[go: up one dir, main page]

GB2412029A - Surface wave radar system including antenna array - Google Patents

Surface wave radar system including antenna array Download PDF

Info

Publication number
GB2412029A
GB2412029A GB0511364A GB0511364A GB2412029A GB 2412029 A GB2412029 A GB 2412029A GB 0511364 A GB0511364 A GB 0511364A GB 0511364 A GB0511364 A GB 0511364A GB 2412029 A GB2412029 A GB 2412029A
Authority
GB
United Kingdom
Prior art keywords
data
surface wave
wave radar
array
radar system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0511364A
Other versions
GB2412029B (en
GB0511364D0 (en
Inventor
Yuri Abramovich
Pavel Turcaj
Nicholas Keith Spencer
Robert M Ellard
Yuriy Lyudviga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telstra Corp Ltd
Original Assignee
Telstra Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telstra Corp Ltd filed Critical Telstra Corp Ltd
Priority claimed from GB0226396A external-priority patent/GB2387053B/en
Publication of GB0511364D0 publication Critical patent/GB0511364D0/en
Publication of GB2412029A publication Critical patent/GB2412029A/en
Application granted granted Critical
Publication of GB2412029B publication Critical patent/GB2412029B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0218Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • G01S7/025Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects involving the transmission of linearly polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A surface wave radar system includes a two-dimensional receive antenna array 14 for generating receive signals and a data processing system. The array may include a one dimensional broadside array of vertically polarised doublets and an endfire array of vertically polarised antennas substantially perpendicular and adjacent to said broadside array. The array may have an L or T shape. The data may be processed to mitigate ionospheric clutter.

Description

SURFACE WAVE RADAR
FIELD OF THE INVENTION
The present invention relates to a surface wave radar system and a method for processing data of a surface wave radar receiver.
BACKGROUND
Surface wave radar systems, in particular high frequency surface wave radar (HFSWR) systems, have recently been developed to overcome the lineof-sight limitation of microwave radar systems. HFSWR exploits a phenomenon known as a Norton wave propagation whereby a vertically polarised electromagnetic signal propagates efficiently as a surface wave along a conducting surface. HFSWR systems operate from coastal installations, with the ocean providing the conducting surface. The transmitted signal follows the curved ocean surface, and a system can detect objects beyond the visible horizon, with a range of the order of 200 km.
The successful detection of a target by a surface wave radar system traditionally involves compromises between a number of factors, including propagation losses, target radar cross-section, ambient noise, man-made interference, and signal-related clutter. It is desired to provide an improved surface wave radar system and data processing method, or at least a useful alternative to existing surface wave radar systems and methods.
SUMMARY OF THE INVENTION
The invention in its various aspects is defined in the independent claims below, to which reference should now be made. Advantageous features are set forth in the appendant claims. - 2
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the present invention are hereinafter described, by way of example only, with reference to the accompanying drawings, wherein: Figure I is a schematic diagram of a preferred embodiment of a surface wave radar system; Figure 2 is a schematic diagram of a receive antenna array of the system; Figure 3 is a schematic diagram of a doublet antenna element of the receive antenna array; Figure 4 is a block diagram of a receiver of the system; Figure 5 is a flow diagram of a prior art data process; Figure 6 is a flow diagram of an adaptive data process executed by a data processing system of the receiver; Figure 7 is a rangeDoppler plot showing ionospheric clutter in data processed by
the prior art data process of Figure 5;
Figure 8 is a range-Doppler plot showing the windows used to evaluate ionospheric clutter and external noise; Figure 9 is a graph showing the power spectra of ionospheric clutter and external noise derived from the range-Doppler windows shown in Figure 8; Figure 10 is a pair of rangeDoppler plots of radar data processed by the conventional (top) and adaptive (bottom) data processes; Figure 11 is a graph of Doppler data for a particular range and azimuth, showing the effect of the adaptive filter on external noise suppression; Figures 12 to 15 are graphs of Doppler data for different ranges and azimuths, illustrating the spatial inhomogeneity of ionospheric clutter and the effect of the spatial filter on clutter suppression; and Figure 16 is a graph of Doppler data for a particular range and azimuth, for conventional, 1-D adaptive and 2-D adaptive processing. - 3
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A surface wave radar system, as shown in Figure 1, includes a transmitter 12, and a receiver 14. The transmitter 12 includes transmitter electronics 18 and a transmitting antenna 16. The transmitting antenna 16 is a directional broadband antenna, such as a log periodic antenna array, capable of generating a substantial surface wave and a relatively insubstantial overhead skywave. The transmitting antenna 16 transmits high frequency (5- MHz) electromagnetic surface wave signals from a shoreline 26 across the ocean surface. The transmitted signals are reflected from objects such as a ship 28, and reflected surface wave signals are received by the receiver 14.
As shown in Figures 1 and 2, the receiver 14 includes a data processing system 24 and a broadside array 20 of vertically polarised antenna doublets 30. The broadside array 20 is oriented approximately perpendicular to a principal receiving direction 25 for reflected surface wave signals, and, in this case, is approximately parallel to the shore 26. As shown in Figures 2 and 3, each doublet element 30 of the broadside array 20 includes front 31 and rear 33 vertically polarised monopole elements, coupled by a hybrid transformer 32. The front element 31 of the doublets 30 is closer to the shore 26 and to surface wave signals approaching from the receiving direction 25. This arrangement and the coupling transformer 32 enhance the sensitivity of the antenna 20 to signals received from the ocean whilst attenuating signals received from behind the antenna 20. The number of independent receive antenna elements or doublets 30 is limited by the number of independent data channels available for data processing. In the described embodiment, thirty-two data channels are available, as described below, and therefore the broadside array 20 includes thirty-two doublets 30. However, it will be apparent that additional data channels, and therefore, antenna elements or doublets 30, can be used to improve the system performance.
As shown in Figures 2 and 4, the thirty-two doublets 30 are connected to respective pre- amplifier units 36 of the receiver 14, and to the data processing system 24 via a coaxial antenna feeder 38. The data processing system 24 includes a multi-channel digital receiver - 4 controlled by a control computer 42, using oscillators 44 for frequency control. The data processing system 24 also includes data processing components 46 to 54, and a display console 56. The control computer 42, data processing components 46 to 54, and display console 56 each include standard computer systems, such as Intel Pentium III based personal computers running a Unix operating system. The computer systems of the data processing components 46 to 54 are also each provided with four digital signal processor (DSP) cards, including three Transtech TS-P36N DSP cards with four TigerSHARC processors, and one BlueWave PCI/66 card with six SHARC 21062 processors. The DSP cards communicate via 64 bit/66 MHz PCI slots of the data processing components 46 to 54. The data processing components 46 to 54 provide a range & Doppler processing system 46, a conventional beamforming system 48, an envelope detection/normalisation/peak detection system 50, an adaptive filtering system 52, and a primary target fusion & tracking system 54. These systems 46 to 54 and the display console 56 communicate via a network hub 58.
A standard, prior art process for analysing surface wave radar data, as shown in Figure 5, can be executed by the data processing system 24. The process begins by range processing 62 digitised radar data provided by the multi-channel receiver 40 in the range and Doppler processing system 46. The radar data represents signals received by the antenna elements 30 over time. Range processing 62 determines ranges corresponding to the data in accordance with the time delay between the time a signal was transmitted by the transmitter 12 and the time the reflected signal was received by the receiver 14. The range processed data is then sent via the network hub 58 to the beamforming system 48 where a beamforming step 64 processes the data to generate data corresponding to particular azimuthal receiving directions at the receiving antenna. The beamformed data is then sent to the range and Doppler processing system 46 where it undergoes Doppler processing at step 66 to associate radial velocities with the data according to Doppler-shifts in frequency.
The resulting data is then sent to the envelope detection/normalisation/peak detection system 50, where, at step 68, envelope detection is performed to determine signal amplitudes for each range. Normalisation 70 and peak detection 72 are then performed in - s order to identify targets. A tracking process 74 is performed by the primary target fusion & tracking system 54 to determine which targets identified at step 72 correspond to targets previously identified in order to track those targets as they move over time.
Figure 7 is a graph of radar data from all thirty-two antennas, as processed by the prior art process of Figure 5, presented as range bin versus Doppler bin, and using a grayscale to represent signal strength. The first reflected signals received by the receiver 14 correspond to the data in range bins near bin number 60. Accordingly, any data within the darkly coloured range bins 1 to 60 corresponds to negative range cells and to external background noise detected by the system prior to receiving reflected radar signals. Range bins from 60 through 270 are dominated by these reflected signals.
The data of Figure 7 is characterized by a large degree of signal-related clutter, visible as broadband signals spread across a wide range of Doppler bins for each range bin. It was found that this spread clutter is exacerbated at locations close to the equator, such as the northern coast of Australia, and is primarily ionospheric clutter resulting from enhanced backscattering of the transmitted signal from the ionosphere in these regions. This ionospheric clutter was found to mask low level signals, particularly those representing slowly moving objects. Detailed investigations demonstrated that the clutter affects most of the operational range of 80-200 km, and in most cases significantly exceeds the background noise level. The clutter resulted in a severe degradation in overall performance, leading to poor target detection, an increased false alarm rate, and poor tracking accuracy.
To determine the characteristics of ionospheric clutter, range-Doppler ionospheric clutter windows 80 were defined, as shown in Figure 8, to be restricted to Doppler cells that have a significant Doppler shift from the first-order Bragg lines in order to exclude possible high-speed Doppler components of the "normal", i. e., anticipated, surface-wave propagated sea-clutter spectrum. For example, the ionospheric clutter windows 80 of Figure 8 include range bins from 60 to 105, corresponding to ranges from zero to above 200 km, and includes all Doppler bins except Doppler bins 420-580 centered about zero Doppler shift.
Detailed analysis indicates that this underestimates the ionospheric clutter, because the most powerful components of ionospheric clutter are typically located in the same Bragg line area of the range-Doppler map as the energetic sea-clutter components. For comparison, range-Doppler noise windows 82 were also defined to assess the external noise received by the system. For example, the noise windows 82 of Figure 8 include all data in range bins from l to 59, corresponding to negative ranges, and using the same Doppler bins that are used for the ionospheric clutter windows 80.
Figure 9 is a graph of the overall distributions of ionospheric clutter power 84 and background noise power 86 in all beams derived from the ionospheric clutter windows 80 and the noise windows 82, respectively. The graph indicates that for slow (surface) target detection, it is transmission-related (passive) backscattered clutter 84, rather than external noise 86, that limits detection performance. In all instances with low background noise, the overall power of the ionospheric clutter component within the range of interest exceeded the background noise power. A significant feature of the ionospheric component is its erratic range profile. In many instances, ionospheric clutter appears immediately after the direct wave signal, while in other cases there is a significant range depth that is practically free of ionospheric clutter. This diversity excludes some simple explanations for ionospheric clutter, such as transmitter phase noise. Moreover, the spatial properties of the ionospheric clutter are significantly different for different ranges within the coverage, suggesting that several mechanisms may be responsible for the clutter signals.
In order to mitigate the effects of ionospheric clutter, an adaptive process 300, as shown in Figure 6, is executed by the receiving system 24. The adaptive process 300 retains the basic steps of the standard data process of Figure 5 for producing conventional data, but adds a number of adaptive processing steps for revealing hidden low level signals. The flow diagram of Figure 6 has two main branches 311, 313 to illustrate this division. The steps of the process for generating conventional processed data are shown in a - 7 conventional processing branch 311; the new steps used to generate adaptive processing data are shown in an adaptive processing branch 313.
The adaptive process 300 begins at step 302, when antenna signals are received and digitised by the multi-channel digital receiver 40. The resulting digital signals are sent to the range & Doppler processing system 46 where they undergo conventional range 62 and Doppler 66 processing. The resulting range-Doppler processed data is a 32-variate complex vector Y.,: yjl = [yjl() y (2) y (32t (1) wherej is the range bin number, l is the Doppler bin number, and T denotes transposition.
This range-Doppler processed data is used by both branches 311, 313 of the adaptive process 300. The conventional processing branch 311 is executed first, as follows. The range-Doppler processed data is first sent via the network hub 58 to the conventional beamforming system 48 where conventional beamforming 64 is performed. The resulting data is sent to the envelope detection/normalisation/peak detection system 50, where envelope detection 68 is first performed. The envelope detection 68 generates cell power estimates for each range-Doppler-azimuth resolution cell using the cell amplitudes. An ionospheric clutter power estimate is generated for each cell by averaging the cell power estimates for a specified number of adjacent Doppler cells with the same range and azimuth by using a specified window that can be considered to slide across the Doppler cells. The Doppler cells occupied by dominant sea clutter are identified on the basis of the transmit frequency and the characteristic Bragg lines and are excluded from this averaging process. Normalisation 70 is then performed to generate a background noise power estimate by averaging the cell powers across all Doppler cells within all "negative" ranges 82, with reference to Figure 8. - 8
Peak detection 72 is then performed to generate data identifying probable target cells. A cell is identified as a probable target cell if its cell power estimate exceeds its ionospheric clutter (or noise in the absence of clutter) power estimate by a threshold value. This data is sent to the primary target fusion & tracking system 54 and the adaptive processing system 52. This completes the conventional processing branch 311 of the adaptive process 300, and the steps of the adaptive processing branch 313 are then executed.
The clutter power estimates and the data identifying probable target cells are used by the adaptive processing system 52 to define training data Q at step 316. The training data Q is defined by selecting data from the range and Doppler processed data Y)/ generated at step 306. Due to the variable properties of the ionospheric clutter, the training data Q may include cells with operational ranges that always include strong sea clutter. However, because the ionospheric clutter is typically only a few dB above the noise floor, very effective sea-clutter resolution is required in order to obtain uncontaminated sea-clutter free samples for successful training. For this reason, Doppler processing is performed prior to adaptive spatial filtering, and the training data Q only includes Doppler cells occupied by ionospheric clutter, i.e. the training data Q is selected by including cells that have a ionospheric clutter power estimate exceeding a noise power threshold value, but excluding cells containing probable targets or sea clutter. Probable target cells are excluded from the training data Q because otherwise target data can be suppressed by the adaptive processing. At step 318, the training data Q is used to generate an adaptive antenna response or filter Win (H) for each ranged, according to: [HIS + k-J Zien Yk, Yk, I S(0) Wm (I) = . (2) J S/'(O) al32 + k-J Sled Yk! Yk, . S(O) where m is an adjustable parameter with a default value of 3, as described below, a is a loading factor, as described below, I32 is a 32x32 diagonal unity matrix, H denotes Hermitian conjugation, i. e., complex conjugation and transposition, and S(O) is the steering - 9 vector that corresponds to the (calibrated) antenna geometry and steering (i.e., beam) direction 0.
The first term within square parentheses in equation (2), the product a132, is referred to as a loading matrix, and its inclusion makes the adaptive process robust and improves its convergence properties, as described in Y. 1. Abramovich, A controlled method for optimization offilters using the criterion of maximum STIR, Radio Eng. Electron. Phys. 26(3), 1981, pp 87-95. The loading factor a is selected to be at least 2 dB greater than the background noise power estimate generated by the normalization step 70 of the conventional processing branch 311. The second term within square parentheses, k+/m /en Yk, YkH, is referred to as the sample matrix, and together, the terms within square parentheses constitute a loaded sample matrix. The adaptive filter generation step 318, defined by equation (2), is a form of loaded sample matrix inversion.
For the thirty-two doublet vertically polarised broadside calibrated antenna array 20, the steering vector So) is determined in the standard manner: s(o)7 = [I,exp(-i2 sin0),...,exp(-i317r sine)] (3) where d is interdoublet spacing, equal to 15 m; is the operational wavelength of the transmitted signal; and is the beam direction, calculated relative to Foresight.
To reduce the processing load on the adaptive filtering system 52, the adaptive filter generation step 318 determines adaptive filters WmJ (a) that can be shared by a number of consecutive ranges, as indicated by the parameter m, with a default value of m = 3.
However, the best performance is obtained when a unique filter is generated for every range bin, i.e., with m=l. -
Having generated the adaptive filter at step 318, the adaptive filtering system 52 performs adaptive filtering 320 on the range and Doppler processed data Ye, using the adaptive filter Wm. (A) to generate adaptive beamformed output data Z./ (a), as follows: Z/, (I) = Wmy (I) Y.' (4) The adaptive filtering 320 is an adaptive beamforming process, similar to conventional beamforming 64. The adaptive filtered data is sent to the envelope detection/normalisation/peak detection system 50 for envelope detection 68, normalisation 70, and peak detection 72. The resulting data is sent to the primary target fusion & tracking system 54.
The two branches 311, 313 of the adaptive process 300 join at step 328, executed by the primary target fusion/tracking system 54, where the relatively strong primary targets identified by conventional processing at step 314 and the primary targets revealed by adaptive processing at step 326 are used to identify both strong and weak targets. Target tracking is performed at step 330 to determine the final output data 332. This output data 332 can be displayed and analysed by the display console 56.
Adaptive antenna pattern analysis indicates that the number of beams sufficient for a conventional beamformer is generally not sufficient for the adaptive filter described above.
For this reason, a significantly greater number of beams (e.g. 64) are used in order not to lose a target with an unfavorable azimuth (with respect to steering directions).
Figure 10 illustrates the effect of the adaptive process 300 on ionospheric clutter mitigation. The top part of the figure shows a Doppler-range map of data processed by the conventional process of Figure 5, showing significant levels of ionospheric clutter spread across a broad range of Doppler and range cells. The lower part of Figure 10 shows the corresponding Doppler-range map of data processed by the adaptive process 300.
Although the clutter has not been completely eliminated, it has been significantly reduced. - 11
More quantitative examples of ionospheric clutter mitigation in Doppler data are shown in Figures 11 to 15, illustrating particular "range cuts" for different beams where results of conventional beamforming 102 are compared with the results of adaptive processing 104.
Taken together, these Figures illustrate the variable nature of the ionsopheric clutter for different ranges. Considering the most heavily contaminated range cells, it was found that, as shown in Figure 7, ionospheric clutter does not occupy the entire Doppler band.
However, this spread is sufficient to mask most of the targets of interest and, specifically, all surface targets.
The adaptive process 300 also provides mitigation of interference from other sources. For example, in cases where external noise is present, significant external noise power reduction can also be achieved as a result of adaptive processing, as shown in Figure 10.
Overall, it was found that weak targets deeply immersed in ionospheric clutter can be reliably detected by the adaptive process 300, despite losses that are correlated with the target strength. In order to reduce target signal degradation and/or to increase the dynamic range of successfully detected targets, the calibration accuracy is maintained as high as possible. In radar systems where the transmitter is located in the back (reduced) lobe of a receiving array doublet, an active repeater (e.g. on oil rigs) is preferably deployed. Strong targets identified by conventional processing at step 314 can be used for adaptive antenna calibration.
The embodiment described above relates to data collected using the broadside antenna array 20 of thirty-two dipoles only. In an alternative embodiment, the receiver 14 includes a second, endure array 22 of vertically polarised antenna elements 35. The endure array 22 is oriented perpendicular and adjacent to the broad side array 20 to form a twodimensional (2-D) antenna array, as shown in Figure 2. The antenna elements 35 of the endure array are preferably monopole antenna elements, but may alternatively include doublets. Doublets are preferable if the transmitter antenna 16 is located behind the - 12 receiving antenna arrays 20, 22. For 2-D antennas, the steering vector S(O) in equation (2) is calculated in accordance with antenna geometry for a given azimuth H and zero elevation angle.
The 2-D antenna array allowed 2-D adaptive clutter mitigation to be performed for various antenna configurations. The data processing system 24 allows individual antenna elements of the broadside array 20 and the endure array 22 to be selectively switched for input to the digital receiver 40 to adjust the receive site antenna configuration. This allows the endure array 22 to be excluded, and different 2-D configurations, such L and T shaped configurations, to be employed. For example, sixteen broadside dipoles (BD) and sixteen endure monopoles (EM) can be combined to form a 16BD+16EM configuration. As described above, the number of independent antennas was limited to thirty-two by the number of data channels available in the digital receiver 40. However, it will be apparent that an alternative or additional digital receiver 40 can be used in order to provide more data channels and therefore allow more antenna elements to be used.
The 2-D adaptive processing was found to be superior to 1-D adaptive processing for ionospheric clutter mitigation. Although 1-D adaptive processing is generally quite effective, both the estimated clutter suppression and the signal-to-interference ratio for particular targets are significantly improved by 2-D processing, often revealing hidden targets, as shown in Figure 16. In this data set, the conventional beamforming process data 102 shows a high degree of ionospheric clutter in Doppler bins greater than 250. The 1-D adaptive processed data 104 shows a reduced amount of clutter, but the 2-D processed data 106 shows a similar degree of reduction again, and reveals a hidden target peak 208 at bin number 373.
Overall, the most advantageous 2-D configurations are L-shaped or Tshaped antenna array configurations without a significant gap (e.g., the gap should be some tens of metros or less) between broad-side and endfire arms and within the arms; 16BD+16EM is preferred, but 22BD+1OEM (or ED) was found to be the second best. Depending on the - 13 severity of ionospheric clutter contamination, the improvement in ionospheric clutter (per range) power resulting from using a 2-D receiver, as opposed to a lD receiver, was between 5-25 dB for ship mode, and 2-15 dB for air mode.
For adaptive beamforming, and specifically for adaptive beamforming that involves an L- shaped antenna array, traditional (beam-maximum) techniques for target azimuth estimation can be inaccurate due to significant pattern deformation. Azimuth estimation techniques that take into account antenna pattern deformation are preferably used to provide a more accurate value for the target azimuth, as described in R.C. Davis, L.E.
Brennan and I.S. Reed, Angle Estimation with Adaptive Arrays in External Noise Fields, IEEE Trans. Aero. Elect. Sys. 12 (2), (1976), pp 176-186.
Many modifications will be apparent to those skilled in the art without departing from the scope of the present.
Attention is drawn to the parent of this divisional application, namely our application No. 0226396.0. - 14

Claims (25)

  1. CLAIMS: 1. A surface wave radar system, comprising: a transmitter
    including a transmitting antenna array; and a receiver including a two dimensional receive antenna array and a data processing system.
  2. 2. A surface wave radar system including: a receive antenna array for generating receive signals; and a data processing system for processing received data representing said receive signals to mitigate ionospheric clutter.
  3. 3. A surface wave radar system as claimed in claim 2, wherein the processing of said data processing system includes filtering said received data on the basis of ionospheric clutter data generated from said received data.
  4. 4. A surface wave radar system as claimed in claim 3, wherein said data processing system includes an adaptive filter to perform said filtering, said filter being trained on the basis of said ionospheric clutter data generated by determining clutter estimates for selected cells of said received data.
  5. 5. A surface wave radar system as claimed in claim 4, wherein said data processing system includes a range and Doppler processor, a beamformer and detector for generating cells of processed radar data from said received data and generating said ionospheric clutter data, noise power data and probable target data for said cells, said ionospheric clutter data representing ionospheric clutter power, and said adaptive filter is trained using data of said cells having ionospheric clutter power above a noise threshold determined by said ionospheric clutter data and said noise power data, excluding data of cells identified by said probable target data and cells representing sea clutter. l -
  6. 6. A surface wave radar system as claimed in claim 5, wherein the processed radar data filtered by said adaptive filter is processed by said detector to generate probable target data.
  7. 7. A surface wave radar system as claimed in claim 6, wherein said filter is based on loaded sample matrix inversion.
  8. 8. A surface wave radar system as claimed in claim 7, wherein said filter executes We)= [ /Q /' JO I ( ) , where Y' is a complex vector of said received SH (fly) [orI + In Yet Yip/ | S(O) data range-Doppler processed, Q represents the training data, H denotes complex conjugation and transposition, j is a range bin number, I is a Doppler bin number, a is a loading factor, I is a diagonal unity matrix, and So) is a steering vector corresponding to geometry of said array and a steering direction B.
  9. 9. A surface wave radar system as claimed in claim 8, wherein said loaded sample matrix inversion is Wmy()= [ k-J It k/ k/ ( ) , and a filter Wm,() iS S (I) [PI + k-J Amen Yk, Yk, S( ) shared by m consecutive range bins.
  10. 10. A surface wave radar system as claimed in claim 2, wherein said receive antenna array is a one-dimensional receive antenna array.
  11. 11. A surface wave radar system as claimed in claim 10, wherein said array includes a one dimensional broadside array of vertically polarised doublets, said broadside array being substantially perpendicular to a receiving direction of said antenna, and each of said doublets being substantially parallel to said receiving direction. - 16
  12. 12. A surface wave radar system as claimed in claim 2, wherein said receive antenna array is a two-dimensional receiving antenna array.
  13. 13. A surface wave radar system as claimed in claim 1 or 12, wherein said array includes a one dimensional broadside array of vertically polarised doublets, said broadside array being substantially perpendicular to a receiving direction of said antenna, and each of said doublets being substantially parallel to said receiving direction, and an endure array of vertically polarised antennas substantially perpendicular and adjacent to said broadside array.
  14. 14. A surface wave radar system as claimed in claim 13, wherein said array forms an L shape.
  15. 15. A surface wave radar system as claimed in claim 13, wherein said array forms a T 1 5 shape.
  16. 16. A surface wave radar system as claimed in claim 13, wherein said endure array includes one of monopoles and doublets, each of said doublets being substantially parallel to said receiving direction.
  17. 17. A method for processing range and Doppler processed data in a surface wave radar receiver, including, for each range, the steps of: training a spatial adaptive filter using training data of said processed data, said training data including ionospheric clutter data and excluding target data; and filtering said processed data using said filter.
  18. 18. A method as claimed in claim 17, including beamforming said processed data, and identifying said ionospheric clutter data and said target data by comparing the beamformed data with at least one threshold value. - 17
  19. 19. A method as claimed in claim 18, wherein said training data excludes cells which contain substantial sea clutter.
  20. 20. A method as claimed in claim 19, wherein said filter is based on loaded sample matrix inversion.
  21. 21. A method as claimed in claim 20, wherein said filter executes WJ(f9)= [ /en,! /! ) , where YJ/ is a complex vector of said received S (f}) [O(I + eQ Y., Y., S(O) data range-Doppler processed, Q represents the training data, H denotes complex conjugation and transposition, j is a range bin number, I is a Doppler bin number, is a loading factor, I is a diagonal unity matrix, and S(O) is a steering vector corresponding to geometry of said array and a steering direction O.
  22. 22. A method as claimed in claim 21, wherein said loaded sample matrix inversion is [aI +k-J Glen YE YE S() and a filter Wm,()is shared by m S (A) [orI + Eke/ /eQ Yk, Yk! | S() consecutive range bins.
  23. 23. A data processing system for processing received surface wave radar data to mitigate ionospheric clutter.
  24. 24. A surface wave radar system substantially as herein described with reference to the drawings of Figures 1 to 4, 6 and 8 to 16.
  25. 25. A method for processing range and Doppler processed data in a surface wave radar receiver substantially as herein described with reference to the drawings of Figures 1 to4,6and8to 16.
GB0511364A 2001-11-12 2002-11-11 Surface wave radar Expired - Lifetime GB2412029B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPR881101 2001-11-12
GB0226396A GB2387053B (en) 2001-11-12 2002-11-11 Surface wave radar

Publications (3)

Publication Number Publication Date
GB0511364D0 GB0511364D0 (en) 2005-07-13
GB2412029A true GB2412029A (en) 2005-09-14
GB2412029B GB2412029B (en) 2006-02-01

Family

ID=35636943

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0511364A Expired - Lifetime GB2412029B (en) 2001-11-12 2002-11-11 Surface wave radar

Country Status (1)

Country Link
GB (1) GB2412029B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007143A1 (en) * 2006-07-14 2008-01-17 Bae Systems Plc Deployable antenna system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021041A1 (en) * 1991-05-16 1992-11-26 The Commonwealth Of Australia Oceanographic and meteorological data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021041A1 (en) * 1991-05-16 1992-11-26 The Commonwealth Of Australia Oceanographic and meteorological data

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 1: Theoretical Background and Numerical Simulations" (SEVGI ET AL) IEEE Antennas and Propagation Magazine, Vol 43, No 4 Aug 2001. *
"Space-time adaptive processing for over-the-horizon spread-Doppler clutter mitigation. Proceeedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. (Cat. No. 00EX410). Kraut S et al. ISBN 0-7803-6339-6. 16-17 March 2000. *
"Waveform Parameter Advice: a clutter evaluation tool for high frequency surface wave radar". Eighth International Conference on HF Radio Systems and Techniques. (IEEE Conf. Publ. No. 474). Ablett S J et al. ISBN 0-85296-727-6. 10-13 July 2000 *
HF Surface Wave Radar. Revisiting a solution for EEZ ship Surveillance (EEZ INTERNATIONAL) retreived from the internet on 04-07-05 via: http://www.oeatech.com/pages/surveillance%20pdf.pdf *
The Chain Home Radar System (THE RADAR PAGES) retreived from the internet on the 04-07-05 via: http://www.radarpages.co.uk/mob/ch/chainhome.htm *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007143A1 (en) * 2006-07-14 2008-01-17 Bae Systems Plc Deployable antenna system
WO2008007144A1 (en) * 2006-07-14 2008-01-17 Bae Systems Plc Phase correction in a deployable antenna system
AU2007274033B2 (en) * 2006-07-14 2011-04-07 Bae Systems Plc Phase correction in a deployable antenna system
US8077083B2 (en) 2006-07-14 2011-12-13 Bae Systems Plc Deployable antenna system
US8089395B2 (en) 2006-07-14 2012-01-03 Bae Systems Plc Phase correction in a deployable antenna system

Also Published As

Publication number Publication date
GB2412029B (en) 2006-02-01
GB0511364D0 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
AU2008243179B2 (en) Surface wave radar
Fishler et al. Performance of MIMO radar systems: Advantages of angular diversity
Sevgi et al. An integrated maritime surveillance system based on high-frequency surface-wave radars. 1. Theoretical background and numerical simulations
DE60309748T2 (en) System and method for noise suppression in preprocessed radar data
CN109765529B (en) Millimeter wave radar anti-interference method and system based on digital beam forming
US5907302A (en) Adaptive elevational scan processor statement of government interest
CN110988811B (en) Grating lobe ambiguity resolution method applied to sparsely-arranged broadband phased array
Kuschel VHF/UHF radar Part 2: Operational aspects and applications
Lombardo et al. Impact of clutter spectra on radar performance prediction
CN110646765B (en) Riemann distance-based generalized sidelobe cancellation algorithm
Riddolls High-latitude application of three-dimensional over-the-horizon radar
Wen-long et al. Ionospheric clutter mitigation for high-frequency surface-wave radar using two-dimensional array and beam space processing
Rabideau et al. A signal processing architecture for space-based GMTI radar
CN116047462B (en) Method and device for selecting optimal array element number and array element spacing of end-shooting array airborne radar
Kogon et al. Exploiting coherent multipath for mainbeam jammer suppression
Abramovich et al. Space-time adaptive techniques for ionospheric clutter mitigation in HF surface wave radar systems
Chen et al. Networked FDA-MIMO radar positioning to suppress dense false target jamming
GB2412029A (en) Surface wave radar system including antenna array
CN114779182A (en) A time-domain sliding window three-dimensional multi-channel joint clutter suppression method based on FDA-MIMO radar
Wei et al. Characteristic study of ionospheric clutter in high-frequency over the horizon surface wave radar
Wang et al. Small ship detection with high frequency radar using an adaptive ocean clutter pre-whitened subspace method
Yamamoto et al. Clutter mitigation for wind profiler radar using adaptive clutter suppression and median filtering for Doppler spectra
Gomez et al. First results on measuring surface current velocities with WERA HF radar in MIMO configuration at Cape Hatteras
Emery et al. Some aspects of design and environmental management in HF surface wave radar
Money et al. HF surface wave radar management techniques applied to surface craft detection

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20221110