GB2155045A - Flux cored wire electrodes - Google Patents
Flux cored wire electrodes Download PDFInfo
- Publication number
- GB2155045A GB2155045A GB08405111A GB8405111A GB2155045A GB 2155045 A GB2155045 A GB 2155045A GB 08405111 A GB08405111 A GB 08405111A GB 8405111 A GB8405111 A GB 8405111A GB 2155045 A GB2155045 A GB 2155045A
- Authority
- GB
- United Kingdom
- Prior art keywords
- flux
- percent
- weight
- wire electrode
- cored wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004907 flux Effects 0.000 title claims abstract description 47
- 238000003466 welding Methods 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 12
- 239000010959 steel Substances 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 229910001515 alkali metal fluoride Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 6
- 229910052788 barium Inorganic materials 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims description 23
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 16
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910004883 Na2SiF6 Inorganic materials 0.000 claims description 2
- 229910017709 Ni Co Inorganic materials 0.000 claims 1
- 229910001610 cryolite Inorganic materials 0.000 claims 1
- 239000002893 slag Substances 0.000 description 27
- 238000012360 testing method Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910007562 Li2SiO3 Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910018134 Al-Mg Inorganic materials 0.000 description 3
- 229910018467 Al—Mg Inorganic materials 0.000 description 3
- 229910017076 Fe Zr Inorganic materials 0.000 description 3
- 229910002983 Li2MnO3 Inorganic materials 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- -1 Na2ZrF6 Inorganic materials 0.000 description 3
- 229910003387 SrMnO3 Inorganic materials 0.000 description 3
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910001637 strontium fluoride Inorganic materials 0.000 description 3
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910002593 Fe-Ti Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910020440 K2SiF6 Inorganic materials 0.000 description 2
- 229910020148 K2ZrF6 Inorganic materials 0.000 description 2
- 229910018505 Ni—Mg Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910014458 Ca-Si Inorganic materials 0.000 description 1
- 229910002971 CaTiO3 Inorganic materials 0.000 description 1
- 229910020187 CeF3 Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910020491 K2TiF6 Inorganic materials 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- 229910011129 Li2B407 Inorganic materials 0.000 description 1
- 229910007822 Li2ZrO3 Inorganic materials 0.000 description 1
- 229910006309 Li—Mg Inorganic materials 0.000 description 1
- 229910021570 Manganese(II) fluoride Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910008455 Si—Ca Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- 229910004115 SrNiO3 Inorganic materials 0.000 description 1
- 229910003383 SrSiO3 Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910007735 Zr—Si Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- CTNMMTCXUUFYAP-UHFFFAOYSA-L difluoromanganese Chemical compound F[Mn]F CTNMMTCXUUFYAP-UHFFFAOYSA-L 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009963 fulling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/368—Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
There are disclosed flux cored wire electrodes for self-shielded arc-welding which comprise a steel sheath filled with a powdery flux containing as essential components thereof the following components: BaF225-70, alkali metal fluoride 1-30, compound oxide composed of the oxide of an alkaline earth metal selected from among Ca, Sr and Ba and the oxide of a metal selected from among Fe, Mn, Ni, Co, Ti, Al and Zr 1-30, Al 3-12, Mg 2-10 and Mn 0.5-10 percent by weight.
Description
SPECIFICATION
Flux cored wire electrodes for self-shielded arc welding
BACKGROUND OF THE INVENTION
1. Field ofthe Invention
This invention relates to a flux cored wire electrode for self-shielded arc welding. More particularly, it
relates to a flux cored wire electrode which is capable of providing weld metal having high toughness and free from welding defects such as pits and incomplete fusion, upon welding in any welding position.
2. Description ofthe Prior Art
Flux cored wire electrodes comprise a metal sheath filled with a flux. The main components of the flux generally used in said electrodes are CaF2, which serves as a slag-forming and shielding agent, Al, which serves as a deoxidizing and denitrifying agent, and Mg, which serves as a deoxidizing and shielding agent. The use of such flux cored wire electrodes makes it unnecessary to separately supply a shielding gas and a flux, hence is advantageous in that an improvement in welding efficiency is produced. Furthermore, such electrodes are excellent in weather resistance and have various other advantages.
At present, however, said wire electrodes are used only in specific instances ofoutdoorwelding in civil engineering and construction and so on. Therefore, their advantages can hardly be said to be fully enjoyable. As the reasons for such limited use and delay in their coming into wide use in otherfields, there may be mentioned the following disadvantages: (1) Since MgO and Al203, the both having high melting point, derived, for example, from Al, which is added as a deoxidising and denitrifying agent, and Mg, which is added as a deoxidising and shielding agent, constitute the main components of the resultant slag, slag inclusion can easily take place, especialyin multilayerwelding.
(2) In addition to retention of a large amount of awl in the deposited metal, crystal grains tend to become coarser as a result of extraordinary decrease in oxygen (about 50-100 ppm), so that satisfactory notch toughness cannot be obtained.
(3) The resultant slag and molten metal assume an excessively high surface tension, so that bead dripping is aptto occur in the vertical-upward position or overhead position.
(4) The optimum arc voltage range is narrow, so that strict control ofthevoltageand/orelectrode extension is required for the elimination of pits and blowholes.
(5) Since Mg and CaF2, which have high vapor pressure, are used in large amounts as flux constituents, a large amount of fume is generated and
contaminates the working environment to a consider
able extent.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to
provide flux cored wire electrodes free from the drawbacks such as mentioned above. Another object is to provide flux cored wire electrodes with which their characteristic weather resistance can be made the most of.
The present invention providesflux cored wire electrodes comprising a steel sheath filled with a powderyflux containing, as essential components thereof, the following components:
BaF2: 25-70 weight percent
Alkali metal fluoride: 1-30 weight percent
Compound oxide composed ofthe oxide of an alkaline earth metal selected from the group consisting of Ca,
Sr and Ba and the oxide of a metal selected from the group consisting of Fe, Mn,
Ni, Co, Ti, Al and Zr: 1-30 weig ht percent
Al: 3-12 weight percent Mg: 2-10 weight percent
Mn: 0.5-10 weight percent.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings;
Fig. lisa graphic representation ofthe changes with time in moisture absorption by LiF, Li2SiO3 and
LiBaF3;
Fig. 2 is a graphic representation ofthe effect of
LiBaF3 on the optimum arc voltage range;
Fig. 3 is a graphic representation of the effect of Zr on the notch toughness of the weld; and
Fig. 4 illustratesthe groove employed in some welding experiments.
DETAILED DESCRIPTION OF THE INVENTION
The grounds on which the components of the powderyflux according to the invention have been specified are described hereinbelow.
First, BaF2 is used as a major slag-forming component in an amount of 25-70%. As compared with CaF2
SrF2, which are conventional slag-forming materials,
BaF2 is superior in droplet migration and shielding capacity. Furthermore, BaF2 can effectively prevent the dripping of molten metal in the vertical-upward position. The above characteristic features become especially significant in the case of straight polarity
(electrode negative) direct current arc welding. At
BaF2 levels lowerthan 25%,the use of BaF2 is not so
effective any more in the above aspects. More than 30% of BaF2 is used to effectively attain the shielding.
Conversely, at levels exceeding 70%, the slag formation becomes excessive, so that welding defects such as slag inclusion are easily formed and the welding
performance is reduced.
When evaluated as a slag-forming material, BaF2
has some disadvantages. Thus, BaF2 has the property
of making the weld penetration shallower as com
pared with the conventional CaF2, SrF2, etc. Furth
ermore, BaF2,togetherwith A1203 and MgO,which are
reaction products from Al and Mg added as deoxidis
ing and denitrifying materials as described hereinbe
low, forms a high melting point slag, so that welding
defects, such as slag inclusion and incomplete fusion,
are readily developed. Moreover, the luster and
appearance of beads are not always good.
The drawing(s) originally filed (were) informal and the print here reproduced is taken
from a later filed formal copy.
This print takes account of replacement documents submitted after the date of filing to enable the applicant to
comply with the formal requirements of the Patents Rules 1982.
To cope with these negative features of BaF2, there are combinedly used in accordance with the invention
(1) an alkali metal fluoride and (2) a compound oxide composed of an alkaline earth metal oxide and a metal oxide to be described below.
The fluoride of an alkali metal (Li, K, Na, Rb, etc.) performsthefunctionsofadjustingthemelting point and viscosity of the resultant slag, potentiating and stabilizing the arc, and thereby causing deeper penetration and inhibiting flaws such as slag inclusion and incomplete fusion from occurring. For securing these functions, an amount of not less than 1% is required. However, at addition levels exceeding 30%, the flowability ofthe slag becomes excessive, so that the bead appearance of the slag becomes worsened and, in the vertical or overhead welding position, the dripping of molten metal becomes remarkable.Since the moisture in the flux causes pore formation in the weld metal, Na2ZrF6, K2SiF6, Na2SiF6, Na3AIF6,
Rb2SiF6, K2TiF6, K2ZrF6, Liy and LiBaF3, which are not very hygroscopic, are suited for use as the alkali metal fluoride. They may be used eithersingly or in combination.Amongthem,LiBaF3,which is a compound alkali metal fluoride, is a flux constituent having satisfactory slag-forming, shieiding, penetration-improving and arc-stabilizing effects and furthermore is characterised in that its inherent moisture content is small and that it isvery sparingly hygroscopic. The use of a flux in which LiBaF3 is a major constituent can prevent porous and otherdefects resulting from moisture (in otherwords, hydrogen), such as pits and blowholes, to the possible utmost extent.
Fig. 1 shows the changes with time in moisture content in LiF, Li2SiO3 and LiBaF3, which are said to be relatively low in inherent moisture and hygroscopicity among alkali metal compounds. The term "inherent moisture" as used herein means the moisture content (inclusive of water crystallization, moisture absorbed, etc.) directly after manufacture. The increments in moisture content were determined by allowing each sample to stand (30"C, 80% relative humidity) for a specified period and determining the moisture released upon heating at 1,00000.
As is evidentfrom Fig. 1, LiBaF3 is very low in inherent moisture and hygroscopicity as compared with Liy and Li2SiO3. Therefore, the use of LiBaF3 as a constituent of a flux reduces the whole hydrogen contentinthefluxto a lowlevel,wherebythe formation of hydrogen-caused porous defects such as pits and blowholes can be prevented to the utmost possible extent and accordingly the arc voltage range adequate to produce satisfactoryweld zones can be enlarged.
Fig. 2 graphically shows the results of an experiment in which flux cored wire electrodes having a diameterof2 mm were produced by filling a mild steel sheath with a powderyflux prepared by adding 0-32% of LiBaF3to a basic composition consisting of 40% BaF2,7% Al, 8% Mg, 3.5% Mn, 0.5% CaO and the balance Fe (the amount oftheflux being 20% based on the whole electrode weight), followed by drawing the
sheath with the flux, and used in test welding for
investigating the effect of LiBaF3 on the resistance to
pitformation(optimum are voltage range).The welding conditions andtest method were as follows:
Welding current: 250 (A); welding speed: 20 (cm/ min); current and polarity: DC, wire (-); wire exten- sion: 25 (mm); torch angle: 00. Flat steel sheets (JIS G 3106,SM-50,25mmthickx 500 mm long) were welded together in 1 pass in the flat position underthe above conditions and the welds were subjected to radiography (JIS Z31 04). The voltage range in which the defects as judged from the radiographs were classifiable among type 1, class 1 was regarded as the optimum voltage range. The voltage at which thewire electrodes stuck out was regarded as the lower limit of said range.
As is evidentfrom Fig. 2,the optimum arc voltage range increases with the increase in the level of addition of LiBaF3. Incorporation of LiBaF3 in an amount of 5% or more sharply enlarges the optimum arcvoltagerange.Additioninamountsofl0% or more preferably results in very good resistance to pit formation.
The compound oxide composed of the oxide of an alkaline earth metal selected from the group consisting of Ca, Sr and Ba and the oxide of a metal selected from the group consisting of Fe, Mn, Ni, Co, Ti, Al and Zr improves the appearance and luster of beads and increases the siag shielding effect and furthermore hastheeffectofimproving the notch toughness by supplying the deposited metal excessively deoxidised bystrongdeoxidising materials such Al and Mg,with oxygen.Furthermore, the compound oxides composed of Sramong them has the effect of improving the arc stability. Forthese functions to be performed efficiently, the flux should contain the above compound oxide in an amount of not less than 1 %.At levels exceeding 30%, however, droplets become excessively large, so that spatters are frequently generated in large numbers and the peelability of the slag becomes worsened.
The above-mentioned alkaline earth metal oxide easily absorbs moisture and C02 in the air and has a high melting point. Therefore, single use ofthe same may easily lead to welding defects such as pores and slag inclusion and to frequent and abundant spattering. In spite of the above, the formation of a compound oxide between the above two metal oxide classes gives a stable and sparingly hygroscopic compound.
Furthermore, the compound oxides comprising the oxides of Fe and Mn have a lower melting point as compared with the alkaline earth metal oxides alone.
The compound oxides to be used in accordancewith the invention can be represented by the general formula MxNyOzwherein M is Ca, Sr or Ba, N is Fe, Mn, Ni, Co, Ti, Al orZr and x, y and z are each a positive number. Typical examples of the compound oxide wherein M is Ca are CaFe204, Ca2FeOs, Ca2MnO4, 0amen204 and 0amen3010, typical examples of the compound oxide in which M is Sr are wsr2FeO4, Sr7Fe10022, SrFeO25, Sr2Fe2Q5, Sr3SiO5, SrSiO3, SrMnO3, Sr2MnO4, Sr3Mn207, SrNiO3, SrTiO3,
Sr3A1206 and Sr2ZrO4, and typical examples of the compound oxide in which M is Ba are BaFe2O4, Ba(MnO4)2, Ba3NiO4, BaSiO4, BaSiO3 and Ba3SiO4.
However, those compound oxides which contain Si are reduced by Al and Mg, which are strong deoxidiz
ing agent, to give Si, which remains in the deposited metal and causes formation of coarse ferrite crystal structure and decrease in toughness. This is the reason why Si is notfound among the essential elements to be used in accordance with the invention.
Al is an indispensable element as a strong deoxidizing and denitrifying material and atthe same time as a nitrogen-fixing agent. It captures oxygen and nitrogen invading from the atmosphere and thereby prevents pore or pit formation. For producing such effects, Al should be present in the flux in an amount of not less than 3%. However, when Al is added at an excessively high level, an excessive amount offal will remain in the deposited metal, making the crystals grains coarser and fragile. Accordingly, Al should be used in an amount not exceeding 12%. As the source of AI, there may be used not only metallic Al but also Al alloys such as Fe-Al, Al-Mg and Al-Li.
Mg performsthestrong deoxidizingfunction. Furthermore, it easily gives a metal vapor upon exposure to the heat of arc and produces an excellent shielding effect. At Mg levels less than 2%, such effects cannot produced to a satisfactory extent and, in addition, the yield of Al used combinedly decreases, whereby the denitrifying and nitrogen-fixing effects of Al are no more produced to a satisfactory extent. Conversely, an excessive amount of Mg leads to a remarkable increase in fume generation, whereby the observation ofthe molten pool becomes difficultto perform and at the sametimethe working environment is contamin- ated. In addition, the quantity of spatters increases and the shielding capacity decreases dueto increase in the viscosity of the slag.Therefore, Mg should be used in an amount of not more than 10%. Metallic Mg may also be used as the Mg source. Since, however, metallic Mg vaporizes in an explosive manner upon exposure to the heat of arc and thereby causes formation of a large number of spatters, it is preferable to add Mg intheform of an Mg alloy such as
Al-Mg, Mg-Si, Mg-Si-Ca, Ni-Mg or Li-Mg.
Mn increases the strength of deposited metal. It also causes a reduction in the surface tension of molten metal and thereby adjusts the shape of beads. Mn should be added at least in an amount of 0.5%.
However, at Mn levels exceeding 10%, the strength of the deposited metal becomes excessively high, so that the deposited metal becomes poor in ductility and resistanceto cracking. As the Mn source, there may be used metallic Mn and Mn alloys such as Fe-Mn and
Fe-Si-Mn. In addition, MnO, MnO2 and the like oxides as well as Li2MnO3, SrMnO3, Ba(MnO4)2 and the like compound oxides may also be used as the Mn source.
The reason isthatthefluxto be used in accordance with the invention contains large amounts ofthose elements (Al, Mg) which have higher affinity to oxygenthanto Mn and such elementsdeoxidisethe
Mn oxides to convert the same to metallic Mn.
The essential components of the flux to be used in the practice ofthe invention are as those mentioned hereinabove. However, for use in fields where notch toughness at lowtemperature (generally -IO"to -60"C) is required, such as in the field of offshore constructions, it is effective to further incorporate one or more of Ni (in an amount of 0.5-20%), Zr (0.1-4%),Ti (0.01-0.5%) and B (0.01-0.2%). For increasing the stability of arc, it is also effective to add the rare earth elements Ce and/or La in a total amount of 0.01-0.5%.
The rear earth elements, when used in an amount of not less than 0.1%, are effective in improving the stability of arc. At addition levels lessthan 0.1%, they are not significantly effective in the above aspect, whereas, at levels exceeding 0.5%, adverse effects are produced.
Thus, for instance, the covering of the slag decreases or marked spattering takes place. As the compounds containing said rare earth elements, there may be mentioned mixed metals and alloys, such as (Ce, La)-Fe-Si and (Ce, La)-Ca-Si, and oxides such as
CeO2, Ce203 and La203. In the following, brief mention is made of such secondary additives.
Ni is an austenite-forming element and has the effect of increasing the notch toughness of deposited metal by inhibiting the coarsening offerrite crystal grains resulting from retention of a large amount of Al.
Such effect is efficiently produced at an addition level of not less than 0.5%. However, at addition levels exceeding 20%, the strength becomes excessive and the resistance to cracking becomes poor. As the Ni source, there may be mentioned metallic Ni as well as
Ni alloys, such as Fe-Ni-Cr and Ni-Mg, and oxides and compound oxides of Ni, such as NiO and Ba2NiO4.
Zr possesses the effect of improving the notch toughness of deposited metal by making crystal grainsfinerandfixingtheinvading nitrogen. This effect is produced efficiently at an addition level of not less than 0.1%. When the addition level exceeds 4%, the burning/adhesion of slag becomes remarkable, whereby the peelability is worsened. Moreover, the notch toughness rather decreases.Fig. 3 is a graphic representation of the relationship between the Zr contentintheflux and the notch toughness as revealed in an experiment in which flux cored wire electrodes were produced by drawing a mild steel sheath filled with a powderyflux prepared by adding 0.1-5% of Zr in the form of Fe-Zr (Zr: 30%)to a base composition consisting of 50% BaF2, 3.5% LiF, 6% SrMnO3, 9.2% Al, 7% Mg,0.2% Mn, 5% Ni and the balance Fe,to a diameter of 1.6 mm and used in experimental welding.The welding conditions were as follows:
Test conditions:
Base metal: SM-sOA,sheetthicknessl9mm Welding position: flat position, 7 layers, 13 passes
Welding current: 250 A, DC (-)
Welding voltage: 21 V
Welding speed: 15-22cm/minute
Wire extension: 25 mm
Notch toughness test: 2 mm V notch Charpy test according to JIS Z 12.
As is evident from Fig. 3, the addition of 0.1-4% of
Zrto the flux improved the notch toughness and, especially when 0.5-3% of Zr is added, the improvement is remarkable. As the Zr source, there may be mentioned alloys such as Fe-Zr and Zr-Si, fluorides such as K2ZrF6 and Na2ZrF6, and oxides and compound oxides such as ZrO2, ZrSiO4 (zircon sand) and
Li2ZrO3.
Ti, in very small amounts, is effective in increasing the notch toughness. The effect is produced efficiently at an addition level of not less than 0.01%. In this case, the use of Zr in the above-mentioned addition
level range and/or 0.01-0.2% of B in combination with Ti can make the above effect more significant.
However, when the addition level of Ti exceeds 0.5%,
the adhesion of burnt slag becomes persistent and the appearance of beads and the welding perform ance become worsened. As the Ti sou rce, there may
be used not only metallic Ti and such as Fe-Ti but also oxides such as TiO2 and Ti203 and compound oxides
such as Li2Ti03, CaTi204 and CaTiO3.
When used alone, B is little effective in improving the notch toughness. However, when used in combination with an appropriate amount of Ti, B potentiates the effect of Ti, as mentioned above. While such effect is efficiently producible at an addition level of not less than 0.01 %,the addition of B in escess of 0.2% leads to decrease in resistance to cracking due to hardening and to decrease in notch toughness. As the source of B, there may be mentioned alloys such as Fe-B, oxides such as B203, and compound oxides such as Li2B407 and Na2B407.
Thefluxmayfurthercontain,as slag4orming agents added either singly or in combination, oxides such as Awl203, MgO, FeO, Fe203, Na 220, K20, LiFe02, Li2MnO3, Li2SiO3 and Six2, fluorides otherthan the alkali metal fluorides, such as CaF2, SrF2, MgF2, BaSiF6, Al F3, MnF2, CeF3 and LaF3, and carbonates such as Li2CO3, Na2CO3, BaCO3,
CaCO3, MgCO3, SrCO3 and MnCO3, each in an amount not causing slag inclusion ordecreasein welding performance, preferably in a total amount
(inclusive ofthe above-mentioned slag-forming
materials, namely BaF2, alkali metal fluoride and
compound oxide composed of the oxide of an
alkaline earth metal selected from among Ca, Sr and
Ba and the oxide of a metal selected from among Fe,
Mn, Ni, Co, Ti, Al and Zr) or not more than 18% based on the whole wire weight. For improving mechanical properties, such as hot strength, and corrosion
resistance of the deposted metal, there may also be added such elements as Cr, Mo, Cu, Nb, V, Co and P.
Furthermore, iron powder may also be added for increasing the deposition rate or for improving the flowability ofthe powdery flux in the step offilling a steel sheath therewith in the manufacture of wire electrodes.
In theforegoing, the description has been focused on the composition of the flux for use in filling steel sheaths therewith. Another very importantfactorfor efficiently producing the effects ofthe respective components is the rate offilling the flux. The rate of filling should be selected within the range of 15-30% based on the whole wire weight. If the rate offilling is less than 15%, the contents of the respective flux constituents specified hereinabove become insufficient, hence satisfactory effects cannot be obtained.
On the other hand, at a rate of filling exceeding 30%, the deposited metal becomes excessively abundant in Al and other alloys and consequently intended mechanical properties cannot be obtained in some cases and, in other cases, the amount of the resultant slag becomes excessive, whereby problems are encountered, such as marked slag inclusion or decrease in welding performance.
The most common material of the sheath is mild steel. Depending on the intended use, low alloy steels
and high alloy steels may also be used. The sectional
structure of the slag is not particularly limited
although the relatively simple cylindrical form is
generally used in cases where the wire diameter is 2
mm or less and a structure made by tucking in the
sheath in a complicated manner is generally used for
manufacturing wire electrodes having a larger dia
meter of about 2.4-4 mm.
In the foregoing, the constitution of the present invention has been outlined. As a result of selecting specific components as the constituents ofthe flux to be filled in steel sheaths, it is now possible to provide flux cored wire electrodes for self-shielded arc welding which can give, in any welding position, excellent weld metals freefrom welding defects such as pits and incomplete fusion and having good mechanical properties (especially toughness).
Thefollowing examples illustrate the effects of the present invention.
EXAMPLES
A steel sheath having the chemical composition shown in Table 1 was filled with a powdery flux having the composition shown in Table 2 (filling rate: 20%) and drawn to give a flux cored wire electrode having a diameter of 2 mm.
Using each wire electrode thus obtained, experimental welding was performed underthe conditions given below. The results obtained are shown in
Table 3.
Welding conditions:
Test sheets: JIS G 3106, SM-SOA, 45 mm thick x 500 mm long
Shape of groove: X (Fig. 4) Welding current: 250 (A), DC [wire (-)1 Welding voltage: 21-22 (V)
Welding speed: 13-24 (cm/minute)
Wire extension: 20 [ UNASSIGNED CODE 3D ] -25 (mm)
Method of building up: 8 layers and 14 passes for each oftheface and back
Welding position: flat position
Back chipping: mill scale removal with a grinder afterarc air gouging Testing methods:
Tensile test: JIS Z31 11 Impacttest: JIS Z31 12 Side bend test: JIS Z 312Z Ultrasonictest: JIS Z 3060
Table 1 Composition of steel sheath
C Si Mn P S
0.05 0.Q1 0,42 0.007 0.010 (weight percent; the balance being Fe and unavoidable impurities)
As is evident from Table 2 and Table 3, the deposited metals obtained in a smooth manner by using the wire electrodes (Nos. 1-7) which met the requirements according to the invention were free of defects, such as blowholes, slag inclusion and incomplete fusion, and had good mechanical properties. In particular, the deposited metals obtained by using the wire electrodes (Nos. 6 and 7) with appropriate amounts of Ti and Zr added to thefluxes and the wire electrode (No.3) with Ti and B added to the flux were very excellent in notch toughness at low temperature (-30 C).On the contrary, the wire electrodes for comparison which failed to meet any of the requirements according to the invention gave deposited metals inferior in at least one of the welding performance, ultrasonic test results and mechanical properties and thus failed to accomplish the objects of the invention.
Table Wire Flux composition (%) Electrode
No. BaF2 LiF K2SiF6 LiBaF3 CaFeO4 SrFeO4 Li2MnO3 Al Al-Mg
(Mg 60%) 1 (invention) 45 - 5 - - 8 - 3.5 12 2 (") 70 - 1 - - - - 7 3.4 3 ( " ) 25 ~ ~ 8 30 3 6 9 4 (") 32 10 - 20 5 - - 3.5 12 5 (") 45 10 - - - 1 - " " 6 (") " - - 7 - 8 - " " 7 (") " - - " - " - " " 8 (for com- 56 3 - - - - - " 14
parison) 9 (") 54 2 - - - - - " 9 10 (") 55 0.5 - - - 1 - " 12 11 (") 44 32 - - - " - " " 12 (") 55 - 5 - - 0.5 - " " 13 (" ) ! 44 - " - - 32 - " 14 ( " ) # 45 - I 5 - - * 8 - " 15 Table 2 continued Wire Flux composition (%)
Electrode
no.Mn Ni Fe-Zr ZrSiO4 Fe-Ti TiO2 Al2O3 MgO FeO
(Zr 30%) (Ti 40%)2 2 5
1 3 - - - - - - 3 3
2 " - - - - - - 5 "
3 1.6 4 0.5 - - - 4
4 3 " - - - - 2 2
5 s " n n 6 " " - 1.5 - 0.3 " " 2
7 " 2.5 ~ 0.2 " "
8 5 - - - - - - 8
9 " - - 3 3 - - - 15
10 " 4 - - - - - -
11 " " - - - - - -
12 " - - - - - - -
13 " - - - - - - -
14 14 " 4 - - - - - - Table 2 continued Table 3 Table 3 Wire Chemical Composition of deposited metal (%)
Elecrode
No.
C Si Mn P S Al Ni Zr Ti 1 (invention) 0.05 0.13 0.94 0.007 0.002 0.62 1.42 -
2 (") 0.04 0.06 0.92 0.008 0.001 0.41 - - 3 (") 0.05 0.04 0.90 0.08 0.003 0.52 0.82 - 0.03
4 (") 0.04 0.03 0.93 0.007 0.003 0.88 0.83 -
5 (") 0.05 0.04 0.90 0.008 0.001 0.92 0.85 -
6 (") 0.04 0.05 0.87 0.007 0.002 0.64 0.81 0.01 0.02
7 (") 0.05 0.04 0.91 0.008 0.002 0.66 0.83 0.02 0.02 8 (for comp- 0.10 0.14 0.89 0.007 0.001 0.70 1.04 -
arison) 9 (") 0.07 0.15 0.91 0.007 0.003 0.61 - 0.03 0.02
10 (") 0.04 0.03 0.92 0.007 0.003 0.90 0.81 -
11 (") 0.05 0.05 0.89 0.008 0.001 0.98 0.85 -
12 (") 0.04 0.03 0.87 0.008 0.004 0.90 - -
13 (") 0.04 0.03 0.90 0.007 0.001 0.56 - - 14 (") 0.05 0.05 0.95 0.009 0.002 1.43 0.85 - - Table 3 continued Table 3 continued Table 3 continued
Ultrasonic *3 Welding performance *4 ' Wire Test Electrode Defects Flat position Vertical Ascending Position :No. slag | Slag inclus- earanon Quantity Slag Auaeexance Quantity Slag holes ion, inoampl- anf shape 1 of Peela- - and shape of Peela ete fusion ofbeaas spatters bility of be rts ~ Spatters bility 1 none none 0 0 0 0 2 1 tg (3 o ---O--------O '~~O O O 3 none " ~~ 0 O G O O (9 I O O 0 0 0 5 1 1 " 0 t 0 O 6 1 0 0, 0 0 0 0 7 ', ,, t O O t Zo O 8 4 112 mm O A O O t O 220 mm r A ' t~~ ~ 0' 'A o 10 none 150 mm ' A '0' ~ 0 A 0 0 O 11 A A O A A 12 3 1 mum A QX Qf n h 13 2 none O A a n t A A 14 j none , 12 mm 8 o 8 6) 0 0 *1 Tensile test pieces: subjected to ageing treatment at 100 C for 24 hours after mechanical processing but priorto testing.
*2 Side bend test: bending angIe 180" bending diameter 19 mm *3 Ultrasonictest: for blowholes, total number; for slag inclusion and incompletefusion,total length.
*4 Evaluation of welding performance; 8 excellent; 0 good; A poor
Welding current x welding voltage:
Flat position: 250A x 21 V
Vertical position: 170A x 20V
Other conditions were the same as those in joint welding in flat position.
Claims (1)
1. A flux cored wire electrode for self-shielded arc welding which comprises a steel sheath and a powdery flux containing as essential components the components given below, said sheath being filled with said flux and the amount of said flux being 15-30 percent by weight based on the whole wire electrode weight:
BaF2: 25-70 percent by weigh
Alkali metal fluoride: 1-30 percent by weight
Compound oxide composed of the oxide of an alkaline earth metal selected from the group consisting of Ca, Sr and Ba and the oxide of a metal selected from the group consisting of Fe, Mn, Ni, Co, Ti, Al and
Zr: 1-30 percent by weight Al: 3-12 percent by weight
Mg: 2-10 percent by weight Mn: 0.5-10 percentbyweight.
2. Aflux cored wire electrode as setforth in Claim 1, wherein the alkali metal fluoride comprises at least one member selected from the group consisting of
Na2ZrF6, K2SiF5, Na2SiF6, Na3AlF6, Rb2SiF6, K2TiF5, K2ZrF5, LiF and LiBaF3.
3. Aflux cored wire electrode as setforth in Claim 2, wherein the alkali metal fluoride is LiBaF3.
4. A flux cored wire electrode as setforth in Claim 3, wherein the flux contains LiBaF3 in an amount of not less than 5%.
5. Aflux cored wire electrode as setforth in Claim 3, wherein the flux contains LiBaF3 in an amount of notlessthan 10%.
6. Aflux cored wire electrode as setforth in Claim 1, wherein the flux further contains at least one metal selected from the group consisting of Ni (0.5-20% ), Zr (0.1-4% ), Ti (0.01-0.5%) and B (0.01-0.2%).
7. Afluxcoredwireelectrodeassetforth in Claim 1 wherein the flux contains at least one rare earth element selected from the group consisting of Ce and
La in a total amount of 0.01-0.5%.
8. Aflux cored wire electrode as setforth in Claim 6, wherein the flux contains Zr in an amount of 0.5-3%.
Amendments to the claims have been filed, and have the following effect: *(b) New ortextually amended claims have been filed as follows:
1. Aflux cored wire electrode for self-shielded arc welding which comprises a steel sheath and a powderyflux containing the components given below, said sheath being filled with said flux and the amount of said flux being 15-30 percent by weight based on the whole wire electrode weight:
BaF2: 25-70 percent by weight
Alkali metal fluoride: 1-30 percent by weight
Compound oxide composed of the oxide of an alkaline earth metal selected from the group consisting of Ca, Sr and Ba and the oxide of a metal selected from the group consisting of Fe, Mn, Ni Co, Ti, Al and
Zr: 1-30 percent by weight Al: 3-12 percent by weight
Mg: 2-10 percent by weight
Mn: 0.5-10 percent by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08405111A GB2155045B (en) | 1984-02-28 | 1984-02-28 | Flux cored wire electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08405111A GB2155045B (en) | 1984-02-28 | 1984-02-28 | Flux cored wire electrodes |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8405111D0 GB8405111D0 (en) | 1984-04-04 |
GB2155045A true GB2155045A (en) | 1985-09-18 |
GB2155045B GB2155045B (en) | 1986-11-19 |
Family
ID=10557250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB08405111A Expired GB2155045B (en) | 1984-02-28 | 1984-02-28 | Flux cored wire electrodes |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2155045B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0231570A3 (en) * | 1986-01-24 | 1988-08-31 | The Lincoln Electric Company | Weld bead composition and electrode for producing same |
US7812284B2 (en) | 2005-07-12 | 2010-10-12 | Lincoln Global, Inc. | Barium and lithium ratio for flux cored electrode |
US7842903B2 (en) | 2005-10-31 | 2010-11-30 | Lincoln Global, Inc. | Short arc welding system |
US8704135B2 (en) | 2006-01-20 | 2014-04-22 | Lincoln Global, Inc. | Synergistic welding system |
US8759715B2 (en) | 2004-10-06 | 2014-06-24 | Lincoln Global, Inc. | Method of AC welding with cored electrode |
US9333580B2 (en) | 2004-04-29 | 2016-05-10 | Lincoln Global, Inc. | Gas-less process and system for girth welding in high strength applications |
EP2969381A4 (en) * | 2013-03-11 | 2016-11-30 | Esab Group Inc | ALLOY COMPOSITION FOR SELF-SHRINKED YARNS FOR ARC WELDING WITH LOW HYDROGEN CONTENT AND HIGH SHOCK RESISTANCE WITH CHARGED SHOCK ON V-FILLED TAMPER |
EP3461581A1 (en) * | 2017-09-29 | 2019-04-03 | Lincoln Global, Inc. | Aluminum-containing welding electrode and its production method |
US11529697B2 (en) | 2017-09-29 | 2022-12-20 | Lincoln Global, Inc. | Additive manufacturing using aluminum-containing wire |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1396392A (en) * | 1972-06-13 | 1975-06-04 | Nsf Ltd | Electric switches |
-
1984
- 1984-02-28 GB GB08405111A patent/GB2155045B/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1396392A (en) * | 1972-06-13 | 1975-06-04 | Nsf Ltd | Electric switches |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0231570A3 (en) * | 1986-01-24 | 1988-08-31 | The Lincoln Electric Company | Weld bead composition and electrode for producing same |
US9333580B2 (en) | 2004-04-29 | 2016-05-10 | Lincoln Global, Inc. | Gas-less process and system for girth welding in high strength applications |
US9956638B2 (en) | 2004-10-06 | 2018-05-01 | Lincoln Global, Inc. | Electric arc welder for AC welding with cored electrode |
US8759715B2 (en) | 2004-10-06 | 2014-06-24 | Lincoln Global, Inc. | Method of AC welding with cored electrode |
US7812284B2 (en) | 2005-07-12 | 2010-10-12 | Lincoln Global, Inc. | Barium and lithium ratio for flux cored electrode |
US7842903B2 (en) | 2005-10-31 | 2010-11-30 | Lincoln Global, Inc. | Short arc welding system |
US8704135B2 (en) | 2006-01-20 | 2014-04-22 | Lincoln Global, Inc. | Synergistic welding system |
EP2969381A4 (en) * | 2013-03-11 | 2016-11-30 | Esab Group Inc | ALLOY COMPOSITION FOR SELF-SHRINKED YARNS FOR ARC WELDING WITH LOW HYDROGEN CONTENT AND HIGH SHOCK RESISTANCE WITH CHARGED SHOCK ON V-FILLED TAMPER |
US10421160B2 (en) | 2013-03-11 | 2019-09-24 | The Esab Group, Inc. | Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness |
US11648630B2 (en) | 2013-03-11 | 2023-05-16 | The Esab Group, Inc. | Alloying composition for self-shielded FCAW wires |
EP3461581A1 (en) * | 2017-09-29 | 2019-04-03 | Lincoln Global, Inc. | Aluminum-containing welding electrode and its production method |
CN109570812A (en) * | 2017-09-29 | 2019-04-05 | 林肯环球股份有限公司 | Welding electrode containing aluminium |
US11426824B2 (en) | 2017-09-29 | 2022-08-30 | Lincoln Global, Inc. | Aluminum-containing welding electrode |
US11529697B2 (en) | 2017-09-29 | 2022-12-20 | Lincoln Global, Inc. | Additive manufacturing using aluminum-containing wire |
Also Published As
Publication number | Publication date |
---|---|
GB8405111D0 (en) | 1984-04-04 |
GB2155045B (en) | 1986-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4571480A (en) | Flux cored wire electrodes for self-shielded arc welding | |
KR970006327B1 (en) | Flux cored arc welding electrode | |
US5055655A (en) | Low hydrogen basic metal cored electrode | |
US5132514A (en) | Basic metal cored electrode | |
EP1743730B1 (en) | Barium and lithium ratio for flux cored electrode | |
US3866015A (en) | Flux-cored electrode wire for non-sheilded arc welding | |
US5091628A (en) | Low hydrogen basic metal cored electrode | |
US4764224A (en) | Baked flux for submerged arc welding | |
JP2001314996A (en) | Flux-cored wire for gas shielded arc welding for heat resisting steel | |
US3221136A (en) | Method and electrode for electric arc welding | |
WO2021090953A1 (en) | Fluxed core wire and method for manufacturing weld joint | |
GB2155045A (en) | Flux cored wire electrodes | |
JP6891630B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
NO315459B1 (en) | Wire with flux core for gas-protected arc welding | |
US3867608A (en) | Submerged arc welding process for very low-temperature steel and welded product | |
US3924091A (en) | Welding method and materials | |
KR101719797B1 (en) | Flux cored wire | |
CA1136024A (en) | High performance fused flux for submerged arc welding | |
JPH06285672A (en) | Flux cored wire of titania base for gas-shielded arc welding | |
JPH05237693A (en) | Self-shielded arc welding flux cored wire for all-position welding | |
JPH05228691A (en) | Flux-cored wire for self-shielded arc welding | |
JPS61169196A (en) | Flux cored wire for self-shielded arc welding | |
JP3208556B2 (en) | Flux-cored wire for arc welding | |
JPH0378197B2 (en) | ||
KR900001676B1 (en) | Flux-filled electrodes for self-sealed arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |