GB2417084A - Device for determining the position of a sliding seat - Google Patents
Device for determining the position of a sliding seat Download PDFInfo
- Publication number
- GB2417084A GB2417084A GB0418213A GB0418213A GB2417084A GB 2417084 A GB2417084 A GB 2417084A GB 0418213 A GB0418213 A GB 0418213A GB 0418213 A GB0418213 A GB 0418213A GB 2417084 A GB2417084 A GB 2417084A
- Authority
- GB
- United Kingdom
- Prior art keywords
- sliding seat
- determining
- seat according
- encoded
- boat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000033001 locomotion Effects 0.000 claims abstract description 9
- 230000005355 Hall effect Effects 0.000 claims abstract description 3
- 238000004458 analytical method Methods 0.000 claims abstract description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B29/00—Accommodation for crew or passengers not otherwise provided for
- B63B29/02—Cabins or other living spaces; Construction or arrangement thereof
- B63B29/04—Furniture peculiar to vessels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/06—Training appliances or apparatus for special sports for rowing or sculling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
- B60N2/02—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
- B60N2/04—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
- B60N2/06—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B34/00—Vessels specially adapted for water sports or leisure; Body-supporting devices specially adapted for water sports or leisure
- B63B34/26—Accessories for canoes, kayaks or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/249—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
- G01D5/2497—Absolute encoders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/34707—Scales; Discs, e.g. fixation, fabrication, compensation
- G01D5/34715—Scale reading or illumination devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/486—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by photo-electric detectors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/06—Training appliances or apparatus for special sports for rowing or sculling
- A63B2069/068—Training appliances or apparatus for special sports for rowing or sculling kayaking, canoeing
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B29/00—Accommodation for crew or passengers not otherwise provided for
- B63B29/02—Cabins or other living spaces; Construction or arrangement thereof
- B63B29/04—Furniture peculiar to vessels
- B63B2029/043—Seats; Arrangements thereof on vessels
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transportation (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
A device that measures the position of a sliding seat used in a boat. Digitally encoded strips are fixed to the boat and sensors are fixed to a sliding seat such that the sensors detect the encoded strips. At least one channel of encoded information is then transmitted from the seat to the boat or another location. A microcontroller may analyse the sensor outputs to determine the seat position. The sensors may be infra-red or hall effect sensors and may determine the speed and direction of movement of the sliding seat. The encoded information may be transmitted by a wireless method, for example by radio link.
Description
241 7084 - 1
DEVICE FOR DETERMINING THE POSITION OF A SLIDING SEAT
The invention relates to a sliding seat in the sports of rowing, canoeing and kayaking.
In the sports of rowing, canoeing and kayaking, sliding seats are often used to allow the athlete to use their legs, in addition to their arms and body, to propel the boat.
with the feet fixed in position relative to the boat, the legs can bent during the recovery phase of a stroke and then straightened during the drive phase of the stroke, when the blade or paddle is in the water, such that the legs help to propel the boat.
Such seats are typically mounted on wheels that slide in smooth tracks. This system constrains the movement of the seat to a single dimension and reduces frictional losses.
For the purposes of teaching and high performance coaching it is desirable to be able to measure the position of such a sliding seat as it varies with time. From this data the velocity and acceleration of the seat at any time can be derived. Such a device should provide a single linear measurement from a known point. This is sufficient to define the position of the seat in space. It would be undesirable for the device alter the forces required to move the seat.
The object of this invention is to provide a device that will accurately determine the position of a sliding seat as it varies with time, without interacting with the mechanical characteristics of the sliding seat system.
According to the present invention there is provided a device for determining the position of a sliding seat comprising, One or more encoded strips attached to a boat or part of a boat, one or more sensors attached to a sliding seat such that the sensors detect the encoded strip and provide one or more channels of encoded information, and a method a transmitting the output of the sensor(s) from the seat to the boat or other location.
Preferably a detector is fixed to the seat comprising sensors and supporting electronic circuits, a microcontroller, a power source and a transmission method.
Preferably a receiver, designed to detect the signal transmitted from the seat is fixed to the boat.
In other embodiments a receiver, designed to detect the signal transmitted from the seat is fixed to another boat, shore station or other location.
Encoded strips are attached to the boat, the rails that the sliding seat runs in or a support bracket.
Encoded strips are mounted at any angle to the horizontal in order to suit the design.
A single channel of digital encoded information may be used to determine the speed of a sliding seat.
Two channels of digital encoded information may be used to determine the speed and direction of movement of a sliding seat. - 2
Three channels of digital encoded information may be used to determine the speed, direction of movement of a sliding seat and to fix the position of the seat in absolute terms as it passes a given point.
Multiple channels of digital encoded information may be used to determine the absolute position of a sliding seat by providing a unique output combination for each potential position of the seat.
In one embodiment each channel of digital encoded information is provided by a single sensor and single encoded strip.
In another embodiment multiple channels of digital encoded information are provided by multiple sensors and a single encoded strip.
Preferably the encoded strip comprises sections with properties that are good and poor infra-red reflectors and the sensor comprises an infra-red source and detector.
In another embodiment the encoded strip comprises sections of high and low magnetic field and the sensor is a hall effect sensor.
Preferably the encoded strip and sensor are a non-contact method of digital encoding.
In another embodiment one or more analogue strips, with varying properties along the length of he strip are used to determine the seat position.
Preferably the method of transmitting the sensor output from the boat is a non- contact method.
Preferably the method of transmitting the sensor output from the boat is a radio link, ultrasonic link or infra-red link.
In one embodiment raw data from the sensors is transmitted from the seat.
In another embodiment the microcontroller analyses the sensor output(s) and converts this information to a value representative of the distance of the seat from a known point and this value is transmitted from the seat.
A specific embodiment of the invention will now be described by way of example with reference to the accompanying drawing in which: Figure 1 shows a sliding seat and the invention in plan view Figure 2 shows the detector and encoded strip in side view Figure 3 shows the detector as a functional block diagram Figure 4 shows an alternative arrangement in side view - 3 Referring to the drawing a seat [3] has wheels [4] which run on tracks [2] which are in turn attached to a boat [1].
A detector [5] is attached to the underside of the seat and a receiver unit [6] is attached to the boat at a convenient location. Three encoded strips [7,8,9] are fixed to the boat using adhesive tape such that they are parallel to the direction of motion of the seat and cover the full range of movement of the seat. The encoded strips comprise a pattern of black and white sections in which the black sections are a poor reflector of infra-red radiation and the white sections are a good reflector of infra-red radiation. The size of these sections is chosen to give the required resolution. Three sensors [10,11,12] each comprise an infra-red emitting diode and a phototransistor and are mounted on the detector such that they are above the three encoded strips [7,8,9] respectively.
Referring to figure 3, the three sensors are connected to a processing circuit [13].
This circuit provides produces power to the infra-red emitting diode and provides a low or high voltage output depending on the state of the phototransistor. Thus three output signals are obtained which correspond to whether each of the three sensors is above a white or black section of the encoded strip. A battery power source [15] provides power to the electrical circuits.
A microcontroller [14] converts the three output signals into a single value that is representative of the seat position. From a single sensor output, the speed of the seat can be determined. From a second sensor output, both speed and direction can be determined. Encoded strips [8] and [9] are used to determine speed and direction of the seat by relative encoding. Figure 1 shows that encoded strips [8] and [9] are alternate black and white sections. Furthemmore they are positioned longitudinally relative to one another such that only one sensor output changes state at any one time. This is done in order to prevent glitches. As the seat moves over the encoded strip the output pattern from sensors [8] and [9] will be as follows (low- low), (low- high), (high-high), (high-low). The microcontroller detects changes in output state and increments or decrements a parameter representative of the distance of the seat from a known point. The third sensor represents the state of encoder strip [7] and is used to fix the absolute position of the seat. Encoder strip [7] is black except for a single section of white at a known location. Thus every time the seat passes this known point sensor [10] provides a high signal to the microprocessor and the distance parameter is set to a value representative of this position. The distance parameter is transmitter from the seat to the boat via a radio link. The microprocessor provides a pulse code modulated signal to a radio transmitter [16] which is connected to an aerial [17]. The receiver [6] (attached to the boat) detects the radio signal and converts the pulse modulated signal back into the distance parameter.
In another example, three infra-red sensors [18,19,20] are mounted on the seat in a line along the direction of travel of the seat. A single digital encoded strip [21] of black and white sections is fixed to the boat such that each of the three sensors are over the encoded strip. Figure 4 shows the arrangement. The pattern of encoding is arranged such that at one seat position a unique combination of the three sensor outputs is obtained [22]. This allows absolute location of the seat at this point. At all other seat positions [23], two of the sensor outputs are used to determine the relative movement of the seat, both in terms of speed and direction. This arrangement has the advantage of reducing the width of encoded strip required. This is useful since many boat designs have limited space in this area.
In another example a single encoded strip is used in which the infra-red reflective properties increase continuously along the length of the strip. An infra-red transmitter emits a constant level of radiation. A receiver on the seat measures the magnitude of the reflected pulse thus determining the reflectivity of the strip at that position. The measured reflectivity corresponds to a unique seat position.
Whilst endeavoring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features hereinbefore referred to and/or shown in the drawings whether or not particular emphasis has been placed thereon. - 5
Claims (1)
1. A device for determining the position of a sliding seat comprising, one or more encoded strips attached to a boat or part of a boat, one or more sensors attached to a sliding seat such that the sensors detect the encoded strip and provide one or more channels of encoded information, and a method a transmitting the output of the sensor(s) from the seat to the boat or other location.
