GB2371837A - Pitch adjustment mechanism - Google Patents
Pitch adjustment mechanism Download PDFInfo
- Publication number
- GB2371837A GB2371837A GB0130143A GB0130143A GB2371837A GB 2371837 A GB2371837 A GB 2371837A GB 0130143 A GB0130143 A GB 0130143A GB 0130143 A GB0130143 A GB 0130143A GB 2371837 A GB2371837 A GB 2371837A
- Authority
- GB
- United Kingdom
- Prior art keywords
- shaft
- hub
- adjustment member
- sleeve
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 20
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 239000012530 fluid Substances 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000005755 formation reaction Methods 0.000 claims description 4
- 239000003921 oil Substances 0.000 description 9
- 230000009471 action Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/30—Blade pitch-changing mechanisms
- B64C11/32—Blade pitch-changing mechanisms mechanical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/30—Blade pitch-changing mechanisms
- B64C11/38—Blade pitch-changing mechanisms fluid, e.g. hydraulic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/406—Transmission of power through hydraulic systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/76—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/77—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
The mechanism comprises a propeller shaft 12 mounted on a hub 10, the shaft being angularly adjustable relative to the hub to adjust the blade pitch but constrained against movement axially of the shaft by thrust bearings 18, 20, 22. An adjustment member or sleeve 28 is located between the shaft and hub and is constrained against angular movement relative to the hub but is capable of axial movement relative to the shaft to which it is attached by a coupling arrangement comprising a projection 32 with a roller on one of the shaft and sleeve 34 engaging in a slot 30 in the other. Axial movement of the adjustment member causes angular movement of the shaft. The adjustment member may be moved hydraulically 36 38, 40 or by centrifugal force against disc springs 44. Application in aircraft propellers or wind turbines.
Description
"Pitch Adjustment Mechanism"
This invention relates to a mechanism for use in the adjustment of the pitch of, for example, propeller blades or the blades of a turbine.
Aircraft engines of the propeller type are preferably fitted with devices to permit adjustment of the pitch of the propeller blades as, if the engine fails in flight and the propeller stops or rotation thereof slows, the loads exerted upon the propeller by the air flow over the propeller are significant and could result in damage to or deformation of the bearing assemblies located within the propeller hub or even the loss of one or more of the propeller's blades.
Wind driven turbines are used increasingly to drive electrical generators.
Such turbines are often shut down under high wind conditions in order to avoid damage thereto which may occur at excessive rotational speeds. When shut down, the blades are moved to their positions of least resistance.
It is an object of the invention to provide a pitch adjustment mechanism for use in adjusting the pitch of blades.
According to a first aspect of the invention there is provided a pitch adjustment mechanism comprising a shaft mounted upon a hub, the shaft being angularly adjustable relative to the hub to adjust the pitch of a blade but constrained against axial movement, and an adjustment member located between the shaft and the hub and constrained against angular movement relative to the
hub but capable of axial movement relative to the hub, and a coupling arrangement whereby the adjustment member is coupled to the shaft, the coupling arrangement comprising inter-engaging formations provided on the adjustment member and the shaft adapted such that axial movement of the adjustment member causes angular movement of the shaft.
The inter-engaging formations may comprise a projection associated with one of the adjustment member and the shaft, the projection riding within angular groove, recess or slot formed in the other of the adjustment member and the shaft.
The adjustment member conveniently comprises a sleeve encircling part of the shaft. The shaft conveniently comprises a part of a propeller or turbine blade.
The adjustment member may be moveable by the application of engine oil or hydraulic fluid under pressure thereto. Alternatively, it may be moveable under the action of centrifugal force, in use, for example against the action of a resilient biassing means. Such an arrangement is advantageous as, in the event of a loss of fluid pressure, the centrifugal force experienced by the adjustment member can move the adjustment member and the shaft to a predetermined angular position.
According to a second aspect of the invention there is provided a pitch
adjustment mechanism comprising first and second fluid chambers, and an adjustment member having surfaces exposed to the fluid pressures within the chambers so that the position of the adjustment member is controlled by controlling the fluid pressures of the chambers.
The invention will further be described, by way of example, with reference to the accompanying drawings, in which:
Figure 1 is a perspective view, partly in section, of a pitch adjustment mechanism in accordance with an embodiment of the invention;
Figure 2 is a view similar to Figure 1 illustrating an alternative embodiment;
Figure 3 is a view illustrating a modification to the embodiment of
Figure 2; and
Figures 4 to 7 illustrate further modifications.
The pitch adjustment mechanism illustrated in Figure 1 forms part of an aircraft engine. The pitch adjustment mechanism comprises a hub 10 arranged to carry a propeller shaft 12. The shaft 12 may be integral with the propeller blade, forming the root thereof, or may be connected to the propeller blade using any suitable technique. The mounting of the propeller shaft 12 relative to the hub 10 is such as to permit angular movement to occur therebetween but to restrict relative axial movement of the shaft 12 relative to the hub 10. In order
to facilitate angular movement of the shaft 12 relative to the hub 10 bearing assemblies 14, 16 are provided. As illustrated in Figure 1 the inboard bearing assembly 16 conveniently comprises inner and outer tracks 18,20 within which rollers 22 ride, the inner track 18 being carried by a shoulder forming part of the shaft 12, the outer track 20 bearing against a shoulder formed within the hub 10.
Such a bearing assembly serves to retain the shaft 12 against axial movement relative to the hub 10 as well as permitting angular movement to occur therebetween. In the arrangement illustrated in Figure 1, the outboard bearing assembly 16 serves mainly to stabilise and guide the shaft 12 for angular movement relative to the hub 10, but may also serve to restrict axial movement of the shaft 12 in use.
Adjacent the outboard bearing assembly 16, the shaft 12 carries an oil seal arrangement in the form of a flange 24, the outer periphery of which carries an oil seal ring 26 which bears against a surface of the hub 10.
An adjustment member in the form of a sleeve 28 is located between the shaft 12 and the hub 10. The sleeve 28 is keyed to the hub 10 in such a manner as to permit the sleeve 28 to move axially relative to the hub 10 whilst restraining the sleeve 28 against angular movement relative to the hub 10. As illustrated in
Figure 1, the sleeve 28 is formed with an elongate, angled slot 30, the shaft 12 being provided with a projection 32 carrying a roller 34 arranged to ride within
the slot 30. The co-operation between the roller 34 and the slot 30 is such that when the sleeve 28 moves axially relative to the hub 10, as the sleeve 28 is restrained against angular movement relative to the hub 10 and as the shaft 12 is restrained against axial movement relative to the hub 10, the movement of the sleeve 28 forces the shaft 12 to move angularly relative to the hub 10 as the roller 34 rides within the slot 30.
Oil flow channels 36,38 are provided within the hub 10 to permit the supply of oil under pressure to either the inboard end or the outboard end of the sleeve 28 to cause the sleeve 28 to move axially relative to the hub 10. The supply of oil under pressure through the channels 36, 38 occurs under the control of a valve 40 illustrated diagrammatically in Figure 1. With the valve 40 in the position illustrated, oil under pressure is being supplied to the flow channel 36 which communicates with the outboard end of the sleeve 28, the inboard end of the sleeve 28 being connected through the flow channel 38 to a relatively low pressure fluid source. Under such circumstances, the sleeve will tend to move in the inboard direction, such movement of the sleeve causing the shaft 12 to move in the direction illustrated by arrow 42 in Figure 1. Movement of the valve 40 to a position in which fluid under pressure is supplied to the flow channel 38 whilst the flow channel 36 is connected to a relatively low pressure source would cause movement of the shaft 12 in the opposite direction, and movement of the
valve 40 to a position in which the flow channels 36, 38 are closed would tend to hold the sleeve 28 in a fixed position, thus holding the shaft 12 against angular movement relative to the hub 10.
The length of the slot 30 is chosen to permit the blade 12 to be moved through a desired angle. For example, it is envisaged that the blade 12 should be able to moved through an angle of 103 . Conveniently, the angle of the blade 12 is monitored using suitable sensors, for example rotary variable displacement transducer units. In the event that the angle of the blade 12 at a given time is undesirable, then information to that effect may be passed to the pilot of the aircraft or to an automated control unit to cause operation of the valve 40 in such a manner as to supply oil or other fluid under pressure to the appropriate end of the sleeve 28 to cause movement of the shaft 12 towards its desired position. In order to minimise the effects of centrifugal induced accelerations, the sensors are conveniently located as near to the axis of rotation of the hub as possible.
The effect of centrifugal force upon the sleeve 28 will result in the fluid pressure necessary to cause movement of the sleeve 28 in the inboard direction to be higher than the fluid pressure necessary to cause movement of the sleeve 28 in the opposite direction. Although in some circumstances this may be undesirable, it may be used to provide a fail-safe system in that, in the event of a loss of oil pressure, the sleeve 28 will move in the outboard direction and the
pitch adjustment mechanism may be arranged such that when the sleeve 28 occupies its outermost position, the pitch of the blade 12 is that of least resistance thus minimising the risk of damage to the propeller arrangement.
Although in the arrangement described hereinbefore oil is used in the control of the mechanism, it will be appreciated that other hydraulic fluids could be used.
The arrangement illustrated in Figure 2 is similar to that of Figure 1, and like reference numerals will be used to denote parts performing like functions.
The arrangement of Figure 2 is intended for use in a wind turbine application and is intended to achieve automated feathering of the blades as the rotational speed of the turbine reaches a predetermined level. The arrangement of Figure 2 differs from that of Figure 1 in that the flow channels 36,38 are not provided, and instead a first set of disc springs 44 are provided at the outboard end of the sleeve 28, a second set of disc springs 46 being provided at the inboard end of the sleeve 28.
In use, when the turbine is not rotating, then the sleeve 28 will occupy an axial position governed by the relative forces applied thereto by the springs 44, 46. Obviously, the angular position occupied by the shaft 12 will depend upon the position occupied by the sleeve 28. As the turbine rotates, the sleeve 28 will experience a centrifugal force urging it in the outboard direction against the
action of the first set of disc springs 44. When the centrifugal force experienced by the sleeve 28 is sufficient to cause it to move against the action of the disc springs 44, then such movement will cause the shaft 12 to move angularly relative to the hub 10 as described hereinbefore. The arrangement is such that when the sleeve 28 moves in the outboard direction, the shaft 12 is moved towards a position in which the blade is feathered. If the rotational speed of the arrangement falls, then the centrifugal force experienced by the sleeve 28 will be reduced and the sleeve 28 will tend to move under the action of the disc springs 44 to return the blade 12 towards its original angular position. Such an arrangement can therefore be used to avoid operation of the wind turbine at excessive speeds.
The modification to the arrangement of Figure 2 illustrated in Figure 3 is such as to cause the shaft 12 to move in the opposite direction in response to movement of the sleeve 28 in the outboard direction, this being achieved by altering the angle of the slot 30. It will be appreciated that a similar technique could be used in relation to the arrangement of Figure 1.
The invention is not limited to the arrangements described hereinbefore, and it will be appreciated that a number of modifications may be introduced into the arrangement without departing from the scope of the invention. By way of example, the responsiveness of the pitch adjustment mechanism may be modified
by adjusting the angle of the slot 30. Further, alternative techniques for coupling the sleeve 28 to the shaft 12 may be incorporated. These include the provision of inter-engaging angled teeth or threads formed upon these components or the use of a recess formed in the sleeve 28 rather than a slot extending through the sleeve 28. Further, the recess could be formed within the shaft 12, the sleeve 28 carrying an inwardly extending projection arranged to be received within the recess of the shaft 12.
Figures 4 to 7 illustrate further modifications to the arrangements described hereinbefore. The arrangements of Figures 4 to 7 are, for the most part, identical to one another but are intended to work in slightly different ways.
The arrangement of Figure 4 does not include any spring biasing and so is very similar to that of Figure 1. The arrangement of Figures 5 and 6 includes spring biasing and so is similar to that of Figure 2. The arrangement of Figure 7 is similar to that of Figure 6, but the spring biasing is in the opposite direction. In each case, passages communicate with chambers at each end of the sleeve. The passages may serve simply to vent the chambers, or alternatively may be used to supply fluid under pressure to the chambers.
Claims (7)
1. A pitch adjustment mechanism comprising a shaft mounted upon a hub, the shaft being angularly adjustable relative to the hub to adjust the pitch of a blade but constrained against axial movement, and an adjustment member located between the shaft and the hub and constrained against angular movement relative to the hub but capable of axial movement relative to the hub, and a coupling arrangement whereby the adjustment member is coupled to the shaft, the coupling arrangement comprising inter-engaging formations provided on the adjustment member and the shaft adapted such that axial movement of the adjustment member causes angular movement of the shaft.
2. A mechanism according to Claim 1, wherein the inter-engaging formations comprise a projection associated with one of the adjustment member and the shaft, the projection riding within angular groove, recess or slot formed in the other of the adjustment member and the shaft.
3. A mechanism according to Claim 1 or Claim 2, wherein the adjustment member comprises a sleeve encircling part of the shaft.
4. A mechanism according to Claim 3, wherein the sleeve is spring biased in one direction.
5. A mechanism according to Claim 3 or Claim 4, wherein the sleeve is moveable by hydraulic pressure applied thereto.
6. A pitch adjustment mechanism comprising first and second fluid chambers, and an adjustment member having surfaces exposed to the fluid pressures within the chambers so that the position of the adjustment member is controlled by controlling the fluid pressures of the chambers.
7. A pitch adjustment mechanism substantially as hereinbefore described with reference to any one of the accompanying drawings..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0409850A GB2397627A (en) | 2000-12-19 | 2001-12-18 | Pitch adjustment mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0031025.0A GB0031025D0 (en) | 2000-12-19 | 2000-12-19 | Pitch adjustment mechanism |
Publications (3)
Publication Number | Publication Date |
---|---|
GB0130143D0 GB0130143D0 (en) | 2002-02-06 |
GB2371837A true GB2371837A (en) | 2002-08-07 |
GB2371837B GB2371837B (en) | 2004-06-30 |
Family
ID=9905431
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB0031025.0A Ceased GB0031025D0 (en) | 2000-12-19 | 2000-12-19 | Pitch adjustment mechanism |
GB0130143A Expired - Fee Related GB2371837B (en) | 2000-12-19 | 2001-12-18 | Pitch adjustment mechanism |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB0031025.0A Ceased GB0031025D0 (en) | 2000-12-19 | 2000-12-19 | Pitch adjustment mechanism |
Country Status (1)
Country | Link |
---|---|
GB (2) | GB0031025D0 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102155355A (en) * | 2010-02-12 | 2011-08-17 | 大银微系统股份有限公司 | Vane pitch automatic adjusting device for wind driven generator |
CN108223273A (en) * | 2018-01-30 | 2018-06-29 | 南京航空航天大学 | A kind of adaptive elastic vane change device of Blades For Horizontal Axis Wind |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734067B (en) * | 2012-07-06 | 2014-02-12 | 沈阳华创风能有限公司 | Wind thrust pitch-variable mechanism |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2374531A1 (en) * | 1976-12-20 | 1978-07-13 | Thierry Calige | Wind driven power generator with aerodynamic blades - has springs countering centrifugal force to give automatic adjustment of pitch |
FR2400624A1 (en) * | 1977-08-19 | 1979-03-16 | Charpentier Pierre | Wind driven generator with variable pitch blades - has sliding weight in form of nut engaging helical grooves on blade hub |
GB2022534A (en) * | 1978-04-20 | 1979-12-19 | Dowty Rotol Ltd | Bladed rotors |
US4657481A (en) * | 1984-05-15 | 1987-04-14 | Kongsberg Vapenfabrikk | Insertably adjustable and angularly adjustable inlet guide vane apparatus for a compressor |
-
2000
- 2000-12-19 GB GBGB0031025.0A patent/GB0031025D0/en not_active Ceased
-
2001
- 2001-12-18 GB GB0130143A patent/GB2371837B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2374531A1 (en) * | 1976-12-20 | 1978-07-13 | Thierry Calige | Wind driven power generator with aerodynamic blades - has springs countering centrifugal force to give automatic adjustment of pitch |
FR2400624A1 (en) * | 1977-08-19 | 1979-03-16 | Charpentier Pierre | Wind driven generator with variable pitch blades - has sliding weight in form of nut engaging helical grooves on blade hub |
GB2022534A (en) * | 1978-04-20 | 1979-12-19 | Dowty Rotol Ltd | Bladed rotors |
US4657481A (en) * | 1984-05-15 | 1987-04-14 | Kongsberg Vapenfabrikk | Insertably adjustable and angularly adjustable inlet guide vane apparatus for a compressor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102155355A (en) * | 2010-02-12 | 2011-08-17 | 大银微系统股份有限公司 | Vane pitch automatic adjusting device for wind driven generator |
CN108223273A (en) * | 2018-01-30 | 2018-06-29 | 南京航空航天大学 | A kind of adaptive elastic vane change device of Blades For Horizontal Axis Wind |
Also Published As
Publication number | Publication date |
---|---|
GB0031025D0 (en) | 2001-01-31 |
GB0130143D0 (en) | 2002-02-06 |
GB2371837B (en) | 2004-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3011876C (en) | Propeller control system for an aircraft | |
US4710101A (en) | Wind turbine | |
CA2917362C (en) | Propeller blade mounting system | |
KR830005484A (en) | Wind Tunnel Turbine Wing Pitch Adjustable System | |
US5487645A (en) | Ram air turbine with secondary governor | |
EP2347109B1 (en) | Method and system for limiting blade pitch | |
US4588354A (en) | Engine speed control in propeller pitch control systems | |
JPS6397495A (en) | Pitch regulator for variable pitch propeller blade | |
KR20100093545A (en) | Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine | |
US4792279A (en) | Variable pitch propeller | |
RU2010153593A (en) | SIMPLIFIED SYSTEM OF CONTROL OF THE STEP OF THE BLADE OF THE AIR SCREW IN THE AIRCRAFT GAS TURBINE ENGINE | |
EP2949920B1 (en) | Turbine for harnessing wave energy | |
US5391055A (en) | Propeller pitch change mechanism with impulse turbines | |
GB2371837A (en) | Pitch adjustment mechanism | |
EP2980401B1 (en) | Pitch drive system with lubrication arrangement | |
US9169009B1 (en) | Hub-mounted auxilliary systems for tipjets in a reaction drive rotor system | |
GB2397627A (en) | Pitch adjustment mechanism | |
EP3770064B1 (en) | Aircraft propeller electric blade pitch change and control | |
US4090812A (en) | Axial fan with automatically controlled variable pitch blades | |
US5851131A (en) | Self-adjusting variable pitch propeller | |
US4901746A (en) | Anticipating overspeed governor | |
US11667374B2 (en) | Blade pitch actuation mechanism | |
US2339090A (en) | Torque operated propeller pitch changing device | |
USRE24530E (en) | Full feathering propeller | |
US10480582B2 (en) | Roller bearing lubrication systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20141218 |