GB2351085A - Process for the preparation of polyether polyols - Google Patents
Process for the preparation of polyether polyols Download PDFInfo
- Publication number
- GB2351085A GB2351085A GB0013788A GB0013788A GB2351085A GB 2351085 A GB2351085 A GB 2351085A GB 0013788 A GB0013788 A GB 0013788A GB 0013788 A GB0013788 A GB 0013788A GB 2351085 A GB2351085 A GB 2351085A
- Authority
- GB
- United Kingdom
- Prior art keywords
- phosphate
- polyether polyol
- product
- brine
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920005862 polyol Polymers 0.000 title claims abstract description 45
- 150000003077 polyols Chemical class 0.000 title claims abstract description 45
- 239000004721 Polyphenylene oxide Substances 0.000 title claims abstract description 38
- 229920000570 polyether Polymers 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims abstract description 32
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000047 product Substances 0.000 claims abstract description 27
- 239000012267 brine Substances 0.000 claims abstract description 17
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 17
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims abstract description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 15
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 15
- 235000011009 potassium phosphates Nutrition 0.000 claims abstract description 15
- 229910000160 potassium phosphate Inorganic materials 0.000 claims abstract description 14
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 13
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 12
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims abstract description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 9
- 239000010452 phosphate Substances 0.000 claims abstract description 9
- 239000002244 precipitate Substances 0.000 claims abstract description 8
- 239000003054 catalyst Substances 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 4
- 239000003999 initiator Substances 0.000 claims abstract description 4
- 239000012044 organic layer Substances 0.000 claims abstract description 4
- 238000005119 centrifugation Methods 0.000 claims abstract description 3
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 3
- 150000003839 salts Chemical class 0.000 claims description 11
- 239000003153 chemical reaction reagent Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- -1 ammonium ions Chemical class 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 238000005243 fluidization Methods 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 235000021317 phosphate Nutrition 0.000 description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 7
- 239000011591 potassium Substances 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 229910001414 potassium ion Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- HOSGXJWQVBHGLT-UHFFFAOYSA-N 6-hydroxy-3,4-dihydro-1h-quinolin-2-one Chemical group N1C(=O)CCC2=CC(O)=CC=C21 HOSGXJWQVBHGLT-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- YNGQHHUHCOYPKT-UHFFFAOYSA-L azanium;calcium;phosphate Chemical compound [NH4+].[Ca+2].[O-]P([O-])([O-])=O YNGQHHUHCOYPKT-UHFFFAOYSA-L 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- YQRTZUSEPDULET-UHFFFAOYSA-K magnesium;potassium;phosphate Chemical compound [Mg+2].[K+].[O-]P([O-])([O-])=O YQRTZUSEPDULET-UHFFFAOYSA-K 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- SPOMEWBVWWDQBC-UHFFFAOYSA-K tripotassium;dihydrogen phosphate;hydrogen phosphate Chemical compound [K+].[K+].[K+].OP(O)([O-])=O.OP([O-])([O-])=O SPOMEWBVWWDQBC-UHFFFAOYSA-K 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2648—Alkali metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/30—Post-polymerisation treatment, e.g. recovery, purification, drying
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
Abstract
Process for the preparation of a polyether polyol comprising the steps of <SL> <LI>(a) reacting an initiator having at least two active hydrogen atoms with at least one alkylene oxide in the presence of a catalyst comprising potassium hydroxide; <LI>(b) neutralising the polyether polyol reaction product obtained in step (a) by adding phosphoric acid to this reaction product; <LI>(c) simultaneously with or subsequently to step (b) adding water to the polyether polyol reaction product thereby forming a two phase system comprising a potassium phosphate-containing aqueous layer and an organic layer containing the polyether polyol; <LI>(d) separating both layers yielding a polyether polyol product and an aqueous phosphate-containing product (brine); <LI>(e) treating the brine to form in water insoluble phosphate salts which precipitate; and <LI>(f) removing the phosphate salts thus prepared yielding a purified aqueous product. </SL> Step d) may be effected by centrifugation or settling.
Description
2351085 PROCESS FOR THE PREPARATION OF POLYETHER POLYOLS The present
invention relates to a process for the preparation of polyether polyols yielding a polyether polyol product and a purified waste water stream.
Methods for preparing polyether polyols, also sometimes referred to as poly(alkylene oxide) polyols, are well known in the art. Typically, such methods involve reacting a starting compound having a plurality of active hydrogen atoms with one or more alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide or mixtures of two or more of these. Suitable starting compounds include polyfunctional alcohols, generally containing 2 to 6 hydroxyl groups. Examples of such alcohols are glycol, such as diethylene glycol, dipropylene glycol, glycerol, di- and polyglycerols, pentaerythritol, trimethylolpropane, triethanolamine, sorbitol, mannitol, etc. Usually a strong base like potassium hydroxide is used as a catalyst in this type of reaction.
After the polymerization reaction has completed the potassium has to be removed from the polymerization product (neutralization). Several ways for achieving this are known in the art. For instance, removal of the potassium ions by ion exchange can be applied. However, additional solvent is needed to reduce the viscosity of the polyol product sufficiently to enable an effective ion exchange. The use of such additional solvent introduces the risk of leakage, which is undesired from an environmental viewpoint, and moreover the method is expensive while the costs are even further increased by regeneration facilities in order to enable a solvent recycle. Another method to remove potassium from the polyether polyol product is by using absorbents like magnesium silicate. The disadvantages of this method are the high cost and the high amount of solid waste created.
Yet another common for removing potassium is by adding one or more anions to the polyol product, which form insoluble salts with the potassium ions. Phosphoric acid is often used as the anion source. The insoluble potassium phosphates formed are subsequently removed, for instance by filtration. Main disadvantages of filtration, however, are the fact that it is a laborious method because of the high viscosity of the polyol and the fact that the filtercake needs to be disposed of while it contains salt, filter aid and polyol product, thereby losing product.
It was found that the above method for preparing polyether polyols and in particular the techniques used for removing potassium residues from the polyether polyol product are not optimal and still leave room for improvement. The present invention aims to provide a process for preparing polyether polyols, wherein the potassium-containing catalyst residues are effectively removed in an environmentally and economically attractive manner.
Accordingly, the present invention relates to a process for the preparation of a polyether polyol comprising the steps of (a) reacting an initiator having at least two active hydrogen atoms with at least one alkylene oxide in the presence of a catalyst comprising potassium hydroxide; (b) neutralising the polyether polyol reaction product obtained in step (a) by adding phosphoric acid to this reaction product; (c) simultaneously with or subsequently to step (b) adding water to the polyether polyol reaction product thereby forming a two phase system comprising a potassium phosphate-containing aqueous layer and an organic layer containing the polyether polyol; (d) separating both layers yielding a polyether polyol product and an aqueous potassium phosphate-containing product (brine); (e) treating the brine to form in water insoluble phosphate salts which precipitate; and (f) removing the phosphate salts thus prepared yielding a purified aqueous product.
In step (a) of the process the polyether polyols are typically prepared by reacting a mixture of initiator compound and potassium hydroxide catalyst at a temperature of from 80 to 150 OC, more particularly from 90 to 130 OC, with at least one alkylene oxide at such a rate that the alkylene oxide is taken up by the reaction mixture in approximately 2 to 30 hours, preferably 3 to hours, at atmospheric pressure. Higher pressures may also be applied, but the pressure will usually not exceed 20 bar and preferably is from 1 to 5 bar. The alkylene oxide may be diluted with inert gas, such as nitrogen, and normally the alkylene oxide is added to the reaction mixture in the course of the reaction. When mixed alkylene oxides are used, such as mixture of propylene oxide and ethylene oxide, random polyether polyols will be formed. Successive addition of different alkylene oxides will result in block copolymeric polyether polyols. Preferred alkylene oxides are propylene oxide and ethylene oxide.
In step (b) of the present process the actual neutralisation of the polyether polyol reaction product formed in step (a) takes place by adding phosphoric acid to this reaction product. As a result, the potassium ions of the catalyst which are still present in the polyether polyol product react into potassium phosphate. The polyol product react into potassium phosphate. The expression "potassium phosphate" as used throughout this specification refers to salts comprising both potassium and phosphate and hence include potassium dihydrogen phosphate, dipotassium monohydrogen phosphate and tripotassium phosphate.
In step (c) of the present process water is added to the polyether polyol reaction product. The potassium phosphate formed in step (b) will dissolve in the water and hence the amount of water added should preferably be sufficient to dissolve essentially all potassium phosphate present in the product of step (b). At the same time the amount of water should be such that a two-phase system can be formed, i.e. the amount of water added should exceed the solubility of water in the particular polyol to be treated under the process conditions applied. A two-phase system is formed consisting of a potassium phosphate-containing aqueous layer (brine) and an organic layer containing the polyether polyol product.
As indicated herein before steps (b) and (c) can be carried out consecutively or simultaneously.
If step (b) is carried out before step (c), the phosphoric acid is suitably added in the form of a concentrated solution in water, for instance in a concentration of 50-90 wt%, suitably 65 to 90 wt%. The amount of phosphoric acid added should be sufficient to neutralise all potassium present in the polyether polyol reaction product. As a result of the addition of phosphoric acid potassium phosphate is formed. Potassium phosphate is insoluble in polyether polyol and hence will precipitate. In the subsequent step (c), wherein water is added, the potassium phosphate will then dissolve in water.
Both concentrated phosphoric acid and water suitably have a temperature of from 10 to 35 'C and most suitably are at room temperature. The polyether polyol product of step (a), though, has a higher temperature, which will normally be between 80 and 120 OC when the phosphoric acid is added. When the water is added the temperature of the neutralised polyether polyol product should suitably have decreased to below 100 'C to prevent boiling of the water added. The pressure applied during steps (b) and (c) is arbitrary and may suitably range from essentially 0 bar up to 15 bar, preferably from 0.1 to 5 bar. If step (b) is carried out in vacuo, then the vacuum should be broken once step (b) is finished. The time necessary to carry out the reaction in step (b) may also vary within wide limits. Depending on the amount of phosphoric acid used and the temperatures applied, the length of step (b) will normally vary from several minutes to several hours, suitably from 10 minutes to 5 hours. It is preferred that while step (b) is carried out continuous mixing of the components takes place to ensure optimum contact between the reactants. In subsequent step (c) stirring suitably takes place until all precipitate formed in step (b) has dissolved. Then stirring is stopped, so that the two-phase system can be formed.
If step (b) is carried out simultaneously with step (c), the potassium phosphate formed will immediately dissolve in the water. In this embodiment an aqueous solution of phosphoric acid is suitably used, which has a phosphoric acid concentration as low as 1 to 25 wt%, more suitably 5 to 20 wt%, even more suitably 10 to 15 wt%.
Because the volume of the phosphoric acid solution in this case is larger than in the case where steps (b) and (c) are carried out consecutively, this embodiment can suitably be effected by pumping the polyether polyol product of step (a) into a neutralisation vessel containing the aqueous solution of phosphoric acid.
The conditions applied in simultaneous steps (b) and (c) are suitably such that the temperature of the aqueous solution of phosphoric acid is 10 to 35 'C, more suitably room temperature, while the temperature of the polyether polyol product with which it is combined is 80 and 'C. For the pressure the same applies as indicated above for steps (b) and (c).
After step (c) a two-phase system is obtained containing two liquid layers. These liquid layers are subsequently separated in step (d). Such separation can be effected in ways known in the art e.g. in a coalescer settler or by centrifugation. As a result a brine stream containing the phosphate salts and a polyether polyol product is obtained. The conditions under which step (d) is carried out depends on the separation technique used, but in general the temperature may range from 25 to 'C and the pressure from essentially 0 bar to 15 bar.
It is within the common skills of the person skilled in the art to select the precise conditions for the specific separation technique used.
The brine stream contains a relatively high concentration of phosphates and for that reason it is undesirable to dispose this stream into the environment without further purification. Therefore, the brine stream is further treated in step (e) to form in water insoluble phosphate salts which precipitate.
Such formation of water insoluble phosphate salts can suitably be achieved by the addition of a reagent comprising one or more cations which form crystalline, in water insoluble salts with the phosphate. Suitable cations in this connection include calcium, magnesium and ammonium ions as well as combinations thereof. The reagent typically comprises one or more salts of one or more suitable cations and is soluble in water. Such salts are well known to the skilled person. The in water insoluble salts formed may be calcium hydrogen phosphate, calcium ammonium phosphate, calcium phosphate, potassium magnesium phosphate, magnesium ammonium phosphate and the like. A reagent comprising calcium ions as cation, i.e. a water soluble calcium salt, is preferred.
In a preferred embodiment of the present invention step (e) additionally comprises contacting the brine with a seed material which promotes the formation of crystalline, in water insoluble salts with the phosphate.
This is preferably effected by contacting the brine with a fluidized bed of grains of the seed material, which bed is kept in fluidization by the brine stream, and wherein the reagent is added in such way that the insoluble phosphate salts are formed on the seed material. A very suitable method to remove the phosphates from the brine using a fluidized bed of grains of seed material to effect crystallisation and precipitation of phosphate salts is described in US-4,389,317. A major advantage of applying the method described in this U.S. patent in the present process is the fact that the phosphate salts formed have a large crystal size and are not part of a bulky sludge. Thus, these salts are easy to handle and make utilisation of the phosphate as fertiliser feasible.
Finally, in step (f) of the present process the precipitate formed in step (e) is removed, thereby yielding a purified water stream and a solid phosphate containing product, which after drying can for instance be used as fertiliser. Removal of the precipitate can be effected by any suitable solid-liquid separation technique known in the art, for instance by filtration.
The aqueous phase obtained now is essentially free of phosphates and hence can be discharged into surface water without any problems.
Claims (9)
1. Process for the preparation of a polyether polyol comprising the steps of (a) reacting an initiator having at least two active hydrogen atoms with at least one alkylene oxide in the presence of a catalyst comprising potassium hydroxide; (b) neutralising the polyether polyol reaction product obtained in step (a) by adding phosphoric acid to this reaction product; (C) simultaneously with or subsequently to step (b) adding water to the polyether polyol reaction product thereby forming a two phase system comprising a potassium phosphate-containing aqueous layer and an organic layer containing the polyether polyol; (d) separating both layers yielding a polyether polyol product and an aqueous phosphate-containing product (brine); (e) treating the brine to form in water insoluble phosphate salts which precipitate; and (f) removing the phosphate salts thus prepared yielding a purified aqueous product.
2. Process as claimed in claim 1, wherein steps (b) and (C) are carried out consecutively.
3. Process as claimed in claim 1, wherein steps (b) and (C) are carried out simultaneously.
4. Process as claimed in claim 2 or 3, wherein sufficient water is added to dissolve essentially all the potassium phosphate formed and to form a two-phase system.
5. Process as claimed in any one of claims 1-4, wherein step (d) is effected by centrifugation or settling.
6. Process as claimed in any one of claims 1-5, wherein step (e) comprises the addition of a reagent comprising one or more cations which form crystalline, in water insoluble salts with the phosphate.
7. Process as claimed in claim 6, wherein the reagent comprises calcium, magnesium and/or ammonium ions as cation.
8. Process as claimed in claim 6 or 7, wherein step (e) additionally comprises contacting the brine with a seed material which promotes the formation of crystalline, in water insoluble salts with the phosphate.
9. Process as claimed in claim 6 or 7 and in claim 8, wherein the brine is contacted with a fluidized bed of grains of the seed material, which bed is kept in fluidization by the brine stream, and wherein the reagent is added in such way that the insoluble phosphate salts are formed on the seed material.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99201824 | 1999-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
GB0013788D0 GB0013788D0 (en) | 2000-07-26 |
GB2351085A true GB2351085A (en) | 2000-12-20 |
Family
ID=8240292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB0013788A Withdrawn GB2351085A (en) | 1999-06-08 | 2000-06-06 | Process for the preparation of polyether polyols |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2351085A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9199697B2 (en) | 2013-10-02 | 2015-12-01 | Sofec, Inc. | Dual axis chain support with chain guide |
CN112126055A (en) * | 2020-09-30 | 2020-12-25 | 浙江皇马科技股份有限公司 | Preparation method for reducing content of butynediol polyether sodium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4460796A (en) * | 1981-02-27 | 1984-07-17 | Basf Aktiengesellschaft | Purification of polytetramethylene ether-glycols |
JPH02305819A (en) * | 1989-05-19 | 1990-12-19 | Mitsui Toatsu Chem Inc | Method for purifying polyether polyol |
JPH04153219A (en) * | 1990-10-16 | 1992-05-26 | Sanyo Chem Ind Ltd | Method for purifying polyether polyol |
JPH0770308A (en) * | 1993-09-03 | 1995-03-14 | Mitsui Toatsu Chem Inc | Recovery method of polyoxyalkylene polyol polymerization catalyst |
-
2000
- 2000-06-06 GB GB0013788A patent/GB2351085A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4460796A (en) * | 1981-02-27 | 1984-07-17 | Basf Aktiengesellschaft | Purification of polytetramethylene ether-glycols |
JPH02305819A (en) * | 1989-05-19 | 1990-12-19 | Mitsui Toatsu Chem Inc | Method for purifying polyether polyol |
JPH04153219A (en) * | 1990-10-16 | 1992-05-26 | Sanyo Chem Ind Ltd | Method for purifying polyether polyol |
JPH0770308A (en) * | 1993-09-03 | 1995-03-14 | Mitsui Toatsu Chem Inc | Recovery method of polyoxyalkylene polyol polymerization catalyst |
Non-Patent Citations (3)
Title |
---|
WPI ACCESSION NO. 1991-039589 [06] & JP 02 305 819 A (MITSUI) 19.12.1990 * |
WPI ACCESSION NO. 1992-224058 [27] & JP 04 153 219 A (SANYO) 26.05.1992 * |
WPI ACCESSION NO. 1995-144923 [19] & JP 07 070 308 A (MITSUI) 14.03.1995 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9199697B2 (en) | 2013-10-02 | 2015-12-01 | Sofec, Inc. | Dual axis chain support with chain guide |
CN112126055A (en) * | 2020-09-30 | 2020-12-25 | 浙江皇马科技股份有限公司 | Preparation method for reducing content of butynediol polyether sodium |
Also Published As
Publication number | Publication date |
---|---|
GB0013788D0 (en) | 2000-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8017814B2 (en) | Process for the preparation of polyether polyols | |
US4987271A (en) | Method for purifying a polyoxyalkylene alcohol | |
CA1197264A (en) | Process for purification of crude polyether polyols | |
US4677231A (en) | Process for purification of polyether | |
EP0376157B1 (en) | Process for purification of catalysts from polyols using ion exchange resins | |
EP1062263B1 (en) | Process for the preparation of odour-lean polyether polyols | |
EP1220827B1 (en) | Continuous process for preparing lactic acid | |
JPH06200013A (en) | Purification of polyol produced by using complex metal cyanide catalyst | |
JP3281500B2 (en) | Purification method of polyether polyol produced using double metal cyanide catalyst | |
JPS6236052B2 (en) | ||
GB2351085A (en) | Process for the preparation of polyether polyols | |
KR19990063374A (en) | METHOD FOR REMOVING AN ALKALINE COMPONENT IN THE PREPARATION OF POLYETHEROL POLYOL | |
US6342641B1 (en) | Purified bisphenol a ethoxylates and processes of purifying thereof | |
US4493907A (en) | Method of using higher concentration sulfuric acid for stripping and precipitation of adsorbed magnesium | |
US3321521A (en) | Regeneration of chelating solutions | |
CN109219630B (en) | Method and apparatus for removing water and salts from neutralized polyether polyols | |
EP0068413B1 (en) | Method of using higher concentration sulfuric acid for stripping and precipitation of adsorbed magnesium | |
US20050215831A1 (en) | Method for the preparation of polyether alcohols | |
JP2999798B2 (en) | Method for producing polyethers | |
JP3270589B2 (en) | Recovery method for polyoxyalkylene polyol polymerization catalyst | |
JPH03195728A (en) | Purification method of polyoxyalkylene polyol | |
CA1065314A (en) | Production of polyether polyol compositions | |
JPH0388823A (en) | Method for purifying polyethers | |
JP2003313289A (en) | Process for producing polyether from which metal compound is removed | |
JPS60212425A (en) | Polyol manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |