[go: up one dir, main page]

FR2974624A1 - ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT - Google Patents

ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT Download PDF

Info

Publication number
FR2974624A1
FR2974624A1 FR1101332A FR1101332A FR2974624A1 FR 2974624 A1 FR2974624 A1 FR 2974624A1 FR 1101332 A FR1101332 A FR 1101332A FR 1101332 A FR1101332 A FR 1101332A FR 2974624 A1 FR2974624 A1 FR 2974624A1
Authority
FR
France
Prior art keywords
refrigerant
coolant
exchanger
circuit
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1101332A
Other languages
French (fr)
Other versions
FR2974624B1 (en
Inventor
Mohamed Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Priority to FR1101332A priority Critical patent/FR2974624B1/en
Priority to PCT/EP2012/001750 priority patent/WO2012146368A1/en
Publication of FR2974624A1 publication Critical patent/FR2974624A1/en
Application granted granted Critical
Publication of FR2974624B1 publication Critical patent/FR2974624B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un ensemble comprenant un circuit de fluide réfrigérant 1 et un circuit de fluide caloporteur 2 qui échange thermiquement l'un avec l'autre au moyen d'un échangeur fluide réfrigérant/fluide caloporteur 30, ledit ensemble comprenant un dispositif de stockage thermique 16 qui échange thermiquement avec le fluide réfrigérant et avec le fluide caloporteur, dans lequel le circuit de fluide réfrigérant 1 comprend un moyen de contournement 13 du dispositif de stockage thermique 16 et un moyen de gestion 61 du débit de fluide réfrigérant agencé pour que le débit de fluide réfrigérant qui circule dans le moyen de contournement 13 soit supérieur au débit de fluide réfrigérant qui circule dans le dispositif de stockage thermique 16. Application aux véhicules automobiles.The invention relates to an assembly comprising a refrigerant circuit 1 and a heat transfer fluid circuit 2 which thermally exchange with each other by means of a refrigerant / heat transfer fluid exchanger 30, said assembly comprising a storage device thermal 16 which exchanges thermally with the coolant and with the coolant, wherein the coolant circuit 1 comprises a bypass means 13 of the thermal storage device 16 and a coolant flow management means 61 arranged so that the flow rate of refrigerant circulating in the bypass means 13 is greater than the refrigerant flow rate flowing in the thermal storage device 16. Application to motor vehicles.

Description

ENSEMBLE COMPRENANT UN CIRCUIT DE FLUIDE REFRIGERANT ET UN CIRCUIT DE FLUIDE CALOPORTEUR. ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT PUMP FLUID CIRCUIT.

Le secteur technique de la présente invention est celui des ensembles ou systèmes utilisés pour conditionner un flux d'air entrant dans un habitacle de véhicule automobile. Plus particulièrement, l'invention vise un circuit de fluide réfrigérant combiné à un circuit de fluide caloporteur, où le circuit de fluide réfrigérant est utilisé en mode chauffage, ou pompe à chaleur, et intégrant un dispositif de stockage de calories. The technical sector of the present invention is that of assemblies or systems used to condition a flow of air entering a passenger compartment of a motor vehicle. More particularly, the invention relates to a refrigerant circuit combined with a coolant circuit, wherein the refrigerant circuit is used in heating mode, or heat pump, and incorporating a caloric storage device.

Un véhicule automobile est classiquement équipé d'une boucle de climatisation à l'intérieur de laquelle circule un fluide frigorigène. Cette boucle comprend classiquement un compresseur, un condenseur, un détendeur et un évaporateur parcourus par le fluide frigorigène. L'évaporateur est installé dans une installation de ventilation, chauffage et/ou climatisation généralemént montée dans l'habitacle du véhicule pour fournir à ce dernier un flux d'air chaud ou un flux d'air froid en fonction d'une demande de l'utilisateur du véhicule. Le condenseur est quant à lui classiquement installé en face avant du véhicule pour être traversé par le flux d'air extérieur au véhicule. Cette boucle de climatisation peut être utilisée en mode refroidissement ou en mode chauffage. En mode refroidissement, le fluide réfrigérant est envoyé vers le condenseur où le fluide réfrigérant est refroidit par le flux d'air extérieur. Puis, le fluide réfrigérant circule vers le détendeur où il subit un abaissement de sa pression avant d'entrer dans l'évaporateur. Le fluide réfrigérant traversant l'évaporateur est alors chauffé par le flux d'air entrant dans l'installation de ventilation, ce qui se traduit corrélativement par un refroidissement de ce flux d'air dans le but de climatiser l'habitacle du véhicule. Le circuit étant une boucle fermée, le fluide réfrigérant retourne alors vers le compresseur. En mode chauffage, le fluide est mis en circulation par le compresseur qui l'envoi vers l'évaporateur. Ce dernier se comporte alors comme un condenseur, où le fluide réfrigérant est refroidi par l'air circulant dans l'installation de ventilation. Cet air se chauffe donc au contact de l'évaporateur et apporte ainsi des calories à l'habitacle du véhicule. Après passage dans l'évaporateur, le fluide réfrigérant est détendu par un détendeur avant d'arriver dans le condenseur. Le flux d'air extérieur chauffe alors le fluide réfrigérant et le flux d'air extérieur est par conséquent plus froid après son passage dans le condenseur comparé à sa température avant son passage au travers du condenseur. Le fluide réfrigérant retourne alors vers le compresseur. A motor vehicle is conventionally equipped with an air conditioning loop inside which circulates a refrigerant. This loop conventionally comprises a compressor, a condenser, a pressure reducer and an evaporator traversed by the refrigerant. The evaporator is installed in a ventilation, heating and / or general air conditioning system mounted in the passenger compartment of the vehicle to provide the latter with a hot air flow or a cold air flow according to a demand of the vehicle. user of the vehicle. The condenser is conventionally installed on the front of the vehicle to be traversed by the flow of air outside the vehicle. This air conditioning loop can be used in cooling mode or heating mode. In cooling mode, the coolant is sent to the condenser where the coolant is cooled by the outside air flow. Then, the coolant flows to the expander where it undergoes a lowering of its pressure before entering the evaporator. The refrigerant fluid passing through the evaporator is then heated by the flow of air entering the ventilation system, which is correlatively reflected by a cooling of this air flow in order to air condition the passenger compartment of the vehicle. The circuit being a closed loop, the refrigerant then returns to the compressor. In heating mode, the fluid is circulated by the compressor which sends it to the evaporator. The latter then behaves as a condenser, where the coolant is cooled by the air circulating in the ventilation system. This air is heated in contact with the evaporator and thus brings calories to the passenger compartment of the vehicle. After passing through the evaporator, the refrigerant is expanded by a regulator before arriving in the condenser. The outside air flow then heats the refrigerant and the outside air flow is therefore colder after passing through the condenser compared to its temperature before it passes through the condenser. The refrigerant then returns to the compressor.

L'amélioration du coefficient de performance d'une telle boucle est souhaitée. L'installation d'un dispositif de stockage qui échange avec le fluide réfrigérant vient améliorer la situation car une partie de la puissance chaude peut être stockée puis restituée en cas de besoin, notamment dans des situations où le l'échangeur situé à l'extérieur du véhicule givre, ce qui gène de manière importante l'échange entre le fluide réfrigérant et l'air extérieur. Cependant, la phase de stockage de calories dans le dispositif de stockage déséquilibre le fonctionnement du circuit de fluide réfrigérant quand celui-ci fonctionne en mode chauffage. En effet, le dispositif de stockage capte les calories présentes dans le fluide réfrigérant. Ceci se traduit par un abaissement de la température du fluide réfrigérant qui entraîne une augmentation de la charge au niveau du compresseur et corrélativement une dégradation du coefficient de performance. Le but de la présente invention est donc de résoudre l'inconvénient décrit ci-dessus principalement en partageant la circulation du fluide réfrigérant au niveau du dispositif de stockage et en autorisant une portion mineure de ce fluide réfrigérant à traverser le dispositif de stockage thermique, alors que la portion majeure continue son trajet en direction de l'échangeur extérieur. L'invention a donc pour objet un ensemble comprenant un circuit de fluide réfrigérant et un circuit de fluide caloporteur qui échange thermiquement l'un avec l'autre au moyen d'un échangeur fluide réfrigérant/fluide caloporteur, ledit ensemble comprenant un dispositif de stockage thermique qui échange thermiquement avec le fluide réfrigérant et avec le fluide caloporteur, dans lequel le circuit de fluide réfrigérant comprend un moyen de contournement du dispositif de stockage thermique et un moyen de gestion du débit de fluide réfrigérant agencé pour que le débit de fluide réfrigérant qui circule dans le moyen de contournement soit supérieur au débit de fluide réfrigérant qui circule dans le dispositif de stockage thermique. Selon une première caractéristique de l'invention, le circuit de fluide caloporteur comprend au moins une pompe de circulation du fluide caloporteur pour transporter les calories stockées dans le dispositif de stockage thermique vers l'échangeur fluide réfrigérant/fluide caloporteur. Selon une deuxième caractéristique de l'invention, le circuit de fluide réfrigérant comprend au moins un compresseur, un échangeur intérieur, un échangeur extérieur et un évaporateur. Selon une autre caractéristique de l'invention, le compresseur est entrainé par un moteur électrique intégré dans le compresseur. Selon encore une caractéristique de l'invention, le dispositif de stockage thermique comprend une enveloppe contenant un matériau à changement de phase, un premier faisceau faisant partie du circuit de fluide réfrigérant et un deuxième faisceau faisant partie du circuit de fluide caloporteur. Selon encore une autre caractéristique de l'invention, le premier faisceau et le deuxième faisceau échangent, d'un point de vue thermique, directement avec le 15 matériau à changement de phase. Alternativement ou de manière complémentaire, le premier faisceau et le deuxième faisceau échangent, d'un point de vue thermique, directement avec ladite enveloppe. Avantageusement, le moyen de contournement est formé par un conduit 20 installé en parallèle d'une première branche du circuit de fluide réfrigérant et contenant le premier faisceau, et en parallèle d'une deuxième branche du circuit de fluide réfrigérant comprenant au moins l'échangeur intérieur et l'échangeur extérieur. Avantageusement encore, le moyen de gestion du débit de fluide réfrigérant 25 est une restriction d'une section de passage du fluide réfrigérant installée dans la première branche. De manière avantageuse, le moyen de gestion du débit de fluide réfrigérant est formé par la première branche qui prend la forme d'un capillaire. Alternativement ou de manière complémentaire, le moyen de gestion de 30 débit de fluide réfrigérant est formé par le premier faisceau qui prend la forme d'un capillaire. Enfin, on notera que le moyen de contournement est dépourvu d'échangeur thermique. The improvement of the coefficient of performance of such a loop is desired. The installation of a storage device that exchanges with the refrigerant fluid improves the situation because part of the hot power can be stored and then returned when needed, especially in situations where the exchanger located outside of the vehicle frost, which significantly interfere with the exchange between the refrigerant and the outside air. However, the calorie storage phase in the storage device unbalances the operation of the refrigerant circuit when it operates in heating mode. Indeed, the storage device captures the calories present in the refrigerant. This results in a lowering of the refrigerant temperature which causes an increase in the load on the compressor and correlatively a degradation of the coefficient of performance. The object of the present invention is therefore to solve the disadvantage described above mainly by sharing the circulation of the refrigerant at the storage device and allowing a minor portion of this refrigerant to pass through the thermal storage device, then that the major portion continues its journey towards the external exchanger. The subject of the invention is therefore an assembly comprising a refrigerant circuit and a heat transfer fluid circuit which thermally exchange with each other by means of a refrigerant / heat transfer fluid exchanger, said assembly comprising a storage device. heat exchange which thermally exchange with the coolant and the coolant, wherein the refrigerant circuit comprises a bypass means of the thermal storage device and a refrigerant flow rate management means arranged so that the flow of refrigerant which circulates in the bypass means is greater than the refrigerant flow rate flowing in the thermal storage device. According to a first characteristic of the invention, the coolant circuit comprises at least one coolant circulation pump for transporting the calories stored in the thermal storage device to the coolant / heat transfer fluid exchanger. According to a second characteristic of the invention, the refrigerant circuit comprises at least one compressor, an indoor exchanger, an external exchanger and an evaporator. According to another characteristic of the invention, the compressor is driven by an electric motor integrated in the compressor. According to another characteristic of the invention, the thermal storage device comprises an envelope containing a phase change material, a first beam forming part of the refrigerant circuit and a second beam forming part of the heat transfer fluid circuit. According to yet another characteristic of the invention, the first beam and the second beam exchange, from a thermal point of view, directly with the phase change material. Alternatively or in a complementary manner, the first beam and the second beam exchange, from a thermal point of view, directly with said envelope. Advantageously, the bypass means is formed by a conduit 20 installed in parallel with a first branch of the refrigerant circuit and containing the first beam, and in parallel with a second branch of the refrigerant circuit comprising at least the exchanger inside and the outside exchanger. Advantageously, the coolant flow rate management means 25 is a restriction of a coolant passage section installed in the first branch. Advantageously, the coolant flow rate management means is formed by the first branch which takes the form of a capillary. Alternatively or in a complementary manner, the refrigerant flow rate management means is formed by the first beam which takes the form of a capillary. Finally, note that the bypass means is devoid of heat exchanger.

Un tout premier avantage selon l'invention réside dans la possibilité de capter et stocker des calories dans le dispositif de stockage sans perturber le cycle thermodynamique du circuit de fluide réfrigérant. Un autre avantage réside dans la simplicité de l'ensemble selon l'invention. A first advantage of the invention lies in the ability to capture and store calories in the storage device without disturbing the thermodynamic cycle of the refrigerant circuit. Another advantage lies in the simplicity of the assembly according to the invention.

En effet, cet ensemble est capable de fonctionner au moins en mode climatisation, en mode chauffage et en mode de dégivrage de l'échangeur extérieur sans nécessité l'emploi de nombreuses vannes. A cet égard, on notera que l'intégration du dispositif de stockage thermique et du moyen de contournement de ce dispositif de stockage thermique dans le circuit de fluide réfrigérant se fait sans utiliser de vanne régulatrice puisque le débit de fluide réfrigérant est imposé par la branche du circuit de fluide réfrigérant qui contient le dispositif de stockage thermique. D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation 15 avec des dessins dans lesquels : - la figure 1 est une vue schématique de l'ensemble selon l'invention illustré dans un état de fonctionnement correspondant à un mode de chauffage, - la figure 2 est une vue schématique de l'ensemble selon l'invention illustré dans un état de fonctionnement correspondant à un mode de climatisation, 20 - la figure 3 est une vue schématique de l'ensemble selon l'invention illustré dans un état de fonctionnement correspondant à un mode de dégivrage. II faut noter que les figures exposent l'invention de manière détaillée pour mettre en oeuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant. 25 La figure 1 illustre l'ensemble selon l'invention qui comprend un circuit de fluide réfrigérant 1 et un circuit de fluide caloporteur 2. Le circuit de fluide réfrigérant 1 est une boucle fermée à l'intérieur de laquelle un fluide réfrigérant circule. Ce fluide réfrigérant est du type sous-critique, comme par exemple un composé connu sous l'acronyme 1234YF ou R134a, mais 30 il peut également s'agir d'un fluide de type supercritique, comme par exemple le dioxyde de carbone connu sous la référence R744. Le fluide réfrigérant est mis en circulation par un compresseur 3, dont la fonction est d'augmenter la pression et la température du fluide réfrigérant. Ce compresseur est entraîné mécaniquement, notamment par un mécanisme de type poulie-courroie. Cependant et de manière préférentielle, ce compresseur est de type électrique, c'est-à-dire un compresseur dont le mécanisme de compression est entraîné par un moteur électrique intégré dans le compresseur et formant ainsi un composant unitaire. Ce compresseur est par exemple du type à pistons, à palettes, à spirale et son contrôle peut être interne ou externe, c'est-à-dire embarqué sur le compresseur ou intégré sur un contrôleur distinct du compresseur. Le compresseur 3 comprend un orifice d'entrée 4 par lequel arrive le fluide 1 o réfrigérant et un orifice de sortie 5 par lequel le fluide réfrigérant ainsi comprimé est évacué. Cet orifice de sortie 5 est raccordé à un premier orifice d'entrée 6 d'un échangeur intérieur 7. Cet échangeur est qualifié d' « intérieur » en ce sens qu'il est agencé pour échanger des calories avec un flux d'air envoyé à l'intérieur de l'habitacle du véhicule. En pratique, cet échangeur intérieur 7 est installé dans un 15 boîtier 8 dans lequel circule un flux d'air intérieur 9 envoyé dans l'habitacle d'un véhicule automobile. Ce flux d'air intérieur traverse le corps d'échange ou faisceau de l'échangeur intérieur 7 et un corps d'échange ou faisceau d'un évaporateur 10, installé également dans le boîtier 8 en amont de l'échangeur intérieur 7 selon le sens de déplacement du flux d'air intérieur 9. On comprend 20 donc que l'échangeur intérieur 7 est un échangeur thermique air/fluide réfrigérant, dont la fonction est de chauffer le flux d'air intérieur 9 avant son entrée dans l'habitacle du véhicule automobile. Le boîtier 8 comprend encore un volet de mixage 63 installé entre l'évaporateur 10 et l'échangeur intérieur 7 et susceptible de prendre une première 25 position (illustrée sur les figures 1 et 3) où il contraint le flux d'air intérieur 9 à passer au travers de l'échangeur intérieur 7, une deuxième position (illustrée sur la figure 2) où le volet de mixage 63 interdit le passage du flux d'air intérieur 9 dans l'échangeur intérieur 7, ce flux d'air contournant alors l'échangeur intérieur 7. Le volet de mixage est enfin en mesure de prendre toutes positions intermédiaires 30 entre la première position et la deuxième position afin d'assurer un mélange ou mixage d'air froid et d'air chaud. Cette échangeur intérieur 7 comprend un orifice de sortie 11 raccordé par une canalisation à un premier point 12, autrement appelé point de bifurcation ou « Y ». Ce dernier est agencé pour recevoir le fluide réfrigérant en provenance de l'échangeur intérieur 7, et pour séparer le flot de fluide réfrigérant en deux parties. Le premier point 12 est raccordé à un moyen de contournement 13 et à une première branche 14 du circuit de fluide réfrigérant 1. Indeed, this set is able to operate at least in air conditioning mode, heating mode and defrost mode of the outdoor heat exchanger without the need for many valves. In this regard, it will be noted that the integration of the thermal storage device and the bypass means of this thermal storage device in the refrigerant circuit is done without using a regulating valve since the refrigerant flow rate is imposed by the branch refrigerant circuit which contains the thermal storage device. Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below as an indication in relation to drawings in which: FIG. 1 is a schematic view of the assembly according to the invention illustrated in an operating state corresponding to a heating mode, - Figure 2 is a schematic view of the assembly according to the invention shown in an operating state corresponding to an air conditioning mode, 20 - Figure 3 is a schematic view of the assembly according to the invention shown in an operating state corresponding to a defrost mode. It should be noted that the figures disclose the invention in detail to implement the invention, said figures can of course be used to better define the invention where appropriate. FIG. 1 illustrates the assembly according to the invention which comprises a refrigerant circuit 1 and a coolant circuit 2. The refrigerant circuit 1 is a closed loop inside which a refrigerant circulates. This cooling fluid is of the subcritical type, for example a compound known by the acronym 1234YF or R134a, but it can also be a supercritical type fluid, such as, for example, carbon dioxide known as reference R744. The refrigerant is circulated by a compressor 3, the function of which is to increase the pressure and the temperature of the refrigerant. This compressor is mechanically driven, in particular by a pulley-belt type mechanism. However, and preferably, this compressor is of the electric type, that is to say a compressor whose compression mechanism is driven by an electric motor integrated in the compressor and thus forming a unitary component. This compressor is for example of the piston type, paddle, spiral and its control may be internal or external, that is to say embedded on the compressor or integrated on a controller separate from the compressor. The compressor 3 comprises an inlet port 4 through which the coolant 1 o arrives and an outlet port 5 through which the refrigerant fluid thus compressed is discharged. This outlet orifice 5 is connected to a first inlet orifice 6 of an internal exchanger 7. This exchanger is described as "interior" in that it is arranged to exchange calories with a flow of air sent inside the passenger compartment of the vehicle. In practice, this indoor exchanger 7 is installed in a housing 8 in which circulates an interior air flow 9 sent into the passenger compartment of a motor vehicle. This internal air flow passes through the exchange body or bundle of the internal exchanger 7 and an exchange body or bundle of an evaporator 10, also installed in the housing 8 upstream of the internal exchanger 7 according to the invention. direction of displacement of the interior air flow 9. It is thus understood that the indoor exchanger 7 is an air / refrigerant heat exchanger, the function of which is to heat the interior air flow 9 before entering the passenger compartment of the motor vehicle. The housing 8 further comprises a mixing flap 63 installed between the evaporator 10 and the indoor exchanger 7 and capable of taking a first position (illustrated in FIGS. 1 and 3) where it forces the interior air flow 9 to passing through the inner exchanger 7, a second position (illustrated in Figure 2) where the mixing flap 63 prevents the passage of the interior air flow 9 in the inner heat exchanger 7, the air flow bypassing then 7. The mixing flap is finally able to take any intermediate positions between the first position and the second position to ensure mixing or mixing of cold air and hot air. This indoor exchanger 7 comprises an outlet orifice 11 connected by a pipe to a first point 12, otherwise called bifurcation point or "Y". The latter is arranged to receive the refrigerant fluid from the indoor exchanger 7, and to separate the flow of refrigerant fluid in two parts. The first point 12 is connected to a bypass means 13 and to a first branch 14 of the refrigerant circuit 1.

Le moyen de contournement 13 est formé par un conduit 15 installé en parallèle de la première branche 14, cette dernière canalisant le fluide réfrigérant vers un dispositif de stockage thermique 16. La première branche 14 comprend un premier faisceau 17 qui parcourt un volume interne du dispositif de stockage thermique, ce volume interne étant délimité par une enveloppe 18. Cette enveloppe contient un matériau à changement de phase 60, comme par exemple une paraffine. On comprend ici que le fluide réfrigérant entre dans le dispositif de stockage thermique 16 par un premier orifice d'entrée 56 raccordé, d'un côté à la première branche 14, et de l'autre au faisceau 17. A l'extrémité opposé du premier faisceau 17, on trouve un premier orifice de sortie 57 qui relie fluidiquement le premier faisceau 17 à la première branche 14. Selon une variante de réalisation du dispositif de stockage thermique 16, le premier faisceau 17 échange directement avec le matériau à changement de phase 60. On comprend ici que le contact entre le premier faisceau 17 et ce matériau est direct, le premier faisceau étant alors noyé dans le matériau à changement de phase. Alternativement, on peut prévoir que le premier faisceau 17 échange directement avec l'enveloppe 18, en ce sens que le premier faisceau est directement en contact contre l'enveloppe 18, par exemple à l'extérieur de l'enveloppe. Une solution intermédiaire réside dans l'implantation du premier faisceau 17 contre l'enveloppe 18 et à l'intérieur de celle-ci. Le premier faisceau 17 échange thermiquement alors avec l'enveloppe 18 par une première face et avec le matériau à changement par contact contre une seconde face du premier faisceau 17. L'invention prévoit un moyen de gestion 61 du débit de fluide réfrigérant dans la première branche 14. La fonction de ce moyen de gestion 61 est de limiter la circulation du fluide réfrigérant dans la première branche 14. Une telle limitation impose un débit de fluide réfrigérant plus élevé dans le moyen de contournement 13 du dispositif de stockage thermique 16 que dans la première branche 14. Une répartition 1/5 - 4/5 convient particulièrement bien pour éviter le déséquilibre thermodynamique en mode chauffage. The bypass means 13 is formed by a conduit 15 installed in parallel with the first branch 14, the latter channeling the refrigerant fluid to a thermal storage device 16. The first branch 14 comprises a first beam 17 which runs through an internal volume of the device thermal storage, this internal volume being delimited by an envelope 18. This envelope contains a phase change material 60, such as paraffin. Here it is understood that the refrigerating fluid enters the thermal storage device 16 via a first inlet orifice 56 connected on one side to the first branch 14 and on the other to the beam 17. At the opposite end of the first beam 17, there is a first outlet orifice 57 which fluidly connects the first beam 17 to the first branch 14. According to an alternative embodiment of the thermal storage device 16, the first beam 17 exchanges directly with the phase change material 60. It is understood here that the contact between the first beam 17 and this material is direct, the first beam then being embedded in the phase change material. Alternatively, provision can be made for the first beam 17 to exchange directly with the envelope 18, in that the first beam is in direct contact with the envelope 18, for example outside the envelope. An intermediate solution lies in the implantation of the first beam 17 against the envelope 18 and inside thereof. The first bundle 17 then thermally exchanges with the casing 18 via a first face and with the material to be changed by contact against a second face of the first bundle 17. The invention provides a means 61 for managing the refrigerant flow in the first branch 14. The function of this management means 61 is to limit the flow of refrigerant in the first branch 14. Such a limitation imposes a higher refrigerant flow rate in the bypass means 13 of the thermal storage device 16 than in the first branch 14. A 1/5 - 4/5 distribution is particularly suitable for avoiding thermodynamic imbalance in heating mode.

Selon un exemple de réalisation du moyen de gestion 61, il est prévu une restriction 62 d'une section de passage du fluide réfrigérant. Cette restriction est installée dans la première branche 14, par exemple en amont du premier faisceau 17. Bien évidement, une telle restriction pourra être placée en aval du premier faisceau 17, les notions d'amont et d'aval étant évaluées selon le sens de déplacement du fluide dans la conduite considérée. Selon un deuxième exemple de réalisation, le moyen de gestion du débit 61 est mis en oeuvre par la première branche 14 uniquement, cette dernière prenant la forme d'un capillaire. De manière alternative, le capillaire peut être formé uniquement par le 15 premier faisceau 17. Dans une variante avantageuse, le capillaire est formé par une combinaison de la première branche 14 avec le premier faisceau 17. Par capillaire, on entend un tube de longueur supérieure à 400 mm et de diamètre interne compris entre 1 mm et 4 mm. 20 Le conduit 15 est installé dans le circuit de fluide réfrigérant 1 de manière à ce que ce fluide contourne la première branche 14 contenant le premier faisceau 17. Le moyen de contournement 13 est dépourvu d'échangeur thermique, ce dernier étant alors uniquement réalisé par un tube de diamètre interne compris entre 6 et 10 mm. 25 La première branche 14 et le moyen de contournement 13 se rejoignent au niveau d'un deuxième point 19. La portion de fluide réfrigérant en provenance du premier faisceau 17 constitutif de la première branche 14 et la portion de fluide réfrigérant en provenance du conduit 15 sont mélangées au niveau du deuxième point 19 et reforme ainsi la totalité du flux de fluide réfrigérant qui circule dans 30 l'échangeur intérieur 7. Le deuxième point 19, autrement appelé point de raccordement, est connecté fluidiquement à un organe de régulation 20 via un tube ou une canalisation. L'organe de régulation 20 comprend un premier organe de détente 21 du fluide réfrigérant et une vanne 22 installée en parallèle du premier organe de détente 21. Le premier organe de détente 21 prend par exemple la forme d'un détendeur à commande électronique, cette dernière obéissant à une stratégie de pilotage mise en oeuvre par un dispositif de contrôle (non représenté). La vanne 22 est une valve deux voies à commande tout-ou-rien. L'organe de régulation 20 de la circulation du fluide réfrigérant présente un orifice d'entrée 23 et un orifice de sortie 24 raccordé à un orifice d'entrée 25 d'un échangeur extérieur 26. Cet échangeur est qualifié d' « extérieur » en ce sens qu'il est agencé pour échanger thermiquement avec un flux d'air extérieur 27 à l'habitacle du véhicule. Il s'agit donc d'un échangeur thermique air/fluide réfrigérant. Comme on le verra plus tard, l'échangeur extérieur 26 est conformé pour fonctionner en tant qu'évaporateur ou en tant que condenseur en fonction du mode de fonctionnement de l'ensemble selon l'invention. Cet échangeur extérieur 26 est installé au niveau de la face avant du véhicule de sorte à bénéficier du flux d'air dynamique quand le véhicule est en mouvement. Le fluide réfrigérant qui traverse cet échangeur extérieur 26 sort de ce dernier par un orifice de sortie 28 avant de rejoindre un troisième point 29, où le fluide réfrigérant a la possibilité de se séparer. Ce troisième point 29 alimente en fluide réfrigérant l'évaporateur 10 et/ou un échangeur fluide réfrigérant/fluide caloporteur 30. Le troisième point 29 est ainsi raccordé d'un côté à un orifice d'entrée 33 d'une vanne trois voies 31, et de l'autre à un orifice d'entrée 34 d'un deuxième organe de détente 32, ce dernier étant installé directement en amont de l'échangeur fluide réfrigérant/fluide caloporteur 30, selon le sens de déplacement du fluide réfrigérant. According to an exemplary embodiment of the management means 61, there is provided a restriction 62 of a coolant passage section. This restriction is installed in the first branch 14, for example upstream of the first beam 17. Of course, such a restriction may be placed downstream of the first beam 17, the notions of upstream and downstream being evaluated in the sense of displacement of the fluid in the pipe considered. According to a second exemplary embodiment, the flow management means 61 is implemented by the first branch 14 only, the latter taking the form of a capillary. Alternatively, the capillary may be formed solely by the first beam 17. In an advantageous variant, the capillary is formed by a combination of the first branch 14 with the first beam 17. Capillary means a tube of greater length at 400 mm and with an internal diameter of between 1 mm and 4 mm. The duct 15 is installed in the refrigerant circuit 1 so that this fluid bypasses the first branch 14 containing the first beam 17. The bypass means 13 is devoid of a heat exchanger, the latter then being made solely by a tube of internal diameter between 6 and 10 mm. The first branch 14 and the bypass means 13 meet at a second point 19. The portion of refrigerant fluid from the first bundle 17 constituting the first branch 14 and the portion of refrigerant fluid from the conduit 15 are mixed at the second point 19 and thus reform the entire flow of refrigerant flowing in the inner heat exchanger 7. The second point 19, otherwise called connection point, is fluidly connected to a regulator 20 via a tube or pipe. The regulating member 20 comprises a first expansion member 21 for the refrigerant fluid and a valve 22 installed in parallel with the first expansion member 21. The first expansion member 21 takes the form, for example, of an electronically controlled expansion valve. last obeying a control strategy implemented by a control device (not shown). The valve 22 is a two-way valve with all-or-nothing control. The regulating member 20 for the circulation of the refrigerant fluid has an inlet orifice 23 and an outlet orifice 24 connected to an inlet orifice 25 of an external exchanger 26. This exchanger is described as "external" in this meaning that it is arranged to heat exchange with an outside air flow 27 to the passenger compartment of the vehicle. It is therefore an air / refrigerant heat exchanger. As will be seen later, the external heat exchanger 26 is shaped to operate as an evaporator or as a condenser depending on the operating mode of the assembly according to the invention. This external exchanger 26 is installed at the front of the vehicle so as to benefit from the dynamic air flow when the vehicle is moving. The refrigerant flowing through this external heat exchanger 26 exits the latter through an outlet orifice 28 before reaching a third point 29, where the refrigerant fluid has the ability to separate. This third point 29 supplies the evaporator 10 with refrigerant fluid and / or a coolant / coolant heat exchanger 30. The third point 29 is thus connected on one side to an inlet port 33 of a three-way valve 31, and the other at an inlet 34 of a second expansion member 32, the latter being installed directly upstream of the refrigerant fluid exchanger / heat transfer fluid 30, in the direction of movement of the refrigerant.

Le deuxième organe de détente 32 comprend un orifice de sortie 35 raccordé à un orifice d'entrée 36 de l'échangeur fluide réfrigérant/fluide caloporteur 30. Le fluide réfrigérant traverse alors un faisceau 37 de l'échangeur fluide réfrigérant/fluide caloporteur 30 et sort de ce dernier par un orifice de sortie 38 pour rejoindre un quatrième point 41, autrement appelé point de raccordement. The second expansion member 32 comprises an outlet orifice 35 connected to an inlet port 36 of the refrigerant / heat transfer fluid exchanger 30. The refrigerant then passes through a bundle 37 of the refrigerant / heat transfer fluid exchanger 30 and out of the latter through an outlet port 38 to join a fourth point 41, otherwise called connection point.

En traversant le faisceau 37 de l'échangeur fluide réfrigérant/fluide caloporteur 30, le fluide réfrigérant échange thermiquement avec le fluide caloporteur quand celui-ci circule dans l'échangeur fluide réfrigérant/fluide caloporteur 30. La vanne trois voies 31 comprend l'orifice d'entrée 33 raccordé via un tube au troisième point 29, un premier orifice de sortie 39 et un deuxième orifice de sortie 40. Le premier orifice de sortie 39 est connecté fluidiquement à un troisième organe de détente 42 du fluide réfrigérant, ce dernier pénétrant dans ce troisième organe de détente 42 via un orifice d'entrée 43. Le deuxième orifice de sortie 40 de la vanne trois voies 31 est raccordé par un tube au quatrième point 41. Une fois que le fluide réfrigérant a traversé le troisième organe de détente 42, il pénètre dans le corps d'échange, ou faisceau, de l'évaporateur 10 par l'intermédiaire d'un orifice d'entrée 44. L'abaissement de la pression du fluide réfrigérant opérée par le troisième organe de détente 42 provoque un refroidissement de l'évaporateur de sorte à abaisser la température du flux d'air intérieur 9 qui circule au travers de l'évaporateur 10. Un orifice de sortie 45 de l'évaporateur 10 est quant à lui raccordé au quatrième point référencé 41. Alors que le premier point 12, le deuxième point 19 et le troisième point 29 forment une jonction fluidique entre trois accès, le quatrième point 41 est différent en ce sens qu'il présente quatre accès. En pratique, il est susceptible de recevoir le fluide réfrigérant par trois accès et restitue cette combinaison de fluide réfrigérant par un quatrième accès. L'échangeur fluide réfrigérant/fluide caloporteur 30 est installé dans le circuit de réfrigérant en parallèle, du point de vue fluidique, de l'évaporateur 10 et du troisième organe de détente 42. Cet échangeur fluide réfrigérant/fluide caloporteur 30 est également installé dans le circuit de fluide réfrigérant 1 en parallèle de l'échangeur extérieur 29, de l'échangeur intérieur 7, du dispositif de stockage thermique 16 et du compresseur 3. Une fois que le fluide réfrigérant en provenance de l'échangeur fluide réfrigérant/fluide caloporteur 30 et/ou de l'évaporateur 10 ou de la vanne trois voies 31 est entré dans le quatrième point 41, il en sort pour être dirigé vers un accumulateur 46. Ce fluide réfrigérant pénètre dans cet accumulateur 46 par une entrée 47 qui est directement raccordée au quatrième point 41. L'accumulateur 46 comprend enfin une sortie 48 par laquelle le fluide réfrigérant sort pour retourner vers le compresseur 3 en entrant dans ce dernier par l'orifice d'entrée 4. Dans le circuit de fluide réfrigérant 1 décrit ci-dessus, on comprend que le conduit 15, qui forme le moyen de contournement 13, est installé en parallèle de la première branche 14 mais il est aussi en parallèle d'une deuxième branche 49 du circuit de fluide réfrigérant 1 comprenant au moins l'échangeur intérieur 7 et l'échangeur extérieur 26. De manière plus précise, cette deuxième branche 49 comprend également le compresseur 3, l'échangeur fluide réfrigérant/fluide caloporteur 30 et l'évaporateur 10. By passing through the bundle 37 of the refrigerant / coolant heat exchanger 30, the cooling fluid thermally exchanges with the coolant as it circulates in the coolant / coolant heat exchanger 30. The three-way valve 31 comprises the orifice input port 33 connected via a tube at the third point 29, a first outlet port 39 and a second outlet port 40. The first outlet port 39 is fluidly connected to a third expander 42 of the refrigerant, the latter penetrating in this third expansion member 42 via an inlet port 43. The second outlet port 40 of the three-way valve 31 is connected by a tube to the fourth point 41. Once the refrigerant has passed through the third expansion member 42, it enters the exchange body, or beam, of the evaporator 10 through an inlet port 44. The lowering of the pressure of the refrigerated fluid manager operated by the third expansion member 42 causes a cooling of the evaporator so as to lower the temperature of the inner air flow 9 which flows through the evaporator 10. An outlet 45 of the evaporator 10 is as for him connected to the fourth point referenced 41. While the first point 12, the second point 19 and the third point 29 form a fluidic junction between three accesses, the fourth point 41 is different in that it has four accesses. In practice, it is likely to receive the refrigerant by three accesses and returns this combination of refrigerant fluid by a fourth access. The refrigerant / heat transfer fluid exchanger 30 is installed in the refrigerant circuit in parallel, from the fluidic point of view, of the evaporator 10 and of the third expansion member 42. This refrigerant / heat transfer fluid exchanger 30 is also installed in the refrigerant circuit 1 in parallel with the external exchanger 29, the indoor exchanger 7, the thermal storage device 16 and the compressor 3. Once the refrigerant fluid from the refrigerant / heat transfer fluid exchanger 30 and / or the evaporator 10 or the three-way valve 31 has entered the fourth point 41, it comes out to be directed to a battery 46. This refrigerant enters the accumulator 46 through an inlet 47 which is directly connected to the fourth point 41. The accumulator 46 finally includes an outlet 48 through which the coolant exits to return to the compressor 3 by entering da In the refrigerant circuit 1 described above, it is understood that the conduit 15, which forms the bypass means 13, is installed in parallel with the first branch 14, but is also in parallel with a second branch 49 of the refrigerant circuit 1 comprising at least the internal exchanger 7 and the external exchanger 26. More specifically, this second branch 49 also comprises the compressor 3, the fluid exchanger coolant / heat transfer fluid 30 and the evaporator 10.

Les composants du circuit de fluide réfrigérant 1 décrits ci-dessus sont raccordés les uns aux autres par l'intermédiaire d'un tube, d'une conduite ou de tout moyen apte à canaliser le fluide réfrigérant pour le transporter d'un premier à un second point. Le circuit de fluide réfrigérant 1 vient d'être expliqué en détails et on va 1 o maintenant s'attacher à la description du circuit de fluide caloporteur 2. Ce circuit de fluide caloporteur 2 forme une boucle fermée à l'intérieur de laquelle circule le fluide caloporteur. Ce dernier est par exemple un composé à base d'eau additionné de glycol. Ce circuit de fluide caloporteur forme une boucle dans laquelle on trouve au moins une pompe 50 de circulation du fluide 15 caloporteur dans la boucle. Une telle circulation permet de transporter les calories stockées dans le dispositif de stockage thermique 16 vers l'échangeur fluide réfrigérant/fluide caloporteur 30, quand le mode dégivrage est mis en oeuvre. Une telle pompe est avantageusement à entraînement par moteur électrique. Le circuit de fluide caloporteur 2 comprend aussi l'échangeur fluide 20 réfrigérant/fluide caloporteur 30. La pompe 50 comprend un orifice d'entrée 51 et un orifice de sortie 52, ce dernier étant raccordé à une tubulure d'entrée 53 de l'échangeur fluide réfrigérant/fluide caloporteur 30 par un tuyau ou tous moyens apte à transporter le fluide caloporteur. Cet échangeur fluide réfrigérant/fluide caloporteur 30 comprend 25 une tubulure de sortie 54 raccordé fluidiquement à un deuxième orifice d'entrée 55 du dispositif de stockage thermique 16. Le fluide caloporteur traverse le dispositif de stockage thermique 16 en passant au travers d'un deuxième faisceau 58 pour sortir du dispositif de stockage thermique 16 par un deuxième orifice de sortie 59. Le circuit de fluide caloporteur 2 forme alors un boucle fermée quand ce 30 deuxième orifice de sortie 59 est raccordé fluidiquement à l'orifice d'entrée 51 de la pompe 50. Selon une variante de réalisation du dispositif de stockage thermique 16, le deuxième faisceau 58 échange directement avec le matériau à changement de phase 60. On comprend ici que le contact entre le deuxième faisceau 58 et ce matériau est direct, le deuxième faisceau étant alors noyé dans le matériau à changement de phase. Alternativement, on peut prévoir que le deuxième faisceau 58 échange directement avec l'enveloppe 18, en ce sens que le deuxième faisceau est directement en contact contre l'enveloppe 18, par exemple à l'extérieur de l'enveloppe. Une solution intermédiaire réside dans l'implantation du deuxième faisceau 58 contre l'enveloppe 18 et à l'intérieur de celle-ci. Le deuxième faisceau 58 échange thermiquement alors avec l'enveloppe 18 par une première face et avec le matériau à changement par contact contre une seconde face du deuxième faisceau 58. L'ensemble selon l'invention vient d'être décrit et on va maintenant s'attacher à décrire le fonctionnement de cet ensemble selon les modes d'utilisation. The components of the refrigerant circuit 1 described above are connected to each other via a tube, a pipe or any means capable of channeling the refrigerant fluid to transport it from a first to a second point. The refrigerant circuit 1 has just been explained in detail and the following will now be attached to the description of the heat transfer fluid circuit 2. This heat transfer fluid circuit 2 forms a closed loop inside which the coolant. The latter is for example a water-based compound containing glycol. This heat transfer fluid circuit forms a loop in which there is at least one pump 50 for circulating the coolant 15 in the loop. Such circulation makes it possible to transport the calories stored in the thermal storage device 16 to the refrigerant / heat transfer fluid exchanger 30, when the defrosting mode is implemented. Such a pump is advantageously driven by electric motor. The heat transfer fluid circuit 2 also comprises the refrigerant / heat transfer fluid exchanger 30. The pump 50 comprises an inlet orifice 51 and an outlet orifice 52, the latter being connected to an inlet pipe 53 of the coolant / heat transfer fluid exchanger 30 by a pipe or any means capable of transporting the coolant. This refrigerant / heat transfer fluid exchanger 30 comprises an outlet pipe 54 fluidly connected to a second inlet orifice 55 of the thermal storage device 16. The heat transfer fluid passes through the thermal storage device 16 while passing through a second beam 58 to exit the thermal storage device 16 through a second outlet port 59. The heat transfer fluid circuit 2 then forms a closed loop when the second outlet port 59 is fluidly connected to the inlet port 51 of the pump 50. According to an alternative embodiment of the thermal storage device 16, the second beam 58 exchanges directly with the phase change material 60. It is understood here that the contact between the second beam 58 and this material is direct, the second beam being then embedded in the phase change material. Alternatively, it can be provided that the second beam 58 exchanges directly with the envelope 18, in that the second beam is directly in contact with the envelope 18, for example outside the envelope. An intermediate solution lies in the implantation of the second beam 58 against the envelope 18 and inside thereof. The second beam 58 then thermally exchanges with the envelope 18 by a first face and with the material to change by contact against a second face of the second beam 58. The assembly according to the invention has just been described and we will now attach to describe the operation of this set according to the modes of use.

Dans les figures 1 à 3, les traits forts utilisés pour le circuit de fluide réfrigérant illustrent une circulation du fluide réfrigérant soumis à une haute pression et une haute température. Les traits forts en pointillé utilisés pour le circuit de fluide réfrigérant illustrent une circulation du fluide réfrigérant soumis à une basse pression et une basse température. Les traits fins utilisés pour le circuit de fluide réfrigérant illustrent une absence de circulation du fluide réfrigérant dans la portion de circuit concernée. De même, le circuit de fluide caloporteur 2 est représenté sur les figures 1 et 2 en pointillé, illustrant ainsi l'absence de circulation du fluide caloporteur. Une telle absence est obtenue par arrêt de la pompe 50. En revanche, le circuit de fluide caloporteur 2 est représenté en trait fort sur la figure 3 pour symboliser une circulation du fluide caloporteur entre le dispositif de stockage thermique 16 et l'échangeur fluide réfrigérant/fluide caloporteur 30. La figure 1 montre l'ensemble selon l'invention utilisé par exemple en hiver, c'est-à-dire en mode chauffage du flux d'air intérieur 9 envoyé dans l'habitacle. In FIGS. 1 to 3, the strong lines used for the refrigerant circuit illustrate a circulation of the refrigerant fluid subjected to a high pressure and a high temperature. The strong dotted lines used for the refrigerant circuit illustrate a circulation of the refrigerant fluid subjected to a low pressure and a low temperature. The fine lines used for the refrigerant circuit illustrate a lack of circulation of the refrigerant in the circuit portion concerned. Similarly, the heat transfer fluid circuit 2 is shown in Figures 1 and 2 in dotted lines, thus illustrating the absence of circulation of the coolant. Such an absence is obtained by stopping the pump 50. On the other hand, the heat transfer fluid circuit 2 is shown in solid line in FIG. 3 to symbolize a circulation of the coolant between the thermal storage device 16 and the refrigerant fluid exchanger. / Heat transfer fluid 30. Figure 1 shows the assembly according to the invention used for example in winter, that is to say in heating mode of the interior air flow 9 sent into the passenger compartment.

Côté circuit de fluide réfrigérant 1, le fluide réfrigérant est comprimé et mis en circulation par le compresseur 3, puis traverse l'échangeur intérieur 7 où le fluide réfrigérant cède ses calories au flux d'air intérieur 9. Le fluide réfrigérant poursuit son parcours en circulant simultanément dans le dispositif de stockage thermique 16 et dans le moyen de contournement 13. Le moyen de gestion 61 du débit de fluide réfrigérant laisse passer une portion mineure de fluide réfrigérant dans le premier faisceau 17 du dispositif de stockage thermique, et impose ainsi le passage d'une portion majeure, c'est-à-dire plus importante que la portion mineure, du fluide réfrigérant dans le conduit 15. Une telle disposition permet au matériau à changement de phase de se charger en calories issues du fluide réfrigérant, de manière lente et sans perturber le cycle thermodynamique. Le fluide réfrigérant ayant circulé dans la première branche 14 et le fluide 1 o réfrigérant ayant circulé dans le moyen de contournement 13 se combinent au deuxième point 19 et circulent vers l'organe de régulation 20. La vanne 22 est alors fermée et le premier organe de détente 21 autorise une circulation du fluide réfrigérant vers l'échangeur extérieur 26, au travers duquel il subit un abaissement de sa pression. 15 Le fluide réfrigérant, ainsi détendu, échange avec le flux d'air extérieur 27, ce qui se traduit par une élévation de température du fluide réfrigérant. Dans cette situation, l'échangeur extérieur se comporte comme un évaporateur. Le fluide réfrigérant passe ensuite dans la vanne trois voies 31, puis dans l'accumulateur 46 avant de retourner vers le compresseur 3. Dans cette variante 20 de réalisation, le deuxième organe de détente 32 et le troisième organe de détente 42 interdisent la circulation de fluide réfrigérant, respectivement dans l'échangeur fluide réfrigérant/fluide caloporteur 30 et dans l'évaporateur 10. Côté circuit de fluide caloporteur 2, on constate que la première boucle 32 est inactive en ce sens que le fluide caloporteur n'y circule pas car la pompe 50 25 n'est pas alimentée électriquement. Le volet de mixage 63 est placé dans sa première position afin de forcer le flux d'air intérieur à traverser l'échangeur intérieur 7, et corrélativement à se chauffer à son contact. La figure 2 illustre l'ensemble selon l'invention pendant une phase de 30 fonctionnement correspondant à un besoin en refroidissement du flux d'air intérieur 9. La description ci-dessous s'attache aux différences et on se reportera à la description de la figure 1 pour les éléments identiques. Side refrigerant circuit 1, the refrigerant is compressed and circulated by the compressor 3, then passes through the indoor exchanger 7 where the refrigerant yields its calories to the interior air flow 9. The refrigerant continues its course in circulating simultaneously in the thermal storage device 16 and in the bypass means 13. The coolant flow management means 61 passes a minor portion of refrigerant fluid into the first bundle 17 of the thermal storage device, and thus imposes the passage of a major portion, that is to say larger than the minor portion, of the refrigerant in the conduit 15. Such an arrangement allows the phase change material to be charged with calories from the refrigerant, from slow way and without disturbing the thermodynamic cycle. The coolant having circulated in the first branch 14 and the refrigerant fluid 1 circulating in the bypass means 13 combine with the second point 19 and flow to the regulating member 20. The valve 22 is then closed and the first member detent 21 allows a flow of refrigerant to the outer heat exchanger 26, through which it undergoes a lowering of its pressure. The refrigerant, thus expanded, exchanges with the outside air flow 27, which results in a rise in temperature of the refrigerant. In this situation, the external exchanger behaves like an evaporator. The refrigerant then passes into the three-way valve 31, then into the accumulator 46 before returning to the compressor 3. In this variant embodiment, the second expansion member 32 and the third expansion member 42 prohibit the circulation of refrigerant fluid, respectively in the coolant / heat transfer fluid exchanger 30 and in the evaporator 10. Side coolant circuit 2, we see that the first loop 32 is inactive in that the heat transfer fluid does not circulate because the pump 50 is not electrically powered. The mixing flap 63 is placed in its first position in order to force the flow of indoor air through the internal exchanger 7, and correlatively to heat on contact. FIG. 2 illustrates the assembly according to the invention during an operating phase corresponding to a need for cooling of the interior air flow 9. The description below focuses on the differences and reference is made to the description of the Figure 1 for identical elements.

Contrairement à la figure 1, le fluide réfrigérant n'est pas détendu par l'organe de régulation 20. Le premier organe de détente 21 est fermé de sorte que le fluide réfrigérant ne peut pas passer à son travers, et être détendu. En revanche, la vanne 22 est ouverte et laisse passer le fluide réfrigérant sans restriction. Ce dernier est alors refroidit par le flux d'air extérieur 27 lors de son passage au travers de l'échangeur extérieur 26. Le fluide réfrigérant poursuit sa circulation et passe au travers de la vanne trois voies 31 pour atteindre le troisième organe de détente 42. Cet organe de détente 42 réduit la pression du fluide réfrigérant qui le traverse. Ce fluide réfrigérant pénètre alors dans l'évaporateur 10 et se trouve chauffé par le flux d'air extérieur 9, ce qui se traduit par un refroidissement du flux d'air intérieur 9. Le fluide réfrigérant poursuit son parcours vers l'accumulateur 46 avant d'atteindre l'orifice d'entrée 4 du compresseur 3. En ce qui concerne le circuit de fluide caloporteur 2, on note que celui-ci est inactif en ce sens que le fluide caloporteur ne circule pas, par absence d'alimentation électrique de la pompe 50. Le volet de mixage 63 est placé dans sa seconde position où le flux d'air intérieur 9 échange avec l'évaporateur 10 mais n'échange pas avec l'échangeur intérieur 7. L'effet du refroidissement obtenu par l'évaporateur 10 n'est ainsi pas dégradé par l'échangeur intérieur 7. La figure 3 illustre l'ensemble selon l'invention pendant une phase de fonctionnement correspondant à un mode de dégivrage, c'est-à-dire une situation où il est détecté une formation de glace sur l'échangeur extérieur 26, notamment quand l'ensemble est utilisé en mode chauffage et que l'humidité présente dans le flux d'air extérieur 27 est élevée. La description ci-dessous s'attache aux différences et on se reportera à la description des figures 1 ou 2 pour les éléments identiques. Le compresseur 3 comprime le fluide réfrigérant et le fait circuler au travers de l'échangeur intérieur 7, du moyen de contournement 13 et du dispositif de stockage thermique 16. Le fluide réfrigérant poursuit son parcours dans le circuit 1 et traverse le l'organe de régulation 20 en passant par la vanne 22. Le fluide réfrigérant ne subit pas de détente et il entre alors dans l'échangeur extérieur 26 dans un état de haute pression et de haute température. Une telle disposition permet de dégivrer très rapidement l'échangeur extérieur, la glace se mettant à fondre pour à nouveau autoriser la circulation du fluide d'air extérieur 27 au travers de l'échangeur extérieur 26. Le fluide réfrigérant arrive alors au troisième point 29 et bifurque en direction du deuxième organe de détente 32. La vanne trois voies 31 est en position fermée où aucune circulation de fluide réfrigérant n'est autorisée entre l'orifice d'entrée 33 et le premier ou le deuxième orifice de sortie 39, 40. On comprend de ce qui précède que le parcours de fluide réfrigérant entre l'orifice de sortie 5 du compresseur 3 et le troisième point 29 est identique à celui to décrit à la figure 2, c'est-à-dire le mode refroidissement. Le deuxième organe de détente 32 abaisse la pression du fluide réfrigérant qui le traverse. Ce fluide réfrigérant pénètre alors dans l'échangeur fluide réfrigérant/fluide caloporteur 30 dans un état de basse pression et de basse température.Unlike FIG. 1, the coolant is not expanded by the regulator 20. The first expansion member 21 is closed so that the coolant can not pass therethrough and be relaxed. In contrast, the valve 22 is open and passes the refrigerant without restriction. The latter is then cooled by the flow of outside air 27 during its passage through the external exchanger 26. The refrigerant continues its circulation and passes through the three-way valve 31 to reach the third expansion member 42 This relaxing member 42 reduces the pressure of the refrigerant flowing through it. This refrigerant then enters the evaporator 10 and is heated by the outside air flow 9, which results in a cooling of the interior air flow 9. The refrigerant continues its journey to the accumulator 46 before to reach the inlet port 4 of the compressor 3. With regard to the heat transfer fluid circuit 2, it is noted that it is inactive in that the heat transfer fluid does not circulate, for lack of power supply of the pump 50. The mixing flap 63 is placed in its second position where the interior air flow 9 exchanges with the evaporator 10 but does not exchange with the indoor exchanger 7. The effect of the cooling obtained by the the evaporator 10 is thus not degraded by the internal exchanger 7. FIG. 3 illustrates the assembly according to the invention during an operating phase corresponding to a deicing mode, that is to say a situation where it is detected an ice formation on the outside changer 26, especially when the assembly is used in heating mode and the moisture present in the air stream 27 is outside high. The description below focuses on the differences and reference is made to the description of Figures 1 or 2 for identical elements. The compressor 3 compresses the refrigerant and circulates it through the internal exchanger 7, the bypass means 13 and the thermal storage device 16. The refrigerant continues its course in the circuit 1 and passes through the regulation 20 passing through the valve 22. The refrigerant does not undergo expansion and it then enters the outer heat exchanger 26 in a state of high pressure and high temperature. Such an arrangement makes it possible to defrost the external exchanger very quickly, the ice melting again to allow the circulation of the outside air fluid 27 through the external exchanger 26. The refrigerant fluid then arrives at the third point 29 and bifurcates towards the second expansion member 32. The three-way valve 31 is in the closed position where no circulation of coolant is allowed between the inlet port 33 and the first or second outlet port 39, 40 It is understood from the foregoing that the refrigerant flow path between the outlet port 5 of the compressor 3 and the third point 29 is identical to that described in Figure 2, that is to say the cooling mode. The second expansion member 32 lowers the pressure of the refrigerant flowing therethrough. This refrigerant fluid then enters the refrigerant / heat transfer fluid exchanger 30 in a state of low pressure and low temperature.

15 Après avoir traversé cet échangeur fluide réfrigérant/fluide caloporteur 30, le fluide atteint le quatrième point 41 pour entrer dans l'accumulateur et finalement rejoindre le compresseur 3. Côté circuit de fluide caloporteur 2, le mode de dégivrage se traduit par la mise en fonctionnement de la pompe 50. Le fluide caloporteur circule ainsi du 20 dispositif de stockage thermique 16 vers l'échangeur fluide réfrigérant/fluide caloporteur 30, les calories étant ainsi transportées du point chaud qu'est le dispositif de stockage thermique 16 vers l'échangeur fluide réfrigérant/fluide caloporteur 30. On rappelle que pendant le mode chauffage qui a précédé le mode 25 dégivrage, le matériau à changement de phase 60 a stocké des calories. L'activation du mode de dégivrage permet de transférer ces calories au fluide réfrigérant à l'état de basse pression et de basse température, par l'intermédiaire de l'échangeur fluide réfrigérant/fluide caloporteur 30. Une telle disposition permet de réaliser un point chaud nécessaire au 30 fonctionnement du cycle thermodynamique quand l'ensemble fonctionne en mode dégivrage, alors que la température extérieure au véhicule est basse, par exemple en dessous de 0°C. Le volet de mixage 63 est placé dans sa première position afin de forcer le flux d'air intérieur à traverser l'échangeur intérieur 7, et corrélativement à se chauffer à son contact. Une telle disposition permet de maintenir un chauffage du flux d'air intérieur 9 alors que l'ensemble est utilisé en mode de dégivrage. On notera enfin que l'ensemble selon l'invention est particulièrement simple à mettre en oeuvre alors qu'il autorise pourtant un fonctionnement en mode chauffage, un fonctionnement en mode climatisation et un fonctionnement en mode dégivrage. En effet, côté circuit de fluide réfrigérant, on constate qu'il est prévu seulement une vanne trois voies. Il en va de même côté circuit de fluide caloporteur où celui-ci comprend uniquement le dispositif de stockage thermique l0 16, l'échangeur fluide réfrigérant/fluide caloporteur 30, une pompe 50 de circulation du fluide caloporteur et les tuyaux reliant ces composants. After having passed through this refrigerant / heat transfer fluid exchanger 30, the fluid reaches the fourth point 41 to enter the accumulator and finally rejoin the compressor 3. On the coolant circuit 2 side, the defrosting mode results in the Operation of the pump 50. The heat transfer fluid thus flows from the thermal storage device 16 to the refrigerant / heat transfer fluid exchanger 30, the calories being thus transported from the hot point that is the thermal storage device 16 to the heat exchanger Cooling fluid / coolant 30. It will be recalled that during the heating mode that preceded the defrosting mode, the phase change material 60 stored calories. Activation of the defrosting mode makes it possible to transfer these calories to the refrigerant fluid in the state of low pressure and of low temperature, by means of the refrigerant / heat transfer fluid exchanger 30. Such an arrangement makes it possible to produce a point This is necessary for the operation of the thermodynamic cycle when the assembly is operating in defrost mode, while the temperature outside the vehicle is low, for example below 0.degree. The mixing flap 63 is placed in its first position in order to force the flow of indoor air through the internal exchanger 7, and correlatively to heat on contact. Such an arrangement makes it possible to maintain heating of the interior air flow 9 while the assembly is used in defrost mode. Finally, note that the assembly according to the invention is particularly simple to implement while it still allows operation in heating mode, operation in cooling mode and operation in defrost mode. In fact, on the refrigerant circuit side, it can be seen that only one three-way valve is provided. It is the same side coolant circuit where it comprises only the thermal storage device l0 16, the refrigerant fluid exchanger / coolant 30, a heat transfer pump 50 and the pipes connecting these components.

Claims (12)

REVENDICATIONS1. Ensemble comprenant un circuit de fluide réfrigérant (1) et un circuit de fluide caloporteur (2) qui échange thermiquement l'un avec l'autre au moyen d'un échangeur fluide réfrigérant/fluide caloporteur (30), ledit ensemble comprenant un dispositif de stockage thermique (16) qui échange thermiquement avec le fluide réfrigérant et avec le fluide caloporteur, dans lequel le circuit de fluide réfrigérant (1) comprend un moyen de contournement (13) du dispositif de stockage thermique (16) et un moyen de gestion (61) du débit de fluide réfrigérant agencé pour que le débit de fluide réfrigérant qui circule dans le moyen de contournement (13) soit supérieur au débit de fluide réfrigérant qui circule dans le dispositif de stockage thermique (16). REVENDICATIONS1. An assembly comprising a refrigerant circuit (1) and a heat transfer fluid circuit (2) which thermally exchange with each other by means of a refrigerant / heat transfer fluid exchanger (30), said assembly comprising a cooling device thermal storage (16) which thermally exchanges with the coolant and with the coolant, wherein the coolant circuit (1) comprises a bypass means (13) of the thermal storage device (16) and a management means ( 61) of refrigerant flow arranged so that the refrigerant flow rate flowing in the bypass means (13) is greater than the coolant flow rate flowing in the thermal storage device (16). 2. Ensemble selon la revendication 1, dans lequel le circuit de fluide caloporteur (2) comprend au moins une pompe (50) de circulation du fluide caloporteur pour transporter les calories stockées dans le dispositif de stockage thermique (16) vers l'échangeur fluide réfrigérant/fluide caloporteur (30). 2. The assembly of claim 1, wherein the coolant circuit (2) comprises at least one heat transfer fluid circulating pump (50) for transporting the calories stored in the thermal storage device (16) to the fluid exchanger coolant / coolant (30). 3. Ensemble selon l'une des revendications 1 ou 2, dans lequel le circuit de fluide réfrigérant (1) comprend au moins un compresseur (3), un échangeur intérieur (7), un échangeur extérieur (26) et un évaporateur (10). 3. Assembly according to one of claims 1 or 2, wherein the refrigerant circuit (1) comprises at least one compressor (3), an indoor exchanger (7), an external exchanger (26) and an evaporator (10). ). 4. Ensemble selon la revendication 3, dans lequel le compresseur (3) est entrainé par un moteur électrique intégré dans le compresseur (3). 4. The assembly of claim 3, wherein the compressor (3) is driven by an electric motor integrated in the compressor (3). 5. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le dispositif de stockage thermique (16) comprend une enveloppe (18) contenant un matériau à changement de phase (60), un premier faisceau (17) faisant partie du circuit de fluide réfrigérant (1) et un deuxième faisceau (58) faisant partie du circuit de fluide caloporteur (2). An assembly according to any one of the preceding claims, wherein the thermal storage device (16) comprises an envelope (18) containing a phase change material (60), a first beam (17) forming part of the refrigerant fluid (1) and a second beam (58) forming part of the coolant circuit (2). 6. Ensemble selon la revendication 5, dans lequel le premier faisceau (17) et le deuxième faisceau (58) échangent directement avec le matériau à changement de phase (60). The assembly of claim 5, wherein the first beam (17) and the second beam (58) exchange directly with the phase change material (60). 7. Ensemble selon les revendications 5 ou 6, dans lequel le premier faisceau (17) et le deuxième faisceau (58) échangent directement avec ladite enveloppe (1 7. An assembly according to claims 5 or 6, wherein the first beam (17) and the second beam (58) exchange directly with said envelope (1). 8). 8. Ensemble selon l'une quelconque des revendications 5 à 7, dans lequel le moyen de contournement (13) est formé par un conduit (15) installé en parallèled'une première branche (14) du circuit de fluide réfrigérant (1) qui contient le premier faisceau (17), et en parallèle d'une deuxième branche (49) du circuit de fluide réfrigérant (1) comprenant au moins l'échangeur intérieur (7) et l'échangeur extérieur (26). 8). 8. An assembly according to any one of claims 5 to 7, wherein the bypass means (13) is formed by a conduit (15) installed in parallel witha first branch (14) of the refrigerant circuit (1) which contains the first beam (17), and in parallel with a second branch (49) of the refrigerant circuit (1) comprising at least the inner heat exchanger (7) and the outer heat exchanger (26). 9. Ensemble selon la revendication 8, dans lequel le moyen de gestion (61) du débit de fluide réfrigérant est une restriction (62) d'une section de passage du fluide réfrigérant, installée dans la première branche (14). 9. The assembly of claim 8, wherein the refrigerant flow management means (61) is a restriction (62) of a coolant passage section, installed in the first branch (14). 10. Ensemble selon la revendication 8, dans lequel le moyen de gestion (61) du débit de fluide réfrigérant est formé par la première branche (14) qui prend la forme d'un capillaire. 10. The assembly of claim 8, wherein the refrigerant flow management means (61) is formed by the first branch (14) which takes the form of a capillary. 11. Ensemble selon l'une quelconque des revendications 8 ou 10, dans lequel le moyen de gestion (61) de débit de fluide réfrigérant est formé par le premier faisceau (17) qui prend la forme d'un capillaire. 11. An assembly according to any one of claims 8 or 10, wherein the coolant flow management means (61) is formed by the first beam (17) which takes the form of a capillary. 12. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le moyen de contournement (13) est dépourvu d'échangeur thermique. 12. An assembly according to any one of the preceding claims, wherein the bypass means (13) is devoid of heat exchanger.
FR1101332A 2011-04-29 2011-04-29 ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT Expired - Fee Related FR2974624B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1101332A FR2974624B1 (en) 2011-04-29 2011-04-29 ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT
PCT/EP2012/001750 WO2012146368A1 (en) 2011-04-29 2012-04-24 Assembly including a coolant circuit and a heat transport fluid circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1101332A FR2974624B1 (en) 2011-04-29 2011-04-29 ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT

Publications (2)

Publication Number Publication Date
FR2974624A1 true FR2974624A1 (en) 2012-11-02
FR2974624B1 FR2974624B1 (en) 2013-04-26

Family

ID=46046095

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1101332A Expired - Fee Related FR2974624B1 (en) 2011-04-29 2011-04-29 ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT

Country Status (2)

Country Link
FR (1) FR2974624B1 (en)
WO (1) WO2012146368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242197A1 (en) * 2021-02-02 2022-08-04 Mahle International Gmbh Refrigerant system with two inner heat exchangers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052856B1 (en) * 2016-06-21 2019-06-14 Valeo Systemes Thermiques CIRCULATING LOOP OF A REFRIGERANT FLUID FOR A VEHICLE
FR3075182B1 (en) 2017-12-15 2019-12-27 Green Gen Technologies BOTTLE FOR BEVERAGES AND PARTICULARLY FOR ALCOHOLIC BEVERAGES
FR3080169B1 (en) 2018-04-13 2020-12-18 Arkema France PROCESS FOR COOLING AND / OR HEATING A BODY OR A FLUID IN A MOTOR VEHICLE
DE102019105035A1 (en) * 2019-02-27 2020-08-27 Konvekta Aktiengesellschaft Heat pump with part load control
US20210356182A1 (en) * 2020-05-15 2021-11-18 Netenergy (Naim Energy Technologies, Llc) Liquid subcooling utilizing phase change composite thermal energy storage and phase change composite thermal energy storage module therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100290A1 (en) * 2000-12-29 2002-08-01 Magnus Herta Device for air conditioning of a motor vehicle interior
US20030167925A1 (en) * 2002-03-06 2003-09-11 Yasukazu Aikawa Heat storage system for vehicle, with adsorbent
DE10233415A1 (en) * 2002-07-23 2004-02-19 Webasto Thermosysteme International Gmbh System for heating and cooling vehicle interior, has heat exchanger arranged in air conditioning device that can be connected to latent heat or cold storage device via heat carrying medium circuit
US20090241573A1 (en) * 2008-03-27 2009-10-01 Denso Corporation Refrigerant cycle device
EP2258571A1 (en) * 2009-06-05 2010-12-08 Valeo Systèmes Thermiques Heat exchange device and thermal management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100290A1 (en) * 2000-12-29 2002-08-01 Magnus Herta Device for air conditioning of a motor vehicle interior
US20030167925A1 (en) * 2002-03-06 2003-09-11 Yasukazu Aikawa Heat storage system for vehicle, with adsorbent
DE10233415A1 (en) * 2002-07-23 2004-02-19 Webasto Thermosysteme International Gmbh System for heating and cooling vehicle interior, has heat exchanger arranged in air conditioning device that can be connected to latent heat or cold storage device via heat carrying medium circuit
US20090241573A1 (en) * 2008-03-27 2009-10-01 Denso Corporation Refrigerant cycle device
EP2258571A1 (en) * 2009-06-05 2010-12-08 Valeo Systèmes Thermiques Heat exchange device and thermal management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242197A1 (en) * 2021-02-02 2022-08-04 Mahle International Gmbh Refrigerant system with two inner heat exchangers
US11827076B2 (en) * 2021-02-02 2023-11-28 Mahle International Gmbh Refrigerant system with two inner heat exchangers

Also Published As

Publication number Publication date
FR2974624B1 (en) 2013-04-26
WO2012146368A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
EP2643643B2 (en) Device for the thermal conditioning of a passenger compartment of a vehicle
EP2791596B1 (en) Device for air conditioning a drive train and a passenger compartment of a vehicle
EP2895806B1 (en) Device for thermally conditioning an interior of an electric vehicle
FR2946419A1 (en) THERMAL EXCHANGE DEVICE AND THERMAL MANAGEMENT SYSTEM
FR2834778A1 (en) THERMAL MANAGEMENT DEVICE, PARTICULARLY FOR A MOTOR VEHICLE EQUIPPED WITH A FUEL CELL
WO2004078496A2 (en) Ventilation/heating and/or air conditioning device for the passenger compartment of a motor vehicle with simultaneous cooling of air and coolant
FR2974624A1 (en) ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT
EP2720890B1 (en) Refrigerant circuit and method of controlling such a circuit
EP3019364B1 (en) Temperature control system for a motor vehicle, corresponding heating, ventilation and/or air-conditioning equipment, and corresponding control method
WO2013079342A1 (en) Circuit including an internal heat exchanger, through one branch of which a coolant flows in two opposite directions
EP2790938B1 (en) Method for controlling a thermal conditioning unit of a motor vehicle passenger compartment
FR3077335A1 (en) REFRIGERANT FLUID CIRCUIT
FR3013268A1 (en) HEAT CONDITIONING SYSTEM FOR A MOTOR VEHICLE AND HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM THEREOF
EP3504075A1 (en) Thermal system, in particular a motor vehicle air conditioning system
FR2979287A1 (en) REFRIGERANT FLUID CIRCUIT WITH TWO COMPRESSION STAGES AND INTERMEDIATE PRESSURE BOTTLE
WO2021204915A1 (en) Thermal conditioning system for a motor vehicle
FR2976656A1 (en) REFRIGERANT FLUID CIRCUIT WITH TWO MEANS OF STORAGE OF REFRIGERANT FLUID.
FR3051547B1 (en) SYSTEM AND METHOD FOR AIR CONDITIONING FOR A COMPARTMENT, IN PARTICULAR A MOTOR VEHICLE HABITACLE
WO2019150025A1 (en) Vehicle refrigerant fluid circuit
FR3077336A1 (en) REFRIGERANT FLUID CIRCUIT
WO2021116565A1 (en) Heat treatment system for a motor vehicle
WO2019048751A1 (en) Thermal system, in particular a motor vehicle air conditioning system
FR3077236A1 (en) DEVICE FOR THE HEAT TREATMENT OF A CARGO AND A TRACTION CHAIN OF A VEHICLE
FR3020598A1 (en) DEVICE FOR THERMALLY CONDITIONING A HABITACLE OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

ST Notification of lapse

Effective date: 20211205