[go: up one dir, main page]

GB2440216A - Computer program for calculating the (accumulated) processing time for tasks - Google Patents

Computer program for calculating the (accumulated) processing time for tasks Download PDF

Info

Publication number
GB2440216A
GB2440216A GB0709372A GB0709372A GB2440216A GB 2440216 A GB2440216 A GB 2440216A GB 0709372 A GB0709372 A GB 0709372A GB 0709372 A GB0709372 A GB 0709372A GB 2440216 A GB2440216 A GB 2440216A
Authority
GB
United Kingdom
Prior art keywords
time
task
instruction
computer program
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0709372A
Other versions
GB0709372D0 (en
Inventor
Dan F Greiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/437,220 external-priority patent/US8117614B2/en
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of GB0709372D0 publication Critical patent/GB0709372D0/en
Publication of GB2440216A publication Critical patent/GB2440216A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • G06F11/3419Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment by assessing time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • G06F11/3419Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment by assessing time
    • G06F11/3423Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment by assessing time where the assessed time is active or idle time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/88Monitoring involving counting

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Debugging And Monitoring (AREA)
  • Executing Machine-Instructions (AREA)

Abstract

Disclosed is a computer program that, when run, can determine the resource usage (for example, processor time) of tasks (or job, process, subroutine). The determination is performed on behalf of the user application such that is does not require calls to the Operating System (OS). When a task is started, a privileged instruction (i.e. one unavailable to the user application) stores the value of a CPU timer. When the user application wishes to know the amount of execution time, it executes a non-privileged instruction which calculates the elapsed time and reports it in a single uninterruptible operation. This is achieved by subtracting the start time from the end time such that the difference is equivalent to the execution time. The invention can also be used to determine the running time of a task that is switched in and out of execution. For each time slice that the task is running, the time taken is added into an accumulation value to give the time taken so far.