2. A device for determining the position of a sliding seat according to claim 1, in which a detector is fixed to the seat comprising sensors and supporting electronic circuits, a microcontroller, a power source and a transmission method.
3. A device for detemmining the position of a sliding seat according to claim 1, in which a receiver, designed to detect the signal transmitted from the seat is fixed to the boat.
4. A device for determining the position of a sliding seat according to claim 1, in which the encoded strips are attached to the boat, the rails that the sliding seat runs in or a support bracket.
5. A device for determining the position of a sliding seat according to claim 1, in which the encoded strips are mounted at any angle to the horizontal in order to suit the design.
6. A device for determining the position of a sliding seat according to claim 1, in which a receiver, designed to detect the signal transmitted from the seat is fixed to another boat, shore station or other location.
7. A device for determining the position of a sliding seat according to claim 1, in which a single channel of digital encoded information is used to determine the speed of a sliding seat.
8. A device for determining the position of a sliding seat according to claim 1, in which two channels of digital encoded information are used to determine the speed and direction of movement of a sliding seat.
9. A device for determining the position of a sliding seat according to claim 1, in which three channels of digital encoded information are used to detemmine the speed, direction of movement of a sliding seat and to fix the position of the seat in absolute terms as it passes a given point.
10. A device for determining the position of a sliding seat according to claim 1, in which multiple channels of digital encoded information are used to determine the absolute position of a sliding seat by providing a unique output combination for each potential position of the seat.
11. A device for determining the position of a sliding seat according to claim 1, in which each channel of digital encoded information is provided by a single sensor and single encoded strip.
- () - 12. A device for determining the position of a sliding seat according to claim 1, in which multiple channels of digital encoded information are provided by multiple sensors and a single encoded strip.
13 A device for determining the position of a sliding seat according to claim 1, in which the encoded strip comprises sections with properties that are good and poor infra-red reflectors and the sensor comprises an infra-red source and detector.
14 A device for determining the position of a sliding seat according to claim 1, in which the encoded strip comprises sections of high and low magnetic field and the sensor is a hall effect sensor.
A device for determining the position of a sliding seat according to claim 1, In which the encoded strip and sensor are a non-contact method of digital encoding 16. A device for determining the position of a sliding seat according to claim 1, in which one or more analogue strips, with varying properties along the length of he strip are used to determine the seat position.
17. A device for determining the position of a sliding seat according to claim 1, in which the method of transmitting the sensor output from the boat Is a non-contact method 18. A device for determining the position of a sliding seat according to claim 1, in which the method of transmitting the sensor output from the boat is a radio link, ultrasonic link or infra-red link.
19 A device for determining the position of a sliding seat according to claim 1, in which raw data from the sensors is transmitted from the seat.
A device for determining the position of a sliding seat according to claim 1, in which a microcontroller analyses the sensor output(s) and converts this Information to a value representative of the distance of the seat from a known point and this value is transmitted from the seat.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0418213A GB2417084A (en) | 2004-08-14 | 2004-08-14 | Device for determining the position of a sliding seat |
US11/202,046 US20060035753A1 (en) | 2004-08-14 | 2005-08-12 | Device for determining the position of a sliding seat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0418213A GB2417084A (en) | 2004-08-14 | 2004-08-14 | Device for determining the position of a sliding seat |
Publications (2)
Publication Number | Publication Date |
---|---|
GB0418213D0 GB0418213D0 (en) | 2004-09-15 |
GB2417084A true GB2417084A (en) | 2006-02-15 |
Family
ID=33017554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB0418213A Withdrawn GB2417084A (en) | 2004-08-14 | 2004-08-14 | Device for determining the position of a sliding seat |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060035753A1 (en) |
GB (1) | GB2417084A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2425190A (en) * | 2005-04-15 | 2006-10-18 | Lear Corp | Optical sensor seat postioning system |
DE102008052250A1 (en) * | 2008-10-18 | 2010-04-22 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg | Rail length adjusting system for seat of motor vehicle, has foil sensor detecting position variable of upper and lower rails to each other, and evaluation unit determining relative displacement of rails against each other based on variable |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7408654B1 (en) * | 2004-09-02 | 2008-08-05 | Mark Randall Hardin | Method for measuring position, linear velocity and velocity change of an object in two-dimensional motion |
JP4234719B2 (en) * | 2006-02-09 | 2009-03-04 | 株式会社コナミスポーツ&ライフ | Training equipment |
JP4150406B2 (en) * | 2006-04-27 | 2008-09-17 | 株式会社コナミスポーツ&ライフ | Training equipment |
GB0910735D0 (en) * | 2009-06-22 | 2009-08-05 | Ewans John F | Rowing-boat gauges |
US8968041B2 (en) * | 2011-10-18 | 2015-03-03 | Angelo Rubbo | Device for capturing, transmitting, and displaying individual rower data |
US10451395B1 (en) | 2019-07-08 | 2019-10-22 | Red-E-Row Products, Llc | Spread, span and wheel alignment gauge |
EP4391985A1 (en) * | 2021-08-27 | 2024-07-03 | Gelenitis, Kristen | Devices, systems and methods for exercising with muscle stimulation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4909560A (en) * | 1989-02-27 | 1990-03-20 | Hoover Universal, Inc. | Digital linear position sensor |
US20040251723A1 (en) * | 2003-04-14 | 2004-12-16 | Hirofumi Endo | Seat position detection device |
WO2005037379A2 (en) * | 2003-10-17 | 2005-04-28 | Thomas Nisbit Kiefer | Apparatus for the improvement of rowing technique |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO117726B (en) * | 1967-07-01 | 1969-09-15 | Johannes Oestensjoe & Co A S | |
DE19846982C2 (en) * | 1998-10-12 | 2001-05-17 | Siemens Ag | Method and system for monitoring a user's posture on exercise equipment |
-
2004
- 2004-08-14 GB GB0418213A patent/GB2417084A/en not_active Withdrawn
-
2005
- 2005-08-12 US US11/202,046 patent/US20060035753A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4909560A (en) * | 1989-02-27 | 1990-03-20 | Hoover Universal, Inc. | Digital linear position sensor |
US20040251723A1 (en) * | 2003-04-14 | 2004-12-16 | Hirofumi Endo | Seat position detection device |
WO2005037379A2 (en) * | 2003-10-17 | 2005-04-28 | Thomas Nisbit Kiefer | Apparatus for the improvement of rowing technique |
Non-Patent Citations (1)
Title |
---|
Gill Sensors, "Blade Non Contact Position Sensor", 2003, http:www.gillsensors.co.uk/content/datasheets/200mm.pdf * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2425190A (en) * | 2005-04-15 | 2006-10-18 | Lear Corp | Optical sensor seat postioning system |
GB2425190B (en) * | 2005-04-15 | 2007-08-29 | Lear Corp | Non-contact Automotive seat position system |
US7555380B2 (en) | 2005-04-15 | 2009-06-30 | Lear Corporation | Non-contact seat position system |
DE102008052250A1 (en) * | 2008-10-18 | 2010-04-22 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg | Rail length adjusting system for seat of motor vehicle, has foil sensor detecting position variable of upper and lower rails to each other, and evaluation unit determining relative displacement of rails against each other based on variable |
Also Published As
Publication number | Publication date |
---|---|
GB0418213D0 (en) | 2004-09-15 |
US20060035753A1 (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2417084A (en) | Device for determining the position of a sliding seat | |
CN108957470B (en) | Time-of-flight ranging sensor and ranging method thereof | |
US5744953A (en) | Magnetic motion tracker with transmitter placed on tracked object | |
US5239139A (en) | Ultrasonic digitizer pen having integrated ultrasonic transmitter and receiver | |
JP5848469B1 (en) | Biological condition detection device | |
WO2007006555A3 (en) | Angle sensor device | |
US20130245470A1 (en) | State detection device, electronic apparatus, measurement system and program | |
EP1770374A3 (en) | Absolute liner encoder | |
DE602004022990D1 (en) | POSITION SENSOR | |
EP1524590A3 (en) | Tracking motion using an interference pattern | |
MXPA03001443A (en) | Method and device for measuring a path that has been covered. | |
ES2020037A6 (en) | Method and optical sensor for determining the position of a mobile body. | |
WO2002027354A3 (en) | Noncontacting position indicating system | |
EP1529914A3 (en) | Non-contact sensor system and mounting bracket | |
CN106029474B (en) | The method of the angle reference position of power steering system is determined according to the rising edge of exponential signal and failing edge | |
US9488503B2 (en) | Cart movement detection system for a dynamics track | |
WO2008139603A1 (en) | Storage device, head position detecting method, and control circuit | |
EP1544580A3 (en) | Angle detecting sensor | |
Hua et al. | A low-cost dynamic range-finding device based on amplitude-modulated continuous ultrasonic wave | |
WO2003055388A3 (en) | Device and method for determining characteristics of motion of a body | |
WO2003036238A3 (en) | Position encoder with scale calibration | |
ATE443652T1 (en) | SENSOR DEVICE WITH ROTATING ARM | |
DE60001849D1 (en) | DEVICE FOR DETERMINING THE POSITION OF A TRANSPONDER | |
DE50000477D1 (en) | DEVICE AND METHOD FOR CONTACTLESS SPEED MEASUREMENT ON SURFACES | |
EP1480012A3 (en) | Position encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |