11.9 14.2 16.2 17.8 19.1 20.2 21.0 * !. * * *: : : : * *** S..
Table 136: Theoretical Performance Data of Selected R-7441R-32JR-134aIR-1234ze(E) blends containIng 16-30 % R-744, 25 % R-32 and 10 % R-134a Composition CO2IR-32/R-134aIR-I 234ze(E) % by weight _____ 16/25/10/49 18/25/10147 20/25/10/45 22/25/10143 24/2511 0141 26/25/10139 28/25/10/37 30/25/10/35 COP (heating) 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 COP (heating) relative to Reference 109.0% 109.1% 109.1% 109.2% 109.2% 109.1% 109.1% 109.0% Volumetric heating capacity at suction kJ/m3 2093 2212 2333 2457 2584 2714 2847 2983 Capacity relative to Reference 238.3% 251.7% 265.5% 279.6% 294.1% 308.8% 324.0% 339.5% Critical temperature °c 78.56 76.75 75.02 73.34 71.73 70.17 68.67 67.22 Critical pressure bar 53.21 53.98 54.74 55.51 56.27 57.03 57.80 58.56 Condenserenthaipychange kJlkg 322.6 327.0 331.2 335.2 339.0 342.6 346.0 349.2 Pressure ratio 12.52 12.28 12.03 11.79 11.55 11.31 11.08 10.84 Refrigerant mass flow kg/hr 22.3 22.0 21.7 21.5 21.2 21.0 20.8 20.6 Compressordischargeternperature °C 155.9 158.0 160.1 162.1 164.0 165.9 167.7 169.4 Evaporator inlet pressure bar 1.97 2.09 2.22 2.35 2.48 2.62 2.77 2.93 Condenser inlet pressure bar 24.4 25.5 26.5 27.5 28,5 29.5 30.6 31.6 Evaporator inlet temperature °c -37.4 -38.0 -38.5 -38.9 -39.3 -39.7 -40.1 -40.3 Evaporator dewpoint °C -23.5 -23.2 -22.9 -22.7 -22.4 -22.3 -22.1 -22.0 Evaporator exit gas temperature °c -18.5 -18.2 -17.9 -17.7 -17.4 -17.3 -17.1 -17.0 Evaporator mean temperature °C -30.5 -30.6 -30.7 -30.8 -30.9 -31.0 -31.1 -31.2 Evaporatorglide(out-in) K 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.4 Compressor suction pressure bar 1.95 2.07 2.20 2.33 2.47 2.61 2.76 2.91 Compressor discharge pressure bar 24.4 25.5 26.5 27.5 28.5 29.5 30.6 31.6 Suction line pressure drop Pa/rn 98 92 87 82 77 73 69 65 Pressure drop relative to reference 33.7% 31.6% 29.7% 27.9% 26.3% 24.9% 23.5% 22.3% Condenserdewpoint °C 52.9 52.7 52.4 52.1 51.8 51.3 50.9 50.4 Condenser bubble point °C 31.3 30.6 30.0 29.5 29.0 28.6 28.3 28.1 Condenser exit liquid temperature °C 30.3 29.6 29.0 28.5 28.0 27.6 27.3 27.1 Condenser mean temperature 42.1 41.6 41.2 40.8 40.4 40.0 39.6 39.2 Condenserglide (in-out) -K 21.7 22.1 22.5 22.7 22.7 22.7 -22.6 22.4 : : .: .: :. :.: :.: : : * 0. *** Table 137: TheoretIcal Performance Data of Selected R-744/R-321R-134aIR-1234ze(E) blends contaIning 0-14 % R-744, 25 % R-32 and 20% R-134a Composition C02/R-321R-j34a/R.
1234ze(E) % by weight _____ 0/25/20/55 2/25/20/53 4/25/20151 6125(20(49 8125120/47 10125120145 12/25/20/43 14125/20/41 COP (heating) 2.23 2.25 2.26 2.27 2.28 2.29 2.29 2.30 COP (heating) relative to Reference 105.8% 106.6% 107.3% 107.8% 108.2% 108.5% 108.8% 109.0% Volumetric heating capacity at Suction kJ/m3 1266 1365 1468 1573 1681 1792 1906 2023 Capacity relative to Reference 144.1% 155.4% 167.0% 179.0% 191.3% 204.0% 217.0% 230.2% Critical temperature °c 95.42 92.93 90.55 88.26 86.08 83.98 81.97 80.04 Critical pressure bar 47.30 48.08 48.86 49.64 50.41 51.19 51.96 52.74 Condenserenthalpychange kJlkg 277.9 285.3 292.1 298.4 304.2 309.7 314.8 319.6 Pressure ratio 14.07 13.91 13.73 13.53 13.32 13.08 12.84 12.60 Refrigerant mass flow kg/hr 25.9 25.2 24.6 24.1 23.7 23.2 22.9 22.5 Compressordischargetemperaure °C 136.9 139.8 142.6 145.2 147.8 150.2 152.5 154.7 Evaporator inlet pressure bar 1.20 1.28 1.37 1.47 1.57 1.67 1.78 1.90 Condenserinletpressure bar 16.4 17.4 18.5 19.5 20,6 21.6 22.6 23.7 00 Evaporator inlet temperature °c -32.4 -33.0 -33.6 -34.2 -34.8 -35.3 -35.9 -36.4 Evaporator dewpoint °C -27.4 -26.9 -26.3 -25.9 -25.4 -25.0 -24.5 -24.2 Evaporatorexitgastemperature °C -22.4 -21.9 -21.3 -20.9 -20.4 -20.0 -19.5 -19.2 Evaporator mean temperature °c -29.9 -29.9 -30.0 -30.0 -30.1 -30.1 -30.2 -30.3 Evaporatorglide(outin) K 5.1 6.2 7.2 8.3 9.4 10.4 11.3 12.3 Compressorsuction pressure bar 1.16 1.25 1.34 1.44 1.54 1.65 1.76 1.88 Compressor discharge pressure bar 16,4 17.4 18.5 19.5 20.6 21.6 22.6 23.7 Suction linepressuredrop Pa/rn 182 166 151 139 128 119 110 103 Pressure drop relative to reference 62.4% 56.7% 51.8% 47.6% 43.9% 40.6% 37.7% 35.1% Condenserdew point °C 50.9 51.4 51.9 52.2 52.4 52.5 52.5 52.5 Condenser bubble point °C 42.7 40.5 38.6 36.9 35.5 34.3 33.2 32.3 Condenser exit liquid temperature °C 41.7 39.5 37.6 35.9 34.5 33.3 32.2 31.3 Condenser mean temperature C 46.8 46.0 45.2 44.5 43.9 43.4 42.9 42.4 Condenserglide (in-out) K 8.2 11.0 13.3 15.2 16.9 18.2 19.3 20.1 : .: .: :. :.: :.: : : Table 138: Theoretical Performance Data of Selected R-7441R-32/R-134a/R-1234ze(E) blends containing 16-30 % R-744, 25 % R-32 and 20 % R-134a Composition CO2IR-32/R-134aJR- 1234ze(E) % by weight _____ 16/25/20/39 18125120137 20125/20135 22125/20/33 24/25/20/31 26/25/20/29 28/25/20/27 30/25/20/25 COP (heating) 2.30 2.30 2.30 2.30 2.31 2.30 2.30 2.30 COP (heating) relative to Reference 109.1% 109.2% 109.3% 109.3% 109.3% 109.3% 109.3% 109.2% Volumetric heating capacity at suction kJ/m3 2142 2264 2389 2516 2647 2780 2917 3058 Capacity relative to Reference 243.8% 257.7% 271.9% 286.4% 301.2% 316.4% 332.0% 348.0% Critical temperature °c 78.18 76.39 74.67 73.02 71.42 69.88 68.40 66.96 Critical pressure bar 53.51 54.28 55.05 55.82 56.59 57.36 58.13 58,90 Condenser enthalpy change kJIkg 324.2 328.5 332.6 336.5 340.2 343.7 347.0 350.2 Pressure ratio 12.35 12.10 11.86 11,62 11.37 11.14 10.90 10.67 Refrigerant mass flow kg/hr 22.2 21.9 21.6 21.4 21.2 20.9 20.7 20.6 Compressor discharge temperature °C 156.9 158.9 160.9 162.9 164.7 166.6 168.3 170.0 I. Evaporator inlet pressure bar 2.02 2.14 2.27 2.41 2.55 2.70 2.85 3.01 Condenser inlet pressure bar 24.7 25.8 26.8 27.8 28.9 29.9 30.9 32.0 Evaporator inlet temperature °C -37.0 -37.5 -38.0 -38.4 -38.8 -39.2 -39.5 -39.8 Evaporator dewpoint °C -23.8 -23.5 -23.2 -23.0 -22.7 -22.5 -22.4 -22.2 Evaporator exit gas temperature °C -18.8 -18.5 -18.2 -18.0 -17.7 -17.5 -17.4 -17.2 Evaporator mean temperature °C -30.4 -30.5 -30.6 -30.7 -30.8 -30.9 -30.9 -31.0 Evaporatorgilde (out-in) K 13.2 14.0 14.8 15.5 16.1 16.7 17.1 17.6 Compressor suction pressure bar 2.00 2.13 2.26 2.40 2.54 2.68 2.84 3.00 Compressor discharge pressure bar 24.7 25.8 26.8 27.8 28.9 29.9 30.9 32.0 Suction line pressure drop Pa/rn 96 90 84 79 75 71 67 63 Pressure drop relative to reference 32.8% 30.8% 28.9% 27.2% 25.6% 24.2% 22.9% 21.7% Condenserdew point 52.3 52.1 51.9 51.6 51.2 50.8 50.4 49,9 Condenserbubble point 31.5 30.8 30.2 29.7 29.3 28.9 28.6 28.3 Condenser exit liquid temperature °C 30.5 29.8 29.2 28.7 28.3 27.9 27.6 27.3 Condensermeantemperature °C 41.9 41.5 41.1 40.6 40.3 39.9 39.5 39.1 Condenserglide (in-out) K 20.8 21.3 21.6 21.8 21.9 21.9 21.8 21.6 : .: .: :. :.: :.: : : *�. *..
Table 139: Theoretical Performance Data of Selected R-744/R-321R-134a/R..1234ze(E) blends containing 0-14 % R-744, 25 % R-32 and 30% R-134a Composition CO2IR-321R.1 34a/R-I 234ze(E) % by weight _____ 0/25/30145 2125(30143 4125130141 6125130139 8125130137 10125130135 12125/30133 14/25130/31 COP (heating) 2.23 2.25 2.26 2.27 2.28 2.29 2.30 2.30 COP (heating) relative to Reference 105.9% 106.7% 107.4% 107.9% 108.3% 108.6% 108.9% 109.1% Volumetric heating capacity at suction kJ/m3 1292 1393 1497 1604 1714 1828 1944 2063 Capacity relative to Reference 147.0% 158.5% 170.3% 182.6% 195.1% 208.0% 221.2% 234.8% Critical temperature °C 94.91 92.44 90.08 87.82 85.65 83.58 81.59 79.68 Critical pressure bar 47.50 48.28 49.07 49.85 50.63 51.42 52.20 52.98 Condenserenthalpychange kJ/kg 279.9 287.3 294.2 300.5 306.3 311.8 316.8 321.6 Pressure ratio 13.91 13.76 13.59 13.39 13.18 12.94 12.71 12.46 Refrigerant mass flow kg/hr 25.7 25.1 24.5 24.0 23.5 23.1 22.7 22.4 Compressordischargeternperature °C 138.1 141.0 143.8 146.4 149.0 151.3 153.6 155.8 I. Evaporator inlet pressure bar 1,22 1.31 1.40 1.50 1.60 1.71 1.82 1.94 Condenserinletpressure bar 16.6 17.6 18.7 19.7 20.8 21.8 22.9 23.9 Evaporatorinlettemperature °C -32.2 -32.8 -33.3 -33.9 -34.4 -35.0 -35.6 -36.1 Evaporator dewpoint °C -27.7 -27.1 -26.6 -26.2 -25.7 -25.2 -24.8 -24.4 Evaporator exit gas temperature °c -22.7 -22.1 -21.6 -21.2 -20.7 -20.2 -19.8 -19.4 Evaporator mean temperature °c -29.9 -30.0 -30.0 -30.0 -30.1 -30.1 -30.2 -30.3 Evaporatorglide (out-in) K 4.6 5.6 6.7 7.7 8.8 9.8 10.7 11.7 Compressor suction pressure bar 1.19 1.28 1.37 1.47 1.58 1.69 1.80 1.92 Compressor discharge pressure bar 16.6 17.6 18.7 19.7 20.8 21.8 22.9 23.9 Suction line pressure drop Pa/rn 178 162 148 136 125 116 108 100 Pressure drop relative to reference 60.8% 55.3% 50.5% 46.4% 42.8% 39.6% 36.8% 34.3% Condenserdew point °c 50.3 50.8 51.3 51.6 51.8 51.9 52.0 51.9 Condenser bubble point °c 43.0 40.7 38.8 37.1 35.7 34.4 33.4 32.5 Condenser exit liquid temperature °c 42.0 39.7 37.8 36.1 34.7 33.4 32.4 31.5 Condenser mean temperature °c 46.6 45.8 45.0 44.4 43.7 43.2 42.7 42.2 Condenser glide (in-out) K 7.3 10.1 -12.5 14.5 16.1 17.5 15.6 19.5 : : .: .: :. :.: :.: : : I Table 140: Theoretical Performance Data of Selected R-744/R-321R-134a/R-1234ze(E) blends containing 16-30 % R-744, 25 % R-32 and 30 % R-134a Composition C02/R-321R-1 34aIR-I 234ze(E) % by weight -16/25/30/29 18/25/30/27 20/25/30125 22/25130/23 24/25130121 26125130/19 28125/30117 30125/30115 COP (heating) 2.30 2.31 2.31 2.31 2.31 2.31 2.31 2.31 COP (heating) relative to Reference 109.2% 109.4% 109.4% 109.5% 109.5% 109.5% 109.5% 109.4% Volumetric heating capacity at suction kJ/m3 2185 2310 2437 2567 2700 2837 2976 3119 Capacity relative to Reference 248.7% 262.9% 277.4% 292.2% 307.3% 322.8% 338.7% 354.9% Critical temperature °c 77.84 76.07 74.37 72.73 71.15 69.63 68.16 66.75 Critical pressure bar 53.77 54,55 55.33 56.11 56.89 57.67 58.45 59.24 Condenserenthalpychange kJ/kg 326.1 330.4 334.4 338.3 341.9 345.4 348.7 351.9 Pressure ratio 12.21 11.97 11.72 11.48 11.24 11.01 10.77 10.54 Refrigerant mass flow kg/hr 22.1 21.8 21.5 21.3 21.1 20.8 20.6 20.5 Compressordischarge temperature °C 157.9 160.0 162.0 163.9 165.7 167.5 169.2 170.9 I. Evaporatorinletpressure bar 2.06 2.19 2.32 2.46 2.60 2.75 2.91 3.07 _ Condenser inlet pressure bar 25.0 26.0 27.0 28.1 29.1 30.2 31.2 32.3 I. Evaporator inlet temperature °c -36.6 -37.1 -37.6 -38.0 -38.4 -38.8 -39.2 -39.5 Evaporator dewpoint °C -24.1 -23.7 -23.5 -23.2 -23.0 -22.7 -22.6 -22.4 Evaporator exit gas temperature °c -19.1 -18.7 -18.5 -18.2 -18.0 -17.7 -17.6 -17.4 Evaporator mean temperature °c -30.3 -30.4 -30.5 -30.6 -30.7 -30.8 -30.9 -30.9 Evaporatorglide(outjn) K 12.5 13.4 14.1 14.8 15.5 16.1 16.6 17.0 Compressor suction pressure bar 2.04 2.17 2.31 2.45 2.59 2.74 2.90 3.06 Compressordischarge pressure bar 25.0 26.0 27.0 28.1 29.1 30.2 31.2 32.3 