Description

<p>COMPUTER PROGRAM FOR EXTRACT CPU TIME FACILITY</p>
<p>Technical Field</p>
<p>This invention relates, in general, to processing within a processing environment, and in s particular, to a facility to efficiently determine resource usage of tasks.</p>
<p>Background of the Invention</p>
<p>The determination of resource usage is critical for many aspects of processing, including code refinement, billing, etc. One resource for which utilization is determined is processor time. In the z/Architecture, offered by International Business Machines Corporation, a timer is provided that measures elapsed central processing unit (CPU) time and causes an interruption when a specified amount of time has elapsed.</p>
<p>This timer is set by a Set CPU Timer (SPT) control instruction, and the contents of the timer are inspected via a Store CPU Time (STPT) control instruction. Both of these instructions are privileged instructions to ensure the accuracy of the time, and as such are not usable by problem-state programs (i.e., user programs).</p>
<p>In addition to the above, the z/OS operating system, offered by International Business Machines Corporation, also provides a service routine referred to as TIMEUSED, which is available to problem-state programs. A program or operation calls the service to determine the amount of CPU time a piece of code (e.g., task) has used. The T1MEUSED service routine computes the elapsed time, adds the accumulated time, and returns the value to the program. The calculations of the TIMEUSED routine must be performed while being disabled for interruptions, since any interruption could adversely effect the results by manipulating the CPU timer or the accumulator.</p>
<p>The TIMEUSED service routine is linked to via program call and program return instructions. This routine disables for interruptions, obtains and releases a CPU lock, establishes a recovery environment, calculates the elapsed time, and re-enables after having completed its work, all of which takes hundreds of CPU cycles. When attempting to measure a small fragment of code, the overhead of the TIMEUSED service routine can severely perturb what is being measured.</p>
<p>Summary of the Invention</p>
<p>Based on the foregoing, a need exists for a facility to efficiently determine resource usage, such as elapsed CPU time of a task. In particular, a need exists for a facility that efficiently determines resource usage of tasks without calling operating system services. A need exists for the ability of a user to efficiently determine resource usage.</p>
<p>The shortcomings of the prior art are overcome and additional advantages are provided through the provision of a computer program as claimed in claim 1.</p>
<p>Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.</p>
<p>Brief Description of the Drawin2s</p>
<p>One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which: FIG. I depicts one embodiment of a processing environment incorporating and using one or more aspects of the present invention; FIG. 2 depicts one embodiment of the logic associated with determining resource usage, in accordance with an aspect of the present invention; FIG. 3 depicts one example of a format of an Extract CPU Time instruction used in accordance with an aspect of the present invention; FIG. 4a depicts one embodiment of the fields of general register 0 used by the Extract CPU Time instruction of one aspect of the present invention; FIG. 4b depicts one embodiment of the fields of general register I employed by the Extract Cpu Time instruction of one aspect of the present invention; FIG. 5 depicts one embodiment of the logic associated with executing the Extract Cpu Time instruction, in accordance with an aspect of the present invention; FIG. 6 is a pictorial representation of the operations of the Extract CPU Time instruction of one aspect of the present invention; and FIG. 7 depicts one example of a computer program product incorporating one or more aspects of the present invention.</p>
<p>Best Mode for Carrvin2 Out the Invention In accordance with an aspect of the present invention, a facility is provided to efficiently determine resource usage of tasks executing within a processing environment. In one example, a facility is provided in which a user (e.g., user code, user application, user program, etc.) can accurately measure the processor time required to execute a particular code fragment (referred to herein as a task). This facility determines the elapsed processor time without significant overhead that has skewed such measurements, such as overhead associated with using an operating system service to determine the elapsed time.</p>
<p>One embodiment of a processing environment incorporating and using one or more aspects of the present invention is described with reference to FIG. 1. Processing environment 100 is, for instance, a multi-processing environment including a plurality of processors 102 (e.g., central processing units (CPUs)), a memory 104 (e.g., main memory) and one or more inputloutput (I/O) devices 106 coupled to one another via, for example, one or more buses 108 or other connections.</p>
<p>As one example, each processor 102 is a an IBM System ZTM server, offered by International Business Machines Corporation, Armonk, New York, and one or more of the processors execute an operating system, such as z/OS , also offered by International Business Machines Corporation. (IBM and z/OS are registered trademarks of international Business Machines Corporation, Armonk, New York, USA. Other names used herein may be registered trademarks, trademarks or product names of International Business Machines Corporation or other companies.) Processing within the processing environment is facilitated by the provision of a facility that enables the determination of resource usage, such as elapsed processor (e.g., CPU) time, without requiring the call of an operating system service or without using privileged instructions or operations.</p>
<p>One embodiment of the logic associated with determining resource usage is described with reference to FIG. 2. This logic is executed by a processing unit of the processing environment, in response to, for instance, a request by a user application (e.g., non-privileged code). The resource usage is determined for a task absent a call to an operating system service and without using privileged operations, STEP 200.</p>
<p>Initially, a current value of a counter used to track the resource for the task, such as time used, is determined by reading the counter value, as instructed by the logic, STEP 202. The determined value is then subtracted from a saved value, which is, for instance, the value of the counter when it was started, STEP 204. In one example, the counter decrements as the resource is used by the task and the current value of the counter is read, in response to the request. The result of the subtraction represents the amount of resource used by the task for this time interval, which is defined by the beginning and ending values of the counter, STEP 206.</p>
<p>In one example, the operations used to determine resource usage are performed by an instruction. As a specific example, an instruction is provided to determine an amount of processor time used by a task. The instruction can be implemented in many architectures and may be emulated. As examples, the instruction is executed in hardware by a processor; or by emulation of an instruction set that includes this instruction, by software executing on a processing unit having a different native instruction set. In one particular example, the instruction is implemented in the i/Architecture, offered by International Business Machines Corporation, and is referred to herein as an Extract CPU Time (ECTG) instruction.</p>
<p>An Extract CPU Time instruction 300 (FIG. 3) is a non-privileged instruction, and includes, for instance, an operation code 302a, 302b designating the Extract CPU Time instruction; a general register 304, the contents of which specify a third operand used by the instruction; a base register 306, which may be any of sixteen general purpose registers of the processing unit and includes a portion of an address of a first operand in storage used by the instruction; a displacement value 308, which is, for instance, an unsigned 12 bit binary number added to the contents of register 306 to provide the address of the first operand in storage; a base register 310, which again is any of the sixteen general purpose registers in the processing unit and includes a portion of an address of a second operand in storage used by the instruction; and a displacement value 312, which is added to the contents of register 310 to provide the address of the second operand in storage for the instruction.</p>
<p>In addition to the registers described above, the Extract CPU Time instruction also implicitly uses two general registers that do not have to be encoded in the instruction, but are used by the instruction. These registers include general register 0 and general register 1.</p>
<p>General register 0 (400, FIG. 4a) includes, for instance, the elapsed time since last dispatch of the task 402. It is the difference resulting from subtracting the value of the current CPU timer from the first operand, the contents of which include the value of the CPU timer at task dispatch.</p>
<p>General register 1 (410; FIG. 4b) includes, for instance, a value of the task time accumulator when the task was dispatched 412. This is the contents of the second operand of the instruction.</p>
<p>Although examples of registers are described above, each of the registers may include more, less or different information. Further, each may include additional data not necessarily needed in one or more aspects of the present invention. The specific location within the registers for the information is implementation and/or architecture dependent.</p>
<p>One embodiment of the logic associated with the Extract CPU Time instruction is described with reference to FIG. 5. As one example, this instruction is executed by a processor of the processing environment on behalf of a non-privileged user application (e.g., in problem state) that requests the operation as it relates to a particular task. The Extract CPU Time instruction is a non-privileged instruction that does not invoke an operating system service.</p>
<p>It does, however, assume in this embodiment, that the CPU timer (e.g., counter, register, etc.) is set when a task is dispatched. In one example, the timer is set by a Set CPU Timer (STP) instruction, which is a privileged instruction described in z/Architecture: Principles of Operation, IBM Publication No. SA22-7832-04, September 2005, which is incorporated herein by reference in its entirety. It may also be set by any other means. The timer is set to a given value which represents a specified time slice for execution of the task (e.g., 10-12 ms).</p>
<p>In response to executing the Extract CPU Time instruction, the current value of the CPU timer is determined, STEP 500. For instance, the timer decrements as the processor processes the task, and in response to executing the Extract CPU Time instruction, the value of the timer, at that time, is observed. This includes, for instance, reading the register that holds the timer. In one embodiment, the value of the timer can be extracted at any time, including prior to the end of the time slice provided for the task and without waiting for an interruption of the timer.</p>
<p>The current value of the CPU timer is then subtracted from the first operand of the instruction, STEP 502. The first operand represents the value of the CPU timer at the time the task was dispatched. For example, when a task is dispatched, the CPU timer is set to a chosen value (e.g., 10-12 ms) and that value is stored in storage (e.g., PSDATSAV). Thus, PSADTSAV -current CPU Timer = elapsed processor time since last dispatch of the task.</p>
<p>This value is placed in general register 0, STEP 504.</p>
<p>In addition to the above, additional information is also extracted, in one embodiment, STEP 506. As one example, the second operand of the instruction is placed unchanged in general register I. The second operand includes, for instance, an address of a task control block (e.g., TCBTTUSD) that maintains the previously used amount of total CPU time for the task.</p>
<p>By extracting and placing this information in general register 1, the user application is able to determine the total amount of processor time used thus far, by adding the results of general register 0 and general register 1.</p>
<p>Also, in one embodiment, information at the third operand location of the instruction replaces the contents of general register R3. This information includes various types of information, including but not limited to, flags designating information important or desired for the task, a scaling factor usable in adjusting the processor time for billing purposes, as well as other types of information.</p>
<p>A pictorial representation of the operations is depicted in FIG. 6. B1D1 (600) reference a first operand in storage 602. Subtracted from the contents of the first operand 604 is the current value of the CPU timer 606. The difference is stored in general register 0 (608).</p>
<p>B2D2 (610) reference a second operand in storage 612, the contents of which are placed unchanged in general register 1 (614). Additionally, R3 (616) references a third operand in storage 618, the contents of which are placed unchanged in general register R3 (620).</p>
<p>In one embodiment, the above operations all occur within the same unit of operation, without the possibility of being interrupted. By performing these operations atomically, the values retain their meanings.</p>
<p>Described in detail above is a facility to efficiently determine resource usage without the overhead associated with costly operating system services and/or without using privileged operations. In particular, an Extract CPU Time facility is described that enables the efficient determination of the amount of CPU time consumed, without the costly overhead of calling an operating system service and/or without issuing Program Call and/or Program Return instructions. This facility enables an application program to accurately measure the CPU time required to execute a particular code fragment without the significant overhead that has traditionally skewed such measurements. The measurements are useful in many aspects, including, but not limited to, fine tuning of application code and billing. The facility advantageously enables an application program to efficiently determine the amount of task time used at any given moment, and not just at the end of a time slice. This allows the program to effectively determine instruction timings in the microsecond or nanosecond range without having to wait until milliseconds have elapsed.</p>
<p>One or more aspects of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer usable media.</p>
<p>The media has therein, for instance, computer readable program code means or logic (e.g., instructions, code, commands, etc.) to provide and facilitate the capabilities of the present invention. The article of manufacture can be included as a part of a computer system or sold separately.</p>
<p>One example of an article of manufacture or a computer program product incorporating one or more aspects of the present invention is described with reference to FIG. 7. A computer program product 700 includes, for instance, one or more computer usable media 702 to store computer readable program code means or logic 704 thereon to provide and facilitate one or more aspects of the present invention. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.</p>
<p>A sequence of program instructions or a logical assembly of one or more interrelated modules defined by one or more computer readable program code means or logic direct the performance of one or more aspects of the present invention.</p>
<p>Although one or more examples have been provided herein, these are only examples. Many variations are possible without departing from the spirit of the present invention. For instance, processing environments other than the example provided herein may include and/or benefit from one or more aspects of the present invention. As an example, one or more processors can be other than IBM System ZTM processors and/or execute operating systems other than z/OS . Further, the environment need not be based on the z/Architecture, but instead, can be based on other architectures, offered by, for instance, Intel, Sun Microsystems, as well as others. Yet further, the instruction can include other registers or entities other than registers to designate information. Further, different data and/or positioning within the registers and/or entities are possible. Still further, the timer can be other than counters or registers. Any mechanism can be used to determine resource usage.</p>
<p>The term "timer" is meant to include a broad spectrum of mechanisms, including, but not limited to, counters and registers. Further, although in the embodiments herein, the timer decrements, in other embodiments, it may increment and/or follow some pattern. Many other variations exist.</p>
<p>Moreover, an environment may include an emuJator (e.g., software or other emulation mechanisms), in which a particular architecture or subset thereof is emulated. In such an environment, one or more emulation functions of the emulator can implement one or more aspects of the present invention, even though a computer executing the emulator may have a different architecture than the capabilities being emulated. As one example, in emulation mode, the specific instruction or operation being emulated is decoded, and an appropriate emulation function is built to implement the individual instruction or operation.</p>
<p>In an emulation environment, a host computer includes, for instance, a memory to store instructions and data; an instruction fetch unit to fetch instructions from memory and to optionally, provide local buffering for the fetched instruction; an instruction decode unit to receive the instruction fetch unit and to determine the type of instructions that have been fetched; and an instruction execution unit to execute the instructions. Execution may include loading data into a register for memory; storing data back to memory from a register; or performing some type of arithmetic or logical operation, as determined by the decode unit.</p>
<p>In one example, each unit is implemented in software. For instance, the operations being performed by the units are implemented as one or more subroutines within emulator software.</p>
<p>Further, a data processing system suitable for storing and/or executing program code is usable that includes at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements include, for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.</p>
<p>Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modems and Ethernet cards are just a few of the available types of network adapters.</p>
<p>As used herein, the term "operand" not only includes andlor refers to operands of an instruction, but also other operands, as well as parameters or arguments passed between functions of programs, or any other data that is passed between entities. Further, a task includes any portion of code, including an entire application or program or any portion S thereof.</p>
<p>The capabilities of one or more aspects of the present invention can be implemented in software, firmware, hardware or some combination thereof. At least one program storage device readable by a machine embodying at least one program of instructions executable by the machine to perform the capabilities of the present invention can be provided.</p>
<p>The flow diagrams depicted herein are just examples. There may be many variations to these diagrams or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order, or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.</p>

Claims (1)

  1. <p>Claims I. A computer program for, when run on a computer system,
    carrying out the following method steps: executing a set CPU timer control instruction to set the value of a CPU timer, wherein the set CPU timer control instruction is a privileged instruction not useable by a user program; selecting a task of the processing environment for which usage of central processing unit time is to be determined; and executing a store CPU time control instruction to save the value of the CPU timer, wherein the store CPU time control instruction is a privileged instruction not useable by a user program determining an amount of the central processing unit time used by the task within a particular time interval, by executing an extract CPU time instruction, wherein the extract CPU time instruction is a non-privileged instruction that is usable by a user program, the execution performing the steps (a) and (b): a) determining a current value of the timer set for the task; and b) subtracting said current value from the saved value to determine an amount of elapsed processor time used by the task during the particular time interval; and adding the determined amount of central processing unit time to an accumulated value for the task to determine a total amount of processor time used by the task thus far.</p>
    <p>2. The computer program of claim 1, wherein said determining occurs at least at a time prior to an end of a time slice provided for the task.</p>
    <p>3. The computer program of claim 1, further comprising extracting the accumulated value, wherein the determining the amount of elapsed processor time and the extracting the accumulated value occur as a single unit of operation.</p>
    <p>4. The computer program of claim 1, wherein said determining is performed using an instruCtion.</p>
    <p>5. The computer program of claim 1, wherein the extraction of additional information and the determining occur as a single, uninterruptible unit of operation.</p>
    <p>6. The computer program of claim 1, wherein the particular time interval is defined by a starting time of a timer associated with the task and an ending time of the timer.</p>
    <p>7. The computer program of any preceding claim, wherein the computer program is stored on a computer-readable storage medium.</p>
GB0709372A 2006-05-19 2007-05-16 Computer program for calculating the (accumulated) processing time for tasks Withdrawn GB2440216A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/437,220 US8117614B2 (en) 2006-05-19 2006-05-19 Extract CPU time facility
GB0625722A GB2438230A (en) 2006-05-19 2006-12-21 Method of calculating the accumulated processing time for tasks

Publications (2)

Publication Number Publication Date
GB0709372D0 GB0709372D0 (en) 2007-06-27
GB2440216A true GB2440216A (en) 2008-01-23

Family

ID=38871717

Family Applications (2)

Application Number Title Priority Date Filing Date
GB0709372A Withdrawn GB2440216A (en) 2006-05-19 2007-05-16 Computer program for calculating the (accumulated) processing time for tasks
GB0813536A Active GB2451344B (en) 2006-05-19 2008-07-24 Extract CPU time facility for measuring resource usage using a register based elapsed time function

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB0813536A Active GB2451344B (en) 2006-05-19 2008-07-24 Extract CPU time facility for measuring resource usage using a register based elapsed time function

Country Status (1)

Country Link
GB (2) GB2440216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152305A1 (en) * 2008-06-11 2009-12-17 Qualcomm Incorporated Method and system for measuring task load

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076921A2 (en) * 1981-10-13 1983-04-20 International Business Machines Corporation Method and system for time measurements of data processing channels
US4637780A (en) * 1984-05-14 1987-01-20 Prescant Pty. Limited Water ring vacuum pump having adjustable part plates and a hollow impeller
US5265249A (en) * 1990-05-16 1993-11-23 Nec Corporation Individual task accounting for multiprocessor systems when executing multitask jobs
US20050166204A1 (en) * 2003-03-31 2005-07-28 Fujitsu Limited CPU usage time counting method and job control system using this CPU usage time

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937780A (en) * 1986-05-30 1990-06-26 Bull Nh Information Systems, Inc. Single instruction updating of processing time field using software invisible working registers
JPH1050136A (en) * 1996-05-30 1998-02-20 Toshiba Lighting & Technol Corp Lighting fixtures and lighting systems
US6934936B2 (en) * 2001-02-01 2005-08-23 International Business Machines Corporation Apparatus and method for adaptive address-based historical utilization recording

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076921A2 (en) * 1981-10-13 1983-04-20 International Business Machines Corporation Method and system for time measurements of data processing channels
US4637780A (en) * 1984-05-14 1987-01-20 Prescant Pty. Limited Water ring vacuum pump having adjustable part plates and a hollow impeller
US5265249A (en) * 1990-05-16 1993-11-23 Nec Corporation Individual task accounting for multiprocessor systems when executing multitask jobs
US20050166204A1 (en) * 2003-03-31 2005-07-28 Fujitsu Limited CPU usage time counting method and job control system using this CPU usage time

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152305A1 (en) * 2008-06-11 2009-12-17 Qualcomm Incorporated Method and system for measuring task load
US8594816B2 (en) 2008-06-11 2013-11-26 Qualcomm Incorporated Method and system for measuring task load

Also Published As

Publication number Publication date
GB2451344A (en) 2009-01-28
GB0813536D0 (en) 2008-08-27
GB2451344B (en) 2009-03-04
GB0709372D0 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US9047078B2 (en) Extract CPU time facility
EP1080407B1 (en) Computer system with an emulation coprocessor and method for executing an emulated application program
CN100470485C (en) Implementation method of multi-operating system cooperative work
US10713213B2 (en) Systems and methods for multi-architecture computing
US20180173529A1 (en) Systems and methods for multi-architecture computing
IL171706A (en) Accounting method and logic for determining per-thread processor utilization in a simultaneous multi-threaded (smt) processor
WO1990014629A2 (en) Parallel multithreaded data processing system
CN113010275B (en) Interrupt processing method and device
US12153929B2 (en) Processor that executes instruction that specifies instruction concatenation and atomicity
Keckler et al. Concurrent event handling through multithreading
US20190227833A1 (en) Virtualization of storage buffers used by asynchronous processes
Zhang et al. Execution history guided instruction prefetching
GB2440216A (en) Computer program for calculating the (accumulated) processing time for tasks
US10929164B2 (en) Enhancing ability of a hypervisor to detect an instruction that causes execution to transition from a virtual machine to the hypervisor
Levine et al. A programmer's view of performance monitoring in the PowerPC microprocessor
US20230315453A1 (en) Forward conditional branch event for profile-guided-optimization (pgo)
Huang et al. Performance analysis of hard-real-time embedded software
Roest MIPhS: a Configurable Hardware Simulator

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)