GB2358205A - Method and apparatus for eliminating severe slugging in a riser of a pipeline includes measuring pipeline pressure and operating a valve - Google Patents
Method and apparatus for eliminating severe slugging in a riser of a pipeline includes measuring pipeline pressure and operating a valve Download PDFInfo
- Publication number
- GB2358205A GB2358205A GB0013331A GB0013331A GB2358205A GB 2358205 A GB2358205 A GB 2358205A GB 0013331 A GB0013331 A GB 0013331A GB 0013331 A GB0013331 A GB 0013331A GB 2358205 A GB2358205 A GB 2358205A
- Authority
- GB
- United Kingdom
- Prior art keywords
- riser
- pipeline
- pressure
- valve means
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009491 slugging Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 18
- 239000007791 liquid phase Substances 0.000 claims abstract description 10
- 239000012071 phase Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000009530 blood pressure measurement Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 48
- 238000004519 manufacturing process Methods 0.000 description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 230000002706 hydrostatic effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/005—Pipe-line systems for a two-phase gas-liquid flow
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/09—Detecting, eliminating, preventing liquid slugs in production pipes
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pipeline Systems (AREA)
Abstract
In a method of opposing or preventing the occurrence of severe slugging in a riser (6) of a multiphase fluid conveying pipeline (2), a separator vessel (10) is connected to an upper end of the riser (6) to receive liquid from the pipeline and separate the gas and liquid phases, the separator is provided with a gas outlet pipe (12) including a valve (14) to regulate the gas flow velocity along the pipeline in the vicinity of the lower end of the riser, the pressure in the pipeline is observed at the lower end of the riser and the extent of opening of the valve is varied to vary pipeline gas velocity and prevent severe slugging. Preferably, the extent of valve opening is controlled in response to the pressure measurement and the separator vessel (10) also includes a liquid outlet pipe (16) including a second valve (18), the extent of opening of the second valve being varied in response to the liquid level in the separator.
Description
2358205 SLUGGING CONTROL This invention relates to a method of controlling
occurrence of severe slugging in a riser of a pipeline conveying a multiphase fluid system, and also relates to a combination comprising a pipeline with a riser for conveying a multiphase fluid system wherein the combination is adapted to control occurrence of severe slugging in the riser.
when natural gas is taken from where it occurs in nature in a naturally occurring gas reservoir in the earth's crust by means of a well supplying a pipeline from a well-head, the supplied gas is often naturally accompanied by liquid, for example water and/or hydrocarbon liquid. Such hydrocarbon liquid may be or may comprise oil. Thus the pipeline conveys a multiphase fluid system to a production facility which may comprise separator means to separate the gas from the liquid, gas drying means, filtering means, cooling means, and dewpointing means etc. Frequently a substantially vertical riser connects the pipeline with the production facility; this is particularly the case where the well is under water, for example under the sea or a lake where the pipeline can be on a bed of the sea or lake from which bed the riser ascends, often 2 through a considerable distance, to the production facility, which is usually above the surface of the water on a production platform. That platform may be unmanned and may be in a remote and/or hostile location. If the gas flow is above a certain rate the multiphase system ascends through the riser in a chur.-ri flow of a mixture of the gas and liquid. But when the gas f low is slow the liquid phase can form one or more slugs of liquid at a base of the riser and eventually the liquid slugs increase in size or combine to an extent which blocks of f the riser thus stopping the f low of gas to the production facility. This is the commencement of severe slugging. Gas pressure upstream of the blocking slug increases pushing even more of the forming liquid slug into the riser so that the head of the slug in the riser ascends towards the upper end of the riser. The column of liquid slug creates a hydrostatic pressure which increases as the column lengthens, and this pressure is substantially equal tc, the increasing gas pressure in the pipeline. A stage is reached where the upper end of the liquid slug discharges into the production facility upon the riser becoming substantially full of the slug. Now the hydrostatic pressure is a maximum for the riser and 3 liquid concerned, and the gas pressure downstream of the slug forces a bubble of gas into the lower end of the riser which immediately reduces the hydrostatic pressure exerted by the reduced length of slug up the riser. The excess of gas pressure over the hydrostatic pressure causes the slug to shoot up the riser at high speed followed by a sudden rush of gas which all threaten to overwhelm the production facility. This blowdown is detected by severe slugging detection means which operates to cause valve means to close to cut off the riser from the production facility and also close down operation of the latter.
This means production of gas is stopped whilst the effects of the severe slugging are dealt with, and production may not be resumed for at least several hours thereby causing financial loss which can be exacerbated by the possibility of resumed production having to be at a low level and then progressively increased to a normal rate.
Severe slugging can be a cyclical phenomenon.
An object of the invention is to provide a method of controlling occurrence of severe slugging by 4 intervention in operation of the pipeline to prevent. occurrence of said severe slugging.
According to a first aspect of the invention there is, provided a method of controlling severe slugging in a riser of a pipeline conveying a multiphase fluid system, the method comprising providing separation vessel means connected to an upper part of the riser to receive therefrom the multiphase fluid system fo-iseparation of a gas phase of the f luid system from a. liquid phase, providing the separation vessel means with a gas outlet comprising valve means to regulate speed of gas flow along the pipeline towards said rise2-in at least a vicinity of a lower end of the riser, observing pressure in the pipeline at position adjacent to said riser, and varying an extent to which said valve means is open so as to vary gas velocity in the pipeline to a value opposing or preventing occurrence of severe slugging in the riser.
The observed pressure may be gas pressure.
The extent to which the valve means is opened may increase the velocity of the gas flow in the pipeline adjacent to the riser.
1 1 The extent to which the valve means is opened may be increased when the observed pressure rises above a predetermined value. Said pre-determined value may be derived empirically.
The extent to which the valve means is opened may be a function of a three term control.
The valve means may be operated with a view to maintaining the observed pressure in the pipeline at a substantially pre-determined value.
According to a second aspect of the invention there is provided a pipeline to convey a multiphase fluid system, said pipeline comprising a riser, separator vessel means connected to an upper part of the riser to receive therefrom the multiphase fluid system to separate a gas phase of the system from a liquid phase, said separator vessel means being provided with a gas outlet comprising valve means to regulate flow of gas from the separator vessel means, pressure observing means to observe pressure in the pipeline adjacent to said riser and provide a signal corresponding to observed pressure, control means responsive to said signal to cause said valve means to operate to vary an I 6 extent to which the valve means is open, and the arrangement being such that when the pressure observing means observes a pressure greater than a pre-determined value said control means causes operation of the valVE, means to vary the extent to which the valve means is open so as to vary gas velocity in the pipeline to 4 value opposing or preventing occurrence of severe slugging in the riser.
The invention will now be further described, by way of: 11 example, with reference to the accompanying drawings inl I 11 which:
Figure 1 is a diagrammatic representation of a pipeline formed according to the second aspect of the invention for carrying out the method according to the first aspect; Figure 2 shows an example of variation in gas pressure P with time t in a base of the riser in Figure 1 during occurrence of severe slugging, and Figure 3 shows curves, based on investigations conducted, which indicate variation that can beexpected with respect to time t of (i) pressure P of gas in a 7 base of the riser in Figure 1 bef ore the method according to the f irst aspect of the invention to put into effect and after it is put into effect, and of (ii) an extent EOV to which the valve means regulating the gas outlet in Figure 1 is open before the method according to the first aspect of the invention is put into effect and after it is put into effect.
With reference to Figure 1, a pipeline arrangement 2 comprises a pipeline 4 which is conveying a multiphase fluid system comprising a gas phase and a liquid phase from a multiphase system supply. For example the pipeline 4 may be conveying from a production gas well a natural gas phase and a liquid phase associated with the occurrence of natural gas. The pipeline 4 which may be on a sea-bed or a lake-bed is connected to a base of a vertically ascending riser 6. The riser base can comprise a section 8 of piping which may be inclined at an angle a to the horizontal. Angle a may be small, for example about 5'. At its upper end, for example above a surface of the water of a sea or lake, the riser 6 opens into a separator vessel 10 in the form of a tank from which leads a gas outlet pipe 12 including a regulating valve 14 and a liquid outlet 8 pipe 16 including a regulating valve 18. T h e, separator vessel 10 may be part of a gas production facility 20 (for example a natural gas production facility) on a gas production platform. In this facility the separator vessel 10 is used in known manner to separate a gas phase (of the multiphase fluid system) from the liquid phase, the separated gas leaving via outlet 12 f or, for example, further processing whilst the separated liquid leaves via outlet 16 possibly also for, for example, further processing. A first liquid level sensor 22 in the separator vessel 10 is connected by signal line 24 to a liquid level control 26, which may be electronic, connected by signal line 28 to the valve 18. A second liquid level sensor 30, at higher level in the separation vessel than the sensor 22, is connected by signal line 32 to the liquid level control 26. The valve 18, which may be operated by motor means, is closed automatically by occurrence of a signal on line 28 denoting when the liquid level in the separator falls to just below the level of the sensor 22. once the valve 18 is closed it cannot be opened until the control 26 observes a signal on line 32 corresponding to the liquid level having risen to at, least the level of the sensor 30, whereupon the valve 9 18 remains open until the liquid level next drops to just below sensor 22.
A pressure sensor or pressure transmitter 34 observes the pressure in the riser base 8 and provides on signal line 36 a signal corresponding to the observed pressure value. The signal on line 36 is input to a pressure indicator control 38, which may be an electronic control, wherein the pressure value represented by the signal is processed and an output signal produced on line 40 in response to which an extent to which the valve 14 is open is automatically controlled. For example the valve 14 may be operated by motor means responding to the output signal on line 40.
In Figure 2 variation in pressure P in the riser base 8 with respect to time t is represented over a severe slugging cycle which might occur in the absence of use of the current invention. The cycle starts at time t, when the liquid phase flowing in the pipeline 4 plugs the base 8 of the riser and prevents further flow of gas into the riser 6. As liquid and gas continue to flow along pipeline 4 into the base 8 of the riser, the liquid slug increases in size and upstream of the slug the gas pressure rises until at time t, the gas pressure reaches substantially a maximum equal to thel hydrostatic pressure of the liquid in the riser 6 whichl is now full of liquid slug. Thus continued supply of liquid into the lower end of the riser 6 causes liquid slug to discharge from the upper end of the riser between times t, and t2 Eventually gas flowing along the pipeline pushes the liquid slug forward until a bubble of gas penetrates the vertical column of slug Lrl the riser 6 as suggested, for example, between times t,, and t3. Because of the presence of the bubble, at time t2 the head of hydrostatic pressure in the riser starts to drop, and the difference between t h e, decreasing hydrostatic pressure and the greater gas pressure upstream of the slug propels the remainincl liquid slug from the riser 6 in a rapid blowdown between, for example, times t3 and t4 11 Thus it will be understood that at commencement of severe slugging the pressure in the riser base 8 starts to increase. For a given pipeline arrangement 2, an empirical determination based on observation can be performed to determine a pre-determined pressure value (pre-determined pressure control value) which upoii 1:
I i 11 being attained in the riser base 8 may be taken as indicating severe slugging is about to commence or has just commenced.
Referring to Figure 1, control 38 is arranged so that when the pressure sensor 34 is observing a pressure value which differs from the aforesaid pre-determined pressure control value the control 38 operates the valve 14 to vary the extent to which it is to open. In the case of where the observed pressure value exceeds the pre-determined pressure control value the extent to which valve 14 is open is increased to increase the flow rate of gas through the separation vessel 10 and thus increase the velocity of gas along the pipeline 4 to encourage a maintenance of churn flow of the multiphase fluid system through the base 8 and riser 6 and thus discourage occurrence of severe slugging.
It will be appreciated that the valve 14 has a predetermined set-point extent of opening in respect to which the extent of opening is varied in response to operation of the pressure indicator control 38. In Figure 3 variation in extent of opening of the valve 14 12 (EOV) is plotted against time t, the aforesaid predetermined position EOV1. If the valve 14 were maintained at the position EOV, in curve (ii) over a time period t, to t6 severe slugging can occur cyclically as indicated at x in curve (i) if the gas velocity in the pipeline 4 is too low. Should the invention now be brought into operation at time t6 S(:) the pressure indicator control 38 actuates the valve, 14, it can be seen in curve (ii) that the extent of', opening of the valve is fairly quickly maintained above the set-point EOV, beyond time t, but varies as:-,A function of the difference or error between the gas pressure value currently being observed by the sensor 34 and the said pre-detmined pressure control value. In response to the action of valve 14, after time t, the pressure in the riser base 8 in curve (i) is rapidly controlled and comes at least to fluctuate over a relatively small pre-determined range between pressure, values not much greater than the natural minimum pressure value to which the multiphase system in the pipeline 4 may drop at an end of a severe slugging. cycle if it were to occur; more preferably, after time t., the pressure in the riser base 8 is rapidly controlled and attains or tends towards a substantially constant pre- determined pressure value.
13 The pressure indicator controller 38 may be a three term controller comprising proportional, integral and derivative terms in the output signal. The proportional term may be a function of the difference or error between the pressure value currently being observed by the pressure sensor 34 and the pre determined pressure control value.
If desired a pressure sensor or pressure transmitter 42 may be provided to observe gas pressure in the separator vessel 10 and provide a signal to an either/or control 44 to provide an output acting on the control 38 to operate the valve 14 so the gas pressure in the vessel 10 may remain substantially at a desired constant value. But in the event of pressure sensor 34 observing a pressure value in excess of the predetermined pressure control value the either/or control 48 is ignored and the control 38 operates in response to the signal from the pressure sensor 34.
14
Claims (1)
1. A method of controlling occurrence of severe slugging in a riser of a pipeline conveying a multiphase fluid system, the method comprising providing separator vessel means connected to an upper part of the riser to receive therefrom th(-:i multiphase fluid system for separation of a gas phase of the fluid system from a liquid phase, providing the separator vessel means with a gas outlet comprising valve means to regulate a flow gas from the separator vessel means and thereby regulate velocity of gas flow along the pipeline towards said riser in at least a vicinity of a lower end of the riser, observing pressure in the pipeline at a position adjacent to said riser, ancl varying an extent to which said valve means is open so as to vary gas velocity in the pipeline to a value opposing or preventing occurrence of severe slugging in the riser.
2. A method as claimed in claim 1, in which increasing the extent to which the valve means is opened increases velocity of the gas flow in the pipeline adjacent to said riser.
3. A method as claimed in Claim 1 or Claim 2, in which the extent to which said valve means is opened is increased value. when the observed pressure rises above a pre-determined 4. A method as claimed in any one preceding claim, in which the extent to which said valve means is opened is decreased when the observed pressure falls below a pre-determined value.
5. A method as claimed in Claim 3 or Claim 4, in which the or each said pre-determined value is/are derived empirically.
6. A method as claimed in any one preceding claim, in which the extent to which the valve means is opened is a function of an error between the observed pressure and a pre-determined value.
7. A method as claimed in any one preceding claim, in which the extent to which the valve means is opened is a function of an output from a three term control.
16 8. A method as claimed in any one preceding claim, in which the valve means is operated with a view of maintaining the observed pressure in the pipeline substantially within a pre-determined pressure range.
9. A method as claimed in any one of Claims 1 to 7, in which the valve means is operated with a view of maintaining the observed pressure in the pipeline at a substantially constant pre-determined value.
10. A method as claimed in any one preceding claim, further comprising providing the separator vessel means with a liquid outlet comprising second valve means, observing a level of the liquid in the separator vessel means and closing said second valve means when the level of the liquid falls below a pre-determined level.
11. A method as claimed in Claim 10, in which the second valve means is opened when the level of the liquid in the separator vessel means rises above a second pre-determined level which is higher than the first mentioned level.
17 12. A pipeline to convey a multiphase fluid system, said pipeline comprising a riser, separator vessel means connected to an upper part of the riser to receive therefrom the multiphase fluid system to separate a gas phase of the system from a liquid phase, said separator vessel means being provided with a gas outlet comprising valve means to regulate flow of gas from the separator vessel means, pressure observing means to observe pressure in the pipeline adjacent to said riser and provide a signal corresponding to observed pressure, control means responsive to said signal to cause said valve means to operate to vary an extent to which the valve means is open, and the arrangement being such that when the pressure observing means observes a pressure greater than a pre-determined value said control means causes operation of the valve means to vary the extent to which the valve means is open so as to vary gas velocity in the pipeline to a value opposing or preventing occurrence of severe slugging in the riser.
18 13. A pipeline as claimed in Claim 12, in which said control means is arranged to cause the extent to which the valve means is opened to be increased when the observed pressure rises above said predetermined value.
14. A pipeline as claimed in Claim 12 or Claim 13, in which the control means is arranged such that the extent to which the valve means is opened in response to said control means is a function of an error between the observed pressure and the said pre-determined value.
15. A method of controlling occurrence of severe slugging in a riser in a pipeline conveying a multiphase fluid system, said method being substantially as hereinbefore described with reference to the accompanying drawings.
16. A pipeline to convey a multiphase fluid system., substantially as hereinbefore described with reference to the accompanying drawings.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/GB2001/000108 WO2001053649A2 (en) | 2000-01-17 | 2001-01-12 | Slugging control |
US10/169,738 US6716268B2 (en) | 2000-01-17 | 2001-01-12 | Slugging control |
EP01900513A EP1409834A2 (en) | 2000-01-17 | 2001-01-12 | Slugging control |
NO20023413A NO20023413L (en) | 2000-01-17 | 2002-07-15 | Clogging monitoring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0000945.6A GB0000945D0 (en) | 2000-01-17 | 2000-01-17 | Control of slugging in a riser |
Publications (3)
Publication Number | Publication Date |
---|---|
GB0013331D0 GB0013331D0 (en) | 2000-07-26 |
GB2358205A true GB2358205A (en) | 2001-07-18 |
GB2358205B GB2358205B (en) | 2003-12-31 |
Family
ID=9883772
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB0000945.6A Ceased GB0000945D0 (en) | 2000-01-17 | 2000-01-17 | Control of slugging in a riser |
GB0013331A Expired - Fee Related GB2358205B (en) | 2000-01-17 | 2000-06-02 | Slugging control |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBGB0000945.6A Ceased GB0000945D0 (en) | 2000-01-17 | 2000-01-17 | Control of slugging in a riser |
Country Status (1)
Country | Link |
---|---|
GB (2) | GB0000945D0 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002046577A1 (en) * | 2000-12-06 | 2002-06-13 | Abb Research Ltd. | Method, computer program prodcut and use of a computer program for stabilizing a multiphase flow |
US8489244B2 (en) | 2009-03-28 | 2013-07-16 | Cranfield University | Method, controller and system for controlling the slug flow of a multiphase fluid |
CN106761619A (en) * | 2017-02-07 | 2017-05-31 | 陕西航天德林科技集团有限公司 | Gravity injecting drop instillator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987001759A1 (en) * | 1985-09-18 | 1987-03-26 | Stiftelsen For Industriell Og Teknisk Forskning Ve | Slug-catcher that can be pigged |
EP0331295A1 (en) * | 1988-02-03 | 1989-09-06 | Norsk Hydro A/S | Pipeline system to separate at least a two-phase fluid flow |
EP0410522A2 (en) * | 1989-07-25 | 1991-01-30 | Shell Internationale Researchmaatschappij B.V. | Method and apparatus for preventing slug growth in a pipeline |
GB2282399A (en) * | 1993-09-27 | 1995-04-05 | Petroleo Brasileiro Sa | Eliminating severe slug in multi-phase flow subsea lines |
WO1996000604A1 (en) * | 1994-06-28 | 1996-01-11 | Shell Internationale Research Maatschappij B.V. | Suppression of slug flow in a multi-phase fluid stream |
US5544672A (en) * | 1993-10-20 | 1996-08-13 | Atlantic Richfield Company | Slug flow mitigation control system and method |
GB2341695A (en) * | 1998-09-17 | 2000-03-22 | Petroleo Brasileiro Sa | Device and method for eliminating severe slugging in multiphase-stream flow lines |
-
2000
- 2000-01-17 GB GBGB0000945.6A patent/GB0000945D0/en not_active Ceased
- 2000-06-02 GB GB0013331A patent/GB2358205B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987001759A1 (en) * | 1985-09-18 | 1987-03-26 | Stiftelsen For Industriell Og Teknisk Forskning Ve | Slug-catcher that can be pigged |
EP0331295A1 (en) * | 1988-02-03 | 1989-09-06 | Norsk Hydro A/S | Pipeline system to separate at least a two-phase fluid flow |
EP0410522A2 (en) * | 1989-07-25 | 1991-01-30 | Shell Internationale Researchmaatschappij B.V. | Method and apparatus for preventing slug growth in a pipeline |
GB2282399A (en) * | 1993-09-27 | 1995-04-05 | Petroleo Brasileiro Sa | Eliminating severe slug in multi-phase flow subsea lines |
US5544672A (en) * | 1993-10-20 | 1996-08-13 | Atlantic Richfield Company | Slug flow mitigation control system and method |
WO1996000604A1 (en) * | 1994-06-28 | 1996-01-11 | Shell Internationale Research Maatschappij B.V. | Suppression of slug flow in a multi-phase fluid stream |
GB2341695A (en) * | 1998-09-17 | 2000-03-22 | Petroleo Brasileiro Sa | Device and method for eliminating severe slugging in multiphase-stream flow lines |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002046577A1 (en) * | 2000-12-06 | 2002-06-13 | Abb Research Ltd. | Method, computer program prodcut and use of a computer program for stabilizing a multiphase flow |
US7239967B2 (en) | 2000-12-06 | 2007-07-03 | Abb Research Ltd. | Method, computer program product and use of a computer program for stabilizing a multiphase flow |
US8489244B2 (en) | 2009-03-28 | 2013-07-16 | Cranfield University | Method, controller and system for controlling the slug flow of a multiphase fluid |
CN106761619A (en) * | 2017-02-07 | 2017-05-31 | 陕西航天德林科技集团有限公司 | Gravity injecting drop instillator |
Also Published As
Publication number | Publication date |
---|---|
GB0013331D0 (en) | 2000-07-26 |
GB2358205B (en) | 2003-12-31 |
GB0000945D0 (en) | 2000-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6716268B2 (en) | Slugging control | |
US5256171A (en) | Slug flow mitigtion for production well fluid gathering system | |
RU2334082C2 (en) | System and method for forecasting and processing plugs formed in flow line or well pipe system | |
EP2128380A1 (en) | Slug mitigation | |
AU763079B2 (en) | Method and system for suppressing and controlling slug flow in a multi-phase fluid stream | |
US6315813B1 (en) | Method of treating pressurized drilling fluid returns from a well | |
US6790367B2 (en) | Method and apparatus for separating and measuring solids from multi-phase well fluids | |
US6413297B1 (en) | Method and apparatus for treating pressurized drilling fluid returns from a well | |
US20060150749A1 (en) | Method, system, controller and computer program product for controlling the flow of a multiphase fluid | |
DK147740B (en) | PROCEDURE AND APPARATUS FOR TREATING A TWO-PHASE MIXTURE OF LIQUID AND GAS IN A PIPELINE PIPE | |
US10365668B2 (en) | Vapor control for storage tank with pump off unit | |
CA2912675A1 (en) | Operating method for a pump, in particular for a multiphase pump, and pump | |
US4000989A (en) | Method and apparatus for eliminating air from liquid flow streams | |
GB2358205A (en) | Method and apparatus for eliminating severe slugging in a riser of a pipeline includes measuring pipeline pressure and operating a valve | |
NO328225B1 (en) | Method of controlling a "effervescent" hydrocarbon production well | |
US6286602B1 (en) | Method for controlling a device for transporting hydrocarbons between production means and a treatment plant | |
EP0410522A2 (en) | Method and apparatus for preventing slug growth in a pipeline | |
EP0767699B1 (en) | Suppression of slug flow in a multi-phase fluid stream | |
EP2888437B1 (en) | A system and a method for separating liquid and gas flowing through a multiphase pipeline | |
NO326068B1 (en) | Method and apparatus for treating pressurized return drilling fluid from a well | |
EP3105414B1 (en) | Separating system and method for separating liquid and gas flowing through a multiphase pipe | |
US4230137A (en) | Apparatus and method for slack flow elimination in a slurry pipeline | |
JPH07190835A (en) | Operation method for tar decanter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
COOA | Change in applicant's name or ownership of the application | ||
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20090602 |