Suction line pressure drop Pa/rn 94 88 82 78 73 69 65 62 Pressure drop relative to reference 32.0% 30.0% 28.2% 26.5% 25.0% 23.6% 22.4% 21.2% Condenser dew point °C 51.8 51.6 51.4 51.1 50.8 50.4 50.0 49.5 Condenser bubble point 31.7 31.0 30.4 29.9 29.4 29.1 28.7 28.5 Condenser exit liquid temperature 30.7 30.0 29.4 28.9 28.4 28.1 27.7 27.5 Condensermeantemperature °C 41.7 41.3 40.9 40.5 40.1 39.7 39.4 39.0 Condenser glide (in-out) K 20.2 20.7 21.0 21.2 21.3 21.3 21.2 21.0 : : .: .: :. :.: :.: : : I Table 141: Theoretical Performance Data of Selected R-7441R-321R-134a/R-1234ze(E) blends containing 0-14% R-744, 25% R-32 and 40 % R-134a Composition C02/R-321R-1 34aIR-I 234ze(E) % by weight ______ 0/25/40/35 2/25(40/33 4/25/40/31 6125140129 8(25140127 10125140125 12125140123 14/25/40/21 COP (heating) 2.24 2.25 2.27 2.28 2.29 2.29 2.30 2,30 COP (heating) relative to Reference 106.1% 106.9% 107.5% 108.0% 108.4% 108.8% 109.0% 109.2% Volumetric heating capacity at suction kJ/m3 1314 1416 1522 1631 1742 1858 1976 2097 Capacity relative to Reference 149.5% 161.2% 173.2% 185.6% 198.3% 211.4% 224.9% 238.7% Critical temperature 94.41 91.96 89.63 87.40 85.26 83.21 81.24 79.35 Critical pressure bar 4761 48.41 49.20 50.00 50.80 51.60 52.40 53.19 Condenserenthalpychange kJ/kg 282.2 289.7 296,6 302.9 308.8 314.2 319.3 324.0 Pressure ratio 13.77 13.63 13.47 13.27 13.07 12.84 12.60 12.36 Refrigerant mass flow kg/hr 25.5 24.9 24.3 23.8 23.3 22.9 22.6 22.2 Compressor discharge temperature 139.4 142.3 145.1 147.7 150.3 152.6 154.9 157.1 Evaporatorinletpressure bar 1.24 1.33 1.42 1.52 1.62 1.73 1.85 1.97 Condenser inlet pressure bar 16.7 17.7 18.8 19.9 20.9 22.0 23.0 24.1 Evaporator inlet temperature -32.1 -32.6 -33.1 -33.7 -34.2 -34.8 -35.3 -35.8 Evaporator dewpoint °C -27.9 -27.4 -26.9 -26.4 -25.9 -25.5 -25.1 -24.7 Evaporator exit gas temperature -22.9 -22.4 -21.9 -21.4 -20.9 -20.5 -20.1 -19.7 Evaporator mean temperature -30.0 -30.0 -30.0 -30.0 -30.1 -30.1 -30.2 -30.2 Evaporator glide (out-in) K 4.1 5.2 6.2 7.2 8.3 9.3 10.2 11.2 Compressor suction pressure bar 1.21 1.30 1.40 1.50 1.60 1.71 1.83 1.95 Compressor discharge pressure bar 16.7 17.7 18.8 19.9 20.9 22.0 23.0 24.1 Suction tine pressure drop Pa/rn 174 158 144 133 122 113 105 98 Pressure drop relative to reference 59.4% 54.0% 49.4% 45.4% 41.9% 38.8% 36.0% 33.6% Coridenserdewpoint °C 49.8 50.3 50.8 51.1 51.3 51.5 51.5 51.5 Condenser bubble point 43.2 40.9 38.9 37.2 35.8 34.5 33.4 32.5 Condenser exit liquid temperature 42.2 39.9 37.9 36.2 34.8 33.5 32.4 31.5 Condenser mean temperature 46.5 45.6 44.8 44.2 43.5 43.0 42.5 42.0 Condenser glide (in-out) K 6.6 9.5 11.9 13.9 15.6 17.0 18.1 19.0 * * * *:. :.: .: :. :i Table 142: Theoretical Performance Data of Selected R-744/R-32/R-134aJR-1234ze(E) blends containing 16-30 % R-744, 25 % R-32 and40%R-134a Composition CO2IR-321R-1 34a/R-I 234ze(E) % by weight ______ 16I25140119 28I25I40I17 20125140115 22125140113 24125140111 2612514019 28125140/7 30l25140I5 COP (heating) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 COP (heating) relative to Reference 109.4% 109.5% 109.6% 109.7% 109.7% 109.7% 109.7% 109.6% Volumetric heating capacity at suction kJ/m3 2221 2348 2477 2609 2743 2881 3021 3165 Capacity relative to Reference 252.8% 267.2% 281.9% 296.9% 312.2% 327.9% 343.8% 360.2% Critical temperature 77.54 75.79. 74.11 72.49 70.93 69.43 67.98 66.57 Critical pressure bar 53.99 54.79 55.58 56.38 57.17 57.97 58.76 59.56 Coridenserenthalpychange kJ/kg 328.5 332.8 336.8 340.7 344.3 347,8 351.1 354.2 Pressure ratio 12.12 11.87 11.63 11.39 11.15 10.92 10.69 10.47 Refrigerantmassflow kg/hr 21.9 21.6 21.4 21.1 20.9 20.7 20.5 20.3 Compressor discharge temperature °C 159.2 161.2 163.2 165.1 166.9 168.7 170.4 172.1 Evaporatorinletpressure bar 2.09 2.22 2.36 2.50 2.64 2.79 2.95 3.11 Condenserinletpressure bar 25.2 26.2 27.3 28.3 29.3 30.4 31.4 32.5 Evaporator inlet temperature °C -36.4 -36.9 -37.3 -37.8 -38.2 -38.6 -39.0 -39.3 Evaporator dewpoint °C -24.3 -23.9 -23.6 -23.3 -23.1 -22.9 -22.7 -22.5 Evaporatorexitgastemperature °C -19.3 -18.9 -18.6 -18.3 -18.1 -17.9 -17.7 -17.5 Evaporator mean temperature -30.3 -30.4 -30.5 -30.6 -30.7 -30.8 -30.8 -30.9 Evaporator glide (out-in) K 12.1 12.9 13.7 14.5 15.1 15.8 16.3 16.8 Compressor suction pressure bar 2.08 2.21 2.34 2.48 2.63 2.78 2.94 3.10 Compressor discharge pressure bar 25.2 26.2 27.3 28.3 29.3 30.4 31.4 32.5 Suction line pressure drop Pa/rn 92 86 81 76 72 68 64 61 Pressure drop relative to reference 31.4% 29.4% 27.6% 26.0% 24.5% 23.2% 21.9% 20.8% Condenser dew point °c 51.4 51.3 51.0 50.8 50.4 50.1 49.7 49.2 Condenserbubble point °c 31.7 31.0 30.4 29.9 29.4 29.1 28.7 28.5 Condenser exit liquid temperature °C 30.7 30.0 29.4 28.9 28.4 28.1 27.7 27.5 Condenser mean temperature °C 41.6 41.1 40.7 40.3 39.9 39.6 39.2 38.9 Condenserglide(ir,-out) K 19.7 20.3 20.6 20.9 21.0 21.0 20.9 20.8 I. *.I *** Table 143: Theoretical Performance Data of Selected R-744/R-1234ze(E) blends containing 0-14% R-744 Composition C02/R-1234ze(E) % by weight ________ 0/100 2/98 4/96 6194 8/92 10/90 12/88 14/86 COP (heating) 1.99 2.05 2.10 2.14 2.16 2.18 2.20 2.21 COP (heating) relative to Reference 94.4% 97.4% 99.6% 101.3% 102.5% 103.5% 104.3% 104.9% Volumetric heating capacity at suction kJ/m3 615 695 778 864 953 1046 1141 1239 Capacity relative to Reference 70.0% 79.1% 88.6% 98.3% 108.5% 119.0% 129.8% 141.0% Critical temperature °C 109.89 105.93 102.20 98,69 95.38 92.25 89.29 86.48 Critical pressure bar 36.57 37.34 38.10 38.87 39.63 40.40 41.16 41.92 Condenserenthalpychange kJ/kg 210.2 223.7 235.1 244.8 253.2 260.5 267.2 273.2 Pressure ratio 18.75 18.99 19.05 18.95 18.71 18.39 18.00 17.58 Refrigerant mass flow kg/hr 34.2 32.2 30.6 29.4 28.4 27.6 27.0 26.4 Compressordischargetemperature °C 112.8 117.1 121.1 124.7 127.9 131.0 133.8 136.5 Evaporatorinletpressure bar 0.65 0.69 0.74 0.80 0.87 0.95 1.03 1.11 Condenserinletpressure bar 10.7 11.9 13.1 14.3 15.5 16.7 17.8 19.0 Evaporatorinlettemperature °C -28.9 -29.6 -30.3 -31.1 -31.9 -32.7 -33.6 -34.5 -1 Evaporator dewpoint °C -30.3 -29.7 -29.0 -28.3 -27.5 -26.6 -25.8 -25.1 Evaporator exit gas temperature -25.3 -24.7 -24.0 -23.3 -22.5 -21.6 -20.8 -20.1 Evaporator mean temperature -29.6 -29.7 -29.7 -29.7 -29.7 -29.7 -29.7 -29.8 Evaporatorglide(out-in) K -1.3 -0.1 1.3 2.8 4.4 6.0 7.7 9.4 Compressor suction pressure bar 0.57 0.63 0.69 0.75 0.83 0.91 0.99 1.08 Compressordischargepresure bar 10.7 11.9 13.1 14.3 15.5 16.7 17.8 19.0 Suction line pressure drop Palm 462 390 336 294 259 231 208 189 Pressure drop relative to reference 158.3% 133.6% 115.0% 100.5% 88.8% 79.2% 71.3% 64.6% Condenser dew point °C 53.1 55.1 56.7 58.1 59.2 60.0 60.5 60.9 Condenser bubble point °C 53.0 47.1 42.6 38.9 36.1 33.8 31.9 30.4 Condenser exit liquid temperature 52.0 46.1 41.6 37.9 35.1 32.8 30.9 29.4 Condenser mean temperature °C 53.1 51.1 49.7 48.5 47.6 46.9 46.2 45.7 Condenser glide (in-out) K 0.1 7.9 _14.2 19.1 23.1 26.2 28.6 30.6 * : *: .: : : :.: : : Table 144: TheoretIcal Performance Data of Selected R-744/R-1234ze(E) blends containIng 16-30 % R-744 Composition C02/R-1 234ze(E) % by weight _______ 16/84 18/82 20/80 22/78 24/76 26174 28/72 30/70 COP (heating) 2.22 2.23 2.23 2.24 224 2.24 2.24 2.24 COP (heating) relative to Reference 105.4% 105.7% 106.0% 106.2% 106.3% 106.3% 106.3% 106.2% Volumetric heating capacity at suction kJ/m3 1339 1441 1545 1650 1756 1862 1969 2076 Capacity relative to Reference 152.4% 164.0% 175.8% 187.7% 199.8% 211.9% 2241% 236.3% Critical temperature °C 83.81 81.28 78.87 76.57 74.38 72.28 70.28 68.37 Critical pressure bar 42.68 43.44 44.20 44.96 45.72 46.47 47.23 47.98 Condenserenthalpychange kJlkg 278.7 283.9 288.9 293.6 298.1 302.5 306.8 311.0 Pressure ratio 17.15 16.72 16.29 15.88 15.49 15.12 14.77 14.44 Refrigerant mass flow kg/hr 25.8 25.4 24.9 24.5 24.2 23.8 23.5 23.1 Compressordischarge temperature °C 139.0 141.4 143.8 146.1 148.4 150.6 152.9 155.1 Evaporator inlet pressure bar 1.20 1.29 1.39 1.49 1.60 1.70 1.81 1.92 Condenserinletpressure bar 20.1 21.2 22.3 23.3 24.4 25.4 26.5 27.5 Evaporatorinlettemperature °C -35.5 -36.5 -37.6 -38.7 -39.7 -40.8 -41.9 -42.9 Evaporator dewpoint °C -24.4 -23.7 -23.1 -22.5 -22.0 -21.6 -21.2 -20.9 Evaporatorexitgastemperature °C -19.4 -18.7 -18.1 -17.5 -17.0 -16.6 -16.2 -15.9 Evaporatormeantemperature °C -29.9 -30.1 -30.3 -30.6 -30.9 -31.2 -31.5 -31.9 Evaporatorglide(out-in) K 11.2 12.9 14.5 16,2 17.7 19.2 20.7 22.0 Compressor suction pressure bar 1.17 1.27 1.37 1.47 1.57 1.68 1.79 1.90 Compressordischarge pressure bar 20.1 21.2 22.3 23.3 24.4 25.4 26.5 27.5 Suction line pressuredrop Pa/rn 172 157 145 134 125 116 109 102 Pressure drop relative to reference 58.8% 53.9% 49.7% 45.9% 42.7% 39.8% 37,2% 35.0% Condenserdewpoint °C 61.2 61.2 61.2 61.0 60.8 60.4 60.0 59.5 Condenser bubble point 29.1 28.0 27.1 26.3 25.7 25.1 24.6 24.1 Condenser exit liquid temperature 28.1 27.0 26.1 25.3 24.7 24.1 23.6 23.1 Condenser mean temperature 45.1 44.6 44,1 43.7 43.2 42.7 42.3 41.8 Condenserglide(iriout) K 32.1 33.2 34.1 34.7 35.1 35.3 35,4 35.3 Further Performance Data The performance of a composition containing 6 % by weight C02, 10 % by weight R- 134a and 84 % by weight R-1234ze(E) was tested in an automotive air conditioning system suitable for use with R-134a. This composition is denoted "Blend" in the results shown below.
The test conditions used were as described in SAE Standard J2765, which is incorporated herein by reference. These conditions are summarised below.
* Ambient air condition 35°C and 40% relative humidity (RH) * Air off temperature from evaporator controlled to 3°C * Compressor displacement variable 0-1 75cc per stroke * Conventional R-134a expansion valve was replaced with an electronic expansion valve to allow for ease of superheat adjustment * System used without internal heat exchanger and with equivalent superheat at evaporator exit for all fluids The results are shown below, in which I, L, M and H refer to idle, low, medium and high speed, and wherein 35 and 45 refer to the ambient temperature in °C.
Relative to Measured cooling capacity (kW) R-134a Test point R134a Blend Blend 4.67 4.5 96% L35 5.86 5.66 97% M35 6.43 6.18 96% H35 6.65 6.5 98% 3.81 3.64 96% L45 4.76 4.61 97% M45 5.2 5.05 97% H45 5.41 5.33 99% Measured Energy (expressed COP relative Efficiency as COP) to R-134a Test point R134a Blend Blend 2.87 2.62 91% L35 1.98 1.89 95% M35 1.79 1.7 95% H35 1.4 1.36 97% 2.3 2.18 95% L45 1.64 1.62 99% M45 1.48 1.45 98% H45 1.18 1.16 98% The Blend composition of the invention represents a good match of capacity and efficiency for R-134a in an R-134a air-conditioning system across a range of conditions.
Lubricant Miscibility Data The miscibility of a composition of the invention containing about 6 % by weight 002, about 10 % by weight R-134a and about 84 % by weight R-1234ze(E) (referred to below as Blend) was tested with the polyalkylene glycol (PAG) lubricant YN12 and the polyol ester (POE) lubricant 32H. The results of these experiments were compared to the miscibility of pure R-1234yf with the same lubricants. The results are shown below.
Miscibility Results for Blend with 32H Temperature Lubricant Concentration degC _____ wt% _____ _____ _____ _____ ___________ 4 7 10 20 30 50 -20 miscible miscible miscible miscible miscible miscible -10 miscible miscible miscible miscible miscible miscible 0 miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible miscible Miscibility Results for 1234yf with 32H Temperature Lubricant Concentration deg C _______ wt% ______ _________ ________ _______ ___________ 4 7 10 20 30 50 -20 miscible miscible miscible miscible miscible miscible -10 miscible miscible miscible miscible miscible miscible 0 miscible miscible miscible miscible miscible miscible slightly slightly miscible miscible miscible miscible ____________ opaque opaque ________ ____________ __________ _________ slightly slightly opaque opaque miscible miscible miscible miscible slightly slightly opaque opaque miscible miscible miscible miscible slightly slightly opaque opaque miscible miscible miscible miscible slightly slightly slightly slightly opaque opaque miscible miscible opaque opaque slightly slightly slightly slightly opaque opaque miscible miscible opaque opaque slightly slightly slightly slightly opaque opaque miscible miscible opaque opaque slightly Opaque 2 Opaque 2 Miscible opaque miscible layers layers Opaque Miscibility Results for Blend with YNI2 Temp Lubricant Concentration deg C _________ wt% _______ _______ _______ _______ _____ 4 7 10 20 30 50 -20 Opaque Opaque Opaque Opaque Opaque Opaque slightly slightly -10 Opaque Opaque Opaque Opaque opaque opaque slightly slightly slightly slightly 0 Opaque Opaque opaque opaque opaque opaque slightly slightly slightly slightly Opaque Opaque opaque opaque opaque opaque slightly slightly slightly slightly Opaque Opaque opaque opaque opaque opaque slightly slightly slightly slightly slightly opaque Opaque opaque opaque opaque opaque slightly slightly slightly slightly slightly slightly opaque opaque opaque opaque opaque opaque very Slighty very Slighty slightly slightly slightly slightly opaque opaque opaque opaque opaque opaque very Slighty very Slighty slightly slightly slightly slightly opaque opaque opaque opaque opaque opaque very Slighty very Slighty slightly opaque opaque 2 layers 2 layers 2 layers opaque 2 layers 2 layers 2 layers 2 layers 2 layers 2 layers Miscibility Results for 1234yf with YN 12 Temperature Lubricant Concentration deg C wt% ___________ 4 7 10 20 30 50 -20 opaque opaque 2 layers opaque 2 layers 2 layers -10 slightly slightly 2 layers opaque 2 layers 2 layers ____________ opaque opaque _________ _________ _________ _________ slightly 0 opaque opaque 2 layers opaque opaque opaque slightly 2 layers 2 layers 2 layers 2 layers opaque opaque opaque opaque opaque opaque slightly opaque 2 2 layers 2 layers 2 layers opaque layers opaque 2 layers opaque opaque 2 layers 2 layers 2 layers opaque opaque opaque 2 layers opaque opaque clear 2 2 layers 2 layers 2 layers layers clear 2 layers clear 2 layers clear clear clear 2 2 layers 2 layers 2 layers layers clear 2 layers clear 2 layers clear clear clear 2 2 layers 2 layers 2 layers layers clear 2 layers clear 2 layers clear clear clear 2 2 layers 2 layers 2 layers layers clear 2 layers clear 2 layers clear clear clear 2 2 layers 2 layers 2 layers layers clear 2 layers clear 2 layers clear clear The results show that the compositions of the invention have improved miscibility with lubricants compared to the pure fluid R-1234y1.
In summary, the invention provides new compositions that exhibit a surprising combination of advantageous properties including good refrigeration performance, low flammability, low GWP, and/or miscibility with lubricants compared to existing refrigerants such as R-134a and the proposed refrigerant R-1234yf.
The invention is defined by the following claims.

Claims (94)

  1. CLAIMS1. A heat transfer composition comprising: (i) a first component selected from trans-i,3,3,3-tetrafluoropropene (R-i 234ze( E)), cis-i,3,3,3-tetrafluoropropene (R-i 234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from difluoromethane (R-32), i,i-difluoroethane (R- i 52a), fluoroethane (R-i 61), 1,1,1,2-tetrafluoroethane (R-i 34a), 2,3,3,3-tetrafluoropropene (R-i234y1), 3,3,3-trifluoropropene (R-i243zf), i,i,i-trifluoropropane (R-263fb), 1,i,i,2,3-pentafluoropropane (R-245eb), propylene (R-i270), propane (R- 290), n-butane (R-600), isobutane (R-600a), ammonia (R-7i7) and mixtures thereof.
  2. 2. A composition according to claim i wherein the first component comprises R-i 234ze(E).
  3. 3. A composition according to claim i or 2 comprising at least about i 5 % by weight R-i 234ze(E).
  4. 4. A composition according to any of the preceding claims comprising up to about 35 % by weight R-744, preferably about 30 % by weight R-744.
  5. 5. A composition according to claim 4 comprising from about 4 to about 30 % R-744 by weight, preferably from about 4 to about 28 % by weight, or from about 8 to about 30 % by weight, or from about 10 to about 30 % by weight.
  6. 6. A composition according to any of the preceding claims comprising up to about % by weight of the third component, preferably up to about 50 % by weight.
  7. 7. A composition according to any of the preceding claims wherein the third component is selected from R-32, R-i52a, R-i6i, iR-i34a, R-i234y1, R-i243zf, R-i270, R-290 and mixtures thereof.
  8. 8. A composition according to claim 7 wherein the third component is selected from R-32, R-i52a, R-i6i, R-i34a, R-i234y1, R-i270, R-290 and mixtures thereof. i 80
  9. 9. A composition according to any of the preceding claims comprising from about 10 to about 95 % R-1234ze(E) by weight, from about 2 to about 30 % by weight R-744, and from about 3 to about 60 % by weight of the third component.
  10. 10. A composition according to any of the preceding claims which has a critical temperature of greater than about 65 °C, preferably greater than about 70 °C.
  11. 11. A composition according to any of the preceding claims wherein the third component comprises R-1 34a, preferably from about 2 to about 50 % R-1 34a.
  12. 12. A composition according to any of the preceding claims comprising from about 20 to about 94 % by weight R-1234ze(E), from about 2 to about 30 % by weight R-744 and from about 4 to about 50 % by weight R-134a.
  13. 13. A composition according to claim 12 comprising from about 60 to about 92 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 10 % by weight R-134a, preferably comprising from about 62 to about 86 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 4 to about 10 % by weight R-134a.
  14. 14. A composition according to claim 12 comprising from about 20 to about 86 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 10 to about 50 % by weight R-134a, preferably comprising from about 22 to about 80 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 10 to about 50 % by weight R-134a.
  15. 15. A composition according to any of claims 1 to 10 wherein the third component comprises R-32, preferably from about 2 to about 30 % by weight R-32.
  16. 16. A composition according to claim 15 comprising from about 60 to about 91 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744 and from about 5 to about 30 % by weight R-32, preferably comprising from about 58 to about 85 % R- 1234ze(E), from about 10 to about 28 % by weight R-744 and from about 5 to about 30 % by weight R-32.
  17. 17. A composition according to claim 15 comprising from about 50 to about 88 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744 and from about 2 to about 20 % by weight R-32.
  18. 18. A composition according to any of claims 1 to 10 wherein the third component comprises R-134a and R-32.
  19. 19. A composition according to claim 18 comprising from about 5 to about 95 % by weight R-1234ze(E), from about 4 to about 30 % by weight R-744, from about 2 to about 30 % by weight R-32 and from about 2 to about 50 by weight R-134a, preferably comprising from about 5 to about 92% by weight R-1234ze(E), from about 4 to about 30 % by weight R-744, from about 2 to about 25 % by weight R-32 and from about 2 to about 40 % by weight R-1 34a.
  20. 20. A composition according to claim 19 comprising from about 30 to about 81 % by weight R-1234ze(E), from about 10 to about 30 % by weight R-744, from about 5 to about 30 % by weight R-32 and from about 4 to about 10 by weight R-134a, preferably comprising from about 37 to about 81 % by weight R-1234ze(E), from about 10 to about 28 % by weight R-744, from about 5 to about 25 % by weight R-32 and from about 4 to about 10 by weight R-134a.
  21. 21. A composition according to claim 19 comprising from about 5 to about 75 % by weight R-1234ze(E), from about 10 to about 30 % by weight R-744, from about 5 to about 25 % by weight R-32 and from about 10 to about 50 by weight R-134a, preferably comprising from about 7 to about 75 % by weight R-1234ze(E), from about 10 to about 28 % by weight R-744, from about 5 to about 25 % by weight R-32 and from about 10 to about 40 by weight R-1 34a.
  22. 22. A composition according to any of claims 1 to 10 wherein the third component comprises R-152a, preferably from about 2 to about 50 % by weight R-152a.
  23. 23. A composition according to claim 22 comprising from about 30 to about 94 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 2 to about 40 % by weight R-152a.
  24. 24. A composition according to claim 23 comprising from about 42 to about 85 % R- 1234ze(E), from about 10 to about 28 % by weight R-744 and from about 5 to about 30 % by weight R-1 52a.
  25. 25. A composition according to any of claims 1 to 10 wherein the third component comprises R-1 61, preferably from about 2 to about 30 % by weight R-1 61.
  26. 26. A composition according to claim 25 comprising from about 45 to about 94 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 2 to about 25 % by weight R-161, preferably comprising from about 52 to about 86 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 4 to about 20 % by weight R-161.
  27. 27. A composition according to claim 26 comprising from about 62 to about 92 % R- 1234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 10 % by weight R-161.
  28. 28. A composition according to any of claims 1 to 10 wherein the third component comprises propylene and/or propane, optionally wherein the compositions contain from about 1 to about 20 % by weight of the third component, preferably from about 1 to about 12 % of the third component.
  29. 29. A composition according to claim 28 comprising from about 60 to about 95 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about ito about 10 % by weight propylene, preferably comprising from about 64 to about 88 % R-i234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 8 % by weight propylene.
  30. 30. A composition according to claim 28 comprising from about 60 to about 95 % R-i234ze(E), from about 4 to about 30 % by weight R-744 and from about ito about 10 % by weight propane, preferably comprising from about 64 to about 88 % R-i234ze(E), from about 10 to about 28 % by weight R-744 and from about 2 to about 8 % by weight propane.
  31. 31. A composition according to any of claims ito 10 wherein the third component comprises R-i234yf, preferably from about 4 to about 60 % by weight R-1234yf.
  32. 32. A composition according to claim 31 comprising from about 10 to about 92 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 60 % by weight R-1234yf, preferably comprising from about 22 to about 84 % R-1234ze(E), from about 10 to about 28 % by weight R-744 and from about 6 to about 50 % by weight R-1 234yf.
  33. 33. A composition according to claim 32 comprising from about 14 to about 86 % R- 1234ze(E), from about 4 to about 26 % by weight R-744 and from about 10 to about 60 % by weight R-1234y1, or comprising from about 32 to about 88 % R-1234ze(E), from about 8 to about 28 % by weight R-744 and from about 4 to about 40 % by weight R-l234y1.
  34. 34. A composition according to any of claims 1 to 10 wherein the third component comprises R-1243zf, preferably from about 4 to about 60 % by weight R-1243zf.
  35. 35. A composition according to claim 34 comprising from about 20 to about 92 % R- 1234ze(E), from about 4 to about 30 % by weight R-744 and from about 4 to about 50 % by weight R-1243zf, preferably comprising from about 32 to about 88 % R-1234ze(E), from about 6 to about 28 % by weight R-744 and from about 6 to about 40 % by weight R-1 243zf.
  36. 36. A composition according to any of claims 1 to 10 wherein the third component comprises R-263fb, preferably in an amount up to about 50 % by weight.
  37. 37. A composition according to any of claims 1 to 10 wherein the third component comprises R-245eb, preferably in an amount up to 30 % by weight.
  38. 38. A composition according to any of claims 1 to 10 wherein the third component comprises n-butane, preferably in an amount up to about 20 % by weight.
  39. 39. A composition according to any of claims 1 to 10 wherein the third component comprises isobutane, preferably in an amount up to about 20 % by weight.
  40. 40. A composition according to any of claims 1 to 10 wherein the third component comprises ammonia, preferably in an amount up to about 30 % by weight.
  41. 41. A composition according to any of claims 22 to 39 further comprising R-134a, preferably from about 5 to about 50 % by weight R-1 34a.
  42. 42. A composition according to any of the preceding claims consisting essentially of R-1234ze(E), R-744 and the third component.
  43. 43. A composition according to any of claims I to 40, further comprising pentafluoroethane (R-125).
  44. 44. A composition consisting essentially of from about 4 to about 34 % by weight carbon dioxide (R-744) and from about 66 to about 96 % by weight trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)).
  45. 45. A composition according to claim 43 consisting essentially of from about 4 to about 30 % by weight R-744 and from about 70 to about 96 % by weight R-1234ze(E).
  46. 46. A composition according to claim 44 consisting essentially of from about 6 to about 30 % by weight R-744 and from about 70 to about 94 % by weight R-1234ze(E).
  47. 47. A composition according to any of claims 43 to 45 which has a critical temperature of greater than about 70 °C.
  48. 48. A composition according to any of the preceding claims, wherein the composition has a GWP of less than 1000, preferably less than 150.
  49. 49. A composition according to any of the preceding claims, wherein the composition has a volumetric refrigeration capacity within about 15%, preferably within about 10% of the existing refrigerant that it is intended to replace.
  50. 50. A composition according to any of the preceding claims, wherein the composition is less flammable than R-32 alone, R-152a alone, R-1234y1 alone or R-161 alone.
  51. 51. A composition according to claim 50 wherein the composition has: (a) a higher flammable limit; (b) a higher ignition energy; and/or (c) a lower flame velocity compared to R-32 alone, R-152a alone, R-1234y1 alone or R-161 alone.
  52. 52. A composition according to any of the preceding claims which has a fluorine ratio (F/(F+H)) of from about 0.42 to about 0.7, preferably from about 0.44 to about 0.67.
  53. 53. A composition according to any of the preceding claims which is non-flammable.
  54. 54. A composition according to any of the preceding claims, wherein the composition has a cycle efficiency within about 5% of the existing refrigerant that it is intended to replace.
  55. 55. A composition according to any of the preceding claims, wherein the composition has a compressor discharge temperature within about 15K, preferably within about 10K, of the existing refrigerant that it is intended to replace.
  56. 56. A composition comprising a lubricant and a composition according to any of the preceding claims.
  57. 57. A composition according to claim 56, wherein the lubricant is selected from mineral oil, silicone oil, polyalkyl benzenes (PAB5), polyol esters (POE5), polyalkylene glycols (PAG5), polyalkylene glycol esters (PAG esters), polyvinyl ethers (PVE5), poly (alpha-olefins) and combinations thereof.
  58. 58. A composition according to claim 56 or 57 further comprising a stabiliser.
  59. 59. A composition according to claim 58, wherein the stabiliser is selected from diene-based compounds, phosphates, phenol compounds and epoxides, and mixtures thereof.
  60. 60. A composition comprising a flame retardant and a composition according to any of the preceding claims.
  61. 61. A composition according to claim 60, wherein the flame retardant is selected from the group consisting of tri-(2-chloroethyl)-phosphate, (chloropropyl) phosphate, tn- (2,3-dibromopropyl)-phosphate, tri-(1,3-dichloropropyl)-phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminium trihydrate, polyvinyl chloride, a fluorinated iodocarbon, a fluorinated bromocarbon, trifluoro iodomethane, perfluoroalkyl amines, bromo-fluoroalkyl amines and mixtures thereof.
  62. 62. A composition according to any of the preceding claims which is a refrigerant composition.
  63. 63. A heat transfer device containing a composition as defined in any one of claims 1 to 62.
  64. 64. Use of a composition defined in any of claims 1 to 62 in a heat transfer device.
  65. 65. A heat transfer device according to claim 63 or 64 which is a refrigeration device.
  66. 66. A heat transfer device according to claim 65 which is selected from group consisting of automotive air conditioning systems, residential air conditioning systems, commercial air conditioning systems, residential refrigerator systems, residential freezer systems, commercial refrigerator systems, commercial freezer systems, chiller air conditioning systems, chiller refrigeration systems, and commercial or residential heat pump systems, preferably wherein the heat transfer device is an automobile air-conditioning system.
  67. 67. A heat transfer device according to claim 65 or 66 which contains a compressor.
  68. 68. A blowing agent comprising a composition as defined in any of claims 1 to 62.
  69. 69. A foamable composition comprising one or more components capable of forming foam and a composition as defined in any of claims 1 to 62, wherein the one or more components capable of forming foam are selected from polyurethanes, thermoplastic polymers and resins, such as polystyrene, and epoxy resins, and mixtures thereof.
  70. 70. A foam obtainable from the foamable composition as defined in claim 69.
  71. 71. A foam according to claim 70 comprising a composition as defined in any one of claims 1 to 62.
  72. 72. A sprayable composition comprising material to be sprayed and a propellant comprising a composition as defined in any of claims 1 to 62.
  73. 73. A method for cooling an article which comprises condensing a composition defined in any of claims 1 to 62 and thereafter evaporating the composition in the vicinity of the article to be cooled.
  74. 74. A method for heating an article which comprises condensing a composition as defined in any one of claims 1 to 62 in the vicinity of the article to be heated and thereafter evaporating the composition.
  75. 75. A method for extracting a substance from biomass comprising contacting biomass with a solvent comprising a composition as defined in any of claims 1 to 62, and separating the substance from the solvent.
  76. 76. A method of cleaning an article comprising contacting the article with a solvent comprising a composition as defined in any of claims 1 to 62.
  77. 77. A method of extracting a material from an aqueous solution comprising contacting the aqueous solution with a solvent comprising a composition as defined in any of claims 1 to 62, and separating the substance from the solvent.
  78. 78. A method for extracting a material from a particulate solid matrix comprising contacting the particulate solid matrix with a solvent comprising a composition as defined in any of claims 1 to 62, and separating the material from the solvent.
  79. 79. A mechanical power generation device containing a composition as defined in any of claims 1 to 62.
  80. 80. A mechanical power generating device according to claim 79 which is adapted to use a Rankine Cycle or modification thereof to generate work from heat.
  81. 81. A method of retrofitting a heat transfer device comprising the step of removing an existing heat transfer fluid, and introducing a composition as defined in any one of claims 1 to 62.
  82. 82. A method of claim 81 wherein the heat transfer device is a refrigeration device.
  83. 83. A method according to claim 82 wherein the heat transfer device is an air conditioning system.
  84. 84. A method for reducing the environmental impact arising from the operation of a product comprising an existing compound or composition, the method comprising replacing at least partially the existing compound or composition with a composition as defined in any one of claims 1 to 62.
  85. 85. A method for preparing a composition as defined in any of claims 1 to 62, and/or a heat transfer device as defined in any of claims 63 or 65 to 67, which composition or heat transfer device contains R-134a, the method comprising introducing R-1243ze(E), R-744, any additional third component, and optionally R-125, a lubricant, a stabiliser and/or a flame retardant, into a heat transfer device containing an existing heat transfer fluid which is R-134a.
  86. 86. A method according to claim 85 comprising the step of removing at least some of the existing R-134a from the heat transfer device before introducing the R-1243ze(E), R- 744, any additional third component, and optionally the R-125, the lubricant, the stabiliser and/or the flame retardant.
  87. 87. A method for generating greenhouse gas emission credit comprising (i) replacing an existing compound or composition with a composition as defined in any one of claims 1 to 62, wherein the composition as defined in any one of claims 1 to 62 has a lower GWP than the existing compound or composition; and (ii) obtaining greenhouse gas emission credit for said replacing step.
  88. 88. A method of claim 87 wherein the use of the composition of the invention results in a lower Total Equivalent Warming Impact, and/or a lower Life-Cycle Carbon Production than is attained by use of the existing compound or composition.
  89. 89. A method of claim 87 or 88 carried out on a product from the fields of air-conditioning, refrigeration, heat transfer, blowing agents, aerosols or sprayable propellants, gaseous dielectrics, cryosurgery, veterinary procedures, dental procedures, fire extinguishing, flame suppression, solvents, cleaners, air horns, pellet guns, topical anesthetics, and expansion applications.
  90. 90. A method according to claim 84 or 89 wherein the product is selected from a heat transfer device, a blowing agent, a foamable composition, a sprayable composition, a solvent or a mechanical power generation device.
  91. 91. A method according to claim 90 wherein the product is a heat transfer device.
  92. 92. A method according to any one of claims 82 or 85 to 89 wherein the existing compound or composition is a heat transfer composition.
  93. 93. A method according to claim 85 wherein the heat transfer composition is a refrigerant selected from R-134a, R-1234yf, R-152a, R-404A, R-410A, R-507, R-407A, R-407B, R-407D, R-407E and R-407F.
  94. 94. Any novel heat transfer composition substantially as hereinbefore described, optionally with reference to the examples.
GB1102556.6A 2010-05-20 2011-02-14 Heat transfer compositions Expired - Fee Related GB2480517B (en)

Priority Applications (41)

Application Number Priority Date Filing Date Title
GB1102556.6A GB2480517B (en) 2010-05-20 2011-02-14 Heat transfer compositions
BR112012029456A BR112012029456A2 (en) 2010-05-20 2011-05-20 "heat transfer composition and device, use of a composition, blowing agent, foaming composition, foam, sprayable composition, methods for cooling an article, for heating an article, for extracting a biomass substance, for cleaning a to extract a material from an aqueous solution, to extract a material from a particulate solid matrix, to reform a heat transfer device, to reduce the environmental impact, to prepare the composition and to generate emission gas from greenhouse effect and mechanical power generation device. "
EP11728912.4A EP2571956B1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
JP2013510675A JP2013528235A (en) 2010-05-20 2011-05-20 Heat transfer composition
PL11728908T PL2571953T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
JP2013510673A JP5824039B2 (en) 2010-05-20 2011-05-20 Heat transfer composition
AU2011254380A AU2011254380B2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PCT/GB2011/000772 WO2011144909A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
EP11728908.2A EP2571953B1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
RU2012155282/05A RU2582703C2 (en) 2010-05-20 2011-05-20 Compositions for heat transfer
CA2799840A CA2799840A1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PCT/GB2011/000769 WO2011144906A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
CN2011800305396A CN102939351A (en) 2010-05-20 2011-05-20 Heat transfer compositions
ES11728912.4T ES2565088T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PL11728912T PL2571956T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
KR1020127033338A KR20130082095A (en) 2010-05-20 2011-05-20 Heat transfer compositions
BR112012029468A BR112012029468A2 (en) 2010-05-20 2011-05-20 "composition and heat transfer device, use of a composition, blowing agent, foaming composition, foam, sprayable composition, methods for cooling an article, for heating an article, for extracting a biomass substance, for cleaning a article, from extracting a material from an aqueous solution, to extracting a material from a particulate solid matrix, to extracting a material from a particulate solid matrix, to reforming a heat transfer device, to reduce the environmental impact, to repair the greenhouse gas emission credit and mechanical power generation device "
MX2012013314A MX2012013314A (en) 2010-05-20 2011-05-20 Heat transfer compositions.
ES11728909.0T ES2561671T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
CN2011800304336A CN102939350A (en) 2010-05-20 2011-05-20 Heat transfer compositions
ES11728908.2T ES2547550T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
CA2799846A CA2799846A1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
EP11728911A EP2571955A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
EP11728909.0A EP2571954B1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
KR1020127033340A KR20130082096A (en) 2010-05-20 2011-05-20 Heat transfer compositions
MX2012013313A MX2012013313A (en) 2010-05-20 2011-05-20 Heat transfer compositions.
US13/698,803 US8808570B2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
US13/698,817 US20130119299A1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
AU2011254381A AU2011254381C1 (en) 2010-05-20 2011-05-20 Heat transfer compositions
US13/698,810 US8808571B2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PCT/GB2011/000771 WO2011144908A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PCT/GB2011/000770 WO2011144907A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
JP2013510674A JP5827992B2 (en) 2010-05-20 2011-05-20 Heat transfer composition
CN2011800305288A CN102947409A (en) 2010-05-20 2011-05-20 Heat transfer compositions
PL11728909T PL2571954T3 (en) 2010-05-20 2011-05-20 Heat transfer compositions
CN201180030475.XA CN102947408B (en) 2010-05-20 2011-05-20 Heat transfer compositions
US13/698,814 US9309450B2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
PCT/GB2011/000768 WO2011144905A2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
JP2013510676A JP2013533896A (en) 2010-05-20 2011-05-20 Heat transfer composition
RU2012155280/05A RU2574656C2 (en) 2010-05-20 2011-05-20 Heat transfer compositions
US15/091,242 US20160215193A1 (en) 2010-05-20 2016-04-05 Heat transfer compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB1008438.2A GB201008438D0 (en) 2010-05-20 2010-05-20 Heat transfer compositions
GBGB1010057.6A GB201010057D0 (en) 2010-06-16 2010-06-16 Heat transfer compositions
GB1020624.1A GB2480513B (en) 2010-05-20 2010-12-06 Heat transfer compositions
GB1102556.6A GB2480517B (en) 2010-05-20 2011-02-14 Heat transfer compositions

Publications (3)

Publication Number Publication Date
GB201102556D0 GB201102556D0 (en) 2011-03-30
GB2480517A true GB2480517A (en) 2011-11-23
GB2480517B GB2480517B (en) 2013-03-06

Family

ID=44558274

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1102556.6A Expired - Fee Related GB2480517B (en) 2010-05-20 2011-02-14 Heat transfer compositions

Country Status (1)

Country Link
GB (1) GB2480517B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493395A (en) * 2011-08-05 2013-02-06 Mexichem Amanco Holding Sa Heat transfer compositions
GB2508614A (en) * 2012-12-04 2014-06-11 Geothermal Boilers Ltd Refrigerant compositions and heat pump
EP2785986A4 (en) * 2011-12-02 2015-10-07 Honeywell Int Inc Fluoro olefin compounds useful as organic rankine cycle working fluids
EP2975102A4 (en) * 2013-03-15 2017-01-04 Idemitsu Kosan Co., Ltd Refrigerator oil composition and refrigerator system
US11692114B2 (en) 2018-08-14 2023-07-04 Mexichem Fluor S.A. De C.V. Refrigerant composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094303A2 (en) * 2005-03-04 2006-09-08 E.I. Dupont De Nemours And Company Compositions comprising a fluoroolefin
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
WO2008027555A2 (en) * 2006-09-01 2008-03-06 E. I. Du Pont De Nemours And Company Method for circulating selected heat transfer fluids through a closed loop cycle
US20080098755A1 (en) * 2002-10-25 2008-05-01 Honeywell International, Inc. Heat transfer methods using heat transfer compositions containing trifluoromonochloropropene
US20080230738A1 (en) * 2005-03-04 2008-09-25 Barbara Haviland Minor Compositions comprising a fluoroolefin
WO2010119265A1 (en) * 2009-04-16 2010-10-21 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
WO2011056824A2 (en) * 2009-11-03 2011-05-12 E.I. Du Pont De Nemours And Company Cascade refrigeration system with fluoroolefin refrigerant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080098755A1 (en) * 2002-10-25 2008-05-01 Honeywell International, Inc. Heat transfer methods using heat transfer compositions containing trifluoromonochloropropene
WO2006094303A2 (en) * 2005-03-04 2006-09-08 E.I. Dupont De Nemours And Company Compositions comprising a fluoroolefin
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20080230738A1 (en) * 2005-03-04 2008-09-25 Barbara Haviland Minor Compositions comprising a fluoroolefin
WO2008027555A2 (en) * 2006-09-01 2008-03-06 E. I. Du Pont De Nemours And Company Method for circulating selected heat transfer fluids through a closed loop cycle
WO2010119265A1 (en) * 2009-04-16 2010-10-21 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
WO2011056824A2 (en) * 2009-11-03 2011-05-12 E.I. Du Pont De Nemours And Company Cascade refrigeration system with fluoroolefin refrigerant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493395A (en) * 2011-08-05 2013-02-06 Mexichem Amanco Holding Sa Heat transfer compositions
GB2493395B (en) * 2011-08-05 2014-07-23 Mexichem Amanco Holding Sa Heat transfer compositions
EP2785986A4 (en) * 2011-12-02 2015-10-07 Honeywell Int Inc Fluoro olefin compounds useful as organic rankine cycle working fluids
GB2508614A (en) * 2012-12-04 2014-06-11 Geothermal Boilers Ltd Refrigerant compositions and heat pump
EP2975102A4 (en) * 2013-03-15 2017-01-04 Idemitsu Kosan Co., Ltd Refrigerator oil composition and refrigerator system
US9976106B2 (en) 2013-03-15 2018-05-22 Idemitsu Kosan Co., Ltd. Refrigerator oil composition and refrigerator system
US11692114B2 (en) 2018-08-14 2023-07-04 Mexichem Fluor S.A. De C.V. Refrigerant composition

Also Published As

Publication number Publication date
GB2480517B (en) 2013-03-06
GB201102556D0 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US8911641B2 (en) Heat transfer compositions
US8628681B2 (en) Heat transfer compositions
US8808570B2 (en) Heat transfer compositions
US20230416582A1 (en) Heat transfer compositions
JP5881725B2 (en) Composition of chlorotrifluoropropene and hexafluorobutene
US20130187078A1 (en) Heat transfer compositions
US20150202581A1 (en) Heat transfer compositions
US20120305480A1 (en) Heat transfer compositions
EP2536806A2 (en) Heat transfer compositions
US20120305830A1 (en) Heat transfer compositions
GB2480517A (en) Heat transfer compositions
JP6153993B2 (en) Composition of chlorotrifluoropropene and hexafluorobutene
JP2017201022A (en) Composition of chlorotrifluoropropene and hexafluorobutene

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20190214