FR3140174A1 - Procédé de détection de punaises de lit - Google Patents
Procédé de détection de punaises de lit Download PDFInfo
- Publication number
- FR3140174A1 FR3140174A1 FR2209803A FR2209803A FR3140174A1 FR 3140174 A1 FR3140174 A1 FR 3140174A1 FR 2209803 A FR2209803 A FR 2209803A FR 2209803 A FR2209803 A FR 2209803A FR 3140174 A1 FR3140174 A1 FR 3140174A1
- Authority
- FR
- France
- Prior art keywords
- bedbugs
- volatile organic
- organic compounds
- modality
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010004194 Bed bug infestation Diseases 0.000 title claims abstract description 81
- 238000001514 detection method Methods 0.000 title claims abstract description 24
- 241001327638 Cimex lectularius Species 0.000 title abstract description 12
- 239000012855 volatile organic compound Substances 0.000 claims abstract description 121
- 241001414835 Cimicidae Species 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000003066 decision tree Methods 0.000 claims abstract description 25
- LVBXEMGDVWVTGY-VOTSOKGWSA-N (E)-oct-2-enal Chemical compound CCCCC\C=C\C=O LVBXEMGDVWVTGY-VOTSOKGWSA-N 0.000 claims description 42
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 claims description 24
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 claims description 24
- UHEPJGULSIKKTP-UHFFFAOYSA-N sulcatone Chemical compound CC(C)=CCCC(C)=O UHEPJGULSIKKTP-UHFFFAOYSA-N 0.000 claims description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 21
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 claims description 20
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 19
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 claims description 18
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 claims description 18
- SEPQTYODOKLVSB-UHFFFAOYSA-N 3-methylbut-2-enal Chemical compound CC(C)=CC=O SEPQTYODOKLVSB-UHFFFAOYSA-N 0.000 claims description 16
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 claims description 16
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 claims description 16
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 16
- 239000003463 adsorbent Substances 0.000 claims description 15
- 230000011218 segmentation Effects 0.000 claims description 13
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 claims description 12
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 12
- OHEFFKYYKJVVOX-UHFFFAOYSA-N sulcatol Natural products CC(O)CCC=C(C)C OHEFFKYYKJVVOX-UHFFFAOYSA-N 0.000 claims description 11
- 235000013601 eggs Nutrition 0.000 claims description 10
- HNZUNIKWNYHEJJ-FMIVXFBMSA-N geranyl acetone Chemical compound CC(C)=CCC\C(C)=C\CCC(C)=O HNZUNIKWNYHEJJ-FMIVXFBMSA-N 0.000 claims description 10
- 238000004817 gas chromatography Methods 0.000 claims description 9
- 230000000717 retained effect Effects 0.000 claims description 9
- DVVATNQISMINCX-SCFJQAPRSA-N (2e,4z)-octa-2,4-dienal Chemical compound CCC\C=C/C=C/C=O DVVATNQISMINCX-SCFJQAPRSA-N 0.000 claims description 8
- ACWQBUSCFPJUPN-UHFFFAOYSA-N Tiglaldehyde Natural products CC=C(C)C=O ACWQBUSCFPJUPN-UHFFFAOYSA-N 0.000 claims description 8
- 238000009395 breeding Methods 0.000 claims description 8
- 230000001488 breeding effect Effects 0.000 claims description 8
- 238000011161 development Methods 0.000 claims description 8
- 230000018109 developmental process Effects 0.000 claims description 8
- 150000002894 organic compounds Chemical class 0.000 claims description 8
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- SATICYYAWWYRAM-VNKDHWASSA-N (E,E)-hepta-2,4-dienal Chemical compound CC\C=C\C=C\C=O SATICYYAWWYRAM-VNKDHWASSA-N 0.000 claims description 7
- NWZIYQNUCXUJJJ-UHFFFAOYSA-N 2-butylfuran Chemical compound CCCCC1=CC=CO1 NWZIYQNUCXUJJJ-UHFFFAOYSA-N 0.000 claims description 7
- 229940007550 benzyl acetate Drugs 0.000 claims description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 claims description 4
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Chemical compound CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 claims description 4
- 229960004217 benzyl alcohol Drugs 0.000 claims description 3
- 235000019445 benzyl alcohol Nutrition 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000013138 pruning Methods 0.000 claims description 3
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 17
- 241000238631 Hexapoda Species 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- MBDOYVRWFFCFHM-UHFFFAOYSA-N trans-2-hexenal Natural products CCCC=CC=O MBDOYVRWFFCFHM-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- GXANMBISFKBPEX-ONEGZZNKSA-N (e)-hex-3-enal Chemical compound CC\C=C\CC=O GXANMBISFKBPEX-ONEGZZNKSA-N 0.000 description 8
- YWHLKYXPLRWGSE-UHFFFAOYSA-N Dimethyl trisulfide Chemical compound CSSSC YWHLKYXPLRWGSE-UHFFFAOYSA-N 0.000 description 8
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 8
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 description 8
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 8
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 8
- 238000011002 quantification Methods 0.000 description 8
- KMPQYAYAQWNLME-UHFFFAOYSA-N undecanal Chemical compound CCCCCCCCCCC=O KMPQYAYAQWNLME-UHFFFAOYSA-N 0.000 description 8
- HNZUNIKWNYHEJJ-XFXZXTDPSA-N (E)-Geranyl acetone Natural products CC(C)=CCC\C(C)=C/CCC(C)=O HNZUNIKWNYHEJJ-XFXZXTDPSA-N 0.000 description 7
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 6
- DVVATNQISMINCX-YTXTXJHMSA-N (E,E)-2,4-Octadienal Chemical compound CCC\C=C\C=C\C=O DVVATNQISMINCX-YTXTXJHMSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- 210000003608 fece Anatomy 0.000 description 6
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 6
- DVVATNQISMINCX-UHFFFAOYSA-N (2E,4E)-octadienal Natural products CCCC=CC=CC=O DVVATNQISMINCX-UHFFFAOYSA-N 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- BATOPAZDIZEVQF-MQQKCMAXSA-N (E,E)-2,4-hexadienal Chemical compound C\C=C\C=C\C=O BATOPAZDIZEVQF-MQQKCMAXSA-N 0.000 description 4
- JHEPBQHNVNUAFL-AATRIKPKSA-N (e)-hex-1-en-1-ol Chemical compound CCCC\C=C\O JHEPBQHNVNUAFL-AATRIKPKSA-N 0.000 description 4
- 241000258937 Hemiptera Species 0.000 description 4
- 206010061217 Infestation Diseases 0.000 description 4
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 4
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 3
- NSSALFVIQPAIQK-BQYQJAHWSA-N (E)-non-2-en-1-ol Chemical compound CCCCCC\C=C\CO NSSALFVIQPAIQK-BQYQJAHWSA-N 0.000 description 3
- QMUFRTAEUWRLRT-UHFFFAOYSA-N 2,4,4-trimethyl-3-(3-methylbutyl)cyclohex-2-en-1-one Chemical compound CC(C)CCC1=C(C)C(=O)CCC1(C)C QMUFRTAEUWRLRT-UHFFFAOYSA-N 0.000 description 3
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241001674044 Blattodea Species 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000003124 biologic agent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 3
- 229930008394 dihydromyrcenol Natural products 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001819 mass spectrum Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- LVBXEMGDVWVTGY-UHFFFAOYSA-N trans-2-octenal Natural products CCCCCC=CC=O LVBXEMGDVWVTGY-UHFFFAOYSA-N 0.000 description 3
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- LVBXEMGDVWVTGY-SREVYHEPSA-N 2-octenal Chemical compound CCCCC\C=C/C=O LVBXEMGDVWVTGY-SREVYHEPSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000282465 Canis Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 2
- 102100037114 Elongin-C Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101001011859 Homo sapiens Elongin-A Proteins 0.000 description 2
- 101001011846 Homo sapiens Elongin-B Proteins 0.000 description 2
- 101000881731 Homo sapiens Elongin-C Proteins 0.000 description 2
- 101000836005 Homo sapiens S-phase kinase-associated protein 1 Proteins 0.000 description 2
- 241001414825 Miridae Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000000809 air pollutant Substances 0.000 description 2
- 231100001243 air pollutant Toxicity 0.000 description 2
- 229940060799 clarus Drugs 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229960002715 nicotine Drugs 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- QOPYYRPCXHTOQZ-CMDGGOBGSA-N (e)-dec-2-en-1-ol Chemical compound CCCCCCC\C=C\CO QOPYYRPCXHTOQZ-CMDGGOBGSA-N 0.000 description 1
- PVURYIAWVSGIKM-UHFFFAOYSA-N 3,3-diethyl-5-methylideneheptane Chemical compound CCC(=C)CC(CC)(CC)CC PVURYIAWVSGIKM-UHFFFAOYSA-N 0.000 description 1
- 241000238662 Blatta orientalis Species 0.000 description 1
- 241000238660 Blattidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000011312 Vector Borne disease Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 244000078703 ectoparasite Species 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0047—Organic compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
- G01N33/4977—Metabolic gas from microbes, cell cultures or plant tissues
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Combustion & Propulsion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Invalid Beds And Related Equipment (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Catching Or Destruction (AREA)
Abstract
Procédé de détection de punaises de lit
La présente invention a pour objet un procédé de détection de punaises de lit dans un local, caractérisé par le fait qu’il comprend les étapes consistant à :
- sélectionner un groupe de composés organiques volatils (COV) cibles ;
- construire avec le groupe de composés organiques volatils cibles un arbre de décision en fonction de la corrélation entre le composé organique volatil et la présence de punaises de lits ; et
- prélever l’air dans au moins un emplacement déterminé d’un local;
- extraire les composés organiques volatils du groupe de composés organiques volatils présents dans l’air prélevé ; et
- parcourir l’arbre de décision en fonction des concentrations des composés organiques volatils présents dans l’air prélevé pour en déduire l’absence ou la présence de punaises de lit dans le local.
Figure à publier avec l’abrégé : Figure 1
Description
La présente invention concerne le domaine technique de la détection d’insectes nuisibles et porte sur un procédé de détection de punaises de lit, en particulier dans des locaux (logements ou environnements intérieurs).
Les punaises de lit sont des insectes hématophages ectoparasites de l’homme en constante recrudescence depuis la fin des années 90 dans les pays industrialisés. La résurgence de cet insecte nuisible est observable sur tous les continents, y compris en France. La multiplication des déplacements nationaux et internationaux des personnes et la résistance des punaises de lit aux principaux insecticides autorisés expliquent en partie l’augmentation du nombre de nouveaux foyers d’infestation.
De tels insectes piqueurs/suceurs sont souvent vecteurs de maladies, même si aucune maladie à transmission vectorielle incriminant spécifiquement la punaise de lit n’a été à ce jour décrite. Pour autant, les conséquences, qu’elles soient allergiques ou psychologiques, peuvent nécessiter une prise en charge médicale.
La plupart des environnements intérieurs occupés par l’homme peuvent être concernés par la punaise de lit : l’habitat, l’hôtellerie, les transports, les cinémas, les établissements de santé…
Le traitement pour se débarrasser des punaises de lit peut être onéreux et le budget à y consacrer est difficilement prévisible.
Les techniques de détection et de surveillance usuelles de la présence de ces insectes nuisibles, complexes et onéreuses, reposent sur une inspection visuelle approfondie basée sur la recherche des insectes et de leurs déjections par un expert et, dans une moindre mesure, la détection canine. Cette dernière approche donne de très bons résultats dus à la très bonne capacité de détection olfactive des chiens. Cependant, la disponibilité d’animaux entraînés quotidiennement avec un seul maître référent et leur capacité à se concentrer sur des durées importantes ne permettent pas d’envisager une massification de la pratique.
Dans ce contexte, la détection précoce et/ou la surveillance post-remédiation des punaises de lit constituent un enjeu majeur.
Le Demandeur développe depuis de nombreuses années des indices basés sur la présence/absence de composés organiques volatils dans l’air spécifiques d’agents biologiques nuisibles pour les bâtiments, les biens et/ou les personnes. Ceux-ci permettent de diagnostiquer précocement des infestations d’origine fongique ou entomologique non détectées/détectables visuellement, comme la présence de moisissures, de la mérule ou encore d’insectes. Ces outils sont complémentaires des techniques usuelles de détection basées essentiellement sur une inspection visuelle par un expert. Ces précédents indices reposent sur un calcul qui prend en compte la présence/absence de cibles chimiques volatiles avec ou sans pondération. De telles techniques sont par exemple décrites dans les demandes de brevets français FR3075964, FR2913501 et FR3028043.
Ainsi, bien que la punaise de lit soit un agent biologique majeur, aucun indice, en particulier chimique, n’a pu être développé à ce jour, ou alors avec des résultats peu probants.
La diversité des composés organiques volatils émis par les punaises de lit rend une analyse exhaustive, coûteuse et complexe.
La présente invention a donc pour objet un procédé de détection de punaises de lit dans un local, caractérisé par le fait qu’il comprend les étapes consistant à :
- sélectionner un groupe de composés organiques volatils (COV) cibles ;
- construire avec le groupe de composés organiques volatils cibles un arbre de décision en fonction de la corrélation entre chaque composé organique volatil du groupe de composés organiques volatils cibles et la présence de punaises de lits, les entrées de l’arbre de décision construit étant des composés organiques discriminants représentant un sous-groupe des composés organiques cibles ; et, pour chaque détection de punaises de lit dans un local:
- prélever l’air dans au moins un emplacement déterminé du local ;
- extraire les composés organiques volatils du groupe de composés organiques volatils présents dans l’air prélevé ; et
- parcourir l’arbre de décision en fonction des concentrations des composés organiques volatils discriminants présents dans l’air prélevé pour en déduire l’absence ou la présence de punaises de lit dans le local.
Les feuilles de l’arbre de décision correspondent chacune soit à la présence, soit à l’absence de punaises de lit, de telle sorte que le parcours de l’arbre de décision avec les concentrations des composés organiques volatils discriminants trouvées permet de conclure à la présence ou à l’absence de punaises de lit à l’issue du parcours de l’arbre de décision.
Le procédé de la présente invention, l’arbre de décision étant construit une fois pour toutes, est donc parcimonieux en ce qu’il permet d’analyser dans l’air prélevé uniquement les composés organiques volatils discriminants du groupe de composés organiques volatils cibles, ce qui réduit la complexité et le coût d’analyse, pour obtenir un résultat de détection fiable. L’arbre de décision est établi une seule fois et servira pour détecter l’absence ou la présence de punaises de lit dans tout local. Autrement dit, l’arbre de décision est indépendant du local pour lequel on souhaite détecter l’absence ou la présence de punaises de lit.
En outre, contrairement aux techniques antérieures (examen visuel, détection canine), le procédé de l’invention est peu invasif, puisqu’un simple prélèvement d’air dans le local suffit, avec une très bonne probabilité de détection de la présence de punaises de lit et pas assujetti à la variabilité des opérateurs et à leur niveau d’expertise.
Le local peut être tout local quel que soit son usage (à usage d’habitation (privée, habitation collective, hôtellerie), à usage d’enseignement, à usage de bureau, à usage professionnel, à usage commercial, à usage de loisirs (cinéma, salles de spectacle), etc.) et peut être, de manière préférée, une pièce de sommeil ou une pièce adjacente à la pièce de sommeil.
Selon un mode de réalisation, la sélection du groupe de composés organiques volatils cibles comprend les étapes consistant à :
- prélever et identifier les composés organiques volatils présents dans au moins un environnement d’élevage, la présence de punaises de lit et leur stade de développement dans ledit au moins un environnement d’élevage étant connus ;
- prélever et identifier les composés organiques volatils (COV) présents dans au moins un local d’étalonnage, la présence ou l’absence de punaises de lit dans ledit au moins un local d’étalonnage étant connue.
La sélection du groupe de composés organiques volatils cibles est donc rendue robuste, dans un premier temps, par une analyse des composés organiques volatils présents dans un environnement d’élevage, en laboratoire, puis dans un local d’étalonnage, notamment dans des locaux, ce qui permet d’établir la corrélation entre la présence ou l’absence de punaises de lit et la présence d’un composé organique volatil dans le groupe de composés organiques cibles. Cette seconde étape est en général effectuée sur un panel de locaux ayant une bonne représentativité statistique, par exemple sur un panel d’une centaine de locaux.
Selon un mode de réalisation, à l’étape A, les différents stades de développement sont : œufs, larves et adultes.
Selon un mode de réalisation, les composés organiques discriminants sont choisis parmi la 6-méthyl-5-heptén-2-one (6-MHO), le 1-hexanol, le (2E)-octénal, le disulfure de diméthyle (DMDS), la E-géranylacétone, la 2-pentanone, le 3-méthyl-butanal, l’acétophénone, l’hexanal, le nonanal, le décanal, facultativement parmi le benzaldéhyde, le benzyl acétate, l’hexane, le 2-n-butylfurane, le (2E, 4Z)-octadiénal, la 3-(N-méthyl-2-pyrrolidinyl)pyridine, le (2E)-buténal, l’acétone, le phénylméthanol, le 3-méthyl-2-buténal, le (2E, 4E)-heptadiénal.
Selon un mode de réalisation, l’arbre de décision est construit par un algorithme CART (arbre de classification et de régression, acronyme de l’anglais Classification And Regression Tree) en utilisant comme variables les composés organiques volatils (COV) cibles et comme critère de segmentation l’indice de diversité de Gini (défini par exemple ici : https://www.insee.fr/fr/metadonnees/definition/c1551), par sélection successive des variables prises une à une et séparant le mieux l’échantillon par rapport à la présence ou à l’absence de punaises de lit, en testant les points de coupure possibles pour chaque variable et en sélectionnant le seuil de coupure qui rend maximal le critère de segmentation, avec à chaque niveau de l’arbre un indice moyen de Gini G qui comptabilise la perte d’informations associée à un composé organique volatil j (COVj) et un seuil de coupure c :
avec :
M : le nombre de modalités à prédire qui est de 2 (modalité 0 – absence et modalité 1 – présence de punaises de lit)
n : le nombre total de locaux,
puis on mesure l’indice d’amélioration associé à chaque division par le calcul de J :
Selon un mode de réalisation, l’effectif de segmentation minimum du nœud est fixé à 5, le nombre maximal de niveau de l’arbre est 10, le seuil de spécialisation ou critère d’arrêt est 1, l’effectif d’admissibilité est 1 local d’étalonnage, et l’arbre est sans élagage.
Selon un mode de réalisation, le prélèvement d’air est réalisé sur un adsorbant thermodésorbable, de préférence du Tenax®TA, avec un volume de prélèvement compris entre 9 et 15 litres d’air, ce qui correspond à une durée de 1 heure à un débit de 150 à 250 mL/min, de préférence 10 litres d’air.
Selon un mode de réalisation, les composés organiques volatils sont piégés sur un tube contenant l’adsorbant lors du prélèvement et sont analysés par une technique de thermodésorption – chromatographie en phase gazeuse – spectromètre de masse (TD-GC-MS). Des adsorbants adaptés à une technique de désorption par solvant pourraient être utilisés en adaptant toutefois le volume de prélèvement de façon à obtenir les mêmes performances en termes de limite de détection des COV cibles que la thermodésorption.
Selon un mode de réalisation, l’air est prélevé dans le local, d’étalonnage ou à diagnostiquer, typiquement dans une pièce de sommeil ou une pièce immédiatement adjacente suspectée d’abriter des punaises de lit.
La présente invention se distingue donc de l’état de la technique par un coût moins élevé, une plus grande répétabilité, un caractère moins intrusif. Il n’était pas évident pour l’homme du métier, connaissant les techniques de détection de composés organiques volatils appliquées à la détection d’autres insectes, que la détection de composés organiques volatils pourrait permettre la détection de punaises de lit. En outre, les procédés de l’état antérieur de la technique ont été transposés aux punaises de lit, mais ont conduit à une complexité de calcul plus importante que n’a pas l’arbre de décision selon la présente invention, ce qui rend le procédé de la présente invention plus immédiatement applicable et moins onéreux.
Le procédé de détection selon la présente invention peut être utilisé dans un objectif de diagnostic de la présence ou non de punaises de lit et/ou dans un objectif de surveillance de la présence ou non de punaises de lit après un traitement.
Le Demandeur a donc inventé un procédé de détection innovant utilisant des traceurs chimiques volatils spécifiques des punaises de lit. Selon un mode de réalisation particulier, le prélèvement d’air réalisé dans un local est analysé, de préférence par une technique d’analyse chimique TD-GC-MS, afin de déterminer la concentration de composés organiques volatils (COV) cibles. Puis, une analyse statistique, de préférence par arbre de décision binaire utilisant l’algorithme CART, permet de déterminer si une infestation par des punaises de lit est en cours ou non.
Pour mieux illustrer l’objet de la présente invention, un mode de réalisation préféré de l’invention va maintenant être décrit, en référence au dessin annexé. Sur ce dessin :
Le procédé de l’invention va maintenant être décrit plus en détail dans ses différentes phases.
A titre d’exemple, dans une première phase du procédé, l’empreinte chimique de punaises de lit est caractérisée in vitro en laboratoire, plus précisément dans un environnement d’élevage en laboratoire. Les composés organiques volatils présents dans au moins un environnement d’élevage sont prélevés et identifiés, la présence de punaises de lit et leur stade de développement dans ledit au moins un environnement d’élevage étant connus.
Un effectif connu de punaises de lit (Cimex lectularius) à différents stades de leur développement (œufs, larves et adultes) est ainsi placé dans un insectarium adapté à la collecte des émissions de COV dans l’air, appelé également chambre d’émission statique. Des prélèvements d’air sur tubes adsorbants suivis d’une analyse par thermodésorption – chromatographie en phase gazeuse – spectromètre de masse (TD-GC-MS) permettent ensuite de caractériser ces émissions.
L’espèceCimex lectulariusutilisée dans les expériences est sensible aux insecticides. L’élevage des punaises est réalisé en flacons en polypropylène contenant un papier-filtre Whatman®plié en accordéon. Ce support permet aux punaises de s’agréger et/ou de se cacher. Le bouchon est doté d’une toile synthétique à mailles fines, qui laisse passer l’air et permet le nourrissage des insectes. Les punaises sont incubées à 24°C, à une humidité relative de 60 % et une photopériode 12 h/12 h leur est imposée. Les punaises sont « gorgées » artificiellement avec du sang d’origine humaine et préalablement chauffé (37°C), au travers d’une membrane polymère (Parafilm®) deux fois par semaine. Dans ces conditions, le cycle de développement complet (de l’œuf au stade adulte) est d’environ 1 mois. Les punaises sont triées (œufs, larves et adultes femelles et mâles), extemporanément, avant leur mise en chambre d’émission statique.
Pendant la durée des expériences (3, 7 et/ou 14 jours) en chambre d’émission statique, les conditions thermohydriques sont les suivantes : température de 22 ± 2 °C, humidité relative d’environ 50% et photopériode naturelle.
Les COV produits au cours de la vie en chambre de collecte des émissions des punaises de lit sont prélevés sur des tubes adsorbants.
Le prélèvement de l’air est actif, réalisé à l’aide d’une pompe à débit massique. Le débit de prélèvement est fixé à 100 ml/min et le temps de prélèvement est suffisant pour renouveler à minima trente fois le volume de la chambre de 300 ml. Les tubes sont ensuite analysés par TD-GC-MS.
Les prélèvements d’air sont réalisés sur deux types de tubes différents, présentés dans le Tableau 1 :
Référence du tube | Nature des adsorbants | Gamme de COV identifiables (nombre d’atomes de carbone) |
TTA | Tenax ® TA | C6~C26 |
MIXTES | Carbosieve ® SIII | C2~C4 |
Tenax ® TA | C6~C26 |
Les tubes TTA contiennent uniquement du Tenax®TA, qui est l’adsorbant présentant une large gamme de composés identifiables (C6~ C26). L’association d’adsorbants dans les tubes MIXTES, qui contiennent la même quantité de Tenax®TA que les tubes TTA, permet d’élargir cette gamme (C2~ C26) en intégrant les composés organiques très volatils grâce à la présence de Carbosieve®SIII.
L’analyse des COV collectés sur les différents adsorbants est réalisée par chromatographie suivant trois phases :
1) Extraction par thermodésorption des composés adsorbés sur les tubes de collecte (TD)
2) Séparation des composés par Chromatographie Gazeuse (GC)
3) Identification des composés par Spectrométrie de Masse (MS)
La chaîne analytique utilisée est une chaîne Perkin Elmer®comprenant un thermodésorbeur automatique (Turbomatrix®650), un chromatographe gazeux (Clarus®580) équipé d’une colonne capillaire, ainsi qu’un spectromètre de masse (Clarus®SQ8S).
Les composés sont identifiés par comparaison de leur spectre de masse avec ceux d’étalons disponibles dans la bibliothèque internationale NIST (2012) de spectres de masse.
La quantification de chaque composé est effectuée par rapport à leur propre facteur de réponse (à savoir, quantification spécifique) ou par rapport au facteur de réponse du toluène (à savoir, quantification relative en équivalent toluène). La quantification spécifique implique la réalisation de gammes d’étalonnage dédiées pour chaque composé considéré.
Les conditions analytiques appliquées sont conformes aux normes :
- NF EN ISO 16000-6 (2012) : Air intérieur - Partie 6 : dosage des composés organiques volatils dans l'air intérieur des locaux et chambres d'essai par échantillonnage actif sur le sorbant Tenax TA®, désorption thermique, et chromatographie en phase gazeuse utilisant MS ou MS/FID (AFNOR 2012)
- NF EN 16516 (2017) : Produits de construction : évaluation de l'émission de substances dangereuses - Détermination des émissions dans l'air intérieur (AFNOR 2017).
Les paramètres de la méthode d’analyse TD-GC-MS générique employée pour l’analyse des COV sont les suivants :
- Extraction par thermo-désorption (TD) :
Désorption du tube : 280°C pendant 20 minutes à un débit de 50 mL/min d’azote
Division d’entrée (inlet split) = 0 mL/min
Température du piège (Tenax TA®) lors de la désorption : -30°C
Température du piège lors de l’injection : de - 30 à 280°C avec une rampe de 40 °C.s-1puis maintien à 280 °C pendant 10 min
Température de la ligne de transfert et de vanne d’injection : 210°C
Injection dans la colonne, Division de sortie : 7 mL/min
- Chromatographie en phase gazeuse (GC) :
Gaz vecteur : Hélium
Colonne capillaire : Elite 5 ms 60 m x 0,25 mm x 1 μm (5% diphényl diméthylpolysiloxane) (Perkin Elmer)
Programme de températures : de 0 min à 5 min, température de 40°C ; puis à partir de 5 min, rampe de température de 2,5 °C / min jusqu’à 170 °C ; puis à compter de 73 min, rampe de température de 7,5 °C/min jusqu’à 300 °C ; maintenue pendant 26,34 min.
Durée de l’analyse : 100 minutes
- Spectrométrie de masse (MS):
Mode d’ionisation : impact électronique (El+), balayage complet de 33 à 550 m/z.
Un travail bibliographique préalable permet d’établir une liste de composés cibles traceurs potentiels deCimex lectularius: acétone, propanal, 2-butanone, diméthyl disulfure, (2E)-hexénal, hexanal, benzaldéhyde, alcool benzylique, heptanal, (2E,4Z)-octadiénal, (2E,4E)-octadiénal, 6-méthyl-5-heptèn-2-one, (2E)-octénal, octanal, D-limonène, nonanal, acétate de benzyle, décanal, undécanal, (E)-géranylacétone, (Z)-géranylacétone.
A partir des étalons standards de ces composés (lorsqu’ils étaient disponibles), un étalonnage spécifique est réalisé afin de (i), disposer du temps de rétention et du spectre de masse du composé dans les conditions analytiques utilisées dans les conditions de laboratoire de cette première phase et ainsi pouvoir confirmer son identification et (ii), déterminer son facteur de réponse analytique propre permettant de le quantifier spécifiquement. Cet étalonnage permet également de définir les limites de détection et de quantification de chaque composé.
Quatre expériences (PS, S1, S2 et S3) sont alors réalisées en laboratoire, pour caractériser exhaustivement les émissions de COV au regard du stade de développement des insectes (œufs, larves et adultes), après différents temps d’incubation et en piégeant les émissions générées sur deux différents types de tubes adsorbants, la première expérience (PS) permettant de mettre en évidence les émissions de composés volatils par un effectif mixte réduit constitué de larves et d’adultes. Les expériences sont indiquées dans le Tableau 2 suivant, représentant le bilan des expériences réalisées précisant les effectifs d’insectes, la nature des adsorbants utilisés pour collecter les émissions COV et la durée des incubations en chambres avant collecte.
Chambre | Contenu de la chambre | Différentes expériences | |||
PS | S1 | S2 | S3 | ||
1 | Papier Filtre (PF) | X | X | X | X |
2 | PF + œufs | - | Effectif : 110 | - | - |
3 | PF+ larves gorgées de stade 1 à 5 | - | - | - | Effectif : 100 |
4 | PF + Adultes femelles et mâles | - | Effectif : 25 femelles+25 mâles | Effectif : 25 femelles+25 mâles | Effectif : 25 femelles+25 mâles |
5 | PF + Déjections provenant de la chambre 4 | - | X | X | X |
6 | PF + Adultes (A) et larves (L) | Effectif : 13A+5L | - | - | - |
Type de tube | |||||
TTA | X | X | X | ||
MIXTES | X | X | X | ||
Prélèvement réalisé après | 3 et 14 jours | 7 jours | 7 jours | 7 jours |
L’identification des émissions de COV par les punaises de lit issus des prélèvements réalisés dans les chambres de collecte est organisée en deux phases : une première phase de recherche systématique des COV issus de la bibliographie indiquée ci-dessus et quantifiés de manière spécifique, et une deuxième phase de recherche d’autres COV traceurs potentiels des punaises de lit, par identification individuelle de chaque pic et quantification en équivalent toluène.
Les pics correspondant à des composés détectés uniquement en présence de punaises de lit sont sélectionnés et identifiés sur les chromatogrammes obtenus par comparaison de leur temps de rétention et analyse de leur spectre de masse par rapport à ceux disponibles notamment dans la bibliothèque internationale (NIST).
Une synthèse des résultats est présentée ci-dessous.
Les prélèvements réalisés dans les chambres d’émission statique contenant le même effectif d’insectes adultes, dans les différentes séries, ne conduisent pas systématiquement aux mêmes COV identifiés et/ou quantifiés dans des proportions équivalentes. Ces écarts peuvent s’expliquer par l’hétérogénéité du matériel biologique employé dans les différentes expériences qui n’est jamais tout à fait dans le même état physiologique, malgré la rigueur mise en œuvre dans la reproductibilité de la méthode.
La série S1 permet d’étudier les émissions de COV des adultes, des œufs et des déjections. Globalement, lorsque des COV sont identifiés chez les adultes en quantités significatives (supérieure à 1 ng/tube dans les conditions d’essai), ils sont systématiquement identifiés chez les œufs et/ou pour les déjections mais en quantité relative plus faible. Cependant, cette tendance n’est pas observée pour deux molécules (2-butanone et hexane) qui sont retrouvées en quantités significativement plus importantes dans la chambre contenant des œufs. Concernant les déjections, il faut noter la persistance de deux traceurs spécifiques des punaises de lit, le (2E)-hexénal et le (2E)-octénal, dont les quantités restent significatives (~500 ng/tube) même en l’absence d’insectes.
Les résultats obtenus sur les tubes TTA et MIXTES sont qualitativement identiques, les mêmes COV sont identifiés (série S2 après 15 jours de vie en chambre des punaises de lit). Même si l’information quantitative diffère selon la nature de l’adsorbant, celle-ci reste toujours supérieure aux limites de quantification.
Comme dans le cas des déjections, les COV présents chez les adultes sont fréquemment retrouvés chez les larves en quantité moindre. La quantité de (2E)-hexénal chez les larves est drastiquement abaissée alors que la quantité de (2E)-octénal est quasiment identique, pour un effectif de 50 adultes ou 100 larves dans les chambres d’émission statique. Le (2E)-octénal est décrit comme une phéromone d’alarme, de défense et d’agrégation, d’où sa production par les stades larvaires et adulte.
Les expériences réalisées dans cette approche laboratoire permettent de caractériser l’empreinte chimique volatile deCimex lectulariusavec une méthodologie d’échantillonnage employant différents adsorbants, couplée à une méthode d’analyse par TD/GC/MS. Au total, 45 COV sont identifiés dont 21 déjà décrits dans la littérature. Cette approche permet d’identifier 26 nouvelles molécules, contribuant ainsi à une caractérisation plus complète de l’empreinte chimique volatile deCimex lectularius: acétone, propanal, acide acétique, 2-butanone, butanal, 2-pentanone, pentanal, 3-méthyl-butanal, hexane, 3-méthyl-2-buténal, phénol, diméthyl disulfure, (2E,4E)-hexadiénal, (2E)-hexénal, 3-hexénal, hexanal, (2E)-hexén-1-ol, benzaldéhyde, alcool benzylique, (2E,4E)-heptadiénal, heptanal, 2-heptanone, 1-hexanol, acétophénone, (2E,4Z)-octadiénal, (2E,4E)-octadiénal, 2-n-butyl furane, 6-méthyl-5-heptène-2-one, (2E)-octénal, 1-nonène, diméthyl trisulfure, octanal, 2-éthyl-1-hexanol, d-limonène, nonanal, 2-nonèn-1-ol, 1-nonanol, acétate de benzyle, décanal, dihydromyrcénol, 2-décen-1-ol, undécanal, E-géranylacétone, Z-géranylacétone, et 2,4,4-triméthyl-3-(3-méthylbutyl)cyclohex-2-enone.
La quantification de ces COV traceurs des punaises de lit met en évidence une large gamme de valeurs allant de 1 ng (voire en deçà, soit au niveau de la limite de détection) à près de 2000 ng détectés dans les tubes de prélèvement.
Les COV identifiés comme spécifiques des insectes dans cette première phase de laboratoire peuvent également potentiellement provenir d’autres sources dans les environnements intérieurs : les émissions par d’autres insectes, des micro-organismes, des produits de construction et de décoration, des produits d’entretien... Ces autres sources potentielles, qui peuvent avoir ou non des origines biologiques, sont appelées facteurs de confusion.
Ainsi, chez les insectes, le (E)-2-hexénal a été identifié chez deux espèces de blattes,Blatta orientalisetPeriplanata americana(Brossut, R, 1983, « Allomonal Secretions in Cockroaches » (Sécrétions allomonales chez les blattes), Journal of Chemical Ecology 9 (1): 143‑58, https://doi.org/10.1007/BF00987778 ; Krivosheina, G. G., et K. S. Shatov, 1995, « Functions of the cockroach (Blattidae) sternal gland » (Fonctions de la glande sternale de la blatte (Blattidae))), qui sont des insectes nuisibles que l’on peut retrouver dans les environnements intérieurs. De plus, le (E)-2-octénal est un COV que l’on peut retrouver chez certains champignons (Lacaze, Isabelle, 2016, « Etude des mécanismes de colonisation des produits de construction par les micromycètes », Université Paris Diderot - Paris 7) qui peuvent également être des contaminants retrouvés dans les espaces clos.
Pour aller plus loin, une recherche des deux substances les plus emblématiques émises par les punaises de lit que sont le (2E)-hexénal et le (2E)-octénal a été réalisée dans la base de données PANDORE (comPilAtioN of inDOor aiR pollutAnt emissions (compilation d’émissions de polluants d’air intérieur), Abadie MO., Blondeau P (2011): PANDORA database: A compilation of indoor air pollutant emissions (Base de données PANDORA : Une compilation des émissions de polluants de l'air intérieur), HVAC&R Research, 17:4, 602-613). La base de données comprend les paramètres d’émissions spécifiques en COV et particules de 599 produits à usage domestique et matériaux, provenant d’une revue de la littérature couvrant la période 1982-2014.
Au terme de cette première phase de laboratoire, et après étude des facteurs de confusion potentiels indiqués ci-dessus, les COV sont catégorisés afin de rendre compte de leur pertinence. Les catégories sont définies comme suit :
• Catégorie 1 : COV spécifiques des punaises de lit, d’après la littérature et/ou les expériences réalisées dans cette première phase, ayant possiblement une autre origine que celle des punaises mais rarement observés dans les logements et de ce fait pertinents : acétone, 2-butanone, 2-pentanone, diméthyl disulfure, (2E)-hexénal, 3-hexénal, hexanal, (2E)-hexén-1-ol, benzaldéhyde, heptanal, 1-hexanol, (2E,4Z)-octadiénal, (2E,4E)-octadiénal, 2-n-butyl furane, (2E)-octénal, diméthyl trisulfure, octanal, nonanal, 2-nonèn-1-ol, décanal ;
• Catégorie 2 : COV spécifiques des punaises de lit d’après les expériences réalisées dans cette première phase, mais à ce jour non décrits dans la littérature et pouvant possiblement avoir une autre origine que celle des punaises. Ces COV sont moyennement observés en général dans les logements et présentent donc une pertinence relative : 3-méthyl-2-buténal, (2E,4E)-hexadiénal, (2E,4E)-heptadiénal, 2-heptanone, 1-nonanol, et 2,4,4-triméthyl-3-(3-méthylbutyl)cyclohex-2-enone ;
• Catégories 3 : COV ubiquitaires retrouvés très fréquemment dans les logements français et provenant quasi systématiquement d’une autre origine que celle des punaises de lit : butanal, pentanal, 3-méthyl-butanal, hexane, acétophénone, 2-éthyl-1-hexanol, dihydromyrcénol.
Plus un COV est fréquemment retrouvé dans les logements, plus sa pertinence au regard des punaises de lit peut être remise en question. Ainsi, seize substances sont détectées systématiquement, cinq substances sont très souvent détectées (plus de 40 % du temps) et six substances sont moins souvent détectées (entre 1 % et 9 % du temps).
L’acétone est fortement associée au métabolisme humain et donc à la présence des occupants. Il n’est donc pas considéré comme une cible spécifique aux punaises de lits car les facteurs de confusion sont nombreux. De même, le propanal n’est pas systématiquement recherché car mesuré selon la même voie analytique que l’acétone, mais il est en général observé à des concentrations élevées aussi bien en environnement intérieur qu’en extérieur. Il n’est de ce fait pas considéré non plus comme spécifique des punaises de lits.
Seuls 18 COV ne sont jamais détectés dans des logements neufs. Parmi ces COV, 8 sont des substances identifiées dans la bibliographie et 10 sont considérées pertinentes à l’issue de la phase expérimentale. Les COV à la fois pertinents du point de vue expérimental et préalablement observés dans d’autres études sont au nombre de quatre, il s’agit des composés suivants : (2E)-hexénal, (2E)-octénal et des 2 isomères de l’octadiénal (2E,4Z) et (2E,4E).
Les autres COV non spécifiques aux punaises de lit peuvent néanmoins s’avérer utiles pour la gestion des facteurs de confusion.
Dans une deuxième phase du procédé, les composés organiques volatils (COV) présents dans au moins un local d’étalonnage (un panel statistiquement représentatif de locaux habités) sont prélevés et identifiés, la présence ou l’absence de punaises de lit dans ces locaux d’étalonnage étant connue. La société Demanderesse a effectué cette phase sur un panel de 102 locaux.
Dans cette deuxième phase, la méthodologie d’échantillonnage active employée repose sur l’emploi de deux types de tubes de prélèvements (TTA et MIXTES) associé à la méthodologie d’analyse présentée et déployée dans la première phase du procédé. Cette deuxième phase permet de valider la liste des COV retenue lors de la première phase.
Dans les conditions environnementales réalistes, les cibles (2E)-hexénal et (2E)-octénal sont retrouvées dans les locaux infestés ou anciennement infestés. Cependant, le (2E)-hexénal n’est jamais détecté dans des locaux non infestés par des punaises de lit et il est quantifié en spécifique à des masses comprises entre 1 et 24 ng dans les locaux infestés ou anciennement infestés. Ce n’est pas le cas du (2E)-octénal qui est détecté ou non que l’infestation soit inexistante, en cours ou passée, à des quantités très variables comprises entre 0,02 ng et 60 ng.
Les molécules suivantes : (2E,2Z)-octadiénal, (2E,2E)-octadiénal, 3-hexénal, (2E)-hexén-1-ol, 1-nonanol, diméthyl trisulfure ainsi que le 2,4,4-triéthyl-1-hexène, ne sont pas identifiées dans les locaux, que ceux-ci soient non infestés, anciennement infestés ou infestés. Ces cibles, pourtant détectées dans la première phase du procédé, ne sont pas donc retrouvées au cours de la deuxième phase du procédé et ne sont donc pas retenues.
L’ensemble des autres molécules est identifié à des concentrations variables.
Dans cette deuxième phase du procédé, les cibles distinguées pertinentes au terme de la première phase sont à nouveau classées en trois catégories en vue d’élaborer en fonction de leur pertinence pour une infestation de punaises de lit :
• A : cible pertinente : 3-méthyl-2-buténal, diméthyl disulfure, (2E,4E)-hexadiénal, (2E)-hexénal, alcool benzylique, (2E,4E)-heptadiénal, 2-n-butyl furane, (2E)-octénal, undécanal, Z-géranylacétone, E-géranylacétone ;
• B : cible potentiellement pertinente : 2-pentanone, 2-heptanone ;
• C : cible optionnelle, à ne pas exclure, potentiellement pertinente : 3-hexénal, (2E)-hexén-1-ol, (2E,4Z)-octadiénal, (2E,4E)-octadiénal, diméthyl trisulfure, et 2,4,4-triméthyl-3-(3-méthylbutyl)cyclohex-2-enone.
Cette classification prend en compte les résultats obtenus sur tubes TTA, qui apporte une information qualitative sensiblement plus importante que les tubes MIXTES.
Une analyse statistique des données est ensuite effectuée.
A l’issue des deux premières phases, on aboutit à une liste de 40 COV cibles, les COV n’étant jamais rencontrés en situation réelle étant éliminés.
Un modèle prédictif est ensuite construit, en utilisant un arbre de classification CART alimenté en données d’entrée par les données de concentration des 40 COV (variables continues) cibles mesurées dans 102 locaux parmi lesquels certains sont infestés. C’est un modèle parcimonieux qui va sélectionner les variables les plus pertinentes.
Le processus de construction du modèle se fait par la sélection successive des variables prises une à une et séparant le mieux l’échantillon au regard de la variable à prédire (variable binaire de présence/absence des punaises de lit). Ce processus de binarisation permet d’établir un arbre de décision, avec à chaque niveau une variable sélectionnée permettant la meilleure séparation des observations, jusqu’à n’obtenir que des nœuds terminaux les plus purs (composés uniquement soit d’observations de cas d’absences ou soit d’observations de présences de punaises de lits).
Le critère de sélection des variables à chaque niveau est basé sur l’indice de Gini en testant tous les points de coupures possibles à chaque variable et en déduisant un seuil de coupure optimal qui maximise le critère de segmentation.
A chaque niveau de l’arbre, correspond un indice moyen de Gini G qui comptabilise la perte d’information associée à un COV j et un seuil de coupure c :
Avec :
M : le nombre de modalités à prédire qui est de 2 (modalité 0 – absence et modalité 1 – présence de punaises de lit)
n : le nombre total de locaux,
L’objectif du modèle est de minimiser la perte d’information à chaque division de l’arbre et donc que la valeur G(j,c) soit la plus faible possible. A cette valeur optimale G(j*,c*), va donc correspondre la variable optimale j* (donc le COV le plus pertinent) et un seuil de coupure optimal c* (valeur de concentration optimale).
On mesure ensuite l’indice d’amélioration (gain) associé à chaque division par le calcul de J :
où fidésigne la fréquence de la i-ème modalité de la variable binaire associée à la présence/absence de punaises de lit, déterminée au niveau du nœud parent (avant division) et M le nombre de modalités à prédire.
Cet indice d’amélioration J varie typiquement entre 0,5 (gain maximal pour une distribution initiale en deux modalités à 50/50) et 0 (aucun gain).
L’impact de chaque COV et paramètre du modèle est donné à chaque division par cet indice d’amélioration J. Le COV présentant la valeur d’impact la plus haute à chaque division est retenu dans le modèle. Il est dit actif.
A l’échelle de l’arbre, chaque COV se voit attribuer une valeur d’impact global qui représente la moyenne pondérée de l’impact sur chaque segmentation, en donnant moins d’importance aux parties basses de l’arbre. Un COV peut avoir un impact global élevé tout en restant inactif (le COV n’a jamais été retenu pour une division donnée, il est très souvent arrivé en deuxième ou troisième position par exemple).
Les autres paramètres du modèle ont été fixés comme suit pour établir les critères d’arrêt de la segmentation :
Effectif minimum de segmentation du nœud : 5 (pas de segmentation pour un nœud de 4 locaux ou moins)
Nombre maximum de niveau de l’arbre fixé à 10
Seuil de spécialisation ou critère d’arrêt : 1
Effectif d'admissibilité : 1 local
Pas d’élagage de l’arbre
L’arbre final retenu illustré en .
L’impact global de chaque COV est donné dans le Tableau 3 suivant. Les COV listés en gras sont ceux qui interviennent directement dans l’arbre de décision, à savoir les COV dits discriminants. Les autres COV, comme le 3-méthyl-2-buténal sont dit inactifs. Ils peuvent parfois être bien positionnés mais sont surclassés par d’autres COV.
Le COV qui présente le plus d’impact globalement est un COV inactif, le décanal. Bien que bien positionné dans les premières segmentations, il a été surclassé par le 6-MHO pour le premier nœud, il est en 6èmeposition dans le deuxième nœud, en troisième dans le troisième nœud et en concurrence égale avec l’hexanal pour le nœud 11.
[Tableau 3] : Impact global de chaque COV et paramètre dans le modèle CART (en gras COV actif)
Variable | Impact global | Nœud(s) associé(s) |
Décanal | 0,0164 | 3, 8 |
6-MHO (6-méthyl-5-heptèn-2-one) | 0,0159 | 1, 12 |
Nonanal | 0,0143 | 23 |
E-géranylacétone | 0,0130 | 7 |
3-méthyl-2-buténal | 0,0125 | |
Octanal | 0,0122 | |
Heptanal | 0,0118 | |
Hexanal | 0,0118 | 11 |
(2E)-Octénal | 0,0117 | 2, 6 |
D-limonène | 0,0101 | |
Dihydromyrcénol | 0,0096 | |
(2E,4E)-hexadiénal | 0,0086 | |
Acétate de benzyle | 0,0072 | |
(2E)-buténal | 0,0070 | |
DMDS (diméthyl disulfure) | 0,0069 | 5 |
(2E)-hexénal | 0,0066 | |
2-pentanone | 0,0063 | 10 |
Nicotine | 0,0062 | |
2-heptanone | 0,0060 | |
(2E,4E)-heptadiénal | 0,0057 | |
Acétophénone | 0,0057 | 19 |
Pyridine | 0,0056 | |
1-hexanol* | 0,0055 | |
Benzaldéhyde | 0,0055 | |
2-n-butyl furane | 0,0054 | |
Propanal | 0,0051 | |
Undécanal | 0,0051 | |
2-butanone | 0,0049 | |
Alcool benzylique | 0,0049 | |
Acétone | 0,0047 | |
2-éthyl-1-hexanol | 0,0046 | |
(2E,4E)-octadiénal | 0,0040 | |
(2E,4Z)-octadiénal | 0,0037 | |
Pentanal | 0,0033 | |
3-méthyl-butanal | 0,0030 | |
Hexane | 0,0029 | |
Z-géranylacétone | 0,0027 | |
2-nonèn-1-ol | 0,0025 | |
Butanal | 0,0025 | |
1-Nonanol | 0,0024 |
Le Tableau 4 suivant liste les COV actifs par nœud ainsi que le ou les concurrents directs avec une valeur d’impact inférieure. En gras sont représentés les COV actifs retenus (COV discriminants) ou les COV concurrents qui présentent une valeur d’impact identique. Un COV concurrent (avec son propre seuil de coupure) peut donc être aussi performant que le COV actif retenu. Un COV suppléant présente par contre un impact local inférieur au COV actif, qui se traduirait par une dégradation des performances du modèle.
[Tableau 4] : Impact des COV actif à chaque nœud de segmentation et premiers concurrents
Nœud | COV actif | Impact local | Concurrents/suppléants | Impact local |
1 | 6-MHO | 0.1531 | Décanal | 0.129 |
2 | (2E)-octénal | 0,0309 | Nicotine | 0,0294 |
3 | Décanal | 0,0436 | E-2-buténal | 0,0402 |
5 | DMDS | 0,0423 | E-géranyl acétone | 0,0377 |
6 | (2E)-octénal | 0,0245 | 6 COV | 0,0224 |
7 | E-géranylacétone | 0,0487 | Acétophénone | 0,0316 |
8 | Décanal | 0,018 | 2 COV | 0,018 |
10 | 2-Pentanone | 0,018 | Benzaldéhyde | 0,009 |
11 | Hexanal | 0,0339 | 2 COV | 0,0339 |
12 | 6-MHO | 0,0294 | 5 COV | 0,0163 |
19 | Acétophénone | 0,0191 | (2E,4E)-heptadiénal | 0,0093 |
23 | Nonanal | 0,0092 | 3-méthyl-butanal | 0,0092 |
Par exemple pour le nœud 8, le décanal, COV actif, présente la même valeur d’impact que deux autres COV concurrents qui sont le 1-hexanol et l’acétophénone. De même, pour le nœud 11, l’impact local de l’hexanal est le même que deux autres COV, le nonanal et le décanal. Le 3-méthyl-butanal est un COV concurrent du nonanal au niveau du nœud 23.
Pour le nœud 6, le (2E)-octénal a été retenu comme COV actif avec une valeur d’impact à 0,0245. Mais six autres COV sont des suppléants avec une valeur d’impact plus faible (benzaldéhyde, acétate de benzyle, E-géranylacétone, 2-n-butylfurane, (2E,4Z)-octadiénal, hexane). Ceci signifie que l’un de ces COV pourrait éventuellement se substituer au (2E)-octénal (s’il n’est pas disponible) en dégradant un peu le modèle.
Pour le nœud 12, les cinq COV suppléants sont acétone, alcool benzylique, E-géranylacétone, 3-méthyl-2-buténal et DMDS.
Les COV retenus pour l’application du modèle sont les neuf COV et leurs seuils de coupure retenus avec l’impact local le plus élevé à chaque division.
Les COV inactifs à concurrence égale peuvent supplanter au besoin un COV actif pour les nœuds correspondants. L’utilisation de COV inactifs suppléants n’est pas conseillée.
Un arbre équivalent peut donc être construit en supplantant par exemple le nonanal (seuil > 13,65 µg/m3) par le 3-méthyl-butanal (seuil ≤ 0,02 µg/m3) au niveau du nœud 23. Les deux arbres aboutissent exactement à la même classification des observations.
A titre comparatif, en prenant les indices définis ci-dessous respectivement 2H2O, 2HZGA et 2H2P comme indices d’infestation sur un panel de 41 locaux infestés, similairement à ce qui existe pour d’autres agents biologiques nuisibles, la société Demanderesse a obtenu une valeur prédictive de présence de punaises de lit, respectivement de 46%, 31% et 36%, ce qui est clairement insuffisant :
- Indice 2H2O (valeur 0, 1 ou 2) : une limite de détection (LD) analytique du 2-hexénal (2H) de 0,005 μg/m3pour un volume de prélèvement de 12 L est définie : si 2H < LD (0,005 μg/m3) alors 2H2O=0, et si 2H ≥ LD, alors si le ratio (2E)-octénal/(2E)-hexénal < 2, alors 2H2O=1, si le ratio (2E)-octénal/(2E)-hexénal ≥ 2, alors 2H2O=2.
- Indice 2H2P (valeur 0, 1 ou 2) : une limite de détection (LD) analytique du 2-hexénal (2H) de 0,005 μg/m3pour un volume de prélèvement de 12 L est définie : si 2H < LD (0,005 μg/m3) alors 2H2P=0, et si 2H ≥ LD, alors si le ratio 2-octénal/2-pentanone < 4, alors 2H2P=1, si le ratio 2-octénal/2-pentanone ≥ 4, alors 2H2P=2.
- Indice 2HZGA (valeur 0, 1 ou 2) : une limite de détection (LD) analytique du 2-hexénal (2H) de 0,005 μg/m3pour un volume de prélèvement de 12 L est définie : si 2H < LD (0,005 μg/m3) alors 2HZGA=0, et si 2H ≥ LD, alors si la concentration de la Z-géranyl-acétone < 0,05 μg/m3, 2HZGA=1 et si la concentration de la Z-géranyl-acétone ≥ 0,05 μg/m3, 2HZGA=2.
L’arbre de décision selon la présente invention, construit comme détaillé ci-dessus et appliqué sur un panel indépendant de 41 locaux, permet quant à lui de détecter à 93% qu’un local est infesté. De même, un diagnostic négatif par l’arbre de décision s’avère vrai à 95%. Avec un impact intrusif minime, un coût de mise en œuvre simple, puisque l’arbre de décision n’est construit qu’une fois pour toutes et peut par la suite être utilisé sur tous les prélèvements effectués dans des locaux, on obtient donc de manière surprenante une excellente prédiction, par l’opération préalable de choix des COV utilisés pour construire l’arbre de décision.
Claims (9)
- Procédé de détection de punaises de lit dans un local, caractérisé par le fait qu’il comprend les étapes consistant à :
- sélectionner un groupe de composés organiques volatils (COV) cibles ;
- construire avec le groupe de composés organiques volatils cibles un arbre de décision en fonction de la corrélation entre chaque composé organique volatil du groupe de composés organiques volatils cibles et la présence de punaises de lits, les entrées de l’arbre de décision construit étant des composés organiques discriminants représentant un sous-groupe des composés organiques cibles ; et, pour chaque détection de punaises de lit dans un local :
- prélever l’air dans au moins un emplacement déterminé du local ;
- extraire les composés organiques volatils du groupe de composés organiques volatils présents dans l’air prélevé ; et
- parcourir l’arbre de décision en fonction des concentrations des composés organiques volatils discriminants présents dans l’air prélevé pour en déduire l’absence ou la présence de punaises de lit dans le local. - Procédé selon la revendication 1, dans lequel la sélection du groupe de composés organiques volatils cibles comprend les étapes consistant à :
A - prélever et identifier les composés organiques volatils présents dans au moins un environnement d’élevage, la présence de punaises de lit et leur stade de développement dans ledit au moins un environnement d’élevage étant connus ;
B - prélever et identifier les composés organiques volatils (COV) présents dans au moins un local d’étalonnage, la présence ou l’absence de punaises de lit dans ledit au moins un local d’étalonnage étant connue. - Procédé selon la revendication 2, caractérisé par le fait que, à l’étape A, les stades de développement sont œufs, larves et adultes.
- Procédé selon l’une des revendications 1 à 3, caractérisé par le fait que les composés organiques discriminants sont choisis parmi la 6-méthyl-5-heptén-2-one (6-MHO), le 1-hexanol, le (2E)-octénal, le disulfure de diméthyle (DMDS), la E-géranylacétone, la 2-pentanone, le 3-méthyl-butanal, l’acétophénone, l’hexanal, le nonanal, le décanal, facultativement parmi le benzaldéhyde, le benzylacétate, l’hexane, le 2-n-butylfurane, le (2E, 4Z) octadiénal, la 3-(N-méthyl-2-pyrrolidinyl)pyridine, le (2E)-buténal, l’acétone, le phénylméthanol, le 3-méthyl-2-buténal, le (2E, 4E)-heptadiénal.
- Procédé selon l’une des revendications 1 à 4, caractérisé par le fait que l’arbre de décision est construit par un algorithme CART en utilisant comme variables les composés organiques volatils (COV) cibles et comme critère de segmentation l’indice de diversité de Gini, par sélection successive des variables prises une à une et séparant le mieux l’échantillon par rapport à la présence ou à l’absence de punaises de lit, en testant les points de coupure possibles pour chaque variable et en sélectionnant le seuil de coupure qui rend maximal le critère de segmentation, avec à chaque niveau de l’arbre un indice moyen de Gini G qui comptabilise la perte d’informations associée à un composé organique volatil j (COVj) et un seuil de coupure c :
avec :
M : le nombre de modalités à prédire qui est de 2 (modalité 0 – absence et modalité 1 – présence de punaises de lit)
n : le nombre total de locaux,
puis on mesure l’indice d’amélioration associé à chaque division par le calcul de J :
- Procédé selon la revendication 5, caractérisé par le fait que l’effectif de segmentation minimum du nœud est fixé à 5, le nombre maximal de niveau de l’arbre est 10, le seuil de spécialisation ou critère d’arrêt est 1, l’effectif d’admissibilité est 1 local d’étalonnage, et l’arbre est sans élagage.
- Procédé selon l’une des revendications 1 à 6, caractérisé par le fait que le prélèvement d’air est réalisé sur un adsorbant thermodésorbable, de préférence du Tenax®TA avec un volume de prélèvement compris entre 9 et 15 litres d’air, de préférence 10 litres d’air.
- Procédé selon la revendication 7, caractérisé par le fait que les composés organiques volatils sont piégés sur un tube contenant l’adsorbant lors du prélèvement et sont analysés par une technique de thermodésorption – chromatographie en phase gazeuse – spectromètre de masse (TD-GC-MS).
- Procédé selon l’une des revendications 1 à 8, caractérisé par le fait que l’air est prélevé dans le local suspecté abriter des punaises de lit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2209803A FR3140174B1 (fr) | 2022-09-27 | 2022-09-27 | Procédé de détection de punaises de lit |
PCT/IB2023/059489 WO2024069385A1 (fr) | 2022-09-27 | 2023-09-26 | Procédé de détection de punaises de lit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2209803A FR3140174B1 (fr) | 2022-09-27 | 2022-09-27 | Procédé de détection de punaises de lit |
FR2209803 | 2022-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3140174A1 true FR3140174A1 (fr) | 2024-03-29 |
FR3140174B1 FR3140174B1 (fr) | 2024-10-04 |
Family
ID=85461884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2209803A Active FR3140174B1 (fr) | 2022-09-27 | 2022-09-27 | Procédé de détection de punaises de lit |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3140174B1 (fr) |
WO (1) | WO2024069385A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2913501A1 (fr) | 2007-03-05 | 2008-09-12 | Ct Scient Tech Batiment Cstb | Procede de detection d'une contamination fongique |
EP2756755A2 (fr) * | 2006-10-23 | 2014-07-23 | Dow AgroSciences LLC | Techniques de détection, de surveillance et de contrôle des parasites de literie. |
FR3028043A1 (fr) | 2014-10-31 | 2016-05-06 | Centre Scient Et Technique Du Batiment (Cstb) | Procede de detection d'une contamination a la merule |
FR3075964A1 (fr) | 2017-12-21 | 2019-06-28 | Centre Scientifique Et Technique Du Batiment (Cstb) | Procede de detection d'une infestation d'insectes |
EP3629723B1 (fr) * | 2017-05-22 | 2022-09-14 | Corteva Agriscience LLC | Détection sélective des punaises des lits |
-
2022
- 2022-09-27 FR FR2209803A patent/FR3140174B1/fr active Active
-
2023
- 2023-09-26 WO PCT/IB2023/059489 patent/WO2024069385A1/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2756755A2 (fr) * | 2006-10-23 | 2014-07-23 | Dow AgroSciences LLC | Techniques de détection, de surveillance et de contrôle des parasites de literie. |
FR2913501A1 (fr) | 2007-03-05 | 2008-09-12 | Ct Scient Tech Batiment Cstb | Procede de detection d'une contamination fongique |
FR3028043A1 (fr) | 2014-10-31 | 2016-05-06 | Centre Scient Et Technique Du Batiment (Cstb) | Procede de detection d'une contamination a la merule |
EP3629723B1 (fr) * | 2017-05-22 | 2022-09-14 | Corteva Agriscience LLC | Détection sélective des punaises des lits |
FR3075964A1 (fr) | 2017-12-21 | 2019-06-28 | Centre Scientifique Et Technique Du Batiment (Cstb) | Procede de detection d'une infestation d'insectes |
Non-Patent Citations (7)
Title |
---|
ABADIE MO., BLONDEAU P: "PANDORA database: A compilation of indoor air pollutant émissions", HVAC&R RESEARCH, vol. 17, no. 4, 2011, pages 602 - 613 |
ANONYMOUS: "Hygiène, désinfection et 3D. Les bailleurs sociaux innovent contre les punaises", 20 November 2019 (2019-11-20), XP093048139, Retrieved from the Internet <URL:https://www.batiment-entretien.fr/actualite/hygiene-desinfection-et-3d-les-bailleurs-sociaux-innovent-contre-les-punaises> [retrieved on 20230519] * |
BROSSUT, R: "Allomonal Secretions in Cockroaches", JOURNAL OF CHEMICAL ECOLOGY, vol. 9, no. 1, 1983, pages 143 - 58 |
CANNON CATHERINE ET AL: "The volatile organic compound profile from Cimex lectularius in relation to bed bug detection canines", FORENSIC CHEMISTRY, vol. 18, 9 January 2020 (2020-01-09), pages 100214, XP093048156, ISSN: 2468-1709, DOI: 10.1016/j.forc.2020.100214 * |
EOM IN-YONG ET AL: "Simultaneous sampling and analysis of indoor air infested withCimex lectulariusL. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device", ANALYTICA CHIMICA ACTA, vol. 716, 6 July 2011 (2011-07-06), pages 2 - 10, XP028887532, ISSN: 0003-2670, DOI: 10.1016/J.ACA.2011.06.010 * |
KRIVOSHEINA, G. G.K. S. SHATOV, FUNCTIONS OF THE COCKROACH (BLATTIDAE) STERNAL GLAND, 1995 |
LACAZE, ISABELLE: "Etude des mécanismes de colonisation des produits de construction par les micromycètes", vol. 7, 2016, UNIVERSITÉ PARIS DIDEROT |
Also Published As
Publication number | Publication date |
---|---|
FR3140174B1 (fr) | 2024-10-04 |
WO2024069385A1 (fr) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schleibinger et al. | Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. | |
Ortiz et al. | Volatile composition of coffee berries at different stages of ripeness and their possible attraction to the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) | |
Blande | Effects of air pollution on plant–insect interactions mediated by olfactory and visual cues | |
Cellini et al. | Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose | |
US20140127672A1 (en) | Disease detection in plants | |
Wurmitzer et al. | Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study | |
Ferry et al. | Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field | |
Zhang et al. | Using charcoal as base material reduces mosquito coil emissions of toxins | |
Cha et al. | Identification of host fruit volatiles from three mayhaw species (Crataegus Series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the Southern United States | |
Alfaro et al. | Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae): influence of fly sex, age, and mating status | |
Heath et al. | Sex pheromone of Cylas formicarius: History and implications of chemistry in weevil management | |
Tanaka et al. | Volatile biomarkers for early-stage detection of insect-infested brown rice: Isopentenols and polysulfides | |
Mcewan et al. | Identification of volatile organic compounds emitted in the field by oilseed rape (Brassica napus ssp. oleifera) over the growing season | |
Light et al. | Varroa destructor mite electrophysiological responses to honey bee (Apis mellifera) colony volatiles | |
Wernis et al. | Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California | |
WO2024069385A1 (fr) | Procédé de détection de punaises de lit | |
Altuzar et al. | Electrophysiological and behavioural responses of Scyphophorus acupunctatus (Col., Curculionidae) to Agave tequilana volatiles | |
Li | Analytical methods for the analysis of volatile natural products | |
Kai et al. | Identification of key odour components in pig house air using hyphenated gas chromatography olfactometry | |
Mayland et al. | Volatiles from fresh and air-dried vegetative tissues of tall fescue (Festuca arundinacea Schreb.): relationship to cattle preference | |
US20170245495A1 (en) | Chemical lure for asian citrus psyllid | |
Ingegno et al. | Host plant perception and selection in the sibling species Macrolophus melanotoma and Macrolophus pygmaeus (Hemiptera: Miridae) | |
EP3729073B1 (fr) | Procédé de détection d'une infestation d'insectes | |
Potter et al. | A re-examination of corn (Zea mays L.) ear volatiles | |
Cha et al. | Identification of a new blend of host fruit volatiles from Red Downy hawthorn, Crataegus mollis, Attractive to Rhagoletis pomonella Flies from the Northeastern United States |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20240329 |
|
PLFP | Fee payment |
Year of fee payment: 3 |