FR3014861A1 - HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS - Google Patents
HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS Download PDFInfo
- Publication number
- FR3014861A1 FR3014861A1 FR1362908A FR1362908A FR3014861A1 FR 3014861 A1 FR3014861 A1 FR 3014861A1 FR 1362908 A FR1362908 A FR 1362908A FR 1362908 A FR1362908 A FR 1362908A FR 3014861 A1 FR3014861 A1 FR 3014861A1
- Authority
- FR
- France
- Prior art keywords
- hydrogen
- matrix
- hydrogen trap
- active product
- trap according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 36
- 239000001257 hydrogen Substances 0.000 title claims abstract description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 29
- 238000003608 radiolysis reaction Methods 0.000 title description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 229920005597 polymer membrane Polymers 0.000 claims abstract 2
- 239000012528 membrane Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000005865 ionizing radiation Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 239000010815 organic waste Substances 0.000 abstract 1
- 239000002699 waste material Substances 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- -1 filters Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910004688 Ti-V Inorganic materials 0.000 description 1
- 229910010968 Ti—V Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910008008 ZrCo Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/14—Pleat-type membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
- C01B3/503—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Ce piège à hydrogène, utilisable notamment pour l'absorption de ce gaz produit dans des récipients d'entreposage ou de transport de déchets organiques nucléaires, comprend un produit actif, divisé sous forme de poudre et enrobé dans une matrice de filtration sélective, se présentant sous forme d'une membrane mince en polymère.This hydrogen trap, which can be used in particular for the absorption of this gas produced in containers for storing or transporting nuclear organic waste, comprises an active product, divided into powder form and coated in a selective filtration matrix, presenting itself in the form of a thin polymer membrane.
Description
PIEGE A HYDROGENE, ISSU DE REACTIONS DE RADIOLYSE DESCRIPTION Le sujet de l'invention est un piège à hydrogène issu de réactions de radiolyse et/ou thermolyse. Les installations nucléaires produisent certains déchets, qui peuvent comprendre des objets et des matériaux de natures très diverses, telles que des filtres, des déchets métalliques, des gravats, des verres, etc. On y trouve également des matières organiques à base de cellulose, comme du papier, du bois, du coton, et des matières plastiques (housses de conditionnement, bottes, gants, etc.). Tous ces déchets constituent des matières, soit activées pendant leur séjour dans les installations nucléaires, soit contaminées par de la poudre de radioéléments dont l'uranium ou le plutonium lors de leur utilisation dans ces installations, ces radioéléments pouvant émettre des particules a, 13, y. Sous l'effet de l'irradiation générée par ces radioéléments, les matériaux constituant les déchets peuvent se dégrader et libérer des composés gazeux, dont la nature et la quantité est fonction de leur composition, de leur température et du type de rayonnement ; on peut citer, parmi eux, des gaz corrosifs, tels HCI, et des gaz inflammables, tel l'hydrogène gazeux H2 ou le monoxyde de carbone CO.The subject of the invention is a hydrogen trap derived from radiolysis and / or thermolysis reactions. Nuclear facilities produce certain wastes, which may include very diverse objects and materials, such as filters, scrap metal, rubble, glasses, etc. There are also organic materials based on cellulose, such as paper, wood, cotton, and plastics (packaging covers, boots, gloves, etc.). All these wastes constitute materials, either activated during their stay in nuclear installations, or contaminated by radioelement powder, including uranium or plutonium, when they are used in these installations, these radioelements being able to emit particles a, 13, there. Under the effect of the irradiation generated by these radioelements, the materials constituting the waste can degrade and release gaseous compounds, the nature and quantity of which depends on their composition, their temperature and the type of radiation; there may be mentioned, among them, corrosive gases, such as HCI, and flammable gases, such as hydrogen gas H2 or carbon monoxide CO.
Ce phénomène est appelé radiolyse. La production de tels gaz inflammables pose problème lorsque les déchets sont confinés dans une enceinte fermée de volume réduit, dite enceinte de confinement, puisqu'ils peuvent atteindre rapidement une concentration élevée sans possibilité d'évacuation. Dans le cas de l'hydrogène, le seuil d'inflammabilité dans l'air est situé autour de 4%. Lorsque la concentration dépasse ce seuil, une source de chaleur ou une étincelle peuvent suffire à enflammer le mélange gazeux ou à produire une déflagration violente. On pourra noter que ce seuil d'inflammabilité est trois fois plus élevé dans le cas du monoxyde de carbone CO, celui-ci présentant en conséquence un risque sensiblement réduit comparativement à celui de l'hydrogène.This phenomenon is called radiolysis. The production of such flammable gases is problematic when the waste is confined in a closed enclosure of reduced volume, called containment enclosure, since they can quickly reach a high concentration without the possibility of evacuation. In the case of hydrogen, the flammability threshold in air is around 4%. When the concentration exceeds this threshold, a source of heat or a spark may be sufficient to ignite the gas mixture or to produce a violent deflagration. It can be noted that this threshold of flammability is three times higher in the case of CO carbon monoxide, which consequently has a substantially reduced risk compared to that of hydrogen.
La présente invention concerne donc un dispositif de piégeage de l'hydrogène, produit par dégradation thermique et/ou radiolytique, qui pourrait être disposé dans une enceinte de confinement dans laquelle les déchets auront été placés, une telle enceinte pouvant consister en un emballage destiné au transport ou à l'entreposage de matières radioactives. Il existe des matériaux aptes à former des composés avec l'hydrogène et donc à piéger ce gaz sous forme solide, qu'on appellera par la suite moyens actifs ou « getters » ; on trouve parmi eux des oxydes métalliques ou des hydrures métalliques, à base de ZrCo, Zr2Fe, ou Zr-Ti-V, par exemple. Le piégeage de l'hydrogène, réalisé par adsorption puis absorption sur ces moyens actifs, est toutefois inhibé en présence de certains gaz produits en même temps que lui, qui constituent donc des passivants des moyens actifs, et parmi lesquels on peut citer le monoxyde de carbone CO, ainsi que certains gaz corrosifs comme HCI susmentionné. On précise que la passivation des moyens actifs se situe essentiellement en surface. Il est en général difficile de prévoir les concentrations respectives des différents gaz et donc de prévenir le risque de passivation de surface des moyens actifs. On a donc développé des pièges dans lesquels les moyens actifs sont séparés de l'atmosphère contenant l'hydrogène et les autres gaz par des filtres sélectifs, qui laissent idéalement passer l'hydrogène seulement. Dans le document de demande de brevet français enregistrée sous le numéro 11 51136, les moyens actifs sont ainsi disposés dans un récipient dont une face est équipée du filtre sélectif et qui est par ailleurs hermétiquement clos. L'hydrogène traverse le filtre et est ensuite piégé par les moyens actifs, ce qui entretient une différence de pression partielle d'hydrogène entre l'intérieur et l'extérieur du récipient, apte à diminuer continûment la pression partielle d'hydrogène produit dans l'enceinte, alors que les autres gaz sont retenus hors du récipient. Ce dispositif est en soi efficace, mais il présente l'inconvénient que le filtre risque de se fissurer lorsqu'il est constitué par une couche mince de silice microporeuse, celle-ci étant fragile, ce qui ruine alors l'efficacité du dispositif. Dans d'autres conceptions, le produit actif est présent à un état enrobé dans une matrice massive, qui assure la filtration sélective. On peut citer le document US 6 262 328 A et le document WO 2010/066811 A, dans lesquels la matrice est respectivement à base de verre ou de ciment. Le produit actif est dispersé dans la matrice à un état divisé, de manière à accroître sa surface d'adsorption ou d'absorption de l'hydrogène. La matrice doit être choisie perméable à l'hydrogène, mais pas aux autres gaz et notamment aux passivants, ce qui impose une porosité bien choisie et qui peut être difficile à obtenir. Mais ces pièges sont souvent peu efficaces de toute façon, puisque l'hydrogène doit traverser une épaisseur de la matrice très variable pour atteindre une particule de produits actifs. La cinétique de piégeage de l'hydrogène, par diffusion à travers la matrice, peut être très lente, et la portion des moyens actifs qui est située le plus à l'intérieur de la matrice peut même se révéler inutile si elle n'est pas atteinte par l'hydrogène. La conséquence est qu'une grande quantité de produit actif doit être utilisée. Le piège à hydrogène de l'invention présente, qui accomplit donc la filtration sélective, des gaz ayant un diamètre cinétique plus grand que l'hydrogène, se distingue des pièges où le produit actif est enrobé dans une matrice filtrante sous deux aspects : la matrice est en polymère ; et elle se présente sous forme de membrane. Les polymères ont la faculté de pouvoir être produits facilement en membranes d'épaisseur déterminée et uniforme. Il faut toutefois reconnaître que de nombreux polymères, comme les polycarbonates ou les polysulfones, résisteraient mal aux conditions rencontrées dans les enceintes de confinement de déchets soumis à une radiolyse ou une thermolyse, à cause de la température et de la dégradation par les rayonnements ionisants ou les produits de radiolyse. Des polymères suffisamment résistants, et présentant en plus les caractéristiques souhaitées de sélectivité de filtration, sont toutefois constitués par la famille des polyimides, et constituent donc une réalisation préférée de l'invention.The present invention therefore relates to a device for trapping hydrogen, produced by thermal and / or radiolytic degradation, which could be arranged in a containment enclosure in which the waste has been placed, such an enclosure possibly consisting of a packaging intended for transportation or storage of radioactive material. There are materials able to form compounds with hydrogen and thus to trap this gas in solid form, which will be called thereafter active means or "getters"; there are among them metal oxides or metal hydrides, based on ZrCo, Zr2Fe, or Zr-Ti-V, for example. The trapping of hydrogen, carried out by adsorption then absorption on these active means, is however inhibited in the presence of certain gases produced at the same time, which therefore constitute passivants of the active means, and among which mention may be made of carbon CO, as well as some corrosive gases like HCI mentioned above. It is specified that the passivation of the active means is essentially at the surface. It is generally difficult to predict the respective concentrations of the different gases and thus to prevent the risk of surface passivation of the active means. Traps have therefore been developed in which the active means are separated from the hydrogen-containing atmosphere and the other gases by selective filters, which ideally allow hydrogen to pass only. In the French patent application document registered under number 11 51136, the active means are thus arranged in a container, one side of which is equipped with the selective filter and which is also hermetically sealed. The hydrogen passes through the filter and is then trapped by the active means, which maintains a hydrogen partial pressure difference between the inside and the outside of the container, able to continuously reduce the partial pressure of hydrogen produced in the atmosphere. pregnant, while other gases are held out of the container. This device is itself effective, but it has the disadvantage that the filter may crack when it is constituted by a thin layer of microporous silica, the latter being fragile, which then ruins the effectiveness of the device. In other designs, the active product is present in a state embedded in a massive matrix, which provides selective filtration. No. 6,262,328 A and WO 2010/066811 A, in which the matrix is respectively based on glass or cement. The active product is dispersed in the matrix in a divided state, so as to increase its surface of adsorption or absorption of hydrogen. The matrix must be chosen permeable to hydrogen, but not to other gases and in particular to passivants, which imposes a well chosen porosity and which can be difficult to obtain. But these traps are often not very effective anyway, since hydrogen has to traverse a very variable matrix thickness to reach a particle of active products. The kinetics of hydrogen scavenging, by diffusion through the matrix, can be very slow, and the portion of the active means which is located the most inside the matrix can even be useless if it is not reached by hydrogen. The consequence is that a large amount of active product must be used. The hydrogen trap of the present invention, which thus performs the selective filtration, of gases having a kinetic diameter greater than hydrogen, is distinguished from the traps where the active product is embedded in a filter matrix in two aspects: the matrix is of polymer; and it is in the form of a membrane. The polymers have the ability to be easily produced in membranes of a determined and uniform thickness. It should be recognized, however, that many polymers, such as polycarbonates or polysulfones, would not withstand the conditions encountered in radiolytically or thermolysed waste containment enclosures because of the temperature and degradation of ionizing radiation. radiolysis products. Polymers which are sufficiently resistant and which, in addition, have the desired characteristics of filtration selectivity, are nevertheless constituted by the family of polyimides and therefore constitute a preferred embodiment of the invention.
Le choix d'une membrane pour enrober le produit actif permet à la fois de ne pas accroître excessivement les épaisseurs de filtration et d'uniformiser largement cette épaisseur. La conséquence est une utilisation plus efficace des moyens actifs. En effet, une matrice sous forme de membrane permet, pour une quantité donnée de moyens actifs, d'augmenter sensiblement la surface active du piège par rapport au cas d'une matrice filtrante massive de l'art antérieur. L'épaisseur de la matrice que l'hydrogène doit traverser pour atteindre les moyens actifs est ainsi sensiblement réduite dans le cas d'une matrice prenant la forme d'une membrane. Parmi certaines caractéristiques favorables, la membrane peut avoir une épaisseur inférieure à 100 um, de préférence, de 50 um environ. Par ailleurs, le produit actif et la matrice sont dans un rapport massique le plus élevé possible, de préférence d'au moins 1/3 et, de façon encore préférée, d'au moins 2/3. Ainsi, plus La quantité de produit actif enrobé dans la membrane est élevée et plus les capacités gravimétriques de piégeage sont importantes.The choice of a membrane for coating the active product makes it possible at the same time not to excessively increase the filtering thicknesses and to widely uniformize this thickness. The consequence is a more efficient use of the active means. Indeed, a matrix in the form of a membrane makes it possible, for a given quantity of active means, to substantially increase the active surface area of the trap relative to the case of a massive filtering matrix of the prior art. The thickness of the matrix that the hydrogen must pass through to reach the active means is thus substantially reduced in the case of a matrix in the form of a membrane. Among certain favorable characteristics, the membrane may have a thickness of less than 100 μm, preferably of approximately 50 μm. Moreover, the active product and the matrix are in the highest possible mass ratio, preferably at least 1/3 and, more preferably, at least 2/3. Thus, the higher the amount of active product embedded in the membrane, the higher the gravimetric entrapment capacities.
Parmi les caractéristiques favorables, on note également que le produit actif peut être divisé en particules ayant une dimension principale inférieure à 40 um. De manière avantageuse, les particules sont réparties de manière homogène dans la matrice. L'invention sera maintenant décrite en liaison aux Figures : - la Figure 1 est une vue de la structure du piège ; - la Figure 2 est un mode de réalisation possible et - la Figure 3 est un graphique montrant l'efficacité dudit mode de réalisation Dans ce mode de réalisation particulier, le produit actif est un alliage Zr2Fe, qu'on a broyé manuellement, jusqu'à obtenir une poudre métallique d'une granulométrie de 36 um. Cette poudre a ensuite été ajoutée à une solution polymérique à 2 % de Matrimid 5218, qui est le nom commercial d'une variété de polyimide. Une couche d'épaisseur de 50 um a ensuite été coulée, avant d'être séchée. Le rapport massique était de 2/3. On a obtenu la structure représentée à la Figure 1, où l'indication d'échelle est de 100 um.Among the favorable features, it is also noted that the active product can be divided into particles having a major dimension of less than 40 μm. Advantageously, the particles are distributed homogeneously in the matrix. The invention will now be described with reference to the figures: - Figure 1 is a view of the structure of the trap; FIG. 2 is a possible embodiment and FIG. 3 is a graph showing the efficiency of said embodiment. In this particular embodiment, the active product is a Zr2Fe alloy, which has been ground manually, to obtain a metal powder with a particle size of 36 .mu.m. This powder was then added to a 2% polymeric solution of Matrimid 5218, which is the trade name of a polyimide variety. A 50 μm thick layer was then cast before being dried. The mass ratio was 2/3. The structure shown in Figure 1, where the scale indication is 100 μm, was obtained.
Un mode de réalisation du piège est représenté à la Figure 2, dans lequel la membrane porte la référence 1. Elle est engagée dans un récipient 2, possédant au moins une ouverture et qui est formé de parois soit continues, soit discontinues. La membrane 1 peut y être disposée en faisant des plis, des godrons, une spirale, etc., pour éviter un encombrement excessif. La figure 3 compare la quantité d'hydrogène absorbée par le produit actif en fonction du temps selon que le produit actif est non enrobé (courbe supérieure A), ou au contraire enrobé (courbe inférieure B) selon le mode de réalisation détaillé ci-dessus. On montre ainsi qu'en présence du passivant CO, l'invention selon le mode de réalisation permet d'augmenter sensiblement la quantité d'hydrogène piégée par le moyen actif, la quantité de moyen actif étant identique pour les deux courbes. Le mélange gazeux était composé de 95 % de H2, et 5 % de CO à une température de 25°C et une pression partielle d'hydrogène de 3 bars au départ. Sur cette figure 3, le temps t est indiqué en jours, en abscisses, et la quantité Q d'hydrogène absorbée est indiquée en pourcentage de masse du produit actif en ordonnées. Les polyimides sont préférés, à cause de leur tenue aux températures élevées rencontrées dans les récipients des déchets nucléaires, de leur résistance à l'irradiation et de leur propriété de séparation entre, notamment, l'hydrogène et le monoxyde de carbone CO. De plus, une membrane en polyimide peut être déformée librement pour l'accommoder à n'importe quel récipient, ou n'importe quel endroit dans lequel elle doit être placée. L'épaisseur de la membrane est, de préférence, suffisamment faible pour faciliter la cinétique de diffusion du gaz jusqu'au matériau actif, mais comme les membranes trop minces peuvent se déchirer facilement, une épaisseur de 50 um a été choisie pour ce mode de réalisation, à titre de compromis. Les petites particules de produit actif, dont la dimension la plus grande est comprise entre 20 et 40 um par exemple, donnent de meilleures possibilités d'absorption.One embodiment of the trap is shown in FIG. 2, in which the membrane bears the reference 1. It is engaged in a receptacle 2 having at least one opening and which is formed of walls that are either continuous or discontinuous. The membrane 1 can be arranged by making folds, gadroons, a spiral, etc., to avoid excessive clutter. FIG. 3 compares the quantity of hydrogen absorbed by the active product as a function of time according to whether the active product is uncoated (upper curve A), or on the contrary coated (lower curve B) according to the embodiment detailed above. . It is thus shown that in the presence of the CO passivator, the invention according to the embodiment makes it possible to substantially increase the quantity of hydrogen trapped by the active means, the quantity of active means being identical for the two curves. The gaseous mixture was composed of 95% H 2 and 5% CO at a temperature of 25 ° C and a hydrogen partial pressure of 3 bar at the start. In this FIG. 3, the time t is indicated in days, on the abscissa, and the quantity Q of absorbed hydrogen is indicated as a percentage of mass of the active product on the ordinates. Polyimides are preferred because of their resistance to the high temperatures encountered in the containers of the nuclear waste, their resistance to irradiation and their property of separation between, in particular, hydrogen and carbon monoxide CO. In addition, a polyimide membrane can be freely deformed to accommodate any container, or any location in which it is to be placed. The thickness of the membrane is preferably small enough to facilitate the diffusion kinetics of the gas to the active material, but since the thin membranes can tear easily, a thickness of 50 μm has been chosen for this mode of as a compromise. Small particles of active product, the largest dimension of which is between 20 and 40 μm, for example, give better absorption possibilities.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1362908A FR3014861B1 (en) | 2013-12-18 | 2013-12-18 | HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS |
PCT/EP2014/078553 WO2015091852A1 (en) | 2013-12-18 | 2014-12-18 | Trap for hydrogen, resulting from radiolysis reactions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1362908A FR3014861B1 (en) | 2013-12-18 | 2013-12-18 | HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3014861A1 true FR3014861A1 (en) | 2015-06-19 |
FR3014861B1 FR3014861B1 (en) | 2017-05-05 |
Family
ID=50639653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1362908A Active FR3014861B1 (en) | 2013-12-18 | 2013-12-18 | HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3014861B1 (en) |
WO (1) | WO2015091852A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0837502A2 (en) * | 1996-10-15 | 1998-04-22 | Texas Instruments Inc. | Improvements in or relating to hydrogen gettering |
WO2007066372A2 (en) * | 2005-12-06 | 2007-06-14 | Saes Getters S.P.A. | Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances |
WO2012107576A1 (en) * | 2011-02-11 | 2012-08-16 | Tn International | Device for trapping flammable gases produced by radiolysis or thermolysis in a containment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262328B1 (en) | 1999-06-11 | 2001-07-17 | Westinghouse Savannah River Company | Container and method for absorbing and reducing hydrogen concentration |
FR2939700B1 (en) | 2008-12-11 | 2014-09-12 | Commissariat Energie Atomique | MATERIAL FOR HYDROGEN TRAPPING, PROCESS FOR PREPARATION AND USES |
-
2013
- 2013-12-18 FR FR1362908A patent/FR3014861B1/en active Active
-
2014
- 2014-12-18 WO PCT/EP2014/078553 patent/WO2015091852A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0837502A2 (en) * | 1996-10-15 | 1998-04-22 | Texas Instruments Inc. | Improvements in or relating to hydrogen gettering |
WO2007066372A2 (en) * | 2005-12-06 | 2007-06-14 | Saes Getters S.P.A. | Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances |
WO2012107576A1 (en) * | 2011-02-11 | 2012-08-16 | Tn International | Device for trapping flammable gases produced by radiolysis or thermolysis in a containment |
Non-Patent Citations (2)
Title |
---|
M. BALOOCH ET AL: "Hydrogen uptake mechanism of a silicone-rubber DEB getter mixture", JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS, vol. 39, no. 4, 15 January 2001 (2001-01-15), pages 425 - 431, XP055133752, ISSN: 0887-6266, DOI: 10.1002/1099-0488(20010215)39:4<425::AID-POLB1014>3.0.CO;2-M * |
NADA MEHIO ET AL: "Quantum Mechanical Basis for Kinetic Diameters of Small Gaseous Molecules", THE JOURNAL OF PHYSICAL CHEMISTRY A, vol. 118, no. 6, 13 February 2014 (2014-02-13), pages 1150 - 1154, XP055133714, ISSN: 1089-5639, DOI: 10.1021/jp412588f * |
Also Published As
Publication number | Publication date |
---|---|
WO2015091852A1 (en) | 2015-06-25 |
FR3014861B1 (en) | 2017-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2673782B1 (en) | Device for trapping flammable gases produced by radiolysis or thermolysis in a containment | |
EP2092531B1 (en) | Method for producing nuclear fuel elements and container for realising said method | |
EP2308798B1 (en) | Method for treating a getter material and method for encapsulating such a getter material | |
EP2474000B1 (en) | Process for the production of porous nuclear fuel on the basis of at least one minor actinide | |
CA2797079A1 (en) | Process and device to reduce tritium waste degassing in the nuclear industry | |
EP2367627A1 (en) | Hydrogen-trapping material, method of preparation and uses | |
FR2522867A1 (en) | NEUTRON ABSORPTION BALLS, USAGE DEVICE AND METHOD OF MANUFACTURE | |
EP0283337A1 (en) | Container for the aerial transport of dangerous materials | |
EP1344227B1 (en) | Packaging device for bulk transportation of uraniferous fissile materials | |
FR3014861A1 (en) | HYDROGEN TRAP, RESULTING FROM RADIOLYSIS REACTIONS | |
WO1988009998A1 (en) | Device for preventing a nuclear reactor core from penetrating the ground after melt-down | |
EP1776707B1 (en) | Method and device for removing flammable gases from a sealed chamber and chamber equipped with one such device | |
EP1376720A1 (en) | Battery with improved safety | |
EP3721452A1 (en) | Storage basket for storing or transporting nuclear materials | |
EP1592498B1 (en) | Method and device for capturing ruthenium present in a gaseous effluent | |
EP2321827B1 (en) | Method of removing the polymer encapsulating a nuclear fuel pellet | |
EP3132008B1 (en) | Material consisting of a preparation comprising ferrocene | |
EP2451712A1 (en) | System and method for testing devices using powders | |
FR2856723A1 (en) | Value e.g. contract bundle, transporting container, has inner envelope with flange ring which frees itself during operation of distortion/destruction unit, and outer envelope with openings for evacuation of toxic gas caused by unit | |
FR3049473A1 (en) | FILTRATION ELEMENT FOR A DOMESTIC AIR PURIFICATION SYSTEM | |
FR2626708A1 (en) | METHOD AND DEVICE FOR PROTECTING A STRUCTURE AGAINST A SPILL OF HOT AND HIGHLY REDUCING LIQUID METAL | |
FR2837976A1 (en) | Nuclear reactor has at least one structure incorporating phase change material to absorb residual heat created during accidental core melt-through | |
FR3046287A1 (en) | CONFINING STORAGE SYSTEM WITH SCREWS OF RADIOACTIVE GAS, SUCH AS TRITIUM | |
FR2979471A1 (en) | Package for container for transporting and/or storing radioactive materials, has neutron protecting unit including solid particles partially formed by thermosetting material and provided with largest dimension about specified ranges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |