[go: up one dir, main page]

FR2981942A1 - Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene - Google Patents

Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene Download PDF

Info

Publication number
FR2981942A1
FR2981942A1 FR1103280A FR1103280A FR2981942A1 FR 2981942 A1 FR2981942 A1 FR 2981942A1 FR 1103280 A FR1103280 A FR 1103280A FR 1103280 A FR1103280 A FR 1103280A FR 2981942 A1 FR2981942 A1 FR 2981942A1
Authority
FR
France
Prior art keywords
hydrogen
catalyst
effluent
feed
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1103280A
Other languages
English (en)
Other versions
FR2981942B1 (fr
Inventor
Christophe Bouchy
Antoine Daudin
Anna Sofia Guedes
Sylvette Brunet
Celine Fontaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
IFP Energies Nouvelles IFPEN
Universite de Poitiers
Original Assignee
Centre National de la Recherche Scientifique CNRS
IFP Energies Nouvelles IFPEN
Universite de Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, IFP Energies Nouvelles IFPEN, Universite de Poitiers filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1103280A priority Critical patent/FR2981942B1/fr
Publication of FR2981942A1 publication Critical patent/FR2981942A1/fr
Application granted granted Critical
Publication of FR2981942B1 publication Critical patent/FR2981942B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/42Hydrogen of special source or of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention décrit un procédé de traitement d'une charge issue d'une source renouvelable comprenant une étape d'hydrotraitement de ladite charge, une étape de séparation d'au moins une partie de l'effluent issu de l'étape a) en au moins une fraction légère et au moins un effluent liquide hydrocarboné, une étape d'élimination d'au moins une partie de l'eau de l'effluent liquide hydrocarboné issu de l'étape b), une étape d'hydroisomérisation d'au moins une partie de l'effluent liquide hydrocarboné issu de l'étape c) en présence d'un flux d'hydrogène ayant subi une étape de purification dans le cas où la teneur oxygène atomique dans ledit flux d'hydrogène est supérieur à 500 ppm en volume et une étape de fractionnement de l'effluent issu de l'étape d) pour obtenir au moins une fraction distillat moyen.

