FR3004196A1 - Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion. - Google Patents
Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion. Download PDFInfo
- Publication number
- FR3004196A1 FR3004196A1 FR1300763A FR1300763A FR3004196A1 FR 3004196 A1 FR3004196 A1 FR 3004196A1 FR 1300763 A FR1300763 A FR 1300763A FR 1300763 A FR1300763 A FR 1300763A FR 3004196 A1 FR3004196 A1 FR 3004196A1
- Authority
- FR
- France
- Prior art keywords
- weight
- mpa
- sheet
- less
- sheet according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 239000001989 lithium alloy Substances 0.000 title description 10
- -1 ALUMINUM-COPPER-LITHIUM Chemical compound 0.000 title description 6
- 229910000733 Li alloy Inorganic materials 0.000 title description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 18
- 239000000956 alloy Substances 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 11
- 238000005098 hot rolling Methods 0.000 abstract description 8
- 238000010791 quenching Methods 0.000 abstract description 8
- 230000000171 quenching effect Effects 0.000 abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005097 cold rolling Methods 0.000 abstract description 7
- 238000004090 dissolution Methods 0.000 abstract description 7
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 238000005266 casting Methods 0.000 abstract description 6
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 abstract description 6
- 238000000265 homogenisation Methods 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 5
- 229910052706 scandium Inorganic materials 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 238000005496 tempering Methods 0.000 abstract description 4
- 230000035882 stress Effects 0.000 description 19
- 239000010949 copper Substances 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000010455 vermiculite Substances 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 229910017539 Cu-Li Inorganic materials 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910000754 Wrought iron Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Conductive Materials (AREA)
- Metal Rolling (AREA)
Abstract
L'invention concerne une tôle d'épaisseur 0,5 à 8 mm en alliage à base d'aluminium comprenant, 2,6 à 3,0 % en poids de Cu, , 0,5 à 0.8 % en poids de Li, , 0,1 à 0,4 % en poids de Ag, , 0,2 à 0,7 % en poids de Mg,, 0,06 à 0,20 % en poids de Zr,, 0,01 à 0,15 % en poids de Ti,, optionnellement au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf,, une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, la dite tôle étant obtenue par un procédé comprenant coulée, homogénéisation, laminage à chaud et optionnellement laminage à froid, mise en solution, trempe et revenu, la composition et le revenu étant combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa. La tôle selon l'invention est particulièrement avantageuse pour la fabrication de panneaux de fuselage d'aéronef.
Description
Tôles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion Domaine de l'invention L'invention concerne les produits laminés alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés notamment à la construction aéronautique et aérospatiale.
Etat de la technique Des produits laminés en alliage d'aluminium sont développés pour produire des éléments de fuselage destinés notamment à l'industrie aéronautique et à l'industrie aérospatiale.
Les alliages aluminium - cuivre - lithium sont particulièrement prometteurs pour fabriquer ce type de produit. Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pour cent en 20 poids, permet d'augmenter la résistance mécanique. Le brevet US 5,455,003 décrit un procédé de fabrication d'alliages Al-Cu-Li qui présentent une résistance mécanique et une ténacité améliorées à température cryogénique, en particulier grâce à un écrouissage et un revenu appropriés. Ce brevet recommande en 25 particulier la composition, en pourcentage en poids, Cu = 3,0 - 4,5, Li = 0,7 - 1,1, Ag = 0 - 0,6, Mg = 0,3-0,6 et Zn = 0 - 0,75. Le brevet US 7,438,772 décrit des alliages comprenant, en pourcentage en poids, Cu : 3-5, Mg : 0,5-2, Li : 0,01-0,9 et décourage l'utilisation de teneurs en lithium plus élevées en 30 raison d'une dégradation du compromis entre ténacité et résistance mécanique. 1 Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5) Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Sc, V.
La demande de brevet US 2009/142222 Al décrit des alliages comprenant (en % en poids), 3,4 à 4,2% de Cu, 0,9 à 1,4 % de Li, 0,3 à 0,7 % de Ag, 0,1 à 0,6% de Mg, 0,2 à 0,8 % de Zn, 0,1 à 0,6 % de Mn et 0,01 à 0,6 % d'au moins un élément pour le contrôle de la structure granulaire. Cette demande décrit également un procédé de fabrication de produits filés.
La demande de brevet US 2011/0247730 décrit des alliages comprenant (en % en poids), 2.75 à 5.0% de Cu, 0,1 à 1,1 % de Li, 0,3 à 2.0 % de Ag, 0,2 à 0,8% de Mg, 0,50 à 1.5 % de Zn, jusque 1.0% de Mn, avec un rapport Cu/Mg compris entre 6,1 et 17, cet alliage étant peu sensible au corroyage. La demande de brevet CN101967588 décrit des alliages de composition (en % en poids) Cu 2,8 - 4,0 ; Li 0,8 - 1,9 ; Mn 0,2-0,6 ; Zn 0,20 - 0,80, Zr 0,04 - 0,20, Mg 0,20 - 0,80, Ag 0,1 - 0,7, Si < 0.10, Fe < 0.10, Ti < 0.12. Les caractéristiques nécessaires pour les tôles d'aluminium destinées aux applications de fuselage sont décrites par exemple dans le brevet EP 1 891 247. Il est souhaitable notamment que la tôle ait une limite d'élasticité élevée (pour résister au flambage) ainsi qu'une ténacité sous contrainte plane élevée, caractérisée notamment par une valeur élevée de facteur d'intensité de contrainte apparent à la rupture (Kapp) élevée et une longue courbe R. Le brevet EP 1 966 402 décrit un alliage comprenant 2,1 à 2,8 % en poids de Cu, 1,1 à 1,7 % en poids de Li, 01 à 0,8 % en poids de Ag, 0,2 à 0,6 % en poids de Mg, 0,2 à 0,6 % en poids de Mn, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, l'alliage étant sensiblement exempt de zirconium, particulièrement adapté pour l'obtention de tôles minces recristallisées. 2 Le dimensionnement en tolérance aux dommages consiste à déterminer une taille de défauts limite, détectables, dont on pourra garantir qu'ils n'entraîneront pas de rupture durant un intervalle de temps défini. Pour réaliser ce dimensionnement il est nécessaire de connaître le comportement des fissures soumises à un chargement représentatif sur des panneaux de taille suffisante. De plus dans le cas de l'évaluation de la capabilité pour les grandes fissures (« large damage capability ») pour laquelle on suppose la rupture non détectée d'un raidisseur, la largeur de la fissure peut être élevée et il est utile de disposer de données précises de ténacité pour des fissures très longues. Or les caractérisations de ténacité des tôles minces sont généralement effectuées sur des panneaux de largeur inférieure ou égale à 760 mm par l'essai de courbe R. L'essai de courbe R est un moyen largement reconnu pour caractériser les propriétés de ténacité. La courbe R représente l'évolution du facteur d'intensité de contrainte effective critique pour la propagation de fissure en fonction de l'extension de fissure effective, sous une contrainte croissant de façon monotone. Elle permet la détermination de la charge critique pour une rupture instable pour toute configuration pertinente à des structures d'aéronef fissurées. Les valeurs du facteur d'intensité de contrainte effective et de l'extension de fissure effective sont des valeurs réelles telles que définies dans la norme ASTM E561. On estime généralement que la largeur du panneau ne devrait pas modifier le niveau de la courbe R, à savoir le facteur d'intensité de contrainte effective pour une croissance de fissure effective donnée, mais uniquement la longueur valide de la courbe. Or il s'est avéré dans le cadre de la présente invention que cette hypothèse n'est pas toujours vérifiée et qu'en fait la caractérisation sur des panneaux plus larges, tels que des panneaux de largeur 1220 mm, rend compte de certaines propriétés spécifiques du matériau ne pouvant être déduites des caractérisations effectuées sur des panneaux moins larges. Ainsi les connaissances de l'état de la technique ne permettent pas de prédire quels alliages et quels traitements thermomécaniques permettront d'atteindre les propriétés les plus avantageuses pour Kapp et pour le niveau de la courbe R sur des panneaux de grande largeur, or ces propriétés influenceront le dimensionnement en tolérance aux dommages. Par ailleurs, pour certaines applications de fuselage, il est particulièrement important que la ténacité soit élevée dans la direction L-T. En effet, dans certaines configurations les contraintes de flexion sur le fuselage autour de l'axe des ailes deviennent critiques, 3 notamment pour la partie supérieure du fuselage. Les fissures sur les tôles dont la direction longitudinale et également la direction longitudinale du fuselage sont alors sollicitées dans la direction L-T.
Il existe un besoin pour des tôles d'épaisseur 0,5 à 8 mm, en alliage aluminium-cuivre- lithium présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes de ténacité mesurée sur des panneaux de grande largeur notamment dans la direction L-T, de propriétés de résistance mécanique statique et de résistance à la corrosion, tout en ayant une faible densité.
Objet de l'invention L'objet de l'invention est une tôle d'épaisseur 0,5 à 8 mm en alliage à base d'aluminium comprenant 2,6 à 3,0 % en poids de Cu, 0,5 à 0.8 % en poids de Li, 0,1 à 0,4 % en poids de Ag, 0,2 à 0,7 % en poids de Mg, 0,06 à 0,20 % en poids de Zr, 0,01 à 0,15 % en poids de Ti, optionnellement au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf, une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, la dite tôle étant obtenue par un procédé comprenant coulée, homogénéisation, laminage à chaud et optionnellement laminage à froid, mise en solution, trempe et revenu, la composition et le revenu étant combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa. 4 Un autre objet de l'invention est le procédé de fabrication d'une tôle selon l'invention d'épaisseur 0,5 à 8 mm en alliage à base d'aluminium dans lequel, successivement a) on élabore un bain de métal liquide comprenant 2,6 à 3,0 % en poids de Cu, 0,5 à 0.8 % en poids de Li, 0,1 à 0,4 % en poids de Ag, 0,2 à 0,7 % en poids de Mg, 0,06 à 0,20 % en poids de Zr, 0,01 à 0,15 % en poids de Ti, optionnellement au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf, une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, b) on coule une plaque à partir dudit bain de métal liquide c) on homogénéise ladite plaque à une température comprise entre 450°C et 535 °C ; d) on lamine ladite plaque par laminage à chaud et optionnellement à froid en une tôle ayant une épaisseur comprise entre 0,5 mm et 8 mm; e) on met en solution à une température comprise entre 450 °C et 535 °C et on trempe ladite tôle; h) on tractionne de façon contrôlée ladite tôle avec une déformation permanente de 0,5 à 5%, la déformation à froid totale après mise en solution et trempe étant inférieure à 15% ; i) on effectue un revenu comprenant un chauffage à une température comprise entre 130 et 170°C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 10 à 40h, la composition et le revenu étant combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa. . 5 Encore un autre objet de l'invention est l'utilisation d'une tôle selon l'invention dans un panneau de fuselage pour aéronef. Description des figures Figure 1 - Courbes R obtenues dans la direction L-T sur des tôles d'épaisseur 4 à 5 mm pour des éprouvettes de largeur 760 mm et 1220 mm. Figure 2 - Courbes R obtenues dans la direction L-T sur des tôles d'épaisseur 1,5 à 2,5 mm pour des éprouvettes de largeur 760 mm et 1220 mm.
Figure 3 - Courbes R obtenues dans la direction L-T sur des tôles E#1 ayant subi différents revenus pour des éprouvettes de largeur 760 mm et 1220 mm Figure 4 - Courbes R obtenues dans la direction L-T sur des tôles E#2 ayant subi différents revenus pour des éprouvettes de largeur 760 mm et 1220 mm. Figure 5- Relation entre la limite d'élasticité dans le sens longitudinal et le facteur d'intensité de contrainte Kapp L-T mesuré sur des échantillons de largeur 1220 mm pour les tôles d'épaisseur 4 à 5 mm. Figure 6- Relation entre la limite d'élasticité dans le sens longitudinal et le facteur d'intensité de contrainte Kapp L-T mesuré sur des échantillons de largeur 1220 mm pour les tôles d'épaisseur 1,5 à 2,5 mm.
Description de l'invention Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids.
Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Sauf mention 6 contraire les définitions des états métallurgiques indiquées dans la norme européenne EN 515 s'appliquent. Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture R', la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Dans le cadre de l'invention, les caractéristiques mécaniques sont mesurées en pleine épaisseur. Dans le cadre de la présente invention, on appelle structure granulaire essentiellement non- -recristallisée une structure granulaire telle que le taux de recristallisation à 1/2 épaisseur est inférieur à 30% et de préférence inférieur à 10% et on appelle structure granulaire essentiellement recristallisée une structure granulaire telle que le taux de recristallisation à 1/2 épaisseur est supérieur à 70% et de préférence supérieur à 90%. Le taux de recristallisation est défini comme la fraction de surface sur une coupe métallographique occupée par des grains recristallisés. Une courbe donnant le facteur d'intensité de contrainte effectif en fonction de l'extension de fissure effective, connue comme la courbe R, est déterminée selon la norme ASTM E 561. Le facteur d'intensité de contrainte critique Kc, en d'autres termes le facteur d'intensité qui rend la fissure instable, est calculé à partir de la courbe R. Le facteur d'intensité de contrainte Kco est également calculé en attribuant la longueur de fissure initiale au commencement de la charge monotone, à la charge critique. Ces deux valeurs sont calculées pour une éprouvette de la forme requise. Kapp représente le facteur Kco correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. Keff représente le facteur Kc correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. Aaeff(max) représente l'extension de fissure du dernier point de la courbe R, valide selon la norme ASTM E561. Le dernier point est obtenu soit au moment de la rupture brutale de l'éprouvette, soit éventuellement au moment où la contrainte sur le ligament non fissuré excède en moyenne la limite d'élasticité du matériau. Sauf mention contraire, la taille de fissure à la fin du stade de pré-fissurage par fatigue est W/3 pour des 7 éprouvettes du type M(T), dans laquelle W est la largeur de l'éprouvette telle que définie dans la norme ASTM E561. Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.
Des tôles d'épaisseur 0,5 à 8 mm en alliage Al-Cu-Li selon la composition de l'invention permettent, lorsque leur limite d'élasticité dans le sens longitudinal Rp0,2(L) est comprise entre 395 et 435 MPa d'obtenir une ténacité mesurée sur des panneaux de grande largeur notamment dans la direction L-T, particulièrement avantageuse.
En effet, les présents inventeurs ont constaté de manière surprenante que la ténacité mesurée dans la direction L-T sur des panneaux de largeur 1220 mm est améliorée pour une plage précise de valeurs de limite d'élasticité dans le sens longitudinal Rp0,2(L) alors que cet effet n'est pas observé lorsque la mesure est effectuée sur des panneaux de largeur 760 mm. Les présents inventeurs ont donc établi que des tôles obtenue par un procédé comprenant coulée, homogénéisation, .laminage à chaud et optionnellement laminage à froid, mise en solution, trempe et revenu ont les propriétés avantageuses quand la composition et le revenu sont combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa.
Pour certaines compositions selon l'invention, les tôles présentent les propriétés avantageuses lorsque le revenu est réalisé « au pic ». Dans le cadre de la présente invention et pour des raisons de simplification on appelle revenu réalisé « au pic » un revenu pour lequel la limite d'élasticité dans le sens transverse Rp0,2(TL) a une valeur d'au moins 95% de la limite d'élasticité dans le sens transverse Rp0,2(TL) obtenue pour un revenu ayant un temps équivalent à 155 °C de 48 h. Dans le cadre de la présente invention un revenu réalisé « au pic » est préféré. Pour d'autres compositions selon l'invention il peut être nécessaire de réaliser un sous-revenu pour atteindre la limite d'élasticité souhaitée. Cependant si le sous-revenu est trop important, certaines propriétés des tôles, notamment la stabilité thermique, ne sont pas satisfaisante. Par stabilité thermique on entend dans le cadre de la présente invention la stabilité des propriétés mécaniques lors d'une exposition en 8 température représentative des conditions subies dans l'aviation civile, celle-ci étant par exemple simulée par un vieillissement de 1000 heures à 85 °C. On choisit donc d'effectuer si nécessaire un sous-revenu pour lequel la limite d'élasticité dans le sens transverse Rp0,2(TL) a une valeur comprise entre 88% et 94% et de préférence d'au moins 91% de la valeur obtenue pour un revenu ayant un temps équivalent à 155 °C de 48 h. La teneur en cuivre des produits selon l'invention est comprise entre 2,6 et 3,0 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en cuivre est comprise entre 2,8 et 3,0 % en poids. Dans un mode de réalisation avantageux de l'invention la teneur en cuivre est au plus de 2,95 % en poids et avantageusement au plus de 2,9 % en poids.
Lorsque la teneur en cuivre est trop élevée, la limite d'élasticité Rp0,2(L) est trop élevée pour atteindre le domaine avantageux dans les conditions de sous-revenu selon l'invention. Lorsque la teneur en cuivre est trop faible, les caractéristiques mécaniques statiques minimales ne sont pas atteintes, même pour un revenu au pic. La teneur en lithium des produits selon l'invention est comprise entre 0,5 et 0,8 % en poids.
Avantageusement, la teneur en lithium est comprise entre 0,55 % et 0,75 % en poids. De manière préférée, la teneur en lithium est comprise entre 0,60 % et 0,73 % en poids. L'addition de lithium peut contribuer à l'augmentation de la résistance mécanique et de la ténacité, une teneur trop élevée ou trop faible ne permet pas d'obtenir une valeur élevée de ténacité et/ou une limite d'élasticité suffisante.
La teneur en magnésium des produits selon l'invention est comprise entre 0,2 et 0,7 % en poids, de préférence entre 0,25 et 0,50 % en poids et de manière préférée entre 0,30 et 0,45 % en poids. Dans un mode de réalisation avantageux de l'invention la teneur en magnésium est au plus de 0,4 % en poids. La teneur en zirconium est comprise entre 0,06 et 0,20 % en poids et de préférence entre 0,10 et 0,18% en poids. Lorsqu'une structure granulaire essentiellement non-recristallisée est préférée, la teneur en zirconium est avantageusement comprise entre 0,14 et 0,17 % en poids. La teneur en argent est comprise entre 0,1 et 0,4 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en argent est comprise entre 0,2 et 0,3 % en poids.
Dans un mode de réalisation de l'invention la teneur en argent est comprise entre 0,15 et 0,28 % en poids. 9 La teneur en titane est comprise entre 0,01 et 0,15 % en poids. L'addition de titane contribue à contrôler la structure granulaire, notamment lors de la coulée. L'alliage peut optionnellement contenir au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf. Ces éléments peuvent contribuer à contrôler la structure granulaire. Dans un mode de réalisation de l'invention, on n'ajoute pas de Mn, V, Cr ou Sc et leur teneur est inférieure ou égale à 0,05% en poids. 10 De préférence, les teneurs en fer et en silicium sont chacune au plus de 0,1 % en poids. Dans une réalisation avantageuse de l'invention les teneurs en fer et en silicium sont au plus de 0,08 % et préférentiellement au plus de 0,04 % en poids. Une teneur en fer et en 15 silicium contrôlée et limitée contribue à l'amélioration du compromis entre résistance mécanique et tolérance aux dommages. La teneur en zinc est inférieure à 0,2 % en poids et de préférence inférieure à 0,1 % en poids. La teneur en zinc est avantageusement inférieure à 0,04 % en poids. 20 Les impuretés inévitables sont maintenues à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total. Le procédé de fabrication des tôles selon l'invention comprend des étapes d'élaboration, coulée, laminage, mise en solution, trempe traction contrôlée et revenu. 25 Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention. Le bain de métal liquide est ensuite coulé sous une forme de plaque de laminage. La plaque de laminage est ensuite homogénéisée à une température comprise entre 450°C et 535° et de préférence entre 480 °C et 530°C. La durée d'homogénéisation est de 30 préférence comprise entre 5 et 60 heures. 10 Après homogénéisation, la plaque de laminage est en général refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. Le préchauffage a pour objectif d'atteindre une température de préférence comprise entre 400 et 500 °C permettant la déformation par laminage à chaud.
Le laminage à chaud et optionnellement à froid est effectué de manière à obtenir une tôle d'épaisseur 0,5 à 8 mm. Des traitements thermiques intermédiaires pendant le laminage et/ou après le laminage peuvent être effectués dans certains cas. Cependant de manière préférée, le procédé ne comprend pas de traitement thermique intermédiaire pendant le laminage et/ou après le laminage. La tôle ainsi obtenue est ensuite mise en solution par traitement thermique entre 450 et 535 °C, de préférence pendant 5 min à 8 h, puis trempée. Il est connu de l'homme du métier que les conditions précises de mise en solution doivent être choisies en fonction de l'épaisseur et de la composition de façon à mettre en solution solide les éléments durcissants. La tôle subit ensuite une déformation à froid par traction contrôlée avec une déformation permanente de 0,5 à 5 % et préférentiellement de 1 à 3 %. Des étapes connues telles que le laminage, le planage, le redressage la mise en forme peuvent être optionnellement réalisées après mise en solution et trempe et avant ou après la traction contrôlée, cependant la déformation à froid totale après mise en solution et trempe doit rester inférieure à 15% et de préférence inférieure à 10%. Des déformations à froid élevées après mise en solution et trempe causent en effet l'apparition de nombreuses bandes de cisaillement traversant plusieurs grains, ces bandes de cisaillement n'étant pas souhaitables. Un revenu est réalisé comprenant un chauffage à une température comprise entre 130 et 170°C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 10 à 40h de façon à atteindre une limite d'élasticité dans le sens longitudinal Rp0,2(L) comprise entre 395 et 435 MPa. Dans un mode de réalisation de l'invention dans lequel la structure granulaire est essentiellement recristallisée, une limite d'élasticité dans le sens longitudinal Rp0,2(L) comprise 395 et 415 MPa peut être préférée dans certains cas. Dans un autre mode de réalisation de l'invention dans lequel la structure granulaire est essentiellement non-recristallisée, une limite d'élasticité dans le sens longitudinal Rp0,2(L) comprise 415 et 435 MPa peut être préférée dans certains cas. 11 De façon avantageuse, la composition permet d'atteindre la limite d'élasticité longitudinale désirée avec un temps équivalent à 155 °C inférieur à 48 h et de manière préférée inférieur à 30 h. De manière préférée, l'état métallurgique final est un état T8. Le temps équivalent t' à 155 °C est défini par la formule : fexp(-16400 / T) dt t, = exp(-16400 / Tref) où T (en Kelvin) est la température instantanée de traitement du métal , qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 428 K. t1 est exprimé en heures. La constante Q/R = 16400 K est dérivée de l'énergie d'activation pour la diffusion du Cu, pour laquelle la valeur Q = 136100 J/mol a été utilisée. Les présents inventeurs ont constaté en particulier que le domaine préféré de teneur en magnésium permet de limiter la durée du revenu en atteignant un compromis de propriétés favorable. Dan un mode de réalisation de l'invention, un traitement thermique court est réalisé après traction contrôlée et avant revenu de façon à améliorer la formabilité des tôles. Les tôles peuvent ainsi être mises en forme par un procédé tel que l'étirage-formage avant d'être 15 revenues. La structure granulaire la plus favorable dépend de l'épaisseur des produits. Les tôles selon l'invention dont l'épaisseur est comprise entre 0,5 et 3,3 mm présentent avantageusement les propriétés suivantes 20 - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 120 MPa Jm et une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 120 MPa Les présents inventeurs ont de plus constaté que pour les tôles de l'invention dont 25 l'épaisseur est comprise entre 0,5 et 3,3 mm et de préférence entre 1,0 et 3,0 mm la ténacité en contrainte plane Kapp dans la direction L-T est plus élevée pour les tôles dont la structure est essentiellement recristallisée. Ainsi, les tôles dont l'épaisseur est comprise entre 0,5 et 3,3 mm et de préférence entre 1,0 et 3,0 mm et dont la structure granulaire est essentiellement recristallisée présentent avantageusement les propriétés suivantes : 12 - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 140 MPa Im et - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 150 MPa Les tôles selon l'invention dont l'épaisseur est comprise entre 3,4 et 6 mm et présentent avantageusement les propriétés suivantes une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 150 MPa Im et de préférence d'au moins 155 MPa -Nim et une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 170 MPa im et de préférence d'au moins 180 MPa Avantageusement la structure granulaire des tôles dont l'épaisseur est comprise entre 3,4 et 8 mm et de préférence entre 4 et 8 mm est essentiellement non-recristallisée.
La résistance à la corrosion intergranulaire des tôles selon l'invention est élevée. Dans un mode de réalisation préféré de l'invention, la tôle de l'invention peut être utilisée sans placage. L'utilisation de tôles selon l'invention dans un panneau de fuselage pour aéronef est avantageuse. Les tôles selon l'invention sont également avantageuses dans les applications aérospatiales telles que la fabrication de fusées. Exemple Exemple 1 Dans cet exemple, des tôles en alliage Al-Cu-Li ont été préparées. 5 plaques dont la composition est donnée dans le tableau 1 ont été coulées. Les compositions B, C, D et E sont selon l'invention. 13 Tableau 1. Composition en % en poids Référence Cu Li Mg Zr Ag Fe Si Ti A 3,2 0,73 0,68 0,14 0,26 0,03 0,04 0,03 B 3,0 0,70 0,64 0,17 0,27 0,02 0,03 0,03 C 3,0 0,73 0,35 0,15 0,27 0,02 0,03 0,03 D 2,7 0,75 0,58 0,14 0,28 0,03 0,02 0,03 E 2,9 0,73 , 0,45 0,14 0,29 0,04 0,02 0,03 Les plaques ont été homogénéisées 12 heures à 505 °C. Les plaques ont été laminées à chaud pour obtenir des tôles d'épaisseur comprise entre 4,2 à 6,3 mm. Certaines tôles ont ensuite été laminées à froid jusqu'à une épaisseur comprise entre 1,5 et 2,5 mm. Le détail des tôles obtenues et des conditions de revenu est donné dans le tableau 2. Tableau 2 : détail des tôles obtenues et des conditions de revenu Référence Epaisseur après Epaisseur après Durée de revenu à 155 °C laminage à chaud laminage à froid (mm) (h) (mm) A#1 4.2 36 A#2 4.4 1.5 36 B#1 4.6 - 36 B#2 4.4 1.5 36 C#1 4.3 - 24 C#2 4.4 1.5 24 D#1 4.3 - 40 D#2 6.3 2.5 40 E#1 4.3 - 36 E#2 6.3 2.5 36 Après laminage à chaud et éventuellement à froid, les tôles ont été mises en solution à 505 °C puis défripées, tractionnées avec un allongement permanent de 2% et revenues. Les conditions de revenu ne sont pas toutes identiques car l'augmentation de la limite d'élasticité avec la durée de revenu diffère d'un alliage à l'autre. On a cherché à obtenir une limite d'élasticité « au pic » tout en limitant la durée de revenu. Les conditions de revenu sont données dans le Tableau 2. La structure granulaire des échantillons a été caractérisée à partir de l'observation microscopique des sections transversales après oxydation anodique sous lumière polarisée. La structure granulaire des tôles était essentiellement non-recristallisée pour toutes les tôles 14 à l'exception des tôles D#2 et E#2 pour lesquelles la structure granulaire était essentiellement recristallisée. Les échantillons ont été testés mécaniquement afin de déterminer leurs propriétés mécaniques statiques ainsi que leur résistance à la propagation des fissures. La limite d'élasticité en traction, la résistance ultime et l'allongement à la rupture sont fournis dans le tableau 3. Tableau 3 : Caractéristiques mécaniques exprimées en MPa (Rp0,2, R.) ou en pourcentage (A%) Référence Rp0,2 (L) Rm(L) A%(L) RP()'2 R., (TL) A%(TL) RP0'2 Rp0,2 (TL)/ (TL) (TL) Rp0,2 (TL) 48h 48h 155°C (%) 155°C A#1 469 513 12,2 439 481 15,8 457 96% A#2 475 522 11,7 441 489 14,0 B#1 431 483 13,5 419 462 16,1 425 99% B#2 431 486 12,9 414 460 17,1 C#1 430 471 13,6 411 455 15,5 434 95% C#2 423 472 12,2 399 451 15,9 D#1 420 462 13,0 384 428 16,3 407 94% D#2 403 437 11,6 371 428 13,9 E#1 453 487 12,5 428 464 15,9 433 99% E#2 433 464 11,4 395 458 11,4 Le tableau 4 résume les résultats des essais de ténacité sur des éprouvettes CCT de largeur 760 mm pour ces échantillons. Tableau 4 résultats des courbes R pour les éprouvettes de largeur 760 mm. Référence Kapp Kr60 Aaeff max [MPa \im] [MPaJm] [mm] T-L L-T T-L L-T T-L L-T A#1 187 161 247 213 166 80 A#2 160 114 210 151 185 103 B#1 180 178 238 238 171 180 B#2 167 124 223 166 152 144 C#1 182 165 242 219 134 151 C#2 154 127 203 162 165 110 D#1 174 150 230 200 238 16315 D#2 147 151 196 201 222 210 E#1 181 159 240 213 241 132 E#2 137 164 181 219 161 214 Le tableau 5 résume les résultats des essais de ténacité pour les courbes R obtenues avec des éprouvette CCT de largeur 1220 mm dans la direction L-T.
Tableau 5 résultats des courbes R pour les éprouvettes de largeur 1220 mm dans la direction L-T. Kapp app [MPa \im] [MPa Vm] Aaeff Kr60 max [mm] A#1 169 202 172 A#2 117 138 247 B#1 176 209 281 B#2 120 145 193 C#1 191 224 237 C#2 120 134 106 D#1 175 206 244 D#2 180 213 244 E#1 159 192 139 E#2 167 196 187 Les courbes R obtenues pour les tôles dont l'épaisseur est de l'ordre de 4 mm sont présentées sur la Figure 1. Les courbes R obtenues pour les tôles dont l'épaisseur est de 1,5 à 2,5 mm sont présentées sur la Figure 2. Les points obtenus après le dernier point valide selon la norme ASTM E561 ont été représentés. De manière surprenante on constate que Kapp L-T est sensiblement identique pour des éprouvettes de largeur 760 mm et pour des éprouvettes de largeur 1220 mm pour certaines tôles alors que pour d'autres tôles Kapp L-T est plus faible pour des éprouvettes de largeur 760 mm et pour des éprouvettes de largeur 1220 mm. 16 Exemple 2 Dans cet exemple, on a étudié l'effet des conditions de revenu sur la ténacité de tôles en alliage Al-Cu-Li de composition selon l'invention.
Des tôles en alliage E ont après un traitement identique à celui de l'exemple 1 à l'exception du revenu, subi un revenu de 20h à 155 °C ou de 25 h à 155 °C. La structure granulaire n'est pas modifiée par ces conditions de revenu.
Les échantillons ont été testés mécaniquement afin de déterminer leurs propriétés mécaniques statiques ainsi que leur résistance à la propagation des fissures. La limite d'élasticité en traction, la résistance ultime et l'allongement à la rupture sont fournis dans le tableau 6.
Tableau 6 Caractéristiques mécaniques exprimées en MPa (Rp0,2, Rm) ou en pourcentage (A%) Référence Durée de Rp0,2 (L) Rm(L) A%(L) Rpo,2 Rm(TL) A%(TL) Rp0,2 (TL)/ revenu (TL) Rp0,2 (TL) A 155 °C 48h 155°C (%) E#1 20 h 422 470 13 390 440 16,5 90% E#2 20h 411 450 12,4 374 443 12 E#1 25 h 442 483 12,4 415 456 15,7 96% E#2 25 h 431 466 11,1 391 455 11,7 E#1 36 h 453 487 12,5 428 464 15,9 99% E#2 36 h 433 464 11,4 395 458 11,4 Les courbes R caractérisées pour une largeur d'éprouvette de 760 mm et de 1220 mm dans la direction L-T sont données sur les Figures 3 (épaisseur 4,3 mm) et 4 (épaisseur 2,5 mm) et dans le Tableau 7. Les points obtenus après le dernier point valide selon la norme ASTM E561 ont été représentés.
17 Tableau 7 résultats des courbes R pour les éprouvettes de largeur 760 mm et 1220 mm dans la direction L-T. Référence Durée Eprouvette 760 mm Eprouvette 1220 mm de revenu à 155°C Kapp Kr60 Orff Kapp Kr60 Orff [MPa \irn] [MPa \im] max [MPa\irn] [MPeim] max [mm] [mm] E#1 20 h 168 219 173 180 216 208 E#2 20h 163 216 235 183 216 201 E#1 25 h 160 211 146 170 198 192 E#2 25 h 161 214 193 175 212 205 E#1 36 h 159 213 102 158 190 172 E#2 36 h 164 219 214 167 196 187 Les Figures 5 et 6 résument l'ensemble des résultats obtenus. 18
Claims (4)
- REVENDICATIONS1. Tôle d'épaisseur 0,5 à 8 mm en alliage à base d'aluminium comprenant 2,6 à 3,0 % en poids de Cu, 0,5 à 0.8 % en poids de Li, 0,1 à 0,4 % en poids de Ag, 0,2 à 0,7 % en poids de Mg, 0,06 à 0,20 % en poids de Zr, 0,01 à 0,15 % en poids de Ti, optionnellement au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf, une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, la dite tôle étant obtenue par un procédé comprenant coulée, homogénéisation, laminage à chaud et optionnellement laminage à froid, mise en solution, trempe et revenu, la composition et le revenu étant combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa.
- 2. Tôle selon la revendication 1 dont la teneur en cuivre est comprise entre 2,8 et 3,0 % en poids et de préférence entre 2,8 et 2,9 % en poids.
- 3. Tôle selon la revendication 1 ou la revendication 2 dont la teneur en lithium est comprise entre 0,55 et 0,75 % en poids et de préférence entre 0,60 et 0,73 % en poids.
- 4. Tôle selon une quelconque des revendications 1 à 3 dont la teneur en argent est comprise entre 0,2 et 0,3 % en poids. 19. Tôle selon une quelconque des revendications 1 à 4 dont la teneur en magnésium est comprise entre 0,25 et 0,50 % en poids et de préférence entre 0,30 et 0,45 % en poids. 6. Tôle selon une quelconque des revendications 1 à 5 pour laquelle le revenu est réalisé « au pic ». 7. Tôle selon une quelconque des revendications 1 à 6 dont l'épaisseur est comprise entre 0.5 et 3,3 mm et présentant les propriétés suivantes - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 120 MPa im et - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 120 MPa gym. 8. Tôle selon la revendication 7 dont la structure granulaire est essentiellement recristallisée et présentant les propriétés suivantes - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 140 MPa Jm et - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 150 MPa 9. Tôle selon une quelconque des revendications 1 à 6 dont l'épaisseur est comprise entre 3,4 et 6 mm et présentant les propriétés suivantes - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T d'au moins 150 MPa \irn et de préférence d'au moins 155 MPa -\im et - une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT1220 (2ao = 253 mm), dans la direction L-T d'au moins 170 MPa Nim et de préférence d'au moins 180 MPa 20. Tôle selon une quelconque des revendications 1 à 6 dont l'épaisseur est comprise entre 3,4 et 8 mm et de préférence entre 4 et 8 mm et dont la structure granulaire est essentiellement non-recristallisée. 11. Procédé de fabrication d'une tôle selon une quelconque des revendications 1 à 10 d'épaisseur 0,5 à 8 mm en alliage à base d'aluminium dans lequel, successivement a) on élabore un bain dé métal liquide comprenant 2,6 à 3,0 % en poids de Cu, 0,5 à 0.8 % en poids de Li, 0,1 à 0,4 % en poids de Ag, 0,2 à 0,7 % en poids de Mg, 0,06 à 0,20 % en poids de Zr, 0,01 à 0,15 % en poids de Ti, optionnellement au moins un élément choisi parmi Mn, V, Cr, Sc, et Hf, la quantité de l'élément, s'il est choisi, étant de 0,01 à 0,8 % en poids pour Mn, 0,05 à 0,2 % en poids pour V, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,3 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf, une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou 20 égale à 0,05% en poids chacune et 0,15% en poids au total, b) on coule une plaque à partir dudit bain de métal liquide c) on homogénéise ladite plaque à une température comprise entre 450°C et 535 °C ; d) on lamine ladite plaque par laminage à chaud et optionnellement à froid en une tôle ayant une épaisseur comprise entre 0.5 mm et 8 mm; 25 e) on met en solution à une température comprise entre 450 °C et 535 °C et on trempe ladite tôle; h) on tractionne de façon contrôlée ladite tôle avec une déformation permanente de 0,5 à 5 % , la déformation à froid totale après mise en solution et trempe étant inférieure à 15% ; 30 i) on effectue un revenu comprenant un chauffage à une température comprise entre 130 et 170°C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 21à 40h, la composition et le revenu étant combinés de façon à ce que la limite d'élasticité dans le sens longitudinal Rp0,2(L) soit comprise entre 395 et 435 MPa. 12. Utilisation d'une tôle selon une quelconque des revendications 1 à 10 dans un panneau de fuselage pour aéronef. 22
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1300763A FR3004196B1 (fr) | 2013-04-03 | 2013-04-03 | Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion. |
CA2907807A CA2907807C (fr) | 2013-04-03 | 2014-04-01 | Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion |
US14/781,097 US20160060741A1 (en) | 2013-04-03 | 2014-04-01 | Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages |
BR112015024820-9A BR112015024820B1 (pt) | 2013-04-03 | 2014-04-01 | Chapas finas em liga de alumínio - cobre - lítio, seu processo de fabricação e sua utilização em fuselagens de avião |
EP14719034.2A EP2981631B1 (fr) | 2013-04-03 | 2014-04-01 | Tôles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion |
PCT/FR2014/000069 WO2014162068A1 (fr) | 2013-04-03 | 2014-04-01 | Tôles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion |
CN201480020260.3A CN105102647B (zh) | 2013-04-03 | 2014-04-01 | 用于制造飞机机身的铝‑铜‑锂合金板材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1300763A FR3004196B1 (fr) | 2013-04-03 | 2013-04-03 | Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3004196A1 true FR3004196A1 (fr) | 2014-10-10 |
FR3004196B1 FR3004196B1 (fr) | 2016-05-06 |
Family
ID=49000974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1300763A Expired - Fee Related FR3004196B1 (fr) | 2013-04-03 | 2013-04-03 | Toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion. |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160060741A1 (fr) |
EP (1) | EP2981631B1 (fr) |
CN (1) | CN105102647B (fr) |
BR (1) | BR112015024820B1 (fr) |
CA (1) | CA2907807C (fr) |
FR (1) | FR3004196B1 (fr) |
WO (1) | WO2014162068A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2019001802A (es) | 2016-08-26 | 2019-07-04 | Shape Corp | Proceso de modelacion en caliente y aparato para flexion transversal de una viga de aluminio extrudida para modelar en caliente un componente estructural del vehiculo. |
EP3529394A4 (fr) | 2016-10-24 | 2020-06-24 | Shape Corp. | Procédé de formage et de traitement thermique d'un alliage d'aluminium en plusieurs étapes pour la production de composants pour véhicules |
FR3059578B1 (fr) * | 2016-12-07 | 2019-06-28 | Constellium Issoire | Procede de fabrication d'un element de structure |
US20180291489A1 (en) * | 2017-04-11 | 2018-10-11 | The Boeing Company | Aluminum alloy with additions of copper, lithium and at least one alkali or rare earth metal, and method of manufacturing the same |
DE102017116785B3 (de) * | 2017-07-25 | 2019-01-24 | P3 Aero Systems Gmbh | Verfahren zum Überprüfen funktechnischer Eigenschaften eines Verkehrsmittels |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
FR3082210B1 (fr) * | 2018-06-08 | 2020-06-05 | Constellium Issoire | Toles minces en alliage d’aluminium-cuivre-lithium pour la fabrication de fuselages d’avion |
FR3104172B1 (fr) | 2019-12-06 | 2022-04-29 | Constellium Issoire | Tôles minces en alliage d’aluminium-cuivre-lithium à ténacité améliorée et procédé de fabrication |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1891247A1 (fr) * | 2005-06-06 | 2008-02-27 | Alcan Rhenalu | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion |
US20100314007A1 (en) * | 2007-12-21 | 2010-12-16 | Alcan Rhenalu | Al-Li Rolled Product for Aerospace Applications |
CN101967588A (zh) * | 2010-10-27 | 2011-02-09 | 中国航空工业集团公司北京航空材料研究院 | 一种耐损伤铝锂合金及其制备方法 |
US20110209801A2 (en) * | 2009-06-25 | 2011-09-01 | Alcan Rhenalu | Aluminum-Copper-Lithium Alloy With Improved Mechanical Strength and Toughness |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0517843A (ja) * | 1991-07-11 | 1993-01-26 | Arishiumu:Kk | 耐SCC性が優れた高強度Al−Li系合金 |
US7438772B2 (en) * | 1998-06-24 | 2008-10-21 | Alcoa Inc. | Aluminum-copper-magnesium alloys having ancillary additions of lithium |
CN101189353A (zh) | 2005-06-06 | 2008-05-28 | 爱尔康何纳吕公司 | 用于飞机机身的高韧度的铝-铜-锂合金板材 |
CN102021457B (zh) | 2010-10-27 | 2012-06-27 | 中国航空工业集团公司北京航空材料研究院 | 一种高强韧铝锂合金及其制备方法 |
-
2013
- 2013-04-03 FR FR1300763A patent/FR3004196B1/fr not_active Expired - Fee Related
-
2014
- 2014-04-01 EP EP14719034.2A patent/EP2981631B1/fr active Active
- 2014-04-01 US US14/781,097 patent/US20160060741A1/en not_active Abandoned
- 2014-04-01 WO PCT/FR2014/000069 patent/WO2014162068A1/fr active Application Filing
- 2014-04-01 BR BR112015024820-9A patent/BR112015024820B1/pt active IP Right Grant
- 2014-04-01 CN CN201480020260.3A patent/CN105102647B/zh active Active
- 2014-04-01 CA CA2907807A patent/CA2907807C/fr active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1891247A1 (fr) * | 2005-06-06 | 2008-02-27 | Alcan Rhenalu | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion |
US20100314007A1 (en) * | 2007-12-21 | 2010-12-16 | Alcan Rhenalu | Al-Li Rolled Product for Aerospace Applications |
US20110209801A2 (en) * | 2009-06-25 | 2011-09-01 | Alcan Rhenalu | Aluminum-Copper-Lithium Alloy With Improved Mechanical Strength and Toughness |
CN101967588A (zh) * | 2010-10-27 | 2011-02-09 | 中国航空工业集团公司北京航空材料研究院 | 一种耐损伤铝锂合金及其制备方法 |
Non-Patent Citations (1)
Title |
---|
CHEN D L ET AL: "Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloyâ prediction of crack propagation direction and influence of stress ratio", METALLURGICAL AND MATERIALS TRANSACTIONS A, SPRINGER-VERLAG, NEW YORK, vol. 31, no. 6, 1 June 2000 (2000-06-01), pages 1531 - 1541, XP019693326, ISSN: 1543-1940 * |
Also Published As
Publication number | Publication date |
---|---|
EP2981631B1 (fr) | 2017-08-02 |
CA2907807A1 (fr) | 2014-10-09 |
BR112015024820B1 (pt) | 2020-05-12 |
CN105102647A (zh) | 2015-11-25 |
BR112015024820A2 (pt) | 2017-07-18 |
WO2014162068A1 (fr) | 2014-10-09 |
US20160060741A1 (en) | 2016-03-03 |
FR3004196B1 (fr) | 2016-05-06 |
CN105102647B (zh) | 2017-10-13 |
EP2981631A1 (fr) | 2016-02-10 |
CA2907807C (fr) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2981631B1 (fr) | Tôles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion | |
CA2907854C (fr) | Toles minces en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion | |
EP2449142B1 (fr) | Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees | |
EP3201372B1 (fr) | Tôles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion et procédé de fabrication de celle-ci | |
FR3068370B1 (fr) | Alliages al- zn-cu-mg et procede de fabrication | |
CA3006871C (fr) | Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees | |
EP2235224A1 (fr) | Produit lamine en alliage aluminium-lithium pour applications aeronautiques | |
FR2969177A1 (fr) | Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees | |
FR2989387A1 (fr) | Alliage aluminium cuivre lithium a resistance au choc amelioree | |
WO2019122639A1 (fr) | Procede de fabrication ameliore de toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselage d'avion | |
CA3012956C (fr) | Toles epaisses en alliage al-cu-li a proprietes en fatigue ameliorees | |
EP3802897B1 (fr) | Toles minces en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion | |
WO2023144492A1 (fr) | Tole mince amelioree en alliage d'aluminium-cuivre-lithium | |
EP4069875A1 (fr) | Tôles minces en alliage d'aluminium-cuivre-lithium à tenacite ameliorée et procédé de fabrication d'une tôle mince en alliage d'aluminium-cuivre-lithium | |
FR3065011A1 (fr) | Produits en alliage aluminium-cuivre-lithium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 3 |
|
CA | Change of address |
Effective date: 20150910 |
|
CD | Change of name or company name |
Owner name: CONSTELLIUM ISSOIRE, FR Effective date: 20150910 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
ST | Notification of lapse |
Effective date: 20211205 |