GB2141902A - Composite transducer - Google Patents
Composite transducer Download PDFInfo
- Publication number
- GB2141902A GB2141902A GB08412335A GB8412335A GB2141902A GB 2141902 A GB2141902 A GB 2141902A GB 08412335 A GB08412335 A GB 08412335A GB 8412335 A GB8412335 A GB 8412335A GB 2141902 A GB2141902 A GB 2141902A
- Authority
- GB
- United Kingdom
- Prior art keywords
- transducer
- face
- sides
- composite transducer
- pvf2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 29
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 34
- 230000010287 polarization Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229920006254 polymer film Polymers 0.000 claims description 2
- 239000010408 film Substances 0.000 claims 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims 2
- 238000004078 waterproofing Methods 0.000 claims 2
- 239000011104 metalized film Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 239000002033 PVDF binder Substances 0.000 description 32
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 230000002706 hydrostatic effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000007605 air drying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0611—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
A composite sonar transducer comprises a combination of a longitudinal vibrator-type transducer 10 for transmission of energy and a piezoelectric polymer hydrophone 601 attached to the radiating face 121 of the longitudinal vibrator-type transducer 10 for the receiving function. During transmission the receiver transducer 601 is short-circuited, and during reception the transmitter transducer 10 is terminated in an electrical impedance 105 that optimizes receiver response and minimizes transducer self-noise. The frequency response of the polymer hydrophone 601 is relatively flat and extends over a much greater frequency range than the longitudinal transducer (10). <IMAGE>
Description
SPECIFICATION
Composite Transducer
This invention relates to transducers, and more particularly to a composite transducer for sonar applications which has separate, non-interfering transmit and receive transducers.
A longitudinal vibrator-type transducer is widely used in the prior art as a transmitter and receiver in sonar applications. The transducer consists essentially of an electromechanically active element 11 (typically a piezoelectric ceramic), a head mass 12, a rear mass 13, a bias rod 14, a pressure release system 1 5 and a waterproof housing 1 6, (see Fig. 1). The bias rod 14 provides a bias compressive stress on both the active element 11 and the pressure release system 1 5. Acoustic decoupling of the assembly of these components and the housing 16 is provided by the pressure release system 1 5.
There are many variations of the longitudinal vibrator-type transducer, but transducers of this general type have two characteristic frequencies that adversely affect receiving response. The two frequencies are the head and tail mount resonances.
Because of the phase shifts associated with resonances and the deterioration of a beam produced by an array of transducers as a consequence of phase shift differences between the transducers, a relatively flat receiving response is desired over a wide bandwidth.
However, a typical transducer receiving response has uncontrolled head and tail mount resonances 20 and 21, respectively, as shown in Fig. 2. Fig. 2 shows a plot of receiving sensitivity versus normalized frequency n=f/fr, where fr is the opencircuit (constant-current) resonant frequency 21.
The peak 22 in the response below resonance is due to the head mass-tie rod resonance. Similarly, the response minimum 23 is caused by the resonance of the spring-mass formed by the pressure release pad 1 5 and the rear mass 13.
In order to achieve a uniform or flat receiving response, the head and tail mount resonance frequencies must be equal, as well as the amplitudes of their resonances. Because of the difficulty of obtaining this balance in high volume production, damping is generally employed to compensate for any unbalance. The damping is often obtained by rubber bumpers 1 7 that are attached to the rear mass 13 and make frictional contact to the housing 1 6. A closely balanced transducer requires tight tolerances on both the material parameters and physical dimensions of the transducer. This adds significantly to the cost of the transducer, particularly in high volume production.
In addition to uniformity of receiving sensitivity, transducer self-noise is an extremely important performance parameter. Noisy transducers in a sonar array can cause a degradation of sonar system performance, as well as reveal the presence of the sonar platform.
Longitudinal vibrator-type transducers such as that described hereinbefore, in particular have been found to generate extraneous noise when exposed to a changing hydrostatic pressure head.
Typically, the extraneous noise is determined by measuring the open-circuit transducer voltage developed during pressure cycling. Polished contacting surfaces of the head mass 12, ceramic 11 and rear mass 13, very close tolerances on machine parts, and well-controlled alignment procedures have been found to be necessary to produce quiet transducers of the longitudinal vibrator type. These noise-quieting features have also added significantly to the cost of the transducer.
Also known in the prior art is a piezoelectric polymer which has low mass density and is mechanically flexible. These properties make the polymer more shock resistant than the prior art piezoceramics. Additionally, the characteristic impedance of the polymer more nearly matches that of water. Piezoelectric polymer film is presently made of polyvinylidene fluoride and is often referred to as PVF2. A polarization procedure must be used to render the polymer usefully piezoelectric. In one method of polarizing, both surfaces of the film are metallized to provide electrodes and a high d-c voltage is applied to the electrodes and heid for about one hour at 10000.
Subsequent cooling to room temperature under the applied field results in permanent polarization with the strongest piezoelectric effect in the direction transverse to the metallized surfaces of the film.
The polymer PVF2 has been used previously as a transducer for the transmission and reception of ultrasound signals. Since the acoustic power which may be transmitted with this material is limited, its use has been confined to low power applications such as in medical ultrasound.
Summary of the Invention
It is therefore an object of this invention to provide a composite transducer which utilizes the prior art longitudinal vibrator-type transducer for the transmitting function, but not for the receiving function, employing instead a separate transducer of piezoelectric polymer type for receiving signals.
More particularly, the composite transducer of this invention comprises a prior art longitudinal vibrator-type transducer 10 with a piezoelectric polymer 60 attached to its radiating face 121 for the receiving function as shown in Fig. 1. During transmission the receiver transducer is shortcircuited, and during reception the transmitter transducer 10 is terminated in an electrical impedance that optimizes receiver response and minimizes transducer self-noise. The associated switching circuitry for switching between reception and transmission can be internal to the transducer.
It is a feature of the invention that the composite transducer occupies substantially the same space as required by the longitudinal vibrator-type transducer of the prior art, and can be retrofitted into a sonar system without modification of the transducer mounting arrangement.
Brief Description of the Drawings
The objects and features of this invention are explained in the following description taken in conjunction with the accompanying drawings, in which:
Fig. 1 is an isometric view of the composite transducer of the invention;
Fig. 2 is a frequency response curve for a longitudinal vibrator-type transducer of the prior art;
Fig. 3 is an isometric exploded view of the PVF2 film; and
Fig. 4 is a cross-sectional isometric view of the assembled PVF2 hydrophone.
Description of the Preferred Embodiment
The composite transducer 100 of Fig. 1 employs separate elements for the transmission and reception of sound. Transmission is provided by applying an electrical voltage from transmitter 101 through a transmit/receive (T/R) switch 102 to a piezoelectric ceramic 11. A transformer 111 is used to impedance match the ceramic 11 to the transmitter 101. During the time that transmitter 101 is providing power to ceramic 11,the transmit/receive (T/R) switch 103 is providing a short circuit across lines 631 connected to the polymer assembly 601. At the termination of transmitter power, T/R switch 103 connects the receiver 104 across polymer assembly 601 and
T/R switch 102 connects an impedance 105 across lines 632 to thereby terminate ceramic 11.
The composite transducer 100 transmitter
portion is the well-known longitudinal electro
mechanical vibrator-type 10 which in the prior art
is used for both transmitting and receiving.
However, in this invention the receiving transducer (hydrophone) is a layer of thick film
piezoelectric polymer 601, polyvinylidene fluoride
(PVF2), used in a modified hydrostatic mode. In a
hydrostatic mode, the acoustic pressure acts
equally in all three axes so there is no need for a
pressure release mechanism and associated
housing for decoupling one side of the sensing
element from the sound field. In the hydrostatic
mode, there is an absence of pressure differential across the hydrophone, resulting in virtually
unlimited operating pressure capability. In this
invention, there is modified hydrostatic operation since one surface of the polymer is in direct
contact with the radiating face 121 of the
transducer 10, and hence, not exposed to the water pressure.Because PVF2 closely matches
the impedance of water, the transmitted sound from transducer 10 will pass through the PVF2 sheet 601 with negligible attenuation. During transmission, the hydrophone 601 is shortcircuited. The polymer hydrophone 601 attached to the radiating face 121 of transducer 10 does
not adversely affect its transmission properties.
During reception. the transducer 10 is preferably terminated in an impedance which minimizes the noise in the hydrophone 601 signal or transducer
10 may be short-circuited with no loss of received signal-to-noise ratio. Moreover, the useful receiving response of the hydrophone 601 extends up to 100 KHz. Measured polymer hydrophone response for the open-circuit and short-circuit transducer 10 conditions indicates that the short-circuit condition yields the more uniform response essentially flat from 10 KHz to
100 KHz. Greater uniformity is expected, especially below 10 KHz, for the optimum termination of transducer 10.
Velocity control, noise cancellation, and intercept receivers, among other uses, are potential applications for this invention.
The measured directivity pattern of the 4x4 inch sheet of PVF2 hydrophone 601 at 100 KHz had a 3 db beamwidth of approximately 4.50 which is indicative of the excellent beam pattern available from polymer hydrophones at high frequencies. The results of high power transmission tests from transducer 10 indicate that exposure to high intensity sound fields has no measurable effect on the polymer hydrophone performance properties. In addition, exposure to hydrostatic pressure cycling during noise testing did not adversely affect the polymer hydrophone.
The fabrication of the composite transducer 100 of Fig. 1 was accomplished by removing a square of the vulcanized rubber 34 which is adjacent the face 121 of the head mass 12 of the prior art transducer 10 in order to expose the aluminum head mass 12. An isometric crosssectional view of the face 121 is shown in Fig. 1 where the square pocket 123 produced by removing rubber 34 extends over a substantial portion of the rectangular face 121. In order to obtain a flat, smooth surface on face 121, the face was machined and a few thousandths of the face removed. A hole 124 was drilled through head mass 12 from face 121 to an interior space 125 within housing 16 of the transducer 10. A rectangular channel 126 was machined into face 121 at the location of the hole 124.The exposed surface of the face 121 was grit-blasted as was the mating surface of a sheet of glass-fiber, epoxy-impregnated, electrical insulating mat 32.
A suitable mat, commercially available, is known as G-1 0 mat. The mat 32 and face 121 were bonded to each other by an epoxy 50' under heat and pressure to exclude trapped air and to provide a rigid bond.
The piezoelectric polymer PVF2 assembly 601 was assembled of two PVF2 films 60', 60", each being 4x4x0.023 inches, with opposed faces covered with epoxy 50", as shown in Fig. 3. Each film 60 has a metallic coating 62 on both sides of the sheet to which wires 63 are electrically connected by vacuum welding or by low temperature soldering. Typically, the metallic coating 62 is copper and the wire 63 is a Kovar ribbon, .003x.010 inches. Other metallic materials would be satisfactory for each provided electrical connection can be made between the selected coating and wire materials at a temperature which is nondestructive to the PVF2.
Using suitable fixturing, the PVF2 films 60 were bonded together by the epoxy 50" and air cured to form the PVF2 polymer assembly 601 as shown in Fig. 4.
The attachment of the PVF2 assembly 601 to the glass fiber mat 32 is the next step in the fabrication of the composite transducer. To prevent the PVF2 assembly from electrically shorting to the face 121 or to the wires 63, electrical-insulating tape 64 was attached to the four edges of the PVF2 square as shown in Fig. 4.
The wires 63 were also covered with a lightweight polyolefin shrink sleeving material.
The exposed face of fiberglass mat 32 was roughened to remove shiny glaze and cleaned by air dusting. The surface 602 of PVF2 assembly 601 was cleaned by wiping with methylethylketone (MEK) which did not adversely affect the copper surface 62 of the PVF2.
The mat 32 and the PVF2 assembly 601 surface 602 were coated with epoxy 50"' and placed in contact with each other to air cure with the insulated wires 63 folded in the channel 126 and threaded through the head mass hole 124 as shown in Fig. 1. Channel 126 allows the PVF2 assembly 601 to lay flat against the face 121 by providing space for the connecting wires 63.
The final steps in the assembly of the composite transducer 100 of Fig. 1 comprise cleaning the outermost surface of the PVF2 assembly 601 with MEK, coating with liquid neoprene, and air drying. A square of rubber 33, substantially of the thickness and area of the remaining depth of the pocket 123 and the exterior surface of the PVF2, are coated with neoprene and bonded to each other by air curing. The resulting exterior surface of the rubber 33 and rubber head mass cover 34 are machine-ground to provide a flat exterior surface.
The wires 63 pass through the space 1 6 between the transducer shroud 1 7 and the head mass 12, ceramic 11, and rear mass 13 to the cable 18. Cable 18 is a four-conductor cable containing also the two conductors 632 to the transducer ceramic 11 from the transmitter 101 located at some remote location. A receiver preamplifier (not shown) may be contained within the composite transducer 10 to amplify the signal prior to connection to the two wires of cable 18 which are connected to a receiver.
The PVF2 material 62 has an internal polarization when used as a piezoelectric element.
The polarization is represented by the voltage polarity designations of the PVF2 shown in Fig. 3.
A parallel connection is obtained by connecting wire 63' to wire 63"", and wire 63" to wire
63"', as shown in Fig. 4, to thereby provide one pair of wires 631 to which the receiver is connected. The parallel connection doubles the capacitance provided by each PVF2 sheet 60 and thereby provides a better impedance match to the
cable. If a preamplifier is used within the transducer 11, the capacitance of the PVF2 assembly 601 is of less importance. The thickness of each of the PVF2 sheets, the number of sheets, and their serial/parallel electrical interconnection are design choices.
Modifications of the preferred embodiment will be apparent to those skilled in the art. For example, the copper electrode on both sides of each PVF2 sheet could be removed at its edges by etching or some other suitable technique. This would eliminate possible short circuits between the PVF2 assembly and the connecting wires, thereby eiiminating the need for taping. The use of a heavier copper wire may replace the relatively fragile Kovar material of the preferred embodiment. Also, an electrically conductive epoxy might be used for fastening wires 63 to the PVF2 metallic film 62 instead of welding or soldering.
Having described a preferred embodiment of the invention, it will now be apparent to one of skill in the art that other embodiments incorporating its concept may be used. It is felt, therefore, that this invention should not be restricted to the disclosed embodiment, but rather should be limited only by the spirit and scope of the appended claims.
Claims (11)
1. A composite transducer comprising:
a longitudinal vibrator-type transducer having a transmitting head face; and
a piezoelectric polymer hydrophone attached to and covering a substantial portion of said face.
2. A composite transducer according to claim 1, wherein said polymer hydrophone is a layer of
PVF2.
3. A composite transducer comprising:
a longitudinal vibrator-type transducer having a head mass, said head mass having an exterior face;
a piezoelectric polymer having two sides one of said sides being attached to said face;
means for making electrical connection to said sides of said layer; and
means electrically insulating said layer.
4. A composite transducer according to claim 3, wherein said piezoelectric polymer layer is
PVF2.
5. A composite transducer according to claim 3 or 4, wherein both of said sides are metallized.
6. A composite transducer according to claim 3, or 4 or 5, wherein said piezoelectric polymer layer has a characteristic impedance substantially equal to the characteristic impedance of water.
7. A composite transducer according to claim 3, wherein said polymer layer comprises a plurality of metallized polymer films, the metallized films being electrically connected to provide an electrical interconnection of said films.
8. A composite transducer according to claim 3, wherein said polymer layer comprises at least two films, each film having a polarization transverse to said sides, and having metallized layers on both sides of each film.
9. A composite transducer according to claim 3, wherein means are provided for waterproofing said polymer layer and said head mass.
10. A composite transducer comprising:
a longitudinal vibrator-type transducer having a head mass;
said head mass having an external face;
a piezoelectric polymer layer having two exterior sides;
means for making electrical connection to each of said sides;
means for electrically insulating one of said sides from said face;
means for bonding said electrical insulating means to said face and to said one of said sides of said layer; and
means for waterproofing said layer and said face.
11. A composite transducer substantially as described hereinbefore with reference to Figs. 1, 3 and 4 of the accompanying drawings.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US49736583A | 1983-05-23 | 1983-05-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8412335D0 GB8412335D0 (en) | 1984-06-20 |
GB2141902A true GB2141902A (en) | 1985-01-03 |
GB2141902B GB2141902B (en) | 1986-09-17 |
Family
ID=23976562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB08412335A Expired GB2141902B (en) | 1983-05-23 | 1984-05-15 | Composite transducer |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS6018096A (en) |
DE (1) | DE3419256C2 (en) |
GB (1) | GB2141902B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2581819A1 (en) * | 1985-05-10 | 1986-11-14 | France Etat Armement | Piezoelectric transducers of tonpilz type, wideband receivers and transmitters and sonar antenna made up of these transducers. |
RU2793894C1 (en) * | 2022-08-22 | 2023-04-07 | АКЦИОНЕРНОЕ ОБЩЕСТВО "КОНЦЕРН "МОРСКОЕ ПОДВОДНОЕ ОРУЖИЕ - ГИДРОПРИБОР" (АО "Концерн "МПО-Гидроприбор") | Composite electro-acoustic transducer |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2735203B2 (en) * | 1987-12-17 | 1998-04-02 | 株式会社東芝 | Ultrasound diagnostic equipment |
JP2642812B2 (en) * | 1991-08-23 | 1997-08-20 | 防衛庁技術研究本部長 | Underwater transducer |
DE19626293A1 (en) * | 1996-07-01 | 1998-01-08 | Teves Gmbh Alfred | Ultrasonic transducer with contact element |
JP6353224B2 (en) * | 2013-12-27 | 2018-07-04 | 古野電気株式会社 | Ultrasonic transducer, underwater detection device, and method of manufacturing ultrasonic transducer |
RU2768297C1 (en) * | 2021-07-06 | 2022-03-23 | АКЦИОНЕРНОЕ ОБЩЕСТВО "КОНЦЕРН "МОРСКОЕ ПОДВОДНОЕ ОРУЖИЕ - ГИДРОПРИБОР" (АО "Концерн "МПО-Гидроприбор") | Composite electroacoustic transducer |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3716828A (en) * | 1970-02-02 | 1973-02-13 | Dynamics Corp Massa Div | Electroacoustic transducer with improved shock resistance |
CA1048680A (en) * | 1975-03-20 | 1979-02-13 | Douglas C. Edwards | Particulate plasticized rubber-black masterbatch |
US3986161A (en) * | 1975-04-07 | 1976-10-12 | Sea-Scan, Inc. | Underwater directional guidance apparatus |
JPS5434558Y2 (en) * | 1975-07-18 | 1979-10-22 | ||
DE2914031C2 (en) * | 1979-04-06 | 1981-01-15 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Ultrasonic transducer |
NL7904924A (en) * | 1979-06-25 | 1980-12-30 | Philips Nv | ACOUSTIC TRANSDUCER. |
CH642503A5 (en) * | 1979-08-02 | 1984-04-13 | Landis & Gyr Ag | Ultrasound converter |
DE3012038C2 (en) * | 1980-03-28 | 1982-08-19 | Honeywell-Elac-Nautik Gmbh, 2300 Kiel | Electroacoustic water-borne sound converter |
JPS6115667Y2 (en) * | 1980-07-11 | 1986-05-15 | ||
JPS5943700A (en) * | 1982-09-02 | 1984-03-10 | Nec Corp | Transceiver |
-
1984
- 1984-05-15 GB GB08412335A patent/GB2141902B/en not_active Expired
- 1984-05-22 JP JP10354684A patent/JPS6018096A/en active Granted
- 1984-05-23 DE DE19843419256 patent/DE3419256C2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2581819A1 (en) * | 1985-05-10 | 1986-11-14 | France Etat Armement | Piezoelectric transducers of tonpilz type, wideband receivers and transmitters and sonar antenna made up of these transducers. |
RU2793894C1 (en) * | 2022-08-22 | 2023-04-07 | АКЦИОНЕРНОЕ ОБЩЕСТВО "КОНЦЕРН "МОРСКОЕ ПОДВОДНОЕ ОРУЖИЕ - ГИДРОПРИБОР" (АО "Концерн "МПО-Гидроприбор") | Composite electro-acoustic transducer |
Also Published As
Publication number | Publication date |
---|---|
GB2141902B (en) | 1986-09-17 |
DE3419256A1 (en) | 1984-12-13 |
DE3419256C2 (en) | 1995-06-22 |
GB8412335D0 (en) | 1984-06-20 |
JPS6018096A (en) | 1985-01-30 |
JPH0562513B2 (en) | 1993-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5711058A (en) | Method for manufacturing transducer assembly with curved transducer array | |
US4737939A (en) | Composite transducer | |
JP4588321B2 (en) | Ultrasonic transducers for parametric arrays | |
US5789844A (en) | Acoustic transducer | |
US5598051A (en) | Bilayer ultrasonic transducer having reduced total electrical impedance | |
US4805157A (en) | Multi-layered polymer hydrophone array | |
US4866683A (en) | Integrated acoustic receiver or projector | |
CA1134939A (en) | Polymeric piezoelectric microprobe having a damper | |
US4409510A (en) | Method for providing ultraacoustic transducers of the line curtain or point matrix type and transducers obtained therefrom | |
US5541468A (en) | Monolithic transducer array case and method for its manufacture | |
US4789971A (en) | Broadband, acoustically transparent, nonresonant PVDF hydrophone | |
GB2151434A (en) | Multi-layered polymer transducer | |
US4482834A (en) | Acoustic imaging transducer | |
US4184093A (en) | Piezoelectric polymer rectangular flexural plate hydrophone | |
US4709359A (en) | End weighted reed sound transducer | |
US4219889A (en) | Double mass-loaded high power piezo-electric underwater transducer | |
US3277436A (en) | Hollow electro-acoustic transducer | |
US4477783A (en) | Transducer device | |
JPS6262237A (en) | Measuring device for holding pressure between two roller | |
GB2141902A (en) | Composite transducer | |
WO1989005445A1 (en) | An acoustic emission transducer and an electrical oscillator | |
US2402531A (en) | Transducer | |
US5199004A (en) | Sealed acoustical element using conductive epoxy | |
RU2095806C1 (en) | Separated-integrated wide-band ultrasound transducer | |
US5274608A (en) | Sonar transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 19940515 |