FR3127061B1 - Method for generating training images for supervised learning of a defect detection model of a manufactured object - Google Patents
Method for generating training images for supervised learning of a defect detection model of a manufactured object Download PDFInfo
- Publication number
- FR3127061B1 FR3127061B1 FR2109672A FR2109672A FR3127061B1 FR 3127061 B1 FR3127061 B1 FR 3127061B1 FR 2109672 A FR2109672 A FR 2109672A FR 2109672 A FR2109672 A FR 2109672A FR 3127061 B1 FR3127061 B1 FR 3127061B1
- Authority
- FR
- France
- Prior art keywords
- manufactured object
- model
- alteration
- defect detection
- supervised learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
La présente divulgation concerne un procédé (10) de génération d’images d’apprentissage pour l’apprentissage supervisé d’un modèle de détection de défaut d’un objet manufacturé, comportant des étapes de : (S11) détermination d’un modèle 3D représentant l’objet manufacturé dépourvu de défaut, ledit modèle 3D comportant un maillage 3D définissant des faces décrivant une enveloppe extérieure dudit objet manufacturé, et des textures associées respectivement aux différentes faces du maillage 3D,(S12) détermination d’une altération du modèle 3D de l’objet manufacturé, ladite altération étant représentative d’un défaut à détecter,(S14) génération d’une pluralité d’images d’apprentissage représentant l’objet manufacturé en faisant varier la présence ou l’absence d’altération dans le modèle 3D de l’objet manufacturé, (S15) annotation de chaque image d’apprentissage en fonction de la présence ou de l’absence d’altération dans le modèle 3D de l’objet manufacturé. Figure de l’abrégé : Figure 1The present disclosure relates to a method (10) for generating training images for supervised learning of a defect detection model of a manufactured object, comprising steps of: (S11) determining a 3D model representing the manufactured object devoid of defects, said 3D model comprising a 3D mesh defining faces describing an exterior envelope of said manufactured object, and textures associated respectively with the different faces of the 3D mesh, (S12) determination of an alteration of the 3D model of the manufactured object, said alteration being representative of a defect to be detected, (S14) generation of a plurality of learning images representing the manufactured object by varying the presence or absence of alteration in the 3D model of the manufactured object, (S15) annotation of each training image according to the presence or absence of alteration in the 3D model of the manufactured object. Abstract Figure: Figure 1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2109672A FR3127061B1 (en) | 2021-09-15 | 2021-09-15 | Method for generating training images for supervised learning of a defect detection model of a manufactured object |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2109672 | 2021-09-15 | ||
FR2109672A FR3127061B1 (en) | 2021-09-15 | 2021-09-15 | Method for generating training images for supervised learning of a defect detection model of a manufactured object |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3127061A1 FR3127061A1 (en) | 2023-03-17 |
FR3127061B1 true FR3127061B1 (en) | 2024-01-12 |
Family
ID=78212302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2109672A Active FR3127061B1 (en) | 2021-09-15 | 2021-09-15 | Method for generating training images for supervised learning of a defect detection model of a manufactured object |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3127061B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9965901B2 (en) * | 2015-11-19 | 2018-05-08 | KLA—Tencor Corp. | Generating simulated images from design information |
US20210201474A1 (en) * | 2018-06-29 | 2021-07-01 | Photogauge, Inc. | System and method for performing visual inspection using synthetically generated images |
-
2021
- 2021-09-15 FR FR2109672A patent/FR3127061B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3127061A1 (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102423561B1 (en) | Intelligent dam management system based on digital twin | |
JP7569479B2 (en) | DEFECT DETECTION METHOD, APPARATUS AND SYSTEM | |
US11468538B2 (en) | Segmentation and prediction of low-level temporal plume patterns | |
CN116087036B (en) | Device for identifying images of sediment plume of deep sea mining and image analysis method | |
EP3805700A3 (en) | Method, apparatus, and system for predicting a pose error for a sensor system | |
WO2020155929A1 (en) | Method for determining rock mass integrity | |
EP3913532A3 (en) | Object area measurement method, apparatus, storage medium and computer product | |
US20200041456A1 (en) | Method for the graphical representation and data presentation of weld inspection results | |
EP2755051A3 (en) | Image formation apparatus and method for nuclear imaging | |
CN105890527A (en) | Automatic device capable of realizing wall thickness deviation measurement of steel tube | |
CN114708518A (en) | Bolt defect detection method based on semi-supervised learning and priori knowledge embedding strategy | |
KR20230065188A (en) | Apparatus for SaaS platform for automatic creation of descriptive AI-based dam facility defect detection, quantification, captioning, drawing, and condition evaluation | |
SA522441661B1 (en) | Image defect detection device | |
FR3127061B1 (en) | Method for generating training images for supervised learning of a defect detection model of a manufactured object | |
MX2022005355A (en) | Targeted application of deep learning to automated visual inspection equipment. | |
CN114049320A (en) | A method and device for AI quality inspection of device missing based on image similarity | |
CN117372854A (en) | Real-time detection method for hidden danger diseases of deep water structure of dam | |
Sutcliffe et al. | Automatic defect recognition of single-v welds using full matrix capture data, computer vision and multi-layer perceptron artificial neural networks | |
CN105427295A (en) | Welding seam based image identification method and image identification system | |
CN117367544A (en) | Water level monitoring method, system, equipment and medium | |
CN212460580U (en) | Boiling phenomenon judgment device based on deep learning and optical reflection structure | |
JP2021157550A5 (en) | ||
CN112115779A (en) | Interpretability classroom student sentiment analysis method, system, device and medium | |
CN118691614B (en) | Pipe wall image defect detection method and equipment based on numerical analysis | |
CN116308050A (en) | A Dynamic Monitoring Method of Granary Grain Quantity Based on Semantic Segmentation Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20230317 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |