FR3001340A1 - METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE - Google Patents
METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE Download PDFInfo
- Publication number
- FR3001340A1 FR3001340A1 FR1350564A FR1350564A FR3001340A1 FR 3001340 A1 FR3001340 A1 FR 3001340A1 FR 1350564 A FR1350564 A FR 1350564A FR 1350564 A FR1350564 A FR 1350564A FR 3001340 A1 FR3001340 A1 FR 3001340A1
- Authority
- FR
- France
- Prior art keywords
- battery
- heating
- discharge power
- target discharge
- heating method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/66—Ambient conditions
- B60L2240/662—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
L'invention se rapporte à un procédé de chauffage d'une batterie électrique (1) d'un véhicule (100) en phase de roulage. La principale caractéristique d'un procédé selon l'invention, est qu'il comprend: - une étape de détermination d'une puissance de décharge cible devant être délivrée par la batterie (1), - une étape de détermination de la puissance de décharge disponible pouvant être délivrée par la batterie (1) au cours du temps, - une étape de comparaison entre la puissance de décharge disponible et la puissance de décharge cible, - une étape de chauffage de la batterie (1) lorsque la puissance de décharge disponible est inférieure à la puissance de décharge cible.The invention relates to a method of heating an electric battery (1) of a vehicle (100) in the rolling phase. The main characteristic of a method according to the invention is that it comprises: a step of determining a target discharge power to be delivered by the battery (1), a step of determining the discharge power. available to be delivered by the battery (1) over time, - a step of comparing the available discharge power and the target discharge power, - a step of heating the battery (1) when the available discharge power is less than the target discharge power.
Description
PROCEDE DE CHAUFFAGE D'UNE BATTERI E D'UN VEHI CULE ELECTRI QUE L'invention se rapporte à un procédé de chauffage d'une batterie d'un 5 véhicule électrique. Il faut rappeler que les batteries de traction des véhicules hybrides ou électriques font état de baisses de performance à basse température, notamment au niveau de la puissance disponible, de la puissance acceptée en charge et en freinage récupératif, des rendements et de l'énergie disponible pour prolonger l'autonomie. Pour résoudre ce problème, un système 10 de chauffage de la batterie est généralement implanté dans la définition technique du véhicule, ledit système pouvant être utilisé, soit en phase de roulage, soit en mode stationnaire. L'invention concerne plus spécifiquement un procédé de chauffage amélioré de la batterie, essentiellement lorsque le véhicule se retrouve en phase de roulage. 15 De tels procédés de chauffage existent et ont déjà fait l'objet de brevets. On peut, par exemple, citer la demande de brevet US2012/0029724, qui divulgue un procédé de chauffage d'une batterie de traction d'un véhicule électrique. Selon cette solution, une température cible est fixée en fonction de différents paramètres, comme par exemple le SOC (de l'anglais State Of 20 Charge) et le SOH (de l'anglais State Of Health). Des consignes de réchauffage sont ensuite appliquées dès lors que la température mesurée est inférieure à cette température cible. Une fois cette température atteinte, le réchauffage est interrompu. Cette solution présente toutefois plusieurs inconvénients : - Elle nécessite l'élaboration d'une cartographie de températures cibles en 25 fonction de différents paramètres, notamment du SOH. Or il est non seulement très difficile d'estimer ce paramètre SOH, car il dépend lui-même de plusieurs facteurs, mais il faut savoir qu'à une valeur de SOH donnée peuvent correspondre toutes sortes de situations qui nécessiteraient des températures cibles différentes ; 30 - Le pilotage en température implique l'utilisation d'un régulateur de température, dont l'inertie est importante et source de pertes énergétiques ; - Cette solution ne tient pas compte de la variabilité des caractéristiques des batteries (capacité et résistance interne notamment). Les procédés de chauffage d'une batterie selon l'invention permettent d'augmenter la température d'une batterie électrique afin d'augmenter ses 5 performances, tout en s'affranchissant des inconvénients relevés dans l'état de la technique. L'invention a pour objet un procédé de chauffage d'une batterie électrique d'un véhicule en phase de roulage. La principale caractéristique d'un procédé selon l'invention est qu'il 10 comprend: - une étape de détermination d'une puissance de décharge cible devant être délivrée par la batterie, une étape de détermination de la puissance de décharge disponible pouvant être délivrée par la batterie au cours du 15 temps, - une étape de comparaison entre la puissance de décharge disponible et la puissance de décharge cible, une étape de chauffage de la batterie lorsque la puissance de décharge disponible est inférieure à la puissance de décharge 20 cible. Le paramètre pris en considération pour le déclenchement du chauffage est la puissance de décharge disponible, que la batterie peut fournir. De cette façon, le déclenchement du chauffage s'effectue à bon escient, uniquement lorsque cela s'avère nécessaire, car la puissance de décharge de 25 la batterie constitue un paramètre incontournable renseignant sur les besoins réels pour les prestations du véhicule en matière de chauffage de celle-ci. Un tel procédé ne nécessite pas de connaitre la température effective et cible de la batterie, mais se focalise sur ses performances biaisées en matière de puissance de décharge, pour amorcer un processus de chauffage de celle-ci. La puissance cible est une puissance de consigne à laquelle on souhaite voir fonctionner la batterie. La puissance de décharge disponible est une puissance qui est généralement estimée au moyen de capteurs lors du fonctionnement de la batterie. Avantageusement, l'étape de détermination de la puissance de décharge cible dépend d'au moins un paramètre à choisir parmi un état de charge de la batterie, une température de la batterie, une température extérieure, un âge de la batterie, un état de santé de la batterie, un mode d'utilisation de la batterie et un mode d'utilisation du véhicule. En effet, la puissance cible ne constitue pas une donnée intangible de la batterie, mais va dépendre de paramètres liés au véhicule, à la batterie elle-même, de facteurs environnementaux tels que la température extérieure, et du mode auquel un conducteur souhaite utiliser son véhicule. Concernant ledit mode, le conducteur peut par exemple vouloir utiliser son véhicule de façon économique, auquel cas il fixera une puissance de décharge cible plus faible. De façon préférentielle, la batterie comprend un calculateur relié à des capteurs, la puissance de décharge disponible de la batterie étant déterminée en continu par ledit calculateur, à intervalles de temps réguliers. De cette manière, les opérations de chauffage de la batterie peuvent être déclenchées à chaque instant d'une phase de roulage du véhicule, dès que les conditions sont remplies. Le calculateur de la batterie est plus connu sous le nom de BMS (de l'anglais Battery Management System) et permet de gérer tous les paramètres afférents à la batterie, comme par exemple, la tension aux bornes des cellules, sa température, le courant la traversant, son état de charge, la puissance disponible en charge, et la puissance disponible en décharge. L'étape de détermination de la puissance de décharge disponible de la batterie à un instant donné, est pilotée essentiellement au moyen du BMS. Les intervalles de temps auxquels est déterminée la puissance de décharge de la batterie peuvent par exemple valoir 10ms ou 100ms.The invention relates to a method for heating a battery of an electric vehicle. It must be remembered that the traction batteries of hybrid or electric vehicles report low performance at low temperatures, particularly in terms of available power, accepted load power and regenerative braking, efficiencies and available energy. to prolong the autonomy. To solve this problem, a system 10 for heating the battery is generally implemented in the technical definition of the vehicle, said system being able to be used, either in the rolling phase or in the stationary mode. The invention more specifically relates to an improved heating method of the battery, essentially when the vehicle is in the rolling phase. Such heating processes exist and have already been patented. For example, patent application US2012 / 0029724 discloses a method for heating a traction battery of an electric vehicle. According to this solution, a target temperature is set according to various parameters, such as, for example, SOC (State Of 20 Charge) and SOH (State Of Health). Warming instructions are then applied as soon as the measured temperature is below this target temperature. Once this temperature is reached, the heating is interrupted. However, this solution has several drawbacks: It requires the development of a mapping of target temperatures according to different parameters, in particular SOH. However, it is not only very difficult to estimate this SOH parameter, since it itself depends on several factors, but it should be known that at a given value of SOH can correspond all kinds of situations that would require different target temperatures; Temperature control involves the use of a temperature regulator, whose inertia is important and a source of energy losses; - This solution does not take into account the variability of the characteristics of the batteries (capacity and internal resistance in particular). The methods of heating a battery according to the invention make it possible to increase the temperature of an electric battery in order to increase its performance while overcoming the drawbacks noted in the state of the art. The subject of the invention is a method of heating an electric battery of a vehicle in a rolling phase. The main feature of a method according to the invention is that it comprises: - a step of determining a target discharge power to be delivered by the battery, a step of determining the available discharge power that can be delivered by the battery in the course of time, - a step of comparing the available discharge power and the target discharge power, a step of heating the battery when the available discharge power is less than the target discharge power. The parameter taken into consideration for triggering the heating is the available discharge power that the battery can provide. In this way, the triggering of the heating is carried out wisely, only when it is necessary, because the power of discharge of the battery is an unavoidable parameter informing on the real needs for the benefits of the vehicle in terms of heating of it. Such a method does not require knowing the actual and target temperature of the battery, but focuses on its biased performance in terms of discharge power, to initiate a process of heating thereof. The target power is a set power to which the battery wants to operate. The available discharge power is a power that is generally estimated by means of sensors during battery operation. Advantageously, the step of determining the target discharge power depends on at least one parameter to be chosen from a state of charge of the battery, a temperature of the battery, an outside temperature, an age of the battery, a state of battery health, how to use the battery, and how to use the vehicle. Indeed, the target power is not an intangible data of the battery, but will depend on parameters related to the vehicle, the battery itself, environmental factors such as the outside temperature, and the mode in which a driver wants to use his vehicle. Regarding said mode, the driver may for example want to use his vehicle economically, in which case it will set a lower target discharge power. Preferably, the battery comprises a computer connected to sensors, the available discharge power of the battery being determined continuously by said computer, at regular time intervals. In this way, the battery heating operations can be triggered at each moment of a rolling phase of the vehicle, as soon as the conditions are met. The battery computer is better known as the BMS (Battery Management System) and can manage all the parameters related to the battery, such as the voltage at the terminals of the cells, its temperature, the current the through, its state of charge, the available power load, and the power available in discharge. The step of determining the available discharge power of the battery at a given instant is controlled essentially by means of the BMS. The time intervals at which the discharge power of the battery is determined may for example be 10 ms or 100 ms.
Préférentiellement, le calculateur est en communication avec un système de commande du chauffage de la batterie, ledit système de commande possédant une valeur de puissance de décharge cible préenregistrée. Les informations fournissant la puissance de décharge 5 disponible de la batterie, sont envoyées au système de commande du chauffage, qui va réaliser la comparaison entre ces informations et la puissance de décharge cible préenregistrée, puis déclencher éventuellement le chauffage de la batterie. Avantageusement, le système de commande est un calculateur plus connu sous la dénomination EVC (de l'anglais Electric Vehicle 10 Controller), qui est un calculateur central du véhicule électrique, gérant tous les équipements électriques et électroniques dudit véhicule. De façon préférentielle, la liaison entre le calculateur de la batterie et le système de commande est réalisée au moyen d'un réseau de communication de type CAN (de l'anglais Controller Area Network). 15 Selon un premier mode de réalisation préféré d'un procédé de chauffage selon l'invention, l'étape de chauffage est réalisée par au moins un dispositif de chauffage externe à ladite batterie, et qui fonctionne sur la base d'une circulation de fluide en contact avec au moins une partie de ladite batterie. Le fluide peut par exemple être constitué par de l'air ou un liquide 20 pouvant être de l'eau. Ledit fluide porté à une certaine température est mis au contact d'au moins une partie de la batterie pour réchauffer ladite batterie. Un tel dispositif de chauffage est usuel, efficace et peu coûteux. Selon un deuxième mode de réalisation préféré d'un procédé de chauffage selon l'invention, l'étape de chauffage est réalisée par un dispositif 25 de chauffage interne à la batterie, ledit dispositif comprenant au moins un dispositif de chauffage par dissipation d'énergie électrique. Cette configuration présente l'avantage d'être moins encombrante que celle décrite ci-avant. De façon avantageuse, l'étape de chauffage est interrompue dès que la température de la batterie est supérieure à une valeur seuil. A travers cette 30 interruption de la phase de chauffage, le procédé selon l'invention possède une sécurité permettant d'éviter une surchauffe de la batterie pouvant conduire à un dysfonctionnement ou à une usure prématurée de celle-ci. Avantageusement, la puissance de décharge cible est abaissée au cours dudit procédé, lorsque l'état de charge de la batterie tend vers zéro.Preferably, the computer is in communication with a system for controlling the heating of the battery, said control system having a prerecorded target discharge power value. The information providing the available discharge power of the battery is sent to the heating control system, which will make the comparison between this information and the prerecorded target discharge power, and eventually trigger the heating of the battery. Advantageously, the control system is a computer more known under the name EVC (English Electric Vehicle 10 Controller), which is a central computer of the electric vehicle, managing all the electrical and electronic equipment of said vehicle. Preferably, the connection between the computer of the battery and the control system is performed by means of a communication network type CAN (English Controller Area Network). According to a first preferred embodiment of a heating method according to the invention, the heating step is carried out by at least one heating device external to said battery, and which operates on the basis of a circulation of fluid in contact with at least a part of said battery. The fluid may for example consist of air or a liquid which may be water. Said fluid brought to a certain temperature is brought into contact with at least a portion of the battery to heat said battery. Such a heating device is conventional, efficient and inexpensive. According to a second preferred embodiment of a heating method according to the invention, the heating step is performed by a device 25 for heating the battery, said device comprising at least one energy dissipation heating device. electric. This configuration has the advantage of being less cumbersome than that described above. Advantageously, the heating step is interrupted as soon as the temperature of the battery is greater than a threshold value. Through this interruption of the heating phase, the method according to the invention has a security to prevent overheating of the battery which can lead to malfunction or premature wear thereof. Advantageously, the target discharge power is lowered during said process, when the state of charge of the battery tends to zero.
Cette phase d'abaissement de la puissance cible permet de limiter la consommation d'électricité lorsque la batterie est presque vide. Le terme presque vide signifie que le taux de charge de ladite batterie est inférieur à 20%. Selon un mode de réalisation préféré d'un procédé selon l'invention, l'abaissement de la puissance de décharge cible s'effectue de façon discrète en passant directement à un palier de puissance inférieur. Pour cette configuration, le processus d'abaissement est simplifié, mais moins précis puisque la puissance cible ne peut prendre qu'une seule valeur inférieure. Selon un autre mode de réalisation préféré d'un procédé selon l'invention, l'abaissement de la puissance de décharge cible est progressive, et est réalisée au moyen d'une loi linéaire. Le processus d'abaissement est ici plus complet et plus précis. Cette loi pourrait par exemple passer par les points 0 kW à 0% d'état de charge et 55 kW à 20% d'état de charge. Les procédés de chauffage d'une batterie électrique selon l'invention, présentent l'avantage d'être rigoureux, performant et précis, car ils provoquent le chauffage de ladite batterie de façon efficace, quand cela est juste nécessaire. Ils ont de plus l'avantage d'être peu onéreux, dans la mesure où ils ne nécessitent pas la mise en place de pièces supplémentaires. Ils présentent enfin l'avantage d'être souples d'utilisation, car ils peuvent être adaptés à un certain nombre de paramètres liés aux caractéristiques du moment de la batterie, de la température externe et du mode d'utilisation du véhicule, comme par exemple un mode économique. On donne, ci-après, une description détaillée d'un mode de réalisation préféré d'un procédé de chauffage d'une batterie selon l'invention, en se 30 référant aux figures 1 à 3.This phase of lowering the target power makes it possible to limit the consumption of electricity when the battery is almost empty. The almost empty term means that the charge rate of said battery is less than 20%. According to a preferred embodiment of a method according to the invention, the lowering of the target discharge power is done in a discrete manner by going directly to a lower power stage. For this configuration, the lowering process is simplified, but less accurate since the target power can only take one lower value. According to another preferred embodiment of a method according to the invention, the lowering of the target discharge power is progressive, and is achieved by means of a linear law. The lowering process is here more complete and more precise. This law could for example go through the points 0 kW at 0% state of charge and 55 kW at 20% state of charge. The methods of heating an electric battery according to the invention have the advantage of being rigorous, efficient and accurate, because they cause the heating of said battery efficiently, when it is necessary. They also have the advantage of being inexpensive, insofar as they do not require the installation of additional parts. Finally, they have the advantage of being flexible in their use, since they can be adapted to a certain number of parameters related to the characteristics of the moment of the battery, the external temperature and the mode of use of the vehicle, as for example an economic mode. The following is a detailed description of a preferred embodiment of a method of heating a battery according to the invention, with reference to FIGS. 1 to 3.
La figure 1 est une vue schématique d'un véhicule électrique montrant les différents éléments nécessaires à la mise en oeuvre d'un procédé de chauffage selon l'invention, - La figure 2 illustre un exemple de variation de la puissance de décharge cible en fonction de l'état de charge de la batterie, La figure 3 illustre un exemple de gain de puissance de la batterie obtenu au moyen d'un procédé de chauffage selon l'invention. En se référant à la figure 1, un procédé de chauffage d'une batterie 1 d'un véhicule électrique 100 selon l'invention, est piloté au moyen du BMS 2, qui constitue le calculateur spécifique de la batterie 1, de l'EVC 3, qui peut être assimilé à une unité centrale de calcul et par un réseau de communication 4 de type CAN, reliant ledit BMS 2 à l'EVC 3. Les phases de chauffage de la batterie 1 sont assurées par un dispositif de chauffage 5 commandé par l'EVC 3. Ce dispositif de chauffage 5 peut être, soit externe à la batterie 1 en apparaissant sous la forme d'une circulation de fluide sous forme gazeuse, comme par exemple de l'air, ou liquide, comme par exemple de l'eau, soit interne à celle-ci en étant constitué par au moins une résistance chauffante. Le choix de l'une ou l'autre de ces deux variantes de réalisation de ce dispositif de chauffage 5 s'effectuera essentiellement en fonction de la disponibilité d'un fluide caloporteur ou non dans le véhicule 100. A titre d'exemple, lorsque le dispositif de chauffage 5 est externe à la batterie 1, le fluide peut être constitué par l'eau de refroidissement du moteur, qui a été chauffé par celui-ci.FIG. 1 is a schematic view of an electric vehicle showing the various elements necessary for the implementation of a heating method according to the invention; FIG. 2 illustrates an example of variation of the target discharge power according to FIG. 3 illustrates an example of power gain of the battery obtained by means of a heating method according to the invention. Referring to FIG. 1, a method of heating a battery 1 of an electric vehicle 100 according to the invention is controlled by means of the BMS 2, which constitutes the specific calculator of the battery 1, of the EVC 3, which can be likened to a central computing unit and a communication network 4 of the CAN type, connecting said BMS 2 to the EVC 3. The heating phases of the battery 1 are provided by a controlled heating device 5 by the EVC 3. This heating device 5 can be either external to the battery 1, appearing in the form of a circulation of fluid in gaseous form, such as for example air, or liquid, such as for example water, being internal to it being constituted by at least one heating resistor. The choice of one or the other of these two variants of this heating device 5 will be essentially based on the availability of a heat transfer fluid or not in the vehicle 100. For example, when the heater 5 is external to the battery 1, the fluid may be constituted by the cooling water of the engine, which has been heated by it.
Un procédé de chauffage d'une batterie électrique 1 selon l'invention comprend : une étape de détermination d'une puissance de décharge cible devant être délivrée par la batterie 1. Cette puissance de décharge cible est une puissance de décharge de consigne, qui va être initialement affectée à la batterie 1, en fonction d'un certain nombre de paramètres : l'état de charge de la batterie 1 et sa température qui sont directement fournis par le BMS 2 en liaison avec des capteurs, la température extérieure, l'âge et l'état de santé de la batterie 1, ainsi que le mode de fonctionnement sélectionné. Le mode de fonctionnement choisi, peut par exemple être économique, auquel cas la puissance de consigne sera abaissée par rapport à celle qui serait allouée à ladite batterie 1 pour un mode de fonctionnement normal. Tous les paramètres listés ci-avant ne sont pas nécessaires à la fixation de la puissance cible. De même, d'autres paramètres peuvent venir s'ajouter à la liste précédente, pour fixer avec encore plus de rigueur et de précision cette valeur de puissance cible. La figure 2 illustre un exemple de détermination de cette puissance cible en fonction de l'état de charge de la batterie 1. En effet, afin d'éviter une consommation d'énergie trop importante lorsque la batterie 1 est déjà presque vide, la puissance cible peut être réduite, soit de façon discrète par un palier à un niveau de performance inférieur, par exemple 25 kW pour un état de charge compris entre 0 et 20% au lieu de 55kW pour un état de charge supérieur à 20%, soit par une loi linéaire pour laquelle la puissance cible varie par exemple de 0 à 55kW entre un état de charge nul et un état de charge de 20%. une étape de détermination de la puissance de décharge disponible pouvant être délivrée par la batterie 1 au cours du temps. Cette détermination s'effectue en continu, durant toute la phase de roulage du véhicule électrique. Cette puissance est connue grâce au BMS 2, qui va envoyer cette information à I'EVC 3, à intervalles de temps réguliers, par exemple toutes les 10 ou 100ms, via un réseau de communication CAN. une étape de comparaison entre la puissance de décharge disponible et la puissance de décharge cible. Cette étape est pilotée par l'EVC 3, dans lequel une valeur ou un profil de puissance cible a été préalablement enregistrée. une étape de chauffage de la batterie 1 lorsque la puissance de décharge disponible de la batterie 1, est inférieure à la puissance de décharge cible. Ainsi, lors d'une phase de roulage d'un véhicule électrique 100, à chaque fois que la puissance de décharge de la batterie 1 est inférieure à la valeur de la puissance de décharge cible, le dispositif de chauffage 5 est déclenché. Toutefois, afin d'éviter une trop grande consommation du dispositif de chauffage 5 et donc de trop chauffer la batterie 1, ledit dispositif de chauffage 5 peut alors être désactivé lorsque la batterie 1 est trop chaude, par exemple si sa température atteint 20°C. Une surchauffe de la batterie 1 peut conduire à un dysfonctionnement et/ou à une usure prématurée et nécessiterait une étape supplémentaire de refroidissement de ladite batterie 1. La figure 3 illustre un exemple de gain de puissance disponible de 20 l'ordre de 30 à 40%, entre une configuration impliquant un procédé selon l'invention matérialisée par la courbe 6, et une configuration n'impliquant pas de chauffage de la batterie 1, et matérialisée par la courbe 7.A method of heating an electric battery 1 according to the invention comprises: a step of determining a target discharge power to be delivered by the battery 1. This target discharge power is a set discharge power, which will be initially assigned to the battery 1, according to a number of parameters: the state of charge of the battery 1 and its temperature which are directly supplied by the BMS 2 in connection with sensors, the outside temperature, the age and state of health of the battery 1, as well as the selected operating mode. The selected operating mode, for example may be economical, in which case the target power will be lowered from that which would be allocated to said battery 1 for a normal operating mode. All the parameters listed above are not necessary for setting the target power. Similarly, other parameters can be added to the previous list, to set with even more precision and precision this target power value. FIG. 2 illustrates an example of determination of this target power as a function of the state of charge of the battery 1. In fact, in order to avoid excessive power consumption when the battery 1 is already almost empty, the power target can be reduced, either discretely by a plateau at a lower level of performance, for example 25 kW for a state of charge of between 0 and 20% instead of 55 kW for a state of charge greater than 20%, or a linear law for which the target power varies for example from 0 to 55kW between a state of zero charge and a state of charge of 20%. a step of determining the available discharge power that can be delivered by the battery 1 over time. This determination is carried out continuously throughout the running phase of the electric vehicle. This power is known thanks to the BMS 2, which will send this information to the EVC 3, at regular time intervals, for example every 10 or 100 ms, via a CAN communication network. a comparison step between the available discharge power and the target discharge power. This step is driven by the EVC 3, in which a target value or power profile has been previously recorded. a step of heating the battery 1 when the available discharge power of the battery 1 is less than the target discharge power. Thus, during a driving phase of an electric vehicle 100, each time the discharge power of the battery 1 is lower than the value of the target discharge power, the heater 5 is triggered. However, in order to avoid excessive consumption of the heating device 5 and thus overheating the battery 1, said heating device 5 can then be deactivated when the battery 1 is too hot, for example if its temperature reaches 20 ° C. . Overheating of the battery 1 can lead to malfunction and / or premature wear and would require an additional step of cooling said battery 1. Figure 3 illustrates an example of available power gain of the order of 30 to 40 %, between a configuration involving a method according to the invention embodied by the curve 6, and a configuration not involving heating of the battery 1, and materialized by the curve 7.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1350564A FR3001340B1 (en) | 2013-01-22 | 2013-01-22 | METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE |
PCT/FR2014/050091 WO2014114863A1 (en) | 2013-01-22 | 2014-01-17 | Method for heating a battery of an electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1350564A FR3001340B1 (en) | 2013-01-22 | 2013-01-22 | METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3001340A1 true FR3001340A1 (en) | 2014-07-25 |
FR3001340B1 FR3001340B1 (en) | 2015-02-20 |
Family
ID=48224972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1350564A Active FR3001340B1 (en) | 2013-01-22 | 2013-01-22 | METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3001340B1 (en) |
WO (1) | WO2014114863A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110323519A (en) * | 2019-06-28 | 2019-10-11 | 蜂巢能源科技有限公司 | Battery pack method for heating and controlling and system |
CN112677823B (en) * | 2021-01-29 | 2022-07-05 | 蜂巢能源科技股份有限公司 | Battery control method and device and vehicle |
CN113937388B (en) * | 2021-10-14 | 2024-03-22 | 上海汽车变速器有限公司 | Battery heating control method, device, equipment and storage medium |
CN114771346A (en) * | 2022-06-16 | 2022-07-22 | 浙江吉利控股集团有限公司 | Electric vehicle battery control method and device, electric vehicle and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070212598A1 (en) * | 2006-03-07 | 2007-09-13 | Panasonic Ev Energy Co., Ltd. | Apparatus for controlling temperature of secondary battery, vehicle battery pack, and computer-readable medium storing program for controlling temperature of secondary battery |
US20110052944A1 (en) * | 2009-09-02 | 2011-03-03 | Wolf Matthias | Device for heating a rechargeable battery, charger, and accessory element |
DE102009054186A1 (en) * | 2009-11-23 | 2011-05-26 | Behr Gmbh & Co. Kg | System for a motor vehicle for heating and / or cooling a battery and a motor vehicle interior |
-
2013
- 2013-01-22 FR FR1350564A patent/FR3001340B1/en active Active
-
2014
- 2014-01-17 WO PCT/FR2014/050091 patent/WO2014114863A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070212598A1 (en) * | 2006-03-07 | 2007-09-13 | Panasonic Ev Energy Co., Ltd. | Apparatus for controlling temperature of secondary battery, vehicle battery pack, and computer-readable medium storing program for controlling temperature of secondary battery |
US20110052944A1 (en) * | 2009-09-02 | 2011-03-03 | Wolf Matthias | Device for heating a rechargeable battery, charger, and accessory element |
DE102009054186A1 (en) * | 2009-11-23 | 2011-05-26 | Behr Gmbh & Co. Kg | System for a motor vehicle for heating and / or cooling a battery and a motor vehicle interior |
Also Published As
Publication number | Publication date |
---|---|
FR3001340B1 (en) | 2015-02-20 |
WO2014114863A1 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3011630B1 (en) | System and method for regulating the temperature of an electrochemical battery | |
KR102365831B1 (en) | Apparatus and method for managing charging and discharging of ultracapacitors without control wiring | |
FR2918027A1 (en) | METHOD FOR CONTROLLING MICRO-HYBRID SYSTEM FOR VEHICLE, AND ENERGY STORAGE UNIT AND HYBRID SYSTEM FOR IMPLEMENTING SAID SYSTEM | |
EP2032405A1 (en) | Micro-hybrid system for motor vehicle incorporating a piloting strategies module | |
EP3237258A1 (en) | Method for energy management of a rechargeable traction battery of a hybrid vehicle | |
WO2015091235A1 (en) | Battery charging | |
FR3001340A1 (en) | METHOD FOR HEATING A BATTERY OF AN ELECTRIC VEHICLE | |
FR2848032A1 (en) | METHOD FOR CONTROLLING THE DISTRIBUTION OF ENERGY IN A MEANS OF TRANSPORT | |
FR2965128B1 (en) | METHOD AND DEVICE FOR MANAGING A GENERATOR OF AN ENERGY RECOVERY SYSTEM OF A MOTOR VEHICLE | |
WO2022254107A1 (en) | Method for recharging a battery as a function of the temperature of the outside environment for a fast-recharge mode | |
FR3097172A1 (en) | THERMAL MANAGEMENT PROCESS OF A BATTERY ALLOWING TO ADAPT THE THERMAL REGULATION TRIP THRESHOLD ACCORDING TO THE TRANSFERRED ELECTRICAL POWER | |
WO2011030024A1 (en) | Method for determining an operating state of electrical power storage means consisting of at least one ultracapacitor | |
EP4338252A1 (en) | Method for the thermal protection of a charging device carried on board an electrified vehicle | |
EP3750377B1 (en) | Method for controlling the power supply of electric heating means of a system, as a function of the available electric power and needs | |
FR2965409A1 (en) | METHOD FOR DETERMINING THE AGING CONDITION OF AN ELECTROCHEMICAL STORAGE SYSTEM COMPRISING TWO ELECTROCHEMICAL STORAGE SOURCES COUPLED BY AN ASSOCIATED DC / DC CONVERTER, MODULE AND VEHICLE | |
EP4331073B1 (en) | Control of a target charging voltage of a rechargeable electrical battery for motor vehicle | |
EP2874847A1 (en) | Method for operating a motor vehicle including an electric power supply system | |
FR3092210A1 (en) | PROCESS FOR MANAGING THE POWER SUPPLY OF TWO ELECTRICAL NETWORKS OF A MOTOR VEHICLE CONNECTED TO EACH OTHER | |
WO2010076458A1 (en) | Method and system for placing an electric energy storage means in standby for an electric or hybrid vehicle | |
EP3016816A1 (en) | Method for controlling an electric power train optimising the low speed use phase | |
FR3022687A1 (en) | METHOD FOR MANAGING THE TEMPERATURE OF A CONTROL CIRCUIT OF AN ELECTRIC HEATER | |
FR3077704A1 (en) | METHOD FOR CONTROLLING THE POWER SUPPLY OF ELECTRICAL HEATING MEANS OF A SYSTEM, BASED ON THE AVAILABLE ELECTRIC POWER, NEEDS AND PRIORITY. | |
EP2402185B1 (en) | Heating device and method for an automobile with a partially or fully electric drive system | |
EP2817865A2 (en) | Method for managing the electrical energy of an electrical architecture of a motor vehicle, and motor vehicle implementing such a method | |
FR3077530A1 (en) | METHOD FOR THE ENERGY MANAGEMENT OF ACTIVATION OF AT LEAST ONE POSITIVE POSITIVE TEMPERATURE COEFFICIENT THERMISTOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
CA | Change of address |
Effective date: 20221121 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |
|
PLFP | Fee payment |
Year of fee payment: 13 |