GB1603127A - Rifamycin compounds - Google Patents
Rifamycin compounds Download PDFInfo
- Publication number
- GB1603127A GB1603127A GB22170/78A GB2217078A GB1603127A GB 1603127 A GB1603127 A GB 1603127A GB 22170/78 A GB22170/78 A GB 22170/78A GB 2217078 A GB2217078 A GB 2217078A GB 1603127 A GB1603127 A GB 1603127A
- Authority
- GB
- United Kingdom
- Prior art keywords
- radical
- alkyl
- rifamycin
- carbon atoms
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HJYYPODYNSCCOU-ODRIEIDWSA-N rifamycin SV Chemical class OC1=C(C(O)=C2C)C3=C(O)C=C1NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@H](C)[C@@H](OC)\C=C\O[C@@]1(C)OC2=C3C1=O HJYYPODYNSCCOU-ODRIEIDWSA-N 0.000 title claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 45
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 30
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 27
- -1 rifamycin compound Chemical class 0.000 claims description 26
- 125000004432 carbon atom Chemical group C* 0.000 claims description 22
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 21
- 229910052725 zinc Inorganic materials 0.000 claims description 21
- 239000011701 zinc Substances 0.000 claims description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 18
- 239000000047 product Substances 0.000 claims description 17
- QBRFPWPICDILII-WVKYYCEASA-N 3-amino-4-iminorifamycin-s Chemical compound O=C1C(C(O)=C2C)=C3C(N)=C(N)C1=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@H](C)[C@@H](OC)\C=C\O[C@@]1(C)OC2=C3C1=O QBRFPWPICDILII-WVKYYCEASA-N 0.000 claims description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 15
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 14
- 239000005695 Ammonium acetate Substances 0.000 claims description 14
- 229940043376 ammonium acetate Drugs 0.000 claims description 14
- 235000019257 ammonium acetate Nutrition 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000001663 electronic absorption spectrum Methods 0.000 claims description 12
- 239000011541 reaction mixture Substances 0.000 claims description 12
- 229930189077 Rifamycin Natural products 0.000 claims description 10
- 229960003292 rifamycin Drugs 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000012074 organic phase Substances 0.000 claims description 8
- VRJHQPZVIGNGMX-UHFFFAOYSA-N 4-piperidinone Chemical compound O=C1CCNCC1 VRJHQPZVIGNGMX-UHFFFAOYSA-N 0.000 claims description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 5
- 235000011152 sodium sulphate Nutrition 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 claims description 4
- 239000003208 petroleum Substances 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- 239000012064 sodium phosphate buffer Substances 0.000 claims description 4
- 238000004809 thin layer chromatography Methods 0.000 claims description 4
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- QFWBXLYVHOMANN-UHFFFAOYSA-N 1-(3-methoxypropyl)piperidin-4-one Chemical compound COCCCN1CCC(=O)CC1 QFWBXLYVHOMANN-UHFFFAOYSA-N 0.000 claims description 2
- UEWKKUAXRZRSQT-UHFFFAOYSA-N 1-(5-methylhexan-2-yl)piperidin-4-one Chemical compound CC(C)CCC(C)N1CCC(=O)CC1 UEWKKUAXRZRSQT-UHFFFAOYSA-N 0.000 claims description 2
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 claims description 2
- QEZGRWSAUJTDEZ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(piperidine-1-carbonyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)C(=O)N1CCCCC1 QEZGRWSAUJTDEZ-UHFFFAOYSA-N 0.000 claims description 2
- DCVGCQPXTOSWEA-UHFFFAOYSA-N 4-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]pyrazol-3-yl]methyl]-1-methylpiperazin-2-one Chemical compound CN1CCN(CC2=NN(CC(=O)N3CCC4=C(C3)N=NN4)C=C2C2=CN=C(NC3CC4=C(C3)C=CC=C4)N=C2)CC1=O DCVGCQPXTOSWEA-UHFFFAOYSA-N 0.000 claims description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 claims description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 2
- 125000001589 carboacyl group Chemical group 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 239000002552 dosage form Substances 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000001488 sodium phosphate Substances 0.000 claims description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 239000004246 zinc acetate Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 claims 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 abstract description 2
- 230000003115 biocidal effect Effects 0.000 abstract 1
- 125000001495 ethyl group Chemical class [H]C([H])([H])C([H])([H])* 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 2
- MEESULSAEVCKJK-UHFFFAOYSA-N 1-(2-methyloxolan-3-yl)piperidin-4-one Chemical compound CC1OCCC1N1CCC(=O)CC1 MEESULSAEVCKJK-UHFFFAOYSA-N 0.000 description 1
- BDVKAMAALQXGLM-UHFFFAOYSA-N 1-ethylpiperidin-4-one Chemical compound CCN1CCC(=O)CC1 BDVKAMAALQXGLM-UHFFFAOYSA-N 0.000 description 1
- NUPCXPOFGHXLIZ-UHFFFAOYSA-N 1-hexylpiperidin-4-one Chemical compound CCCCCCN1CCC(=O)CC1 NUPCXPOFGHXLIZ-UHFFFAOYSA-N 0.000 description 1
- MSUAFFBEKJQZIC-UHFFFAOYSA-N 2-chloroethanone Chemical group ClC[C]=O MSUAFFBEKJQZIC-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241001646725 Mycobacterium tuberculosis H37Rv Species 0.000 description 1
- 108700035964 Mycobacterium tuberculosis HsaD Proteins 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- YUDRVAHLXDBKSR-UHFFFAOYSA-N [CH]1CCCCC1 Chemical group [CH]1CCCCC1 YUDRVAHLXDBKSR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- SXWRTZOXMUOJER-UHFFFAOYSA-N hydron;piperidin-4-one;chloride;hydrate Chemical compound O.Cl.O=C1CCNCC1 SXWRTZOXMUOJER-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pulmonology (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Rifamycin compounds having an antibiotic activity, of the formula <IMAGE> in which R is a radical selected from the group comprising hydrogen, linear C4-C8-alkyl, branched C3-C8-alkyl, C3-C4-alkenyl, C3-C6-cycloalkyl, C7-C8-cycloalkylalkyl, C3-C7-alkoxyalkyl, C5-C6-alkyl-tetrahydrofuryl, C5-C6-alkanoyl and C2-C6-monohalogenoalkanoyl and Y is -H or COCH3.
Description
(54) RIFAMYCIN COMPOUNDS
(71) We, ARCHIFAR LABORATORI CHIMICO
FARMACOLOGICI S.p.A., an Italin Joint Stock Company, of C. so Verona 165,
Rovereto, Italy, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:- This invention relates to novel rifamycin compounds, to processes for their preparation and to pharmaceutical compositions and preparations containing them, and is an improvement in, or modification of, the invention of our Patent No.
1,542,063. The rifamycin compounds according to the above mentioned patent have antibacterial activity in vitro on Gram-positive, Gram-negative and particularly on Mycobacterium tuberculosis. According to the present invention it has been shown that rifamycin compounds obtained by reacting 3 - amino - 4 desoxo - 4 - iminorifamycin S with certain 4-piperidones having the following structural formula III
have good therapeutic activity as assessed by in vitro tests on mice infected by intravenous application of Mycobacterium tubercolis.
In one aspect the present invention provides novel rifamycin compounds of formula I where R is selected from hydrogen, linear C4-C8 alkyl, branched C3-C8 alkyl, C3-C4 alkenyl, C3-C6 cycloalkyl, C7-C8 cycloalkyl-alkyl, C3-C7 alkoxyalkyl, C5-C6 alkyl-furyl, C5-C6 alkyl-tetrahydrofuryl, C5-C6 alkanoyl and C2-C6 monohaloalkanoyl; and Y is -H or -COCH3.
Where R is a branched alkyl radical, it can be, for example, one having 4, 5 or 6 carbon atoms. In other compounds according to said one aspect of the invention,
R can be a 2-alkyl-furyl radical or a 2-alkyl-tetrahydrofuryl radical.
Compounds of the present invention have been found by us to have good activity in in vivo tests on white mice Cud 1.
Among the piperidinylidene derivatives claimed in Patent No. 1,542,063, the rifamycin compounds of formula I, obtained by reacting a rifamycin compound of formula II with N-ethyl-4-piperidone and hereinafter called "ethyl derivative", proved to have the highest therapeutic activity.
The rifamycin compounds of the present invention have been found to have therapeutic activity surprisingly higher than that of rifamycin compounds obtained by using 4-piperidones disclosed in the above mentioned patent. This higher activity is shown by the following experiments.
White mice CD 1 were infected with Mycobacterium tuberculosis H37RV culture by intravenous application, 0.2 ml of the above mentioned culture, containing twice the LD, amount, being injected into each mouse.
Three days after the mice were infected, they were treated by oral application with rifamycin compounds of the invention at doses ranging from 20 to 1.25 mg/Kg.
Groups of fifteen mice were treated with each rifamycin compound in single daily doses, for five days in succession and during six weeks.
At the end of the treatments the deaths were registered and the PD50 was calculated.
The animals were kept under observation during about two months.
The "ethyl derivative" PD50 was 20 mg/Kg.
The compounds tested are indicated in the following table by their substituent
R, radical Y in each case being hydrogen. The table also shows the results of the in vivo tests and of the in vitro tests and also the UV-visible absorption spectrum.
TABLE I
Activity
R In vitro In vivo UV-visible absorption MIC yg/ml PD50mg/Kg spectrum in methanol: peaks observed at -nm n-butyl 0.0005 7 5 496, 317, 276, 240 n-hexyl 0.0005 10 497, 314, 278, 239 allyl 0.0012 5 491, 314, 276, 235 i-butyl 0.0012 2.6 493, 315, 274, 238 methyl-allyl 0.005 5 498, 313, 275, 238 sec-butyl 0.005 3.7 500, 315, 275, 240 2-methyl-furyl 0.0012 I ,2-dimethyl-propyl 0.005 2.5 n-pentyl 0.0012 5 500, 316, 278, 240 1,3-dimethyl-butyl 0.0012 2.5 500, 315, 277, 240 3-pentyl 0.0012 2.5 500, 315, 276, 240 ethyl 0.01 20 The results obtained through these experiments with the "ethyl derivative" and with some others of the new compounds are reported in Table I and demonstrate that the new derivatives have a PD50 surprisingly lower than the "ethyl derivative" and therefore are more effective than the ethyl derivative.
The rifamycin compounds of the invention can be obtained by a process (which constitutes a second aspect of the invention) in which a compound of formula II as herein depicted and in which Y is -H or -COCH3 is reacted with a 4-piperidone of formula III as herein depicted and in which R is hydrogen, a straight-chain alkyl radical having 4 to 8 carbon atoms, a branched-chain alkyl radical having 3 to 8 carbon atoms, an alkenyl radical having 3 or 4 carbon atoms, a cycloalkyl radical having 3 to 6 carbon atoms a cycloalkylalkyl radical having 7 or 8 carbon atoms, an alkoxyalkyl radical having 3 to 7 carbon atoms, an alkyl-furyl radical having 5 or 6 carbon atoms, an alkyl-tetrahydrofuryl radical having 5 or 6 carbon atoms, an alkanoyl radical having 5 or 6 carbon atoms or a monohaloalkanoyl radical having 2 to 6 carbon atoms.
The process is conveniently carried out in the presence of zinc and acetic acid or zinc and ammonium acetate.
A third aspect of the invention comprises pharmaceutical compositions which comprise a rifamycin compound of the invention and a pharmaceuticallyacceptable carrier or diluent therefor.
A fourth aspect of the invention comprises pharmaceutical preparations which comprise a rifamycin compound or pharmaceutical composition of the invention, in unit dosage form.
The invention is illustrated by the following Examples.
EXAMPLE 1
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml dichloromethane and reacted with 2.6 g 1 - n - hexyl - 4 - piperidone at +50C for 48 hours. The solution was diluted with 600 ml ethyl ether, filtered and washed with water. The organic phase was dried on sodium sulphate and then evaporated to dryness. The residue was extracted with ligroin and the violet solution evaporated to dryness. Yield: 2.5 g product of formula (I), wherein Y is -COCH3, and R is a nhexyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 314, 278 and 239 nm.
EXAMPLE 2
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 4 g I - (l',3' - dimethyl - butyl) - 4 - piperidone, 0.5 g zinc and 0.5 g ammonium acetate were added and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was worked up as in the Example
No. I obtaining 3.5 g of a product of formula (I), wherein Y is -COCH3 and R is a 1,3-dimethyl-butyl radical. The electronic absorption spectrum in methanol shows peaks at 500, 315, 277 and 240 nm.
EXAMPLE 3
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran . 1.8 g l-methallyl-4-piperidone, 0.2 g zinc and 0.2 g ammonium acetate were added and the mixture was allowed to stand at +50C for one night.
Reaction mixture was worked up as in the Example No. 1 obtaining 5.5 g product of formula (I), wherein Y is -COCH3, and R is a methallyl radical.
The electronic absorption spectrum in methanol shows peaks at 498, 313, 275 and 238 nm.
EXAMPLE 4
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 3 g l-cyclohexyl-4-piperidone, 0.2 g zinc and 0.2 ammonium acetate were added and the mixture was stirred for 2.5 hours at room temperature.
Unreacted zinc was filtered off and the solution diluted with 1000 ml ethyl ether.
The ethereal solution was washed with sodium phosphate buffer solution at pH 7.8 and then extracted with diluted acetic acid. The violet aqueous solution was extracted with chloroform, the organic phase was washed with water and then dried on sodium sulfate. The chloroform was evaporated to dryness. Yield: 3.8 g product of formula (I), wherein Y is --COCH,, and R is a cyclohexyl radical. The electronic absorption spectrum in methanol shows peaks at 498, 312, 273 and 235 nm.
EXAMPLE 5
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 0.5 g zinc, 0.5 g ammonium acetate and 5.5 g 1 - 2' methylfuryl - 4 - piperidone were added and the mixure was stirred at room temperature for 24 hours. The reaction mixture was filtered, diluted with 500 ml dimethyl ether and washed with water. The diluted organic phase was concentrated at 250 ml and then extracted with aqueous acetic acid. The violet, aqueous solution was extracted with dichloromethane and the organic phase, washed with water and dried on sodium sulfate, was evaporated to dryness. Yield: 3.3 g product of formula (I) wherein Y is -COCH3 and R is a 2'-methylfuryl radical. The electronic absorption spectrum in methanol shows peaks at 497, 316, 276 and 240 nm.
EXAMPLE 6
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran and dropped at 500C into a mixture of 15 ml tetrahydrofuran, 5 ml acetic acid, 1 g zinc and 5 g 1 - (2' - methyltetrahydrofuryl) - 4 - piperidone.
Heating is continued for 30 minutes and then the reaction mixture was worked up as in the Example No. 5. Yield: 2.1 g product of formula (I) wherein Y is -COCH3 and R is a 2'-methyl-tetrahydrofuryl radical. The electronic absorption spectrum in methanol shows peaks at 495, 314, 275 and 239 nm.
EXAMPLE 7
32 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 200 ml tetrahydrofuran. 9 g 4-piperidone monohydrate hydrochloride, 10 g ammonium acetate and 0.4 g zinc were added and the mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered and dropped into 1500 ml diluted acetic acid. After filtration the aqueous solution was neutralized with sodium bicarbonate at pH 6 and then extracted twice with dichloromethane. Yield: 13.4 g product of formula (I), wherein Y is -COCH3 and R is hydrogen. The electronic absorption spectrum in methanol shows peaks at 500, 315, 275 and 240 nm.
EXAMPLE 8
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 50 ml tetrahydrofuran. 0.3 g zinc, 0.3 g ammonium acetate and 2.5 g l-chloroacetyl-4- piperidone were added and the mixture allowed to react at +50C for 48 hours. The reaction mixture was filtered and diluted with 150 ml dichloromethane and 800 ml cyclohexane. The solution was filtered again, washed with sodium phosphate buffer solution at pH 7.5 and then with water. The solvent was evaporated under vacuum and the residue was crystallized from cyclohexane. Yield: 3.2 g product of formula (I), wherein Y is -COCH3, and R is a chloroacetyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 310, 273 and 235 nm.
EXAMPLE 9
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 0.5 g zinc, 5 ml acetic acid and 4.5 g l-n-octyl-4-piperidone were added and the mixture was stirred for ten minutes at room temperature. Unreacted zinc was filtered off and the solution diluted with 700 ml diisopropyl ether. The solution was filtered again and concentrated to 300 ml under vacuum. 300 ml petroleum ether were added and the solution was filtered once more. After evaporation of the solvent the oily residue was dissolved in 40 ml methanol and the solution was dropped in 400 ml water. The obtained precipitate was filtered off, washed with water and dried at 400C under vacuum. Yield: 3.8 g product of formula (I), wherein Y is -COCH3 and R is a n-octyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 310, 274 and 236 nm.
EXAMPLE 10
16 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 100 ml tetrahydrofuran. 1 g zinc, 0.5 g ammonium acetate and 8 g 1 - (3' - methoxy propyl)- 4- piperidone were added and the mixture was stirred at room temperature for 60 minutes. The reaction mixture was filtered, diluted with 1500 ml xylene and washed with water. The organic phase was extracted with diluted acetic acid and then discharged. The aqueous solution, buffered at pH 7 with sodium phosphate solution, was extracted with dichloromethane. After dilution with petroleum ether the violet solution was filtered and then evaporated to dryness.
Yield: 3.0 g product of formula (I), wherein Y is -COCH3, and R is a 3-methoxypropyl radical. Thin layer chromatography on silica gel plates, using chloroformmethanol 9:1 as mobile phase, showed one violet spot with Rf=0.48.
EXAMPLE 11
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 0.5 g zinc, 0.5 g ammonium acetate and 4.5 g 1 - (1',4' - dimethyl - pentyl) - 4 - piperidone were added and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was worked up as in the
Example No. 10. Yield: 5.0 g product of formula (I) wherein Y is -COCH3 and R is a 1,4-dimethylpentyl radical. Thin layer chromatography on silica gel plates, using chloroform-methanol 9:1 as mobile phase, showed one violet spot with Rf=0.52.
EXAMPLE 12
8 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 50 ml tetrahydrofuran. 0.2 g zinc, 0.2 g ammonium acetate and 3 g l-pivaloyl-4- piperidone were added and the mixture was kept at OOC for 3 days. The reaction mixture was filtered, diluted with 300 ml diethyl ether and washed with sodium phosphate buffer solution at pH 7.5. The organic phase was washed with water, dried on sodium sulfate and evaporated to dryness. The residue was crystallized from cyclohexane. Yield: 7 g product of formula (I) wherein Y is -COCH3 and R is a pivaloyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 316, 276 and 238 nm.
WHAT WE CLAIM IS:
1. Rifamycin compounds having formula
**WARNING** end of DESC field may overlap start of CLMS **.
Claims (14)
- **WARNING** start of CLMS field may overlap end of DESC **.added and the mixture was stirred for ten minutes at room temperature. Unreacted zinc was filtered off and the solution diluted with 700 ml diisopropyl ether. The solution was filtered again and concentrated to 300 ml under vacuum. 300 ml petroleum ether were added and the solution was filtered once more. After evaporation of the solvent the oily residue was dissolved in 40 ml methanol and the solution was dropped in 400 ml water. The obtained precipitate was filtered off, washed with water and dried at 400C under vacuum. Yield: 3.8 g product of formula (I), wherein Y is -COCH3 and R is a n-octyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 310, 274 and 236 nm.EXAMPLE 1016 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 100 ml tetrahydrofuran. 1 g zinc, 0.5 g ammonium acetate and 8 g 1 - (3' - methoxy propyl)- 4- piperidone were added and the mixture was stirred at room temperature for 60 minutes. The reaction mixture was filtered, diluted with 1500 ml xylene and washed with water. The organic phase was extracted with diluted acetic acid and then discharged. The aqueous solution, buffered at pH 7 with sodium phosphate solution, was extracted with dichloromethane. After dilution with petroleum ether the violet solution was filtered and then evaporated to dryness.Yield: 3.0 g product of formula (I), wherein Y is -COCH3, and R is a 3-methoxypropyl radical. Thin layer chromatography on silica gel plates, using chloroformmethanol 9:1 as mobile phase, showed one violet spot with Rf=0.48.EXAMPLE 118 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 40 ml tetrahydrofuran. 0.5 g zinc, 0.5 g ammonium acetate and 4.5 g 1 - (1',4' - dimethyl - pentyl) - 4 - piperidone were added and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was worked up as in the Example No. 10. Yield: 5.0 g product of formula (I) wherein Y is -COCH3 and R is a 1,4-dimethylpentyl radical. Thin layer chromatography on silica gel plates, using chloroform-methanol 9:1 as mobile phase, showed one violet spot with Rf=0.52.EXAMPLE 128 g 3 - amino - 4 - deoxo - 4 - imino - rifamycin S were dissolved in 50 ml tetrahydrofuran. 0.2 g zinc, 0.2 g ammonium acetate and 3 g l-pivaloyl-4- piperidone were added and the mixture was kept at OOC for 3 days. The reaction mixture was filtered, diluted with 300 ml diethyl ether and washed with sodium phosphate buffer solution at pH 7.5. The organic phase was washed with water, dried on sodium sulfate and evaporated to dryness. The residue was crystallized from cyclohexane. Yield: 7 g product of formula (I) wherein Y is -COCH3 and R is a pivaloyl radical. The electronic absorption spectrum in methanol shows peaks at 497, 316, 276 and 238 nm.WHAT WE CLAIM IS: 1. Rifamycin compounds having formulawherein R is selected from hydrogen, linear C4-C8 alkyl, branched C3-C8 alkyl, C34 alkenyl, C3a cycloalkyl, C78 cycloalkyl-alkyl, C3-C7 alkoxyalkyl, C56 alkyl-furyl, C,--C9 alkyl-tetrahydrofuryl, C5-C6 alkanoyl and C2-C6 monohaloalkanoyl, and Y Is --H or -COCH3.
- 2. A compound according to Claim 1, in which R is a branched alkyl radical having 4, 5 or 6 carbon atoms.
- 3. A compound according to Claim 1, in which R is a 2-alkyl-furyl radical or a 2-alkyl-tetrahydrofuryl radical.
- 4. A compound according to Claim 3, in which R is a 2-alkyl-tetrahydrofuryl radical.
- 5. A compound according to Claim 2, 3 or 4 in which Y is -COCH3.
- 6. A rifamycin compound obtained as the product of any of the Examples.
- 7. A process for preparing a rifamycin compound as claimed in any of Claims I to 6, in which a compound of formula (II) as herein depicted and in which Y is -H or -COCH3 is reacted with a 4-piperidone of formula (III) as herein depicted and in which R is hydrogen, a straight-chain alkyl radical having 4 to 8 carbon atoms, a branched-chain alkyl radical having 3 to 8 carbon atoms, an alkenyl radical having 3 or 4 carbon atoms, a cycloalkyl radical having 3 to 6 carbon atoms, a cycloalkylalkyl radical having 7 or 8 carbon atoms, an alkoxyalkyl radical having 3 to 7 carbon atoms, an alkyl-furyl radical having 5 or 6 carbon atoms, an alkyltetrahydrofuryl radical having 5 or 6 carbon atoms, an alkanoyl radical having 5 or 6 carbon atoms or a monohaloalkanoyl radical having 2 to 6 carbon atoms.
- 8. A process according to Claim 7 in which said reaction with the piperidone is carried out in the presence of zinc and acetic acid.
- 9. A process according to Claim 7 in which said reaction with the piperidone is carried out in the presence of zinc and ammonium acetate.
- 10. A process according to Claim 7, substantially as described herein.
- 11. A process for preparing a rifamycin compound of Formula (I) herein where R and Y are as defined in Claim 1, substantially as described in any of the Examples.
- 12. A rifamycin compound when obtained by the process of any of Claims 7 to 11.
- 13. A pharmaceutical composition which comprises a rifamycin compound as claimed in any of Claims 1 to 6 and 12 and a pharmaceutically-acceptable carrier or diluent therefor.
- 14. A pharmaceutical preparation which comprises a rifamycin compound as claimed in any of Claims 1 to 6 and 12, or a pharmaceutical composition of Claim 13, in unit dosage form.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG38683A SG38683G (en) | 1978-05-24 | 1983-07-02 | Rifamycin compounds |
HK56183A HK56183A (en) | 1978-05-24 | 1983-11-17 | Rifamycin compounds |
CS914196A CS419691A3 (en) | 1978-05-24 | 1991-12-31 | Rifamycin compounds |
BG098016A BG60435B2 (en) | 1978-05-24 | 1993-08-03 | Riphamicyn compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2825445A DE2825445C2 (en) | 1975-06-13 | 1978-06-09 | Rifamycin-S compounds and processes for their preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
GB1603127A true GB1603127A (en) | 1981-11-18 |
Family
ID=6041475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB22170/78A Expired GB1603127A (en) | 1978-05-24 | 1978-05-24 | Rifamycin compounds |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS557203A (en) |
BE (1) | BE870570R (en) |
CA (1) | CA1089453A (en) |
CH (1) | CH633014A5 (en) |
FR (1) | FR2426690A2 (en) |
GB (1) | GB1603127A (en) |
NL (2) | NL182564C (en) |
SE (1) | SE441751B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008008480A3 (en) * | 2006-07-12 | 2008-03-13 | Cumbre Pharmaceuticals Inc | Nitroheteroaryl-containing rifamycin derivatives |
WO2009064792A1 (en) * | 2007-11-16 | 2009-05-22 | Cumbre Pharmaceuticals Inc. | Quinolone carboxylic acid-substituted rifamycin derivatives |
WO2013062445A1 (en) | 2011-10-26 | 2013-05-02 | ИВАЩЕНКО, Андрей Александрович | Pharmaceutical composition and kit for treating bacterial infections |
CN103408571A (en) * | 2013-08-23 | 2013-11-27 | 成都樵枫科技发展有限公司 | Crystal form I of rifabutin, and preparation method and application thereof |
CN106279205A (en) * | 2015-05-12 | 2017-01-04 | 重庆华邦胜凯制药有限公司 | The method preparing rifamycin-S derivant |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1154655B (en) * | 1980-05-22 | 1987-01-21 | Alfa Farmaceutici Spa | IMIDAZO-RIFAMYCIN DERIVATIVES METHODS FOR THEIR PREPARATION AND USE AS AN ANTIBACTERIAL ACTION SUBSTANCE |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1056271B (en) * | 1975-05-20 | 1982-01-30 | Archifar Ind Chim Trentino | PRODUCTS DERIVED FROM AROMATIC AMINES |
DK345977A (en) * | 1976-09-30 | 1978-03-31 | Archifar Ind Chim Trentino | G RIFAMYCIN COMPOUNDS AND PROCEDURE FOR THEIR PREPARATION |
-
1978
- 1978-05-22 CH CH554478A patent/CH633014A5/en not_active IP Right Cessation
- 1978-05-23 SE SE7805863A patent/SE441751B/en not_active IP Right Cessation
- 1978-05-24 GB GB22170/78A patent/GB1603127A/en not_active Expired
- 1978-05-24 FR FR7815450A patent/FR2426690A2/en active Granted
- 1978-05-30 CA CA304,380A patent/CA1089453A/en not_active Expired
- 1978-06-20 NL NLAANVRAGE7806659,A patent/NL182564C/en not_active IP Right Cessation
- 1978-06-27 JP JP7706378A patent/JPS557203A/en active Granted
- 1978-09-18 BE BE190561A patent/BE870570R/en active
-
1995
- 1995-11-22 NL NL950028C patent/NL950028I2/en unknown
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008008480A3 (en) * | 2006-07-12 | 2008-03-13 | Cumbre Pharmaceuticals Inc | Nitroheteroaryl-containing rifamycin derivatives |
US7678791B2 (en) | 2006-07-12 | 2010-03-16 | Cumbre Ip Ventures, L.P. | Nitroheteroaryl-containing rifamycin derivatives |
WO2009064792A1 (en) * | 2007-11-16 | 2009-05-22 | Cumbre Pharmaceuticals Inc. | Quinolone carboxylic acid-substituted rifamycin derivatives |
US7884099B2 (en) | 2007-11-16 | 2011-02-08 | Cumbre Ip Ventures, L.P. | Quinolone carboxylic acid-substituted rifamycin derivatives |
WO2013062445A1 (en) | 2011-10-26 | 2013-05-02 | ИВАЩЕНКО, Андрей Александрович | Pharmaceutical composition and kit for treating bacterial infections |
CN103408571A (en) * | 2013-08-23 | 2013-11-27 | 成都樵枫科技发展有限公司 | Crystal form I of rifabutin, and preparation method and application thereof |
CN103408571B (en) * | 2013-08-23 | 2015-11-18 | 成都樵枫科技发展有限公司 | Crystal formation I of Mycobutin and its production and use |
CN106279205A (en) * | 2015-05-12 | 2017-01-04 | 重庆华邦胜凯制药有限公司 | The method preparing rifamycin-S derivant |
CN106279205B (en) * | 2015-05-12 | 2020-07-21 | 重庆华邦胜凯制药有限公司 | Process for the preparation of rifamycin S derivatives |
Also Published As
Publication number | Publication date |
---|---|
NL950028I2 (en) | 1997-04-01 |
JPS557203A (en) | 1980-01-19 |
NL182564C (en) | 1988-04-05 |
BE870570R (en) | 1979-01-15 |
FR2426690A2 (en) | 1979-12-21 |
SE7805863L (en) | 1979-11-24 |
NL7806659A (en) | 1979-12-27 |
SE441751B (en) | 1985-11-04 |
FR2426690B2 (en) | 1982-05-28 |
CH633014A5 (en) | 1982-11-15 |
JPH0114238B2 (en) | 1989-03-10 |
CA1089453A (en) | 1980-11-11 |
NL182564B (en) | 1987-11-02 |
NL950028I1 (en) | 1996-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NL8202626A (en) | DERIVATIVES OF 9- (2-HYDROXYETHOXYMETHYL) GUANINE. | |
DD203052A5 (en) | PROCESS FOR PREPARING 9- (1,3-DIHYDROXY-2-PROPOXY-METHYL) GUANINE, THE SALTS AND SPECIFIC BENZYL DERIVATIVES THEREOF | |
DE2844292A1 (en) | PYRROLOBENZODIAZEPINE, THE METHOD OF MANUFACTURING THEREOF AND THEIR USE FOR THE TREATMENT OF TUMOR DISEASES | |
DE4005970A1 (en) | NEW TRISUBSTITUTED MALEINIMIDES, METHOD FOR THE PRODUCTION THEREOF AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS | |
PL171813B1 (en) | Method for the production of new amide derivatives of the antibiotic A 40926 EN EN EN EN EN | |
GB2158440A (en) | 4,5,6,7-Tetrahydroimidazo[4,5-c]pyridine derivatives | |
EP0815110B1 (en) | Halogenated -carboline derivatives, process for their preparation and use of these substances for inhibiting the respiratory chain | |
WO2000012484A1 (en) | Tan-1057 derivatives | |
GB1603127A (en) | Rifamycin compounds | |
NO311891B1 (en) | New crystalline cephemic acid addition salts and process for their preparation | |
GB2073752A (en) | 2,6-diaminobularines | |
GB1569251A (en) | Pyridobenzodiazepines | |
DE2832127C2 (en) | 1- (2-chloroethyl) -1-nitroso-3-substituted-3-glycosylureas, processes for their preparation and pharmaceutical preparations containing these compounds | |
HU217630B (en) | 3'-Aziridino-anthracycline derivatives, a process for their preparation and pharmaceutical compositions containing these compounds | |
DE2155578B2 (en) | Process for the preparation of 8,9-didehydro-10-alkoxy-ergolenic derivatives | |
US2646428A (en) | Rutin derivatives and production thereof | |
DK152133B (en) | METHOD OF ANALOGUE FOR THE PREPARATION OF OLEANDOMYCIN DERIVATIVES OR PHARMACEUTICAL ACCEPTABLE ACID ADDITION SALTS. | |
WO1994005681A1 (en) | New acetals of ketophosphamides and alkylglycosides | |
US5374711A (en) | Chemical modification of 2"-amino group in elsamicin a | |
IE46900B1 (en) | Rifamycin compounds | |
DE68920304T2 (en) | 5-SUBSTITUTED URIDE DERIVATIVES AND INTERMEDIATE PRODUCTS. | |
KR820000546B1 (en) | Process for preparing rifamycin compounds | |
DE69907042T2 (en) | A process for the preparation of naphthyridones and intermediates | |
EP0196330B1 (en) | Use of pyrrothine derivatives | |
BG60435B2 (en) | Riphamicyn compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PS | Patent sealed | ||
732 | Registration of transactions, instruments or events in the register (sect. 32/1977) | ||
704A | Declaration that licence is not available as of right for an excepted use (par. 4a/1977) | ||
CTFF | Supplementary protection certificate filed |
Free format text: SPC/GB94/004, 940331 |
|
CTFG | Supplementary protection certificate granted |
Free format text: SPC/GB94/004, 940610, EXPIRES:20010527 |
|
CTFE | Supplementary protection certificate entered into force |
Free format text: SPC/GB94/004, 960528, EXPIRES:20010527 |
|
PE20 | Patent expired after termination of 20 years |
Effective date: 19960527 |
|
SPCE | Supplementary protection certificate expired |
Free format text: SPC/GB94/004: 20010527 |