Description

Domaine de l'invention Dans un contexte international marqué par la croissance rapide en besoin de carburants, en particulier de bases gazoles et kérosènes dans la communauté européenne, la recherche de nouvelles sources d'énergie renouvelables pouvant être intégrées au schéma traditionnel du raffinage et de la production de carburants constitue un enjeu majeur. A ce titre, l'intégration dans le processus de raffinage de nouveaux produits d'origine végétale, issus de la conversion de la biomasse lignocellulosique ou issus de la production d'huiles végétales ou de graisses animales, a connu ces dernières années un très vif regain d'intérêt en raison de l'augmentation du coût des matières fossiles. De même, les biocarburants traditionnels (éthanol ou esters méthyliques d'huiles végétales principalement) ont acquis un réel statut de complément aux carburants de type pétroliers dans les pools carburants. En outre, les procédés connus à ce jour utilisant des huiles végétales ou des graisses animales sont à l'origine d'émissions de CO2, connus pour ces effets négatifs sur l'environnement. Une meilleure utilisation de ces bio ressources, comme par exemple leur intégration dans le pool carburant présenterait donc un avantage certain. La forte demande en carburants gazoles et kérosènes, couplée avec l'importance des préoccupations liées à l'environnement renforce l'intérêt d'utiliser des charges issues de sources renouvelables. Parmi ces charges on peut citer par exemple les huiles végétales, les graisses animales, brutes ou ayant subi un traitement préalable, ainsi que les mélanges de telles charges. Ces charges contiennent des structures chimiques de type triglycérides ou esters ou acides gras, la structure et la longueur de chaîne hydrocarbonée de ces derniers étant compatible avec les hydrocarbures présents dans les gazoles et le kérosène. Une voie possible est la transformation catalytique de la charge issue de source renouvelable en carburant paraffinique désoxygéné en présence d'hydrogène (hydrotraitement). De nombreux catalyseurs métalliques ou sulfures sont connus pour être actifs pour ce type de réaction. Ces procédés d'hydrotraitement de charge issue de source renouvelable sont déjà bien connus et sont décrits dans de nombreux brevets. On peut citer par exemple les brevets : US 4,992,605, US 5,705,722, EP 1,681,337 et EP 1,741,768. L'utilisation de solides à base de sulfures de métaux de transition permet la production de paraffines à partir de molécule de type ester selon deux voies réactionnelles : L'hydrodésoxygénation conduisant à la formation d'eau par consommation d'hydrogène et à la formation d'hydrocarbures de nombre de carbone (Cm) égal à celui des chaînes d'acides gras initiales, La décarboxylation/décarbonylation conduisant à la formation d'oxydes de carbone (monoxyde et dioxyde de carbone : CO et CO2) et à la formation d'hydrocarbures comptant un carbone en moins (Cm_1) par rapport aux chaînes d'acides gras initiales. L'effluent liquide issu de ces procédés d'hydrotraitement, après séparation, est essentiellement constitué de n-paraffines qui peuvent être incorporées au pool gazole et kérosène et est substantiellement exempt d'impuretés soufrées, azotées et oxygénées. Après hydrotraitement et séparation des gaz, la teneur en soufre est typiquement comprise entre 1 et 20 ppm poids, la teneur en azote est généralement comprise entre 0,2 et 30 ppm poids et la teneur en oxygène est généralement inférieure à 2000 ppm poids. De manière à améliorer les propriétés à froid de cet effluent liquide hydrotraité, une étape d'hydroisomérisation est nécessaire pour transformer les n- paraffines en paraffines branchées présentant de meilleures propriétés à froid. La demande de brevet EP 1 741 768 décrit un procédé de traitement d'huile végétale comprenant un hydrotraitement suivi d'une étape d'hydroisomérisation afin d'améliorer les propriétés à froid des paraffines linéaires obtenues. Les catalyseurs utilisés dans l'étape d'hydroisomérisation sont des catalyseurs bifonctionnels constitués d'une phase active métallique comprenant un métal du groupe VIII choisi parmi le palladium, le platine et le nickel, dispersé sur un support acide de type tamis moléculaire choisi parmi la SAPO-11, la SAPO-41, la ZSM-22, la ferrierite ou la ZSM-23, ledit procédé opérant à une température comprise entre 200 et 500°C, et à une pression comprise entre 2 et 15 MPa.
La demande de brevet FR 2 950 895 enseigne l'utilisation de catalyseurs d'hydroisomérisation comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seuls ou en mélange et un support composite formé par une zéolithe choisie parmi les zéolithes Y, ZSM-48, ZBM-30, IZM-1 et COK-7, prises seule ou en mélange et du carbure de silicium SiC. Aucune indication sur la pureté de l'hydrogène employé dans l'étape d'hydroisomérisation n'est fournie dans ces brevets. Le brevet US2009/0300971 décrit un procédé de préparation de naphta à partir d'une charge issue de source renouvelable comprenant une étape d'hydrotraitement, une étape de séparation gaz/liquide suivie d'une étape d'hydrocraquage. L'hydrogène de recycle qui est utilisé dans l'étape d'hydrotraitement et/ou d'hydrocraquage peut éventuellement etre purifié de manière à séparer l'ammoniaque, les oxydes de carbones et le sulfure d'hydrogène avant d'être envoyé dans lesdites étapes d'hydrotraitement et d'hydrocraquage. Il est indiqué que l'élimination préalable des contaminants présente dans le flux d'hydrogène préserve l'activité catalytique et la sélectivité des catalyseurs d'hydrotraitement et d'hydrocraquage. Cependant, aucune indication précise sur la pureté de l'hydrogène employé dans l'étape d'hydrocraquage n'est mentionnée.
En effet, l'étape d'hydroisomérisation peut utiliser de l'hydrogène provenant de différentes sources. Selon la nature des différentes sources, l'hydrogène utilisé dans le procédé selon l'invention peut contenir ou pas des impuretés. Par exemple une unité de reformage catalytique produit de l'hydrogène durant les réactions de déshydrogénation des napthènes en aromatiques et durant les réactions de déshydrocyclisation. L'hydrogène produit par une unité de reformage catalytique est substantiellement exempt de CO et de CO2. L'hydrogène peut également être produit par d'autres méthodes comme par exemple par le vaporeformage d'hydrocarbures légers ou encore par l'oxydation partielle de différents hydrocarbures comme des résidus lourds. Le vaporeformage consiste à transformer une charge légère d'hydrocarbure en gaz de synthèse, c'est-à-dire en un mélange d'hydrogène (H2), de monoxyde de carbone (CO), de dioxyde de carbone (CO2), et d'eau (H2O) par réaction avec de la vapeur d'eau sur un catalyseur à base de Nickel. Dans ce cas la production d'hydrogène s'accompagne également de la formation d'oxydes de carbone qui sont sensiblement éliminés par la conversion à la vapeur du monoxyde de carbone (CO), en dioxyde de carbone (CO2), puis par élimination du CO2 par absorption par exemple par une solution d'amines. Il peut également y avoir élimination du monoxyde de carbone (CO) résiduel par une étape de méthanation. D'autres sources d'hydrogène peuvent également être employées comme l'hydrogène issu des gaz de craquage catalytique qui contient des quantités significatives de CO et de CO2. Ainsi, selon son (ses) origine(s), l'hydrogène employé dans le procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer- Tropsch peut contenir plusieurs centaines de ppm en volume d'oxydes de carbone. En tentant de développer un procédé de traitement de charges issues de source renouvelable comprenant au moins une étape d'hydrotraitement et une étape d'hydroisomérisation, la demanderesse a découvert que la présence de monoxyde de carbone (CO), de dioxyde de carbone (CO2), et plus généralement que la présence de molécules contenant au moins un atome d'oxygène dans l'hydrogène, même à de faibles teneurs en oxygène atomique, a un impact négatif sur les performances du catalyseur d'hydroisomérisation lorsque la charge paraffinique à hydroisomériser est substantiellement exempte de d'impuretés soufrées, azotées et plus particulièrement de composés oxygénés, tels que le monoxyde et le dioxyde de carbone (CO et 002), l'eau ou encore des alcools et/ou des acides carboxyliques, esters et cétones, comme c'est le cas par exemple après une étape d'hydrotraitement. En effet, dans le cas d'une charge paraffinique à hydroisomériser qui contient une quantité significative de composés oxygénés, c'est à dire qui n'a pas été hydrotraitée, l'impact desdits composés oxygénés contenus dans ladite charge est largement supérieur à l'impact de la présence d'impuretés contenant au moins un atome d'oxygène dans l'hydrogène, qui devient alors négligeable. A contrario, lorsque la charge paraffinique est substantiellement exempte de composés oxygénés, la présence, dans l'hydrogène, d'impuretés contenant au moins un atome d'oxygène a un impact négatif sur le catalyseur d'hydroisomérisation. Un avantage du procédé selon la présente invention est donc de fournir un procédé de traitement d'une charge issue d'une source renouvelable qui subit un hydrotraitement avant d'etre envoyé dans une étape d'hydrosiomérisation qui opère en présence d'un flux d'hydrogène contenant une teneur limitée en molécules contenant au moins un atome d'oxygène, ledit procédé permettant d'améliorer les performances du catalyseur d'hydroisomérisation et ainsi de permettre l'amélioration des propriétés a froid de la coupe distillat moyen et en particulier de la coupe gazole produite par ledit procédé, tout en maintenant un indice de cétane élevé.35 Objet de l'invention Plus précisément, la présente invention concerne un procédé de traitement d'une charge issue d'une source renouvelable comprenant au moins : a) une étape d'hydrotraitement de ladite charge en présence d'un catalyseur en lit fixe, ledit catalyseur comprenant une fonction hydro-déshydrogénante et un support amorphe, à une température comprise entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 h-1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3 d'hydrogène/m3 de charge, b) une étape de séparation d'au moins une partie de l'effluent issu de l'étape a) en au moins une fraction légère et au moins un effluent liquide hydrocarboné, c) une étape d'élimination d'au moins une partie de l'eau de l'effluent liquide hydrocarboné issu de l'étape b), d) une étape d'hydroisomérisation d'au moins une partie de l'effluent liquide hydrocarboné issu de l'étape c), en présence d'un catalyseur d'hydroisomérisation en lit fixe, ladite étape d'hydroisomérisation étant effectuée à une température comprise entre 150 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, et en présence d'un flux d'hydrogène ayant subi une étape de purification dans le cas où la teneur oxygène atomique dans ledit flux d'hydrogène est supérieur à 500 ppm en volume, e) une étape de fractionnement de l'effluent issu de l'étape d) pour obtenir au moins une fraction distillat moyen.
Description détaillée de l'invention La présente invention est particulièrement dédiée à la préparation de bases carburant gazoles et/ou kérosènes correspondant aux nouvelles normes environnementales, à partir de charges issues de sources renouvelables.
Les charges issues de sources renouvelables utilisées dans le procédé selon la présente invention sont avantageusement choisies parmi les huiles et graisses d'origine végétale ou animale, ou des mélanges de telles charges, contenant des triglycérides et/ou des acides gras libres et/ou des esters. Les huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux suivants : colza, tournesol, soja, palme, palmiste, olive, noix de coco, jatropha, cette liste n'étant pas limitative. Les huiles d'algues ou de poisson sont également pertinentes. Les graisses animales sont avantageusement choisies parmi le lard ou les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration.
Ces charges contiennent essentiellement des structures chimiques de type triglycérides que l'homme du métier connait également sous l'appellation tri ester d'acides gras ainsi que des acides gras libres. Un tri ester d'acide gras est ainsi composé de trois chaînes d'acides gras. Ces chaînes d'acide gras sous forme de tri ester ou sous forme d'acide gras libres, possèdent un nombre d'insaturations par chaîne, également appelé nombre de doubles liaisons carbone carbone par chaîne, généralement compris entre 0 et 3 mais qui peut être plus élevé notamment pour les huiles issues d'algues qui présentent généralement un nombre d'insaturations par chaînes de 5 à 6. Les molécules présentes dans les charges issues de sources renouvelables utilisées dans la présente invention présentent donc un nombre d'insaturations, exprimé par molécule de triglycéride, avantageusement compris entre 0 et 18. Dans ces charges, le taux d'insaturation, exprimé en nombre d'insaturations par chaîne grasse hydrocarbonée, est avantageusement compris entre 0 et 6. Les charges issues de sources renouvelables comportent généralement également différentes impuretés et notamment des hétéroatomes tels que l'azote. Les teneurs en azote dans les huiles végétales sont généralement comprises entre 1 ppm et 100 ppm poids environ, selon leur nature.
De manière avantageuse, la charge peut subir préalablement à l'étape a) du procédé selon l'invention une étape de pré-traitement ou pré-raffinage de façon à éliminer, par un traitement approprié, des contaminants tels que des métaux, comme les composés alcalins par exemple sur des résines échangeuses d'ions, les alcalino-terreux et le phosphore. Des traitements appropriés peuvent par exemple être des traitements thermiques et/ou chimiques bien connus de l'homme du métier. Conformément à l'étape a) du procédé selon l'invention, la charge, éventuellement prétraitée, est mise au contact d'un catalyseur en lit fixe à une température comprise entre 200 et 450°C, de préférence entre 220 et 350°C, de manière préférée entre 220 et 320°C, et de manière encore plus préférée entre 220 et 310°C. La pression est comprise entre 1 MPa et 10 MPa, de manière préférée entre 1 MPa et 6 MPa et de manière encore plus préférée entre 1 MPa et 4 MPa. La vitesse spatiale horaire, soit le volume de charge par volume de catalyseur et par heure est comprise entre 0,1 h-1 et 10 h-1. La charge est mise au contact du catalyseur en présence d'hydrogène. La quantité totale d'hydrogène mélangée à la charge est telle que le ratio hydrogène/charge est compris entre 70 et 1000 Nm3 d'hydrogène/m3 de charge et de manière préférée compris entre 150 et 750 Nm3 d'hydrogène/m3 de charge. Dans l'étape a) du procédé selon l'invention, le catalyseur en lit fixe est avantageusement un catalyseur d'hydrotraitement comprenant une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII et/ou du groupe VIB, pris seul ou en mélange et un support choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également avantageusement renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. Le support préférée est un support d'alumine et de manière très préférée d'alumine 5 ou y.
Ledit catalyseur est avantageusement un catalyseur comprenant des métaux du groupe VIII de préférence choisis parmi le nickel et le cobalt, pris seul ou en mélange, de préférence en association avec au moins un métal du groupe VIB de préférence choisi parmi le molybdène et le tungstène, pris seul ou en mélange.
La teneur en oxydes de métaux des groupes VIII et de préférence en oxyde de nickel est avantageusement comprise entre 0,5 et 10% en poids d'oxyde de nickel (NiO) et de préférence entre 1 et 5% en poids d'oxyde de nickel et la teneur en oxydes de métaux des groupes VIB et de préférence en trioxyde de molybdène est avantageusement comprise entre 1 et 30% en poids d'oxyde de molybdène (Mo03), de préférence de 5 à 25% en poids, les pourcentages étant exprimés en % poids par rapport à la masse totale du catalyseur. La teneur totale en oxydes de métaux des groupes VIB et VIII dans le catalyseur utilisé dans l'étape a) est avantageusement comprise entre 5 et 40% en poids et de manière préférée comprise entre 6 et 30% en poids par rapport à la masse totale du catalyseur. Ledit catalyseur utilisé dans l'étape a) du procédé selon l'invention doit être avantageusement caractérisé par un fort pouvoir hydrogénant de façon à orienter le plus possible la sélectivité de la réaction vers une hydrogénation conservant le nombre d'atomes de carbone des chaînes grasses c'est à dire la voie hydrodéoxygénation, ceci afin de maximiser le rendement en hydrocarbures entrant dans le domaine de distillation des kérosènes et/ou des gazoles. C'est pourquoi de manière préférée, on opère à une température relativement basse. Maximiser la fonction hydrogénante permet également de limiter les réactions de polymérisation et/ou de condensation conduisant à la formation de coke qui dégraderait la stabilité des performances catalytiques. De façon préférée on utilise un catalyseur de type Ni ou NiMo. Ledit catalyseur utilisé dans l'étape a) d'hydrotraitement du procédé selon l'invention peut également avantageusement contenir un élément dopant choisi parmi le phosphore et le bore, pris seuls ou en mélange. Ledit élément dopant peut être introduit dans la matrice ou de préférence être déposé sur le support. On peut également déposer du silicium sur le support, seul ou avec le phosphore et/ou le bore et/ou le fluor. La teneur en poids d'oxyde dudit élément dopant est avantageusement inférieure à 20% et de manière préférée inférieure à 10% et elle est avantageusement d'au moins 0,001%.
Des catalyseurs préférés sont les catalyseurs décrits dans la demande de brevet FR 2 943 071 décrivant des catalyseurs ayant une forte sélectivité pour les réactions d'hydrodésoxy-génation. D'autres catalyseurs préférés sont les catalyseurs décrits dans la demande de brevet EP 2 210 663 décrivant des catalyseurs supportés ou massiques comprenant une phase active constituée d'un élément sulfuré du groupe VIB, l'élément du groupe VIB étant le molybdène.
Les métaux des catalyseurs utilisés dans l'étape a) d'hydrotraitement du procédé selon l'invention sont des métaux sulfurés ou des phases métalliques et de préférence des métaux sulfurés. On ne sortirait pas du cadre de la présente invention en utilisant dans l'étape a) du procédé selon l'invention, de manière simultanée ou de manière successive, un seul catalyseur ou plusieurs catalyseurs différents. Cette étape peut être effectuée industriellement dans un ou plusieurs réacteurs avec un ou plusieurs lits catalytiques et de préférence à courant descendant de liquide. Ladite étape a) d'hydrotraitement permet l'hydrodésoxygénation, l'hydrodéazotation et l'hydrodésulfuration de ladite charge.
Conformément à l'étape b) du procédé selon l'invention, une étape de séparation d'au moins une partie et de préférence la totalité de l'effluent issu de l'étape a) est mise oeuvre. Ladite étape b) permet de séparer au moins une fraction légère, au moins un effluent liquide hydrocarboné. Ladite fraction légère comprend au moins une fraction gazeuse qui comprend l'hydrogène non converti et les gaz contenant au moins un atome d'oxygène issues de la décomposition des composés oxygénés lors de l'étape a) d'hydrotraitement et les composés C4-, c'est à dire les composés Cl à C4 présentant de préférence un point d'ébullition final inférieur à 20°C. Le but de cette étape est de séparer les gaz du liquide, et notamment, de récupérer les gaz riches en hydrogène pouvant contenir également des gaz tels que CO et CO2 et au moins un effluent hydrocarbonée liquide. Ledit effluent liquide hydrocarboné présente de préférence une teneur en soufre inférieure à 10 ppm poids, une teneur en azote inférieure à 2 ppm poids. L'étape b) de séparation peut avantageusement être mise en oeuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison de un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de strippage haute et/ou basse pression.
Conformément à l'étape c) du procédé selon l'invention, au moins une partie et de préférence la totalité de l'effluent liquide hydrocarboné issu de l'étape b) de séparation subit une étape d'élimination d'ai moins une partie et de préférence la totalité de l'eau formée par les réactions d'hydrodésoxygénation (HDO) qui ont lieu lors de l'étape b) d'hydrotraitement. Le but de cette étape d'élimination de l'eau est de séparer l'eau de l'effluent liquide hydrocarboné contenant les hydrocarbures paraffiniques. L'étape c) d'élimination d'au moins une partie de l'eau et de préférence la totalité de l'eau peut avantageusement être réalisée par toutes les méthodes et techniques connues de l'homme du métier. De préférence, ladite étape c) est mise en ouvre par séchage, par passage sur un dessicant, par flash, par décantation ou par une combinaison d'au moins deux de ces techniques.
La teneur en oxygène atomique de l'effluent liquide hydrocarboné contenant les hydrocarbures paraffiniques issue de l'étape c) du procédé selon l'invention, exprimée en partie par million en poids (ppm) est de préférence inférieure à 500 ppm, de manière préférée inférieure à 300 ppm, de manière très préférée inférieure à 100 ppm poids. La teneur en en ppm poids en oxygène atomique dans ledit effluent liquide hydrocarboné est mesurée par la technique d'absorption infra rouge telle que par exemple la technique décrite dans la demande de brevet US2009/0018374A1. Conformément à l'étape d) du procédé selon l'invention, une partie au moins et de préférence la totalité de l'effluent liquide hydrocarboné issu de l'étape c) du procédé selon l'invention est hydroisomérisée en présence d'un catalyseur d'hydroisomérisation en lit fixe, ladite étape d'hydroisomérisation étant effectuée à une température comprise entre 150 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, et en présence d'un flux d'hydrogène ayant subi une étape de purification dans le cas où la teneur oxygène atomique dans ledit flux d'hydrogène est supérieur à 500 ppm en volume. De préférence, ledit flux d'hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène est supérieure à 250 ppm en volume. De manière préférée, ledit flux d'hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène est supérieure à 50 ppm en volume. Ledit flux d'hydrogène utilisé dans le procédé selon l'invention et de préférence dans l'étape d) du procédé selon l'invention est avantageusement généré par les procédés connus de l'homme du métier tels que par exemple un procédé de reformage catalytique ou de craquage catalytique des gaz. Selon la nature des différentes sources, l'hydrogène utilisé dans le procédé selon l'invention peut contenir ou pas des impuretés. La teneur en oxygène atomique dans ledit flux d'hydrogène peut etre mesuré par toute méthode connue de l'homme du métier telle que par exemple par chromatographie en phase gazeuse.
De préférence, ledit flux d'hydrogène peut être de l'hydrogène frais ou un mélange d'hydrogène frais et d'hydrogène de recycle, c'est-à-dire d'hydrogène non converti lors de l'étape d) d'hydroisomérisation et recyclé dans ladite étape c). Dans le cas où ledit flux d'hydrogène contient une teneur en oxygène atomique supérieure à 500 ppm volume, de préférence supérieure à 250 ppm volume et de manière préférée supérieure à 50 ppm volume, ledit flux d'hydrogène subit une étape de purification avant d'être introduit dans ladite étape d). Ladite étape de purification du flux d'hydrogène peut avantageusement s'effectuer selon toute méthode connue de l'homme du métier. De préférence, ladite étape de purification est avantageusement mise en oeuvre selon les méthodes de d'adsorption modulée en pression ou PSA "Pressure Swing Adsorption" selon la terminologie anglo-saxonne, ou d'adsorption modulée en température ou TSA "Temperature Swing Adsorption" selon la terminologie anglo-saxonne, de lavage aux amines, de méthanation, d'oxydation préférentielle, de procédés membranaires, utilisées seules ou combinées. Lorsque le procédé met en oeuvre un recyclage de l'hydrogène, une purge de l'hydrogène de recycle peut également avantageusement être effectuée afin de limiter l'accumulation de molécules contenant au moins un atome d'oxygène tel que le monoxyde de carbone CO ou le dioxyde de carbone CO2 et ainsi de limiter la teneur en oxygène atomique dans ledit flux d'hydrogène.
Conformément à l'invention, la teneur en oxygène atomique dans ledit flux d'hydrogène utilisé dans le procédé selon l'invention et de préférence dans l'étape d) du procédé selon l'invention, exprimée en partie par million en volume (ppmv), doit être inférieure à 500 ppmv, de manière préférée inférieure à 250 ppmv et de manière très préférée inférieure à 50 ppmv. La teneur en oxygène atomique dans ledit flux d'hydrogène se calcule à partir des concentrations en molécules ayant au moins un atome d'oxygène dans ledit flux d'hydrogène, pondérées du nombre d'atome d'oxygène présent dans ladite molécule oxygénée. A titre d'exemple, considérant un flux d'hydrogène contenant du CO du CO2, la teneur en oxygène atomique contenue dans ledit flux d'hydrogène est alors égale à: ppmv(0) = ppmv (CO) + 2 * ppmv (CO2) avec: ppmv (0) teneur en oxygène atomique dans le flux d'hydrogène en partie par million en volume, ppmv (CO) teneur en monoxyde de carbone dans le flux d'hydrogène en partie par million en volume, ppmv (CO2) teneur en dioxyde de carbone dans le flux d'hydrogène en partie par million en volume.
Dans le cas où ledit flux d'hydrogène contient une teneur en oxygène atomique inférieure à 500 ppmv, de préférence inférieure à 250 ppmv et de manière préférée inférieure à 50 ppmv, aucune étape de purification dudit flux d'hydrogène n'est mise en oeuvre avant que ledit flux ne soit introduit dans ladite étape d).
Les conditions opératoires de l'étape d'hydroisomérisation sont ajustées afin de réaliser une hydroisomérisation de la charge non convertissante. Cela signifie que l'hydroisomérisation s'effectue avec une conversion de la fraction 150°C+ en fraction 150°C- inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids.
De préférence, l'étape d) d'hydroisomérisation du procédé selon l'invention opère à une température comprise entre 150°C et 450°C, et de manière très préférée, entre 200 et 450°C, à une pression comprise entre 2 MPa et 10 MPa et de manière très préférée, entre 1 MPa et 9 MPa, à une vitesse volumique horaire avantageusement comprise entre 0,2 et 7 h-1 et de manière très préférée, entre 0,5 et 5 h-1, à un débit d'hydrogène tel que le rapport volumique hydrogène/hydrocarbures est avantageusement compris entre 100 et 1000 normaux m3 d'hydrogène par m3 de charge et de manière préférée entre 150 et 1000 normaux m3 d'hydrogène par m3 de charge. Le catalyseur d'hydroisomérisation comprend au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et au moins un solide acide de Bronsted, et éventuellement un liant. De préférence, le catalyseur d'hydrocraquage comprend soit au moins un métal noble du groupe VIII choisi parmi le platine et le palladium, pris seul ou en mélange, actifs sous leur forme réduite, soit au moins un métal non noble du groupe VIII choisi parmi le nickel et le cobalt en combinaison avec au moins un métal du groupe VI choisi parmi le molybdène et le tungstène, pris seul ou en mélange, et utilisés de préférence sous leur forme sulfurée. Dans le cas où le catalyseur d'hydrocraquage comprend au moins un métal noble du groupe VIII, la teneur en métal noble dudit catalyseur d'hydrocraquage est avantageusement comprise entre 0,01 et 5% en poids par rapport au catalyseur fini, de manière préférée entre 0,05 et 4% en poids et de manière très préférée entre 0,10 et 2% en poids. Dans le cas où le catalyseur d'hydrocraquage comprend au moins un métal du groupe VI en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VI dudit troisième catalyseur d'hydrocraquage, est avantageusement comprise en équivalent oxyde entre 5 et 40% en poids par rapport au catalyseur fini, de manière préférée entre 10 et 35% en poids et de manière très préférée entre 15 et 30% en poids et la teneur en métal du groupe VIII dudit catalyseur est avantageusement comprise en équivalent oxyde entre 0,5 et 10% en poids par rapport au catalyseur fini, de manière préférée entre 1 et 8% en poids et de manière très préférée entre 1,5 et 6% en poids.
La fonction métallique est avantageusement introduite sur le catalyseur par toute méthode connue de l'homme du métier, comme par exemple le comalaxage, l'imprégnation à sec ou l'imprégnation par échange. De préférence, le solide acide de Bronsted est constitué par de la silice alumine ou la zéolithe Y, la SAPO-11, la SAPO-41, la ZSM-22, la ferrierite, la ZSM-23, la ZSM-48, la ZBM-30,1' IZM-1, la COK-7. Éventuellement, un liant peut avantageusement également être utilisé durant l'étape de mise en forme du support. On utilise de préférence un liant lorsque la zéolithe est employée. Ledit liant est avantageusement choisi parmi la silice (SiO2), l'alumine (A1203), les argiles, l'oxyde de titane (TiO2), l'oxyde de bore (B203) et la zircone (ZrO2) pris seul ou en mélange. De préférence, ledit liant est choisi parmi la silice et l'alumine et de manière encore plus préférée, ledit liant est l'alumine sous toutes ses formes connues de l'homme du métier, telle que par exemple l'alumine gamma. Un catalyseur d'hydrocraquage préféré utilisé dans le procédé selon l'invention comporte avantageusement au moins un métal noble, ledit métal noble étant le platine et un solide acide de Bronsted de type silice alumine, sans aucun liant. La teneur en silice de la silice-alumine, exprimée en pourcentage poids, est généralement comprise entre 1 et 95%, avantageusement entre 5 et 95% et de manière préférée entre 10 et 80% et de manière encore plus préférée entre 20 et 70% et entre 22 et 45%. Cette teneur en silice est parfaitement mesurée à l'aide de la fluorescence X. Plusieurs catalyseurs préférés utilisés dans l'étape d) d'hydrocraquage du procédé selon l'invention sont décrits ci-après. Un catalyseur préféré utilisé dans le procédé selon l'invention, comprend une silice-alumine particulière. Plus précisément, ledit catalyseur comprend (et de préférence est essentiellement constitué de) 0,05 à 10% en poids et de préférence comprise entre 0,1 et 5% poids d'au moins un métal noble du groupe VIII, de préférence choisis parmi le platine et le palladium et de manière préféré, ledit métal noble étant le platine, déposé sur un support silice-alumine, sans aucun liant, contenant une quantité de silice (SiO2) comprise entre 1 et 95%, exprimée en pourcentage poids, de préférence entre 5 et 95%, de manière préférée entre 10 et 80% et de manière très préférée entre 20 et 70% et de manière encore plus préférée entre 22 et 45%, ledit catalyseur présentant : - une surface spécifique BET de 100 à 500 m2/g, de préférence comprise entre 200 m2/g et 450 m2/g et de manière très préférée entre 250 m2/g et 450 m2/g, - un diamètre moyen des mésopores compris entre 3 et 12 nm, de préférence compris entre 3 nm et 11 nm et de manière très préférée entre 4 nm et 10,5 nm, - un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à 40% du volume poreux total, de manière préférée compris entre 50% et 90% du volume poreux total et de manière très préférée compris entre 50% et 70% du volume poreux total, - un volume poreux total compris entre 0,4 et 1,2 ml/g, de préférence entre 0,5 et 1,0 ml/g et de manière très préférée entre 0,5 et 0,9 ml/g, - un volume des macropores, dont le diamètre est supérieur à 50 nm, et de préférence compris entre 100 nm et 1000 nm, représentant entre 5 et 60% du volume poreux total, de préférence entre 10 et 50% du volume poreux total et de manière encore plus préférée entre 10 et 40% du volume poreux total, - une teneur en composés alcalins ou alcalino-terreux inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids. Le diamètre moyen des mésopores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée du volume d'intrusion du mercure obtenue à partir de la courbe de porosité au mercure pour des diamètres de pores compris entre 2 et 50 m. Le diamètre moyen des mésopores du catalyseur est avantageusement mesuré à partir du profil de répartition poreuse obtenu à l'aide d'un porosimètre au mercure. De préférence, la dispersion du métal dudit catalyseur préféré est avantageusement comprise entre 20% et 100%, de manière préférée entre 30% et 100% et de manière très préférée entre 40 et 100%. La dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, est avantageusement mesurée, par exemple, par titrage H2/02 ou par microscopie électronique à transmission. De préférence, le coefficient de répartition du métal noble dudit catalyseur préféré est supérieur à 0,1, de préférence supérieur à 0,2 et de manière très préférée supérieur à 0,4. La répartition du métal noble représente la distribution du métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé. Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à-dire que tous les atomes de platine, situés en couronne, seront accessibles aux réactifs. Le coefficient de répartition du métal noble peut être mesuré par microsonde de Castaing. Le sel de métal noble est avantageusement introduit par une des méthodes usuelles utilisées pour déposer le métal à la surface d'un solide. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de solide à imprégner. Avant l'opération de réduction, le catalyseur peut avantageusement subir une calcination comme par exemple un traitement sous air sec à une température de 300 à 750°C et de préférence à une température égale à 520°C, pendant 0,25 à 10 heures et de préférence pendant 2 heures. Un autre catalyseur préféré dans le procédé selon l'invention comprend une seconde silice-alumine particulière. Plus précisément, ledit catalyseur comprend au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique, de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02), ledit catalyseur présentant les caractéristiques suivantes - un diamètre moyen mésoporeux, mesuré par porosimétrie au mercure, compris entre 2 et 14 nm, - un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,5 ml/g, - une surface spécifique BET comprise entre 100 et 550 m2/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 14 nm inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 16 nm inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 20 nm, inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 50 nm inférieur à 0,1 ml/g, - un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta, - une densité de remplissage tassée supérieure à 0,75 g/ml. Un autre catalyseur préféré utilisé dans le procédé selon l'invention comprend (et de préférence est essentiellement constitué de) 0,05 à 10% en poids et de préférence 0,1 et 5% poids d'au moins un métal noble du groupe VIII, de préférence choisis parmi le platine et le palladium et de manière préférée, ledit métal noble étant le platine, déposé sur un support silice-alumine, sans aucun liant, contenant une quantité de silice (Si02) comprise entre 1 et 95%, exprimée en pourcentage poids, de préférence entre 5 et 95%, de manière préférée entre 10 et 80% et de manière très préférée entre 20 et 70% et de manière encore plus préférée entre 22 et 45%, ledit catalyseur présentant : - une surface spécifique BET de 200 à 600 m2/g et de préférence comprise entre 250 m2/g et 500 m2/g , - un diamètre moyen des mésopores compris entre 3 et 12 nm, de préférence compris entre 3 nm et 11 nm et de manière très préférée entre 4 nm et 10,5 nm, - un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à 60% du volume poreux total, de manière préférée supérieur à 70% du volume poreux total et de manière très préférée supérieur à 80% du volume poreux total, - un volume poreux total inférieur à 1 ml/g, de préférence compris entre 0,1 et 0,9 ml/g et de manière très préférée entre 0,2 et 0,7 ml/g, - une teneur en composés alcalins ou alcalino-terreux inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids. De préférence, la dispersion du métal noble dudit catalyseur préféré utilisé dans l'étape d) du procédé selon l'invention est avantageusement comprise entre 20% et 100%, de manière préférée entre 30% et 100% et de manière très préférée entre 40 et 100. De préférence, le coefficient de répartition du métal noble dudit catalyseur préféré utilisé dans l'étape d) du procédé selon l'invention est supérieur à 0,1, de préférence supérieur à 0,2 et de manière très préférée supérieur à 0,4. Ce coefficient de répartition est mesuré par microsonde de Castaing.
Un autre catalyseur préféré utilisé dans le procédé selon l'invention comprend une silice-alumine et au moins un métal du groupe VIIIB et au moins un métal du groupe VIB, ledit catalyseur étant sulfuré. La teneur en ces éléments est avantageusement comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport au catalyseur fini, de manière préférée entre 10 et 35 % en poids et de manière très préférée entre 15 et 30 % en poids et la teneur en métal du groupe VIII dudit catalyseur est avantageusement comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport au catalyseur fini, de manière préférée entre 1 et 8 % en poids et de manière très préférée entre 1,5 et 6% en poids. La fonction hydro/déshydrogénante métallique peut avantageusement être introduite sur ledit catalyseur par toute méthode connue de l'homme du métier, comme par exemple le comalaxage, l'imprégnation à sec, l'imprégnation par échange. Ledit catalyseur d'hydroisomérisation comprend au moins un support minéral amorphe en tant que fonction hydroisomérisante, ledit un support minéral amorphe étant choisi parmi les silice-alumines et alumines silicées et de manière préférée les silices alumines, contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02).
Conformément à l'étape e) du procédé selon l'invention, l'effluent hydroisomérisé issu de l'étape d) subit une étape de fractionnement, de préférence dans un train de distillation qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, pour obtenir au moins une fraction distillat moyen.
Ladite étape e) a pour but de séparer les gaz du liquide, et notamment, de récupérer les gaz riches en hydrogène pouvant contenir également des légers tels que la coupe C1 - C4 et au moins une coupe gazole, au moins une coupe kérosène et au moins une coupe naphta. La valorisation de la coupe naphta n'est pas l'objet de la présente invention, mais cette coupe peut avantageusement être envoyée dans une unité de vapocraquage ou de reformage catalytique.
Les produits, base gazole et/ou kérosène, obtenus selon le procédé selon l'invention sont dotés d'excellentes caractéristiques. La base gazole obtenue est d'excellente qualité : ^ sa teneur en soufre est inférieure à 10 ppm poids, ^ sa teneur en aromatiques totaux est inférieure à 5% poids, et la teneur en polyaromatiques inférieure à 2% poids, ^ l'indice de cétane est excellent, supérieur à 55, ^ la densité est inférieure à 840 kg/m3, et le plus souvent inférieure à 820 kg/m3, - Sa viscosité cinématique à 40°C est 2 à 8 mm2/s, ^ ses propriétés de tenue à froid sont compatibles avec les normes en vigueur, avec une température limite de filtrabilité inférieure à -15°C et un point de trouble inférieur à -5°C. Le kérosène obtenu présente les caractéristiques suivantes : ^ une densité comprise entre 775 et 840 kg/m3, ^ une viscosité à -20°C inférieure à 8 mm2/s, ^ un point de disparition de cristaux inférieur à -47°C, ^ un point éclair supérieur à 38°C, ^ un point de fumée supérieur à 25 mm.
EXEMPLES Exemple 1 : Préparation d'un catalyseur d'hydroisomérisation conforme à l'invention (C2) La poudre de silice-alumine est préparée selon le protocole de synthèse décrit dans le brevet FR 2 639 256 (exemple 3). Les quantités d'acide orthosilicique et d'alcoolate d'aluminium sont choisies de manière à avoir une composition de 70% en poids d'alumine A1203 et 30% en poids de silice Si02 dans le solide final. La poudre séchée est mise au contact d'une solution aqueuse d'acide nitrique, la quantité en acide nitrique étant de 5% en poids par rapport à la quantité de poudre et la quantité de solution aqueuse telle que la perte au feu à 550°C du gâteau obtenu soit d'environ 60% en poids. Ce gâteau est malaxé puis extrudé. Le malaxage se fait sur un malaxeur bras en Z. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1,4 mm. Les extrudés ainsi obtenus sont séchés en étuve à 110°C puis calciné sous débit d'air sec (rampe de montée de 5°C/min). La température de calcination est ajustée de manière à obtenir une surface spécifique de 299 m2/g.
Les extrudés de silice-alumine sont ensuite soumis à une étape d'imprégnation à sec par une solution aqueuse d'acide hexachloroplatinique H2PtC16, laissés à maturer en maturateur à eau durant 24 heures à température ambiante puis calcinés durant deux heures sous air sec en lit traversé à 500°C (rampe de montée en température de 5°C/min). La teneur pondérale en platine du catalyseur fini après calcination est de 0,47%.
Les caractéristiques du catalyseur ainsi préparé sont les suivantes : - un diamètre moyen des mésopores de 6,5 nm, - un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm égal à 60% du volume poreux total, - un volume poreux total de 0,70 ml/g, - un volume des macropores, dont le diamètre est supérieur à 50 nm représentant 29% du volume poreux total - une surface BET de 299 m2/g, - une teneur en sodium de 102 -I-- 13 ppm en poids, - une dispersion du métal noble de 85%, - un coefficient de répartition du métal noble égal à 0,95. Exemple 2: Hydroconversion d'une molécule modèle n-hexadécane sur un catalyseur d'hydroisomérisation conforme à l'invention (C2) L'impact de la présence de CO et CO2 dans l'hydrogène a été tout d'abord évalué en hydroconversion d'une paraffine modèle, le n-hexadécane. La transformation du n-hexadécane sur le catalyseur C2 est étudiée sur micro-unité de test catalytique travaillant en lit traversé. Typiquement 1 gramme de catalyseur C2 broyé puis tamisé à la fraction 250 - 315 microns est chargé dans le réacteur. Le catalyseur est ensuite séché à pression atmosphérique sous flux d'azote durant une heure à 150°C (6 NI N2/gramme de catalyseur / h) puis réduit à pression atmosphérique sous flux d'hydrogène durant 2,5 heures à 450°C (6 NI H2/gramme de catalyseur / h). Les conditions opératoires sont ensuite ajustées à 335°C, une pression totale de 50 bar et le n-hexadécane est injecté dans l'unité. Les conditions opératoires sont les suivantes: - pression totale : 50 bar, - température: 335°C, - vitesse volumique horaire du n-hexadécane: 7 h-1, rapport hydrogène / n-hexadécane: 1080 NI / I, L'utilisation de différents mélanges étalons permet de faire varier la teneur en CO ou CO2 dans l'hydrogène. Tous les produits chimiques employés sont commerciaux, le n-hexadécane provenant de Sigma-Aldrich (anhydre, pureté 99-F), l'hydrogène et l'azote d'Air Liquide (qualité U, 02 < 10 ppmv, H2O < 40 ppmv) et les différents mélanges étalons CO/H2 et CO2/H2 de chez Air Liquide également. Après passage dans le réacteur, l'effluent est ensuite dépressurisé, refroidi et les effluents liquides et gazeux sont analysés à l'aide d'un chromatographe en phase gazeuse du type Varian 3400 GC, équipé d'un détecteur à ionisation de flamme (FID) et d'une colonne capillaire de type Supelco Petrocol DH 50,2 de 50,2 m de longueur, 0,2 mm de diamètre intérieur et 0,5 ^m d'épaisseur de film. Une bonne séparation est obtenue par une programmation de température de la colonne de 45 à 220°C (2 °C.min-1), pour l'analyse des effluents liquides, et entre 45°C et 75°C (2 °C.min-1) pour l'analyse de la phase gaz. La pression d'hydrogène (gaz vecteur) en tête de colonne est de 11,5 Psi (débit de division d'entrée de l'injection de 40 cm3.min-1). Les températures de l'injecteur et du détecteur sont de 300°C. La quantification des hydrocarbures dans l'effluent gazeux est effectuée en utilisant l'éthane comme étalon externe. Le rendement en produits d'isomérisation du n-hexadécane est calculé de la manière suivante: Rdt,(%pds)= (z x100 liAcn somme des surfaces pour tous les A hydrocarbures avec n atomes de carbone (effluent liquide) 16 X mpesée liAis0_c16 somme de l'aire des pics correspondants Ac aux iso-hexadécanes mpesée masse hydrocarbures (effluent liquide) mgaz masse hydrocarbures (effluent gaz) mpesée + M gaz Les analyses effectuées permettent de suivre la stabilisation du catalyseur C2 au cours du temps et les seuls les résultats obtenus après stabilisation du catalyseur sont considérés. La durée de stabilisation du catalyseur est extrêmement rapide, de l'ordre de quelques heures.
Le tableau 1 ci - dessous reporte ainsi l'évolution du rendement en isomérisation obtenu sur le catalyseur C2 pour différentes teneurs en composés oxygénés dans l'hydrogène. Les résultats illustrent l'impact négatif de molécules oxygénées présentes dans l'hydrogène sur la production de produits d'isomérisation du n-hexadécane sur le catalyseur C2. La limitation de la teneur en composés oxygénés éventuellement présents dans l'hydrogène mise en oeuvre lors de l'étape d'hydroisomérisation est donc d'un intérêt évident. Tableau 1: évolution du rendement en isomérisation lors de l'hydroconversion du n-hexadécane sur le catalyseur C2 pour différentes teneurs en composé oxygénés dans l'hydrogène. teneur en composés oxygénés dans H2O < 40 431 ppm 431 ppm 1077 ppm 1077 ppm l'hydrogène / ppmv 02 < 10 CO CO2 CO CO2 teneur en oxygène < 60 431 862 1077 2154 atomique dans l'hydrogène / ppmv Rdt iso / % poids 40,3 34,7 27,7 29,9 23,1 Exemple 3: préparation d'un catalyseur d'hydrotraitement (Cl) Le catalyseur est un catalyseur industriel à base de nickel, molybdène et phosphore sur alumine avec des teneurs en oxyde de molybdène Mo03 de 16% poids, en oxyde de nickel NiO de 3% poids et en oxyde de phosphore P2O5 de 6% poids par rapport au poids total du catalyseur fini, fourni par la société AXENS.
Exemple 4 : hydrotraitement et hydroisomérisation d'une charge issue de source renouvelable selon un procédé non conforme à l'invention Étape a) : hydrotraitement Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 190 ml de catalyseur d'hydrotraitement C1, le catalyseur étant préalablement sulfuré, on introduit 170 g/h huile de colza pré-raffiné de densité 920 kg/m3 présentant une teneur en oxygène de 11 % poids et en soufre de 15 ppm poids. L'indice de cétane est de 35 et la distribution en acide gras de l'huile de colza est détaillée dans le tableau 2. Tableau 2 : Caractéristiques de l'huile de colza utilisée comme charge pour l'hydrotraitement Composition en acide gras (%) 14:0 0,1 16:0 5,0 16:1 0,3 17:0 0,1 17:1 0,1 18:0 1,5 18:1 trans <0,1 18:1 cis 60,1 18:2 trans <0,1 18:2 cis 20,4 18:3 trans <0,1 18:3 cis 9,6 20:0 0,5 20:1 1,2 22:0 0,3 22:1 0,2 24:0 0,1 24:1 0,2 700 Nm3 d'hydrogène/m3 de charge sont introduits dans le réacteur maintenu à une température de 300°C, à une vitesse spatiale horaire de 1h-1 et à une pression de 5 MPa.15 Étape b) : séparation de l'effluent issu de l'étape a) La totalité de l'effluent hydrotraité issu de l'étape a) est séparée à l'aide d'un séparateur gaz/liquide de manière à récupérer une fraction légère contenant majoritairement de l'hydrogène, du propane, de l'eau sous forme de vapeur, des oxydes de carbone (CO et CO2) et de l'ammoniac et un effluent hydrocarboné liquide majoritairement constituée d'hydrocarbures linéaires. L'eau présente dans l'effluent hydrocarboné liquide est éliminée par décantation. L'effluent hydrocarboné liquide ainsi obtenue contient une teneur en oxygène atomique inférieure à 80 ppm poids, ladite teneur en oxygène atomique étant mesurée par la technique d'adsorption infra rouge décrite dans la demande de brevet US2009/0018374, et une teneur en soufre de 11 ppm poids et une teneur en azote inférieur à 1 ppm poids. Ledit effluent hydrocarboné liquide subit ensuite l'étape d'hydroisomérisation c. Étape c) : Hydroisomérisation de l'effleunt hydrocarboné liquide issu de l'étape b) L'étape d'hydroisomérisation est réalisé également en lit fixe traversé à partir de la base hydrocarbonée issue de l'étape c). Les conditions opératoires de cette étape d'hydroisomérisation sont décrites ci-dessous: WH (volume de charge / volume de catalyseur / heure) = 1 h-1 pression totale de travail: 5 MPa - rapport hydrogène / charge: 700 normaux litres / litre La température est ajustée de manière à avoir une conversion de la fraction 150°C+ en fraction 150°C-inférieure à 5% en poids lors de l'hydroisomérisation. Avant test, le catalyseur subit une étape de réduction dans les conditions opératoires suivantes: débit d'hydrogène: 1600 normaux litres par heure et par litre de catalyseur - montée de température ambiante 120°C: 10 °C/min palier d'une heure à 120°C montée de 120°C à 450°C à 5°C/min palier de deux heures à 450°C pression : 0,1 MPa Le flux d'hydrogène utilisé dans l'étape d'hydroisomérisation est issu d'un mélange étalon d'Air Liquide contenant à présent 800 ppmv de CO, soit 800 ppmv d'oxygène, ledit flux d'hydrogène ne subissant aucune étape de purification. L'effluent issu de l'étape c) est ensuite fractionné par distillation afin de déterminer le rendement distillat moyen (coupe 150°C+). L'analyse chromatographique permet d'accéder également au rendement en hydrocarbures ramifiés, indiqué dans le tableau "% isomérisation", dans la coupe distillat moyen. Par ailleurs la température limite de filtrabilité et l'indice de cétane moteur de la coupe distillat moyen sont déterminés. Les principales caractéristiques de l'effluent produit sont reportées dans le tableau 3.
Tableau 3 : Principales caractéristiques des effluents produits par hydroisomérisation Rendement (% poids) Coupe 150°C - 3 Coupe 150°C + (Diesel) 97 % isomérisation dans la coupe distillat moyen 74 Propriétés carburants (coupe 150°C+) Indice de cétane (ASTMD613) 87 Température limite de filtrabilité (°C) -2 Exemple 5: hydrotraitement et hydroisomérisation d'une charge issue de source renouvelable selon un procédé conforme à l'invention L'effluent liquide hydrocarboné issu de l'étape b) de séparation utilisé pour l'étape d'hydroisomérisation selon l'exemple 5 est identique à celle de l'exemple 4. Les conditions opératoires de cette étape d'hydroisomérisation sont identiques à celle décrites à l'exemple 4. Néanmoins, l'hydrogène utilisé dans cette étape présente une teneur en oxygène beaucoup plus faible : Le flux d'hydrogène envoyé dans l'étape d'hydroisomérisation est un flux d'hydrogène d'Air Liquide de qualité U, c'est-à-dire comprenant des teneurs en 02 < 10 ppmv, et H20 < 40 ppmv. La teneur en oxygène atomique dans ledit flux d'hydrogène est donc inférieure à 60 ppmv. L'effluent issu de l'étape d'hydroisomérisation est ensuite fractionné par distillation afin de déterminé le rendement distillat moyen (coupe 150°C+). L'analyse chromatographique permet d'accéder également au rendement en hydrocarbures ramifiés. Par ailleurs la température limite de filtrabilité et l'indice de cétane moteur de la coupe distillat moyen sont déterminés. Tableau 4 : Principales caractéristiques des effluents produits par hydroisomérisation Rendement (%pds) Coupe 150°C - 4 Coupe 150°C + (Diesel) 96 % isomérisation dans la coupe distillat moyen 80 Propriétés carburants (coupe 150°C+) Indice de cétane (ASTMD613) 78 Température limite de filtrabilité (°C) -16 Au regard des résultats reportés dans les tableaux 3 et 4, la limitation de la teneur en oxygène dans l'hydrogène induit une amélioration des performances du catalyseur d'hydroisomérisation. Ceci a pour conséquence l'augmentation du rendement en hydrocarbures ramifiés de la coupe distillat moyen impliquant une nette amélioration de la température limite de filtrabilité et donc des propriétés à froid, tout en maintenant un indice de cétane élevé.

Claims (8)

  1. REVENDICATIONS1. Procédé de traitement d'une charge issue d'une source renouvelable comprenant au moins : a) une étape d'hydrotraitement de ladite charge en présence d'un catalyseur en lit fixe, ledit catalyseur comprenant une fonction hydro-déshydrogénante et un support amorphe, à une température comprise entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 h-1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3 d'hydrogène/m3 de charge, b) une étape de séparation d'au moins une partie de l'effluent issu de l'étape a) en au moins une fraction légère et au moins un effluent liquide hydrocarboné, c) une étape d'élimination d'au moins une partie de l'eau de l'effluent liquide hydrocarboné issu de l'étape b), d) une étape d'hydroisomérisation d'au moins une partie de l'effluent liquide hydrocarboné issu de l'étape c), en présence d'un catalyseur d'hydroisomérisation en lit fixe, ladite étape d'hydroisomérisation étant effectuée à une température comprise entre 150 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, et en présence d'un flux d'hydrogène ayant subi une étape de purification dans le cas où la teneur oxygène atomique dans ledit flux d'hydrogène est supérieur à 500 ppm en volume, e) une étape de fractionnement de l'effluent issu de l'étape d) pour obtenir au moins une fraction distillat moyen.
  2. 2. Procédé selon la revendication 1 dans lequel la charge issue de sources renouvelables est choisie parmi les huiles et graisses d'origine végétale ou animale, ou des mélanges de telles charges, contenant des triglycérides et/ou des acides gras libres et/ou des esters.
  3. 3. Procédé selon l'une des revendications 1 ou 2 dans lequel la charge est mise au contact d'un catalyseur en lit fixe à une température comprise 220 et 350°C, à une pression est comprise entre 1 MPa et 6 MPa, à une vitesse spatiale horaire comprise entre 0,1 h-1 et 10 h-1. La charge est mise au contact du catalyseur en présence d'hydrogène et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 150 et 750 Nm3 d'hydrogène/m3 de charge.
  4. 4. Procédé selon l'une des revendications 1 à 3 dans lequel l'étape b) de séparation est mise en oeuvre par la combinaison de un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de strippage haute et/ou basse pression.
  5. 5. Procédé selon l'une des revendications 1 à 4 dans lequel ladite étape c) est mise en oeuvre par séchage, par passage sur un dessicant, par flash, par décantation ou par une combinaison d'au moins deux de ces techniques.
  6. 6. Procédé selon l'une des revendications 1 à 5 dans lequel ledit flux d'hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène est supérieure à 250 ppm en volume.
  7. 7. Procédé selon l'une des revendications 1 à 6 dans lequel ledit flux d'hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène est supérieure à 50 ppm en volume.
  8. 8. Procédé selon l'une des revendications 1 à 7 dans lequel ladite étape de purification est mise en oeuvre selon les méthodes de d'adsorption modulée en pression ou PSA "Pressure Swing Adsorption" selon la terminologie anglo-saxonne, ou d'adsorption modulée en température ou TSA "Temperature Swing Adsorption" selon la terminologie anglo-saxonne, de lavage aux amines, de méthanation, d'oxydation préférentielle, de procédés membranaires, utilisées seules ou combinées.20
FR1103280A 2011-10-27 2011-10-27 Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene Active FR2981942B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1103280A FR2981942B1 (fr) 2011-10-27 2011-10-27 Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1103280A FR2981942B1 (fr) 2011-10-27 2011-10-27 Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene

Publications (2)

Publication Number Publication Date
FR2981942A1 true FR2981942A1 (fr) 2013-05-03
FR2981942B1 FR2981942B1 (fr) 2013-11-15

Family

ID=45375340

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1103280A Active FR2981942B1 (fr) 2011-10-27 2011-10-27 Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrosiomeriser et le flux d'hydrogene contiennent une teneur limitee en oxygene

Country Status (1)

Country Link
FR (1) FR2981942B1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396531A2 (fr) * 2002-09-06 2004-03-10 Fortum OYJ Procédé de préparation d' un composé hydrocarburé d' origine biologique.
EP1741767A1 (fr) * 2005-07-04 2007-01-10 Neste Oil OYJ Procédé pour la production d'hydrocarbures dans l'intervalle des Diesels
US20090077868A1 (en) * 2007-09-20 2009-03-26 Brady John P Production of Diesel Fuel from Biorenewable Feedstocks with Selective Separation of Converted Oxygen
US20090229172A1 (en) * 2008-03-17 2009-09-17 Brady John P Production of Transportation Fuel from Renewable Feedstocks
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
EP2138552A1 (fr) * 2008-06-24 2009-12-30 Ifp Procédé de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualité mettant en oeuvre un catalyseur de type zéolithique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396531A2 (fr) * 2002-09-06 2004-03-10 Fortum OYJ Procédé de préparation d' un composé hydrocarburé d' origine biologique.
EP1741767A1 (fr) * 2005-07-04 2007-01-10 Neste Oil OYJ Procédé pour la production d'hydrocarbures dans l'intervalle des Diesels
US20090077868A1 (en) * 2007-09-20 2009-03-26 Brady John P Production of Diesel Fuel from Biorenewable Feedstocks with Selective Separation of Converted Oxygen
US20090229172A1 (en) * 2008-03-17 2009-09-17 Brady John P Production of Transportation Fuel from Renewable Feedstocks
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
EP2138552A1 (fr) * 2008-06-24 2009-12-30 Ifp Procédé de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualité mettant en oeuvre un catalyseur de type zéolithique

Also Published As

Publication number Publication date
FR2981942B1 (fr) 2013-11-15

Similar Documents

Publication Publication Date Title
EP2210663B1 (fr) Méthode de transformation de charges d&#39;origine renouvelable en carburant d&#39;excellente qualité mettant en oeuvre un catalyseur a base de molybdene
EP2228423B1 (fr) Procédé d&#39;hydrodesoxygenation d&#39;huiles ou de graisses avec conversion limitée en decarboxylation mettant en oeuvre un catalyseur hétérogène
EP2138552B1 (fr) Procédé de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualité mettant en oeuvre un catalyseur de type zéolithique
EP2138553B1 (fr) Procédé de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualité mettant en oeuvre un catalyseur zéolithique sans séparation gaz liquide intermédiaire
EP2106428B1 (fr) Procédé de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualité
FR2917424A1 (fr) Production de charges de vapocraquage a haut rendement en ethylene, propylene et polymeres resultants par hydrotraitement d&#39;huile vegetales
FR2949476A1 (fr) Procede de conversion de charges issues de sources renouvelables en co-traitement avec une charge petroliere mettant en oeuvre un catalyseur a base de nickel et de molybdene
FR2926087A1 (fr) Procede multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d&#39;un effluent produit par le procede fischer-tropsch
FR2950895A1 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation de charges issues de source renouvelable mettant en oeuvre un catalyseur a base de carbure de silicium
FR2926086A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d&#39;un effluent produit par le procede fischer-tropsch
WO2011027044A1 (fr) Procede de conversion de charges issues de sources renouvelables en co-traitement avec une charge petroliere mettant en oeuvre un catalyseur a base de molybdene
FR2989381A1 (fr) Production de distillats moyens a partir d&#39;un effluent issu de la synthese fischer-tropsch comprenant une etape de reduction de la teneur en composes oxygenes
WO2011045482A1 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation des huiles issues de source renouvelable mettant en oeuvre une zeolithe modifiee
EP2581436B1 (fr) Procédé de production de distillats moyens à partir d&#39;un melange d&#39;une charge issue de sources renouvelables et d&#39;un effluent paraffinique
FR3012467A1 (fr) Procede optimise de conversion de la biomasse pour la fabrication de bases petrochimiques
EP2586851B1 (fr) Procédé de production de distillats moyens dans lequel la charge issue du procédé Fischer-Tropsch et le flux d&#39;hydrogéne contiennent une teneur limitée en oxygène
FR2944027A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d&#39;une fraction lourde issue d&#39;un effluent fischer-tropsch
FR2981942A1 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation de charges issues de la biomasse dans lequel l&#39;effluent a hydrosiomeriser et le flux d&#39;hydrogene contiennent une teneur limitee en oxygene
EP2880126B2 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation de charges issues de la biomasse dans lequel l&#39;effluent a hydrotraiter et le flux d&#39;hydrogene contiennent une teneur limitee en monoxyde de carbone
EP4334412A1 (fr) Procede optimise d&#39;hydrotraitement et d&#39;hydroconversion de charges issues de sources renouvelables
FR2989380A1 (fr) Procede optimise de production de distillats moyens a partir d&#39;une charge issue du procede fischer-tropsch contenant une quantite limitee de composes oxygenes
FR3148603A1 (fr) Procédé d&#39;hydrotraitement et d&#39;hydroisomérisation d&#39;huile végétale en une étape utilisant au moins un catalyseur sulfure avec une zéolithe de type structural BEA seule ou en mélange avec une zéolithe de type structural FAU
FR3148602A1 (fr) Procédé d&#39;hydrotraitement et d&#39;hydroisomérisation d&#39;huile végétale en une étape utilisant au moins un catalyseur sulfure avec une zéolithe isomérisante

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14