[go: up one dir, main page]

FR3127061B1 - Method for generating training images for supervised learning of a defect detection model of a manufactured object - Google Patents

Method for generating training images for supervised learning of a defect detection model of a manufactured object Download PDF

Info

Publication number
FR3127061B1
FR3127061B1 FR2109672A FR2109672A FR3127061B1 FR 3127061 B1 FR3127061 B1 FR 3127061B1 FR 2109672 A FR2109672 A FR 2109672A FR 2109672 A FR2109672 A FR 2109672A FR 3127061 B1 FR3127061 B1 FR 3127061B1
Authority
FR
France
Prior art keywords
manufactured object
model
alteration
defect detection
supervised learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR2109672A
Other languages
French (fr)
Other versions
FR3127061A1 (en
Inventor
Mohamed Slim Werda
Glênio Simião Ramalho
Aurèle Guillotin
Khalid Kouiss
Michael Decottignies
Thibault Poline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clermont Auvergne Inp
Centre National de la Recherche Scientifique CNRS
Faurecia Sieges dAutomobile SAS
Universite Clermont Auvergne
Original Assignee
Clermont Auvergne Inp
Centre National de la Recherche Scientifique CNRS
Faurecia Sieges dAutomobile SAS
Universite Clermont Auvergne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clermont Auvergne Inp, Centre National de la Recherche Scientifique CNRS, Faurecia Sieges dAutomobile SAS, Universite Clermont Auvergne filed Critical Clermont Auvergne Inp
Priority to FR2109672A priority Critical patent/FR3127061B1/en
Publication of FR3127061A1 publication Critical patent/FR3127061A1/en
Application granted granted Critical
Publication of FR3127061B1 publication Critical patent/FR3127061B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

La présente divulgation concerne un procédé (10) de génération d’images d’apprentissage pour l’apprentissage supervisé d’un modèle de détection de défaut d’un objet manufacturé, comportant des étapes de : (S11) détermination d’un modèle 3D représentant l’objet manufacturé dépourvu de défaut, ledit modèle 3D comportant un maillage 3D définissant des faces décrivant une enveloppe extérieure dudit objet manufacturé, et des textures associées respectivement aux différentes faces du maillage 3D,(S12) détermination d’une altération du modèle 3D de l’objet manufacturé, ladite altération étant représentative d’un défaut à détecter,(S14) génération d’une pluralité d’images d’apprentissage représentant l’objet manufacturé en faisant varier la présence ou l’absence d’altération dans le modèle 3D de l’objet manufacturé, (S15) annotation de chaque image d’apprentissage en fonction de la présence ou de l’absence d’altération dans le modèle 3D de l’objet manufacturé. Figure de l’abrégé : Figure 1The present disclosure relates to a method (10) for generating training images for supervised learning of a defect detection model of a manufactured object, comprising steps of: (S11) determining a 3D model representing the manufactured object devoid of defects, said 3D model comprising a 3D mesh defining faces describing an exterior envelope of said manufactured object, and textures associated respectively with the different faces of the 3D mesh, (S12) determination of an alteration of the 3D model of the manufactured object, said alteration being representative of a defect to be detected, (S14) generation of a plurality of learning images representing the manufactured object by varying the presence or absence of alteration in the 3D model of the manufactured object, (S15) annotation of each training image according to the presence or absence of alteration in the 3D model of the manufactured object. Abstract Figure: Figure 1

FR2109672A 2021-09-15 2021-09-15 Method for generating training images for supervised learning of a defect detection model of a manufactured object Active FR3127061B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR2109672A FR3127061B1 (en) 2021-09-15 2021-09-15 Method for generating training images for supervised learning of a defect detection model of a manufactured object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2109672 2021-09-15
FR2109672A FR3127061B1 (en) 2021-09-15 2021-09-15 Method for generating training images for supervised learning of a defect detection model of a manufactured object

Publications (2)

Publication Number Publication Date
FR3127061A1 FR3127061A1 (en) 2023-03-17
FR3127061B1 true FR3127061B1 (en) 2024-01-12

Family

ID=78212302

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2109672A Active FR3127061B1 (en) 2021-09-15 2021-09-15 Method for generating training images for supervised learning of a defect detection model of a manufactured object

Country Status (1)

Country Link
FR (1) FR3127061B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9965901B2 (en) * 2015-11-19 2018-05-08 KLA—Tencor Corp. Generating simulated images from design information
US20210201474A1 (en) * 2018-06-29 2021-07-01 Photogauge, Inc. System and method for performing visual inspection using synthetically generated images

Also Published As

Publication number Publication date
FR3127061A1 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
KR102423561B1 (en) Intelligent dam management system based on digital twin
JP7569479B2 (en) DEFECT DETECTION METHOD, APPARATUS AND SYSTEM
US11468538B2 (en) Segmentation and prediction of low-level temporal plume patterns
CN116087036B (en) Device for identifying images of sediment plume of deep sea mining and image analysis method
EP3805700A3 (en) Method, apparatus, and system for predicting a pose error for a sensor system
WO2020155929A1 (en) Method for determining rock mass integrity
EP3913532A3 (en) Object area measurement method, apparatus, storage medium and computer product
US20200041456A1 (en) Method for the graphical representation and data presentation of weld inspection results
EP2755051A3 (en) Image formation apparatus and method for nuclear imaging
CN105890527A (en) Automatic device capable of realizing wall thickness deviation measurement of steel tube
CN114708518A (en) Bolt defect detection method based on semi-supervised learning and priori knowledge embedding strategy
KR20230065188A (en) Apparatus for SaaS platform for automatic creation of descriptive AI-based dam facility defect detection, quantification, captioning, drawing, and condition evaluation
SA522441661B1 (en) Image defect detection device
FR3127061B1 (en) Method for generating training images for supervised learning of a defect detection model of a manufactured object
MX2022005355A (en) Targeted application of deep learning to automated visual inspection equipment.
CN114049320A (en) A method and device for AI quality inspection of device missing based on image similarity
CN117372854A (en) Real-time detection method for hidden danger diseases of deep water structure of dam
Sutcliffe et al. Automatic defect recognition of single-v welds using full matrix capture data, computer vision and multi-layer perceptron artificial neural networks
CN105427295A (en) Welding seam based image identification method and image identification system
CN117367544A (en) Water level monitoring method, system, equipment and medium
CN212460580U (en) Boiling phenomenon judgment device based on deep learning and optical reflection structure
JP2021157550A5 (en)
CN112115779A (en) Interpretability classroom student sentiment analysis method, system, device and medium
CN118691614B (en) Pipe wall image defect detection method and equipment based on numerical analysis
CN116308050A (en) A Dynamic Monitoring Method of Granary Grain Quantity Based on Semantic Segmentation Technology

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20230317

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4