FR2958929A1 - METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. - Google Patents
METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. Download PDFInfo
- Publication number
- FR2958929A1 FR2958929A1 FR1052964A FR1052964A FR2958929A1 FR 2958929 A1 FR2958929 A1 FR 2958929A1 FR 1052964 A FR1052964 A FR 1052964A FR 1052964 A FR1052964 A FR 1052964A FR 2958929 A1 FR2958929 A1 FR 2958929A1
- Authority
- FR
- France
- Prior art keywords
- filter
- water
- filtration
- granular
- micrometers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L17/00—Joints with packing adapted to sealing by fluid pressure
- F16L17/02—Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
- F16L17/03—Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket having annular axial lips
- F16L17/035—Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket having annular axial lips the sealing rings having two lips parallel to each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L39/00—Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L5/00—Devices for use where pipes, cables or protective tubing pass through walls or partitions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/012—Automatic controllers electric details of the transmission means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1906—Control of temperature characterised by the use of electric means using an analogue comparing device
- G05D23/1913—Control of temperature characterised by the use of electric means using an analogue comparing device delivering a series of pulses
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/275—Control of temperature characterised by the use of electric means with sensing element expanding, contracting, or fusing in response to changes of temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un procédé de traitement d'eau en vue de son déssalement, ledit procédé étant constitué : d'une étape (i) de coagulation de ladite eau ; d'une étape (ii) de floculation de l'eau provenant de ladite étape (i) de coagulation ; d'une étape (iii) de filtration granulaire de l'eau provenant de ladite étape (ii) de floculation à travers au moins un filtre granulaire comprenant une masse filtrante constituée d'au moins une couche d'au moins un matériau filtrant ; d'une étape (iv) de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres de l'eau provenant de ladite étape (iii) de filtration granulaire ; d'une étape (v) de filtration par osmose inverse de l'eau provenant de ladite étape (iv) de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres ; d'une étape (vi) de récupération d'une eau au moins en partie déssalée provenant de ladite étape (iv) de filtration pas osmose inverse ; ladite étape (iii) de filtration granulaire consistant à faire transiter l'eau provenant de ladite étape (ii) de floculation à travers ledit filtre granulaire à une vitesse comprise entre 15 et 25 m/h.These objectives, as well as others which will appear later, are achieved by means of a water treatment process with a view to its desalination, said method consisting of: a step (i) of coagulation of said water; a step (ii) of flocculation of water from said coagulation step (i); a step (iii) of granular filtration of water from said flocculation step (ii) through at least one granular filter comprising a filtering mass consisting of at least one layer of at least one filter material; a filtration step (iv) at a cutoff threshold of between 10 nanometers and 10 micrometers of water from said granular filtration step (iii); a step (v) for reverse osmosis filtration of the water from said filtration step (iv) at a cutoff threshold of between 10 nanometers and 10 micrometers; a step (vi) of recovering at least partially desalted water from said reverse osmosis filtration step (iv); said granular filtration step (iii) of passing water from said flocculation step (ii) through said granular filter at a rate between 15 and 25 m / h.
Description
Procédé de traitement d'eau en vue de son dessalement incluant une filtration à grande vitesse, et installation correspondante. 1. Domaine de l'invention Le domaine de l'invention est celui du traitement de l'eau en vue de son dessalement. Plus précisément, l'invention concerne un tel procédé qui comprend la mise en oeuvre d'une étape de filtration par osmose inverse. 2. Art antérieur Le dessalement de l'eau (eau de mer, eaux d'estuaires, eaux industrielles fortement chargées en sels, eaux souterraines contaminées par des sels, eaux saumâtres...) inclut généralement une étape de filtration sur une ou plusieurs membranes d'osmose inverse. Les fabricants de ce type de membranes de filtration ne garantissent contractuellement la durée de vie de leurs membranes que dans la mesure où les eaux qui traversent ces membranes présentent un certain niveau de qualité. Ainsi, afin de prévenir un colmatage trop rapide des membranes, les eaux alimentant ces membranes doivent présenter une très bonne qualité. Le SDI (Silt Density Index en anglais), qui est un paramètre représentatif du pouvoir colmatant de l'eau, est généralement utilisé pour caractériser le niveau de qualité d'une eau devant être traitée à travers des membranes d'osmose inverse. Le SDI15 est la valeur de SDI d'une eau mesurée en se conformant à la méthode standardisée ASTM D4189-95 (15 juin 2007). La mesure du SDI15 est réalisée de la manière suivante. Une eau est filtrée à une pression constante de 2,1 bar à travers un filtre dont le seuil de coupure est égal à 0,45 micromètres. Le temps TO nécessaire à la filtration de 500 ml d'eau ainsi que le temps T15 nécessaire à la filtration de 500 ml d'eau après que de l'eau a été filtrée en continu pendant 15 minutes à travers le filtre sont mesurés. Le SDI15 est ensuite calculé selon la formule suivante : SDI15=(100/15).(1-(TO/T15)) L'indice SDI15 varie entre 0 et 6,67 étant entendu que plus sa valeur est importante, plus le pouvoir colmatant de l'eau qu'il caractérise est élevé. Pour les eaux dont le pouvoir colmatant est très important, il est impossible d'en déterminer le SDI15 selon cette méthode normalisée. Dans ce cas, des indices alternatifs peuvent être calculés en mesurant le temps nécessaire à la filtration de 500 ml d'eau après que de l'eau ait été filtrée en continu à travers le filtre non plus pendant 15 minutes mais pendant 3, 5 ou 10 minutes selon la nature de l'eau à traiter. Les fabricants de membranes d'osmose inverse recommandent généralement que les eaux destinées à être filtrées au travers de membranes d'osmose inverse présentent, selon la méthode indiquée ci-dessus, un SDI15 dont la valeur est comprise entre 3 et 3,5. La filtration sur membranes d'osmose inverse nécessite donc la mise en oeuvre d'un prétraitement des eaux d'alimentation de manière à leur conférer le niveau de qualité requis par les fabricants de membranes d'osmose inverse. Dans le but de produire une eau dont la valeur de SDI15 est le plus proche possible des valeurs comprises dans cet intervalle, plusieurs techniques sont actuellement mises en oeuvre. Une première technique consiste à filtrer une eau préalablement coagulée 20 et floculée : - dans un filtre granulaire comprenant une masse filtrante d'environ 1,6 mètres de haut constituée d'une couche d'anthracite et d'une couche de sable, à une vitesse de l'ordre de 7,5 m/h, puis - dans une cartouche filtrante de 5 micromètres. 25 Les cartouches filtrantes (par exemple celles qui sont fournies par Pall, Sartorius,...) sont utilisées en amont des membranes d'osmose inverse ou de nanofiltration comme protection vis-à-vis de particules (de dimensions supérieures à 5 µm) qui pourraient créer des dysfonctionnements au sein des membranes d'osmose inverse. Le milieu filtrant intégré dans ces cartouches 30 comprend une membrane organique (polysulfone, polyethersulfone, polypropylène...). Ces cartouches permettent également une élimination des micro-organismes qui ont des dimensions supérieures au seuil de coupure de la cartouche. La mise en oeuvre de cette technique ne permet la production d'une eau dont le SDI15 est compris entre 3 et 3,5 que si l'eau brute à traiter présente un SDI3 compris entre 15 et 20. La mise en oeuvre d'un traitement de ce type ne permet donc la plupart du temps pas de produire une eau dont la qualité est suffisante pour être filtrée ultérieurement de manière optimale au travers de membranes d'osmose inverse. Water treatment process for desalination including high speed filtration, and corresponding installation. FIELD OF THE INVENTION The field of the invention is that of the treatment of water with a view to its desalination. More specifically, the invention relates to such a method which comprises the implementation of a reverse osmosis filtration step. 2. Prior Art The desalination of water (seawater, estuarine waters, industrial waters highly loaded with salts, groundwater contaminated with salts, brackish water, etc.) generally includes a filtration step on one or more reverse osmosis membranes. Manufacturers of this type of filtration membranes do not contractually guarantee the life of their membranes unless the water passing through these membranes have a certain level of quality. Thus, in order to prevent too rapid clogging of the membranes, the water supplying these membranes must have a very good quality. The SDI (Silt Density Index), which is a parameter representative of the clogging power of water, is generally used to characterize the quality level of a water to be treated through reverse osmosis membranes. The SDI15 is the SDI value of a water measured by conforming to the ASTM D4189-95 standardized method (June 15, 2007). The measurement of the SDI15 is carried out as follows. Water is filtered at a constant pressure of 2.1 bar through a filter whose cut-off point is equal to 0.45 micrometers. The time TO necessary for the filtration of 500 ml of water as well as the time T15 necessary for the filtration of 500 ml of water after water has been filtered continuously for 15 minutes through the filter are measured. The SDI15 is then calculated according to the following formula: SDI15 = (100/15). (1- (TO / T15)) The SDI15 index varies between 0 and 6.67, it being understood that the greater its value, the greater the power clogging of the water it characterizes is high. For waters with a very high clogging capacity, SDI15 can not be determined using this standard method. In this case, alternative indices can be calculated by measuring the time required for the filtration of 500 ml of water after water has been filtered continuously through the filter either for 15 minutes but for 3, 5 or 10 minutes depending on the nature of the water to be treated. Manufacturers of reverse osmosis membranes generally recommend that water intended to be filtered through reverse osmosis membranes have, according to the method indicated above, a SDI15 whose value is between 3 and 3.5. Reverse osmosis membrane filtration therefore requires the pretreatment of the feedwater to provide the level of quality required by reverse osmosis membrane manufacturers. In order to produce a water whose SDI15 value is as close as possible to the values in this range, several techniques are currently implemented. A first technique consists in filtering a previously coagulated and flocculated water: in a granular filter comprising a filtering material approximately 1.6 meters high consisting of a layer of anthracite and a layer of sand, at a temperature of speed of the order of 7.5 m / h, then - in a filter cartridge of 5 micrometers. The filter cartridges (for example those supplied by Pall, Sartorius, etc.) are used upstream of reverse osmosis membranes or nanofiltration membranes as protection against particles (with dimensions larger than 5 μm). which could create dysfunctions in reverse osmosis membranes. The filter medium integrated in these cartridges 30 comprises an organic membrane (polysulfone, polyethersulfone, polypropylene, etc.). These cartridges also allow elimination of microorganisms that have dimensions greater than the cutting threshold of the cartridge. The implementation of this technique allows the production of a water whose SDI15 is between 3 and 3.5 only if the raw water to be treated has a SDI3 between 15 and 20. The implementation of a This type of treatment therefore in most cases does not allow the production of water whose quality is sufficient to be optimally filtered later through reverse osmosis membranes.
Une deuxième technique consiste à mettre en oeuvre une étape de séparation par exemple par décantation en amont de l'étape de filtration granulaire. Une troisième technique consiste à combiner les deux premières en mettant successivement en oeuvre une coagulation, une floculation, une séparation par exemple une décantation, une filtration granulaire, une filtration sur cartouche filtrante puis une filtration par osmose inverse. La mise en oeuvre de ces deuxième et troisième technique peut permettre de produire une eau d'alimentation d'unité de filtration par osmose inverse de qualité satisfaisante. 3. Inconvénients de l'art antérieur La première des techniques actuellement mises en oeuvre dans le but de produire une eau d'alimentation de membranes de filtration par osmose inverse ne permet d'atteindre un niveau de qualité qui soit conforme avec les recommandations des fabricants de membranes de ce type que si le SDI3 de l'eau brute à traiter est compris entre 15 et 20. La filtration sur des membranes d'osmose inverse d'eaux ne présentant pas le niveau de qualité requis s'accompagne d'une augmentation rapide de la perte de charge au niveau des membranes. Ceci est essentiellement dû à un développement bactérien, à une adsorption des matières organiques, et à une accumulation de micro substances minérales et organiques sur les membranes. A second technique consists in implementing a separation step, for example by decantation upstream of the granular filtration step. A third technique is to combine the first two by successively implementing a coagulation, a flocculation, a separation for example a settling, a granular filtration, filtration on filter cartridge and reverse osmosis filtration. The implementation of these second and third techniques can make it possible to produce a reverse osmosis filtration unit feed water of satisfactory quality. 3. Disadvantages of the Prior Art The first of the presently implemented techniques for the purpose of producing reverse osmosis filtration membrane feedwater does not achieve a level of quality which is in accordance with manufacturers' recommendations. of membranes of this type only if the SDI3 of the raw water to be treated is between 15 and 20. The filtration on water reverse osmosis membranes not having the required level of quality is accompanied by an increase of rapid loss of charge at the membranes. This is mainly due to bacterial growth, adsorption of organic matter, and accumulation of microorganic and organic substances on the membranes.
Cette augmentation de perte de charge engendre la nécessité de mettre en oeuvre des nettoyages chimiques fréquents des membranes. De tels nettoyages sont en pratique mis en oeuvre avec des réactifs agressifs qui exercent un impact négatif sur la durée de vie des membranes. Il est donc nécessaire de procéder au remplacement des membranes régulièrement, ce qui représente un poste de coût important. Les deuxième et troisième de ces techniques peuvent permettre d'atteindre un niveau de qualité qui soit conforme avec les recommandations des fabricants de membranes de ce type. Elles présentent néanmoins l'inconvénient d'être relativement complexes et donc coûteuses à mettre en oeuvre. 4. Objectifs de l'invention L'invention a notamment pour objectif de pallier ces inconvénients de l'art antérieur. L'invention a pour objectif de fournir, dans au moins un mode de réalisation de l'invention, une technique de traitement d'eau en vue de son dessalement par osmose inverse qui permette de prolonger la durée de vie des membranes d'osmose inverse mise en oeuvre à cet effet. L'invention vise également, dans au moins un mode de réalisation de l'invention, à produire une telle technique qui conduise à réduire le temps de colmatage des membranes d'osmose inverse et en conséquence à réduire la fréquence de leur lavage et de leur remplacement. Un objectif de l'invention est de mettre en oeuvre, dans au moins un mode de réalisation de l'invention, une telle technique qui permette la production d'une eau présentant un SDI15 compris entre 3 et 3,5 (mesuré selon la méthode ASTM D4189-95) préalablement à sa filtration au travers de membranes d'osmose inverse. L'invention a encore pour objectif, dans au moins un mode de réalisation de l'invention, de fournir une telle technique qui soit simple et peu coûteuse à mettre en oeuvre, à tout le moins comparativement aux techniques de l'art antérieur. This increase in pressure drop generates the need for frequent chemical cleaning of the membranes. Such cleaning is in practice carried out with aggressive reagents which have a negative impact on the life of the membranes. It is therefore necessary to replace the membranes regularly, which represents a significant cost item. The second and third of these techniques can achieve a level of quality that is consistent with the recommendations of membrane manufacturers of this type. However, they have the disadvantage of being relatively complex and therefore expensive to implement. 4. OBJECTIVES OF THE INVENTION The object of the invention is notably to overcome these disadvantages of the prior art. The invention aims to provide, in at least one embodiment of the invention, a water treatment technique for its desalination by reverse osmosis that allows to extend the life of the reverse osmosis membranes implemented for this purpose. The invention also aims, in at least one embodiment of the invention, to produce such a technique which leads to reduce the clogging time of the reverse osmosis membranes and consequently to reduce the frequency of their washing and their replacement. An object of the invention is to implement, in at least one embodiment of the invention, such a technique which allows the production of a water having a SDI15 of between 3 and 3.5 (measured according to the method ASTM D4189-95) prior to filtration through reverse osmosis membranes. The invention also aims, in at least one embodiment of the invention, to provide such a technique which is simple and inexpensive to implement, at least compared to the techniques of the prior art.
Encore un objectif de l'invention est de fournir, dans au moins un mode de réalisation de l'invention, une telle technique qui conduise à réduire la surface occupée par les installations mises en oeuvre pour le dessalement de l'eau. L'invention poursuit encore l'objectif, dans au moins un mode de réalisation de l'invention, de réduire la quantité de réactifs nécessaire au dessalement de l'eau. 5. Exposé de l'invention Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un procédé de traitement d'eau en vue de son dessalement, ledit procédé étant constitué : - d'une étape (i) de coagulation de ladite eau ; - d'une étape (ii) de floculation de l'eau provenant de ladite étape (i) de coagulation ; - d'une étape (iii) de filtration granulaire de l'eau provenant de ladite étape (ii) de floculation à travers au moins un filtre granulaire comprenant une masse filtrante constituée d'au moins une couche d'au moins un matériau filtrant ; - d'une étape (iv) de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres de l'eau provenant de ladite étape (iii) de filtration granulaire ; - d'une étape (v) de filtration par osmose inverse de l'eau provenant de ladite étape (iv) de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres ; - d'une étape (vi) de récupération d'une eau au moins en partie dessalée provenant de ladite étape (iv) de filtration pas osmose inverse ; ladite étape (iii) de filtration granulaire consistant à faire transiter l'eau provenant de ladite étape (ii) de floculation à travers ledit filtre granulaire à une vitesse comprise entre 15 et 25 m/h. Ainsi, l'invention repose sur une approche originale qui consiste en la 30 combinaison d'une coagulation, d'une floculation, d'une filtration à travers un filtre granulaire à grande vitesse, c'est-à-dire entre 15 et 25 m/h, et d'une filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres d'une eau dans le but de produire une eau d'alimentation d'une filtration par osmose inverse. L'étape de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres pourra mettre en oeuvre une ou plusieurs cartouches filtrantes dont le seuil de coupure pourra être compris entre 1 et 101um et sera préférentiellement égal à 5µm. Elle pourra alternativement mettre en oeuvre une unité de filtration par ultrafiltration dont le seuil de coupure sera préférentiellement compris entre 10 nanomètres et 0,1 micromètres et dont la force motrice sera comprise entre 1 et 5 b ar, ou une unité de micro filtration dont le seuil de coupure sera préférentiellement compris entre 0,1 micromètres et 10 micromètres et dont la force motrice sera comprise entre 0,1 et 3 bar. Cette mise en oeuvre particulière permet aux flocs présents dans l'eau de pénétrer rapidement par diffusion en profondeur à l'intérieur de la masse filtrante du filtre granulaire et de venir combler, à tout le moins en partie, les interstices de vide laissés entre les grains de média filtrant essentiellement sur toute la hauteur de la masse filtrante. Par opposition aux techniques selon l'art antérieur, la technique selon l'invention permet de proscrire la mise en oeuvre d'une séparation par exemple par décantation ou par flottation en amont de la filtration granulaire lorsque le SDI3 de l'eau brute se situe entre 15 et 20 . En effet, compte tenu que la technique selon l'invention repose sur la mise en oeuvre d'une filtration granulaire à grande vitesse, les flocs présents dans l'eau sont retenus sur essentiellement toute la hauteur de la masse filtrante. Au contraire, lors de la mise en oeuvre des techniques de l'art antérieur, ces flocs pénètrent la masse filtrante essentiellement sur une faible hauteur. Il se forme alors une couche de flocs en surface de la masse filtrante. Cet encrassement en surface de la masse filtrante s'accompagne d'une augmentation rapide de la perte de charge à travers le filtre granulaire. Ceci impose de procéder à de fréquents lavages des filtres et nécessite d'augmenter la fréquence des nettoyages chimiques des membranes d'osmose inverse placées en aval. Au contraire, la mise en oeuvre de la technique selon l'invention prévient : - la formation d'une couche de flocs en surface de la masse filtrante, et - permet en revanche aux flocs d'être absorbés sur la quasi totalité de la hauteur de la masse filtrante. La technique selon l'invention permet donc de retenir une part importante des microparticules titrant en SDI présentes dans l'eau et de limiter la fréquence de nettoyage et de remplacement des membranes d'osmose inverse. Il est d'ailleurs noté qu'elle permet de retenir une part d'autant plus importante de ces particules compte tenu du fait que celles-ci viennent combler les interstices vides laissés entre les grains constituant la masse filtrante, ce qui permet de retenir des microparticules présentant une taille inférieure à la taille de ces interstices. L'ensemble de ces avantages permet à la technique selon l'invention de produire une eau d'alimentation des membranes d'osmose inverse dont le SDI15 est compris entre 3 et 3,5, c'est-à-dire qui est conforme aux recommandations des fabricants de membranes. L'étape de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres est mise en oeuvre entre l'étape de filtration granulaire et l'étape de filtration par osmose inverse. Cette filtration, qui agit comme un fusible, permet, par exemple lorsque la nature de l'eau à traiter varie fortement, de s'assurer que l'eau d'alimentation des membranes d'osmose inverse placées en aval présente un niveau de qualité suffisant pour prévenir leur endommagement. Cette mise en oeuvre permet de prolonger la durée de vie de ces membranes d'osmose inverse qui sont très coûteuses. Il est rappelé que dans un ouvrage de traitement d'eau en général, la vitesse de séparation liquide solide à travers un filtre est égale au volume d'eau traitée par heure divisé par la surface du filtre. Il est ainsi possible de déterminer la surface d'un filtre connaissant le 30 volume d'eau à traiter par heure et la vitesse de filtration. Le volume total de matériau filtrant peut ensuite être calculé selon la relation suivante : Volume de matériau filtrant = Surface du filtre x Hauteur du filtre. Dans certains cas, la hauteur d'un filtre peut être déterminé en connaissant la vitesse de filtration et le temps de contact nécessaire pour effectuer une réaction chimique donnée (par exemple adsorption...) par la relation suivante : Hauteur du filtre = vitesse de filtration x temps. Préférentiellement, ladite étape (iii) de filtration granulaire met en oeuvre un filtre granulaire dont la masse filtrante présente une granulométrie décroissante. Another objective of the invention is to provide, in at least one embodiment of the invention, such a technique which leads to reduce the area occupied by the facilities used for the desalination of water. The invention still has the objective, in at least one embodiment of the invention, of reducing the quantity of reagents necessary for the desalination of water. 5. Objective of the invention These objectives, as well as others which will appear later, are achieved by means of a water treatment process with a view to its desalination, said process consisting of: a step (i) of coagulation of said water; - a step (ii) of flocculation of water from said step (i) of coagulation; - A step (iii) of granular filtration of water from said step (ii) of flocculation through at least one granular filter comprising a filter mass consisting of at least one layer of at least one filter material; a filtration step (iv) at a cut-off threshold comprised between 10 nanometers and 10 microns of the water coming from said granular filtration step (iii); a step (v) of reverse osmosis filtration of the water coming from said filtration step (iv) at a cutoff threshold of between 10 nanometers and 10 micrometers; - a step (vi) of recovering at least partially desalinated water from said step (iv) filtration not reverse osmosis; said granular filtration step (iii) of passing water from said flocculation step (ii) through said granular filter at a rate between 15 and 25 m / h. Thus, the invention is based on an original approach which consists of the combination of coagulation, flocculation, filtration through a high speed granular filter, i.e. between 15 and 25 m / h, and filtration at a cutoff threshold of between 10 nanometers and 10 micrometers of water for the purpose of producing a feedwater of reverse osmosis filtration. The filtration step at a cutoff threshold between 10 nanometers and 10 micrometers may implement one or more filter cartridges whose cutoff threshold may be between 1 and 101um and will preferably be equal to 5 .mu.m. It may alternatively implement an ultrafiltration filtration unit whose cutoff threshold will preferably be between 10 nanometers and 0.1 micrometers and whose driving force will be between 1 and 5 b ar, or a micro filtration unit whose cutoff threshold will preferably be between 0.1 micrometers and 10 micrometers and whose driving force will be between 0.1 and 3 bar. This particular implementation makes it possible for the flocs present in the water to penetrate rapidly by diffusion in depth inside the filtering mass of the granular filter and to fill, at least in part, the void gaps left between them. media grains filtering essentially over the entire height of the filter media. As opposed to the techniques according to the prior art, the technique according to the invention makes it possible to proscribe the implementation of a separation for example by decantation or by flotation upstream of the granular filtration when the SDI3 of the raw water is situated between 15 and 20. Indeed, considering that the technique according to the invention is based on the implementation of a granular filtration at high speed, the flocs present in the water are retained over substantially the entire height of the filter mass. On the contrary, during the implementation of the techniques of the prior art, these flocs penetrate the filter mass essentially on a low height. A layer of flocs is then formed on the surface of the filtering mass. This clogging of the surface of the filtering mass is accompanied by a rapid increase in the pressure drop across the granular filter. This requires frequent washing of the filters and requires increasing the frequency of chemical cleanings reverse osmosis membranes placed downstream. On the contrary, the use of the technique according to the invention prevents: the formation of a layer of flocs on the surface of the filtering mass, and on the other hand allows the flocs to be absorbed over almost the entire height of the filtering mass. The technique according to the invention therefore makes it possible to retain a large part of the SDI titrating microparticles present in the water and to limit the frequency of cleaning and replacement of reverse osmosis membranes. It is also noted that it makes it possible to retain a much larger share of these particles, given that these fill the empty interstices left between the grains constituting the filtering mass, which makes it possible to retain microparticles having a size smaller than the size of these interstices. All of these advantages allow the technique according to the invention to produce a feedwater of reverse osmosis membranes whose SDI15 is between 3 and 3.5, that is to say which is consistent with recommendations from membrane manufacturers. The filtration step at a cutoff threshold of between 10 nanometers and 10 micrometers is carried out between the granular filtration step and the reverse osmosis filtration step. This filtration, which acts as a fuse, makes it possible, for example when the nature of the water to be treated varies greatly, to ensure that the feed water of reverse osmosis membranes placed downstream has a level of quality. enough to prevent their damage. This implementation makes it possible to extend the life of these reverse osmosis membranes which are very expensive. It is recalled that in a water treatment structure in general, the solid liquid separation rate through a filter is equal to the volume of treated water per hour divided by the filter surface. It is thus possible to determine the surface of a filter knowing the volume of water to be treated per hour and the rate of filtration. The total volume of filter material can then be calculated according to the following relationship: Volume of filter material = Filter area x Filter height. In some cases, the height of a filter can be determined by knowing the filtration rate and the contact time required to perform a given chemical reaction (eg adsorption ...) by the following relation: Filter height = velocity of the filter filtration x time. Preferably, said granular filtration step (iii) uses a granular filter whose filtering mass has a decreasing particle size.
Cette caractéristique permet de favoriser la pénétration des flocs présents dans l'eau sur la quasi-totalité de la hauteur du filtre granulaire. En effet, les flocs de taille les plus importantes sont retenus en premier laissant les flocs de taille plus faible progressivement pénétrer au coeur de la masse filtrante. Un procédé selon l'invention est en outre préférentiellement constitué 15 d'une étape de tamisage précédent ladite étape (i) de coagulation. Dans ce cas, ladite étape de tamisage est réalisée à un seuil de coupure compris entre 50 et 500 micromètres. Cette étape est mise en oeuvre de façon à retenir les algues et/ou les microparticules présentent dans l'eau à traiter de façon à prévenir la formation de 20 flocs de taille très importante qui viendraient obturer la surface du filtre granulaire. La présente technique concerne également une installation pour la mise en oeuvre d'un procédé de traitement d'une eau en vue de son dessalement selon l'invention, ladite installation étant constituée : 25 - d'une zone de coagulation de ladite eau ; - d'une zone de floculation de l'eau provenant de ladite zone de coagulation ; - d'un filtre granulaire comprenant une masse filtrante constituée d'au moins une couche d'au moins un matériau filtrant ; 30 - de moyens de soutirage de ladite eau provenant de ladite zone de floculation à travers ledit filtre granulaire à une vitesse comprise entre 15 et 25 m/h, - des moyens de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres de l'eau provenant dudit filtre granulaire (15), et - d'une unité de filtration par osmose inverse de l'eau provenant dudit filtre granulaire. Les filtres utilisés sont des filtres à flux descendant ou des filtres gravitaires. This characteristic makes it possible to promote the penetration of the flocs present in the water over almost the entire height of the granular filter. Indeed, the largest size flocs are retained first letting the smaller size flocs gradually penetrate the core of the filter mass. A process according to the invention is moreover preferably constituted by a sieving step preceding said coagulation step (i). In this case, said sieving step is carried out at a cutoff threshold of between 50 and 500 micrometers. This step is carried out in such a way as to retain the algae and / or the microparticles present in the water to be treated so as to prevent the formation of very large flocs which would clog the surface of the granular filter. The present technique also relates to an installation for the implementation of a method of treating a water for its desalination according to the invention, said installation consisting of: a coagulation zone of said water; - A flocculation zone of water from said coagulation zone; a granular filter comprising a filtering mass consisting of at least one layer of at least one filter material; Means for withdrawing said water from said flocculation zone through said granular filter at a speed of between 15 and 25 m / h; filtration means at a cutoff threshold of between 10 nanometers and 10 micrometers; water from said granular filter (15), and - a reverse osmosis filtration unit of water from said granular filter. The filters used are downflow filters or gravity filters.
Les moyens de soutirage de l'eau provenant de la zone de floculation à travers le filtre granulaire à une vitesse comprise entre 15 et 25 m/h peuvent être des moyens naturels lorsque l'eau s'écoule de manière gravitaire à travers le filtre ou mécanique lorsque l'eau est pompée à travers le filtre. Les moyens de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres agissent comme un fusible pour protéger les membranes de l'unité de filtration par osmose inverse ainsi que cela a été indiqué plus haut. Ces moyens de filtration peuvent comprendre une cartouche filtrante dont le seuil de coupure peut être compris entre 1 et 101um et sera préférentiellement égal à 51um. Ils pourront alternativement comprendre une unité de filtration par ultrafiltration dont le seuil de coupure sera préférentiellement compris entre 10 nanomètres et 0,1 micromètres et dont la force motrice sera comprise entre 1 et 5 bar, ou une unité de microfiltration dont le seuil de coupure sera préférentiellement compris entre 0,1 micromètres et 10 micromètres et dont la force motrice sera comprise entre 0,1 et 3 bar. The means for withdrawing water from the flocculation zone through the granular filter at a speed of between 15 and 25 m / h may be natural means when the water flows by gravity through the filter or mechanical when water is pumped through the filter. The filtration means at a cutoff threshold of between 10 nanometers and 10 micrometers act as a fuse to protect the membranes of the reverse osmosis filtration unit as has been indicated above. These filtration means may comprise a filter cartridge whose cutoff threshold may be between 1 and 101um and will preferably be equal to 51um. They may alternatively comprise an ultrafiltration filtration unit whose cut-off threshold will preferably be between 10 nanometers and 0.1 micrometers and whose driving force will be between 1 and 5 bar, or a microfiltration unit whose cut-off point will be preferably between 0.1 micrometers and 10 micrometers and whose driving force will be between 0.1 and 3 bar.
Préférentiellement, ladite masse filtrante présente une hauteur totale comprise entre 2,5 et 4 mètres. Une telle hauteur de masse filtrante est suffisante pour permettre la production d'une eau dont le SDI15 est conforme aux recommandations évoquées plus haut. Preferably, said filtering mass has a total height of between 2.5 and 4 meters. Such a filter mass height is sufficient to allow the production of water whose SDI15 is consistent with the recommendations mentioned above.
Selon un mode de réalisation particulier, ledit premier filtre granulaire comprend un empilement de deux couches d'un premier matériau filtrant et d'un deuxième matériau filtrant, lesdits premier et deuxième matériau filtrant présentant des granulométries décroissantes. Le matériau situé en haut présente une granulométrie supérieure et une densité inférieure à celles du matériau situé en bas. Cette configuration est particulièrement intéressante. Au cours de la filtration de l'eau, les flocs qu'elle contient s'accumulent progressivement au sein de la couche de matériau en grains située en haut du filtre. Ils comblent les interstices initialement vides qui existent entre les grains. According to a particular embodiment, said first granular filter comprises a stack of two layers of a first filter material and a second filter material, said first and second filter material having decreasing particle sizes. The material at the top has a larger particle size and a lower density than the material at the bottom. This configuration is particularly interesting. During the filtration of the water, the flocs it contains gradually accumulate within the layer of granular material located at the top of the filter. They fill the initially empty interstices that exist between the grains.
Ce matériau permet donc d'emmagasiner les flocs présents dans l'eau, qui ont eux-mêmes piégé les matières colmatantes, ainsi que les matières en suspension. Le matériau le plus haut agit comme un réservoir de flocs, un filtre de maturation, et permet l'élimination du SDI. Ce mécanisme survient au bout de quelques heures c'est-à-dire une fois que le filtre a commencé à accumuler suffisamment de flocs. This material thus makes it possible to store the flocs present in the water, which themselves have trapped the clogging materials, as well as the suspended solids. The highest material acts as a floc tank, a ripening filter, and allows the removal of SDI. This mechanism occurs after a few hours, that is, once the filter has started to accumulate enough flocs.
La seconde couche de matériau située plus bas dans le filtre joue un rôle d'affinage et permet de retenir des flocs qui ont pu s'échapper de la première couche. C'est la raison pour laquelle la granulométrie du matériau de la seconde couche est toujours inférieure à celle de la première. Selon une autre caractéristique avantageuse, ledit premier matériau présente une granulométrie comprise entre 0,8 et 2,5 mm, et en ce que ledit deuxième matériau présente une granulométrie comprise entre 0,5 et 0,9 mm. Dans ce cas, la hauteur dudit premier matériau représente avantageusement entre 50 et 80% de la hauteur totale de ladite masse filtrante. La mise en oeuvre de cette caractéristique permet à une grande partie des flocs de diffuser à l'intérieur de la couche de premier matériau et d'éviter ainsi la formation d'un gâteau sur cette couche. La vitesse de colmatage du filtre granulaire est par conséquent réduite ce qui permet de diminuer la fréquence de rétrolavage de celui-ci. Le fait que ces flocs diffusent à l'intérieur de la première couche, c'est-à-dire qu'ils sont piégés dans les espaces interstitiels laissés entre les grains de la première couche de matériau, sans pour autant colmater le filtre permet également de retenir d'autres particules dont la taille est inférieure à celle de ces interstices. Ainsi, cette première couche de matériau permet de retenir l'essentiel des particules titrant en SDI initialement contenues dans l'eau à traiter tout en limitant le colmatage du filtre granulaire. The second layer of material located lower in the filter plays a role of refining and retains flocs that may have escaped from the first layer. This is the reason why the particle size of the material of the second layer is always smaller than that of the first layer. According to another advantageous characteristic, said first material has a particle size of between 0.8 and 2.5 mm, and in that said second material has a particle size of between 0.5 and 0.9 mm. In this case, the height of said first material advantageously represents between 50 and 80% of the total height of said filtering mass. The implementation of this characteristic allows a large part of the flocs to diffuse inside the first material layer and thus avoid the formation of a cake on this layer. The clogging speed of the granular filter is consequently reduced, which makes it possible to reduce the frequency of backwashing thereof. The fact that these flocs diffuse inside the first layer, that is to say they are trapped in the interstitial spaces left between the grains of the first layer of material, without clogging the filter also allows to retain other particles whose size is smaller than that of these interstices. Thus, this first layer of material makes it possible to retain most of the SDI titrating particles initially contained in the water to be treated while limiting the clogging of the granular filter.
Selon une caractéristique préférentielle, ledit premier matériau est de l'anthracite et ledit deuxième matériau est constitué par des grains de sable ou de grenat. Selon une autre caractéristique préférentielle, ledit premier matériau est de la pierre ponce et ledit deuxième matériau est constitué par des grains de sable ou de grenat. Selon un autre mode de réalisation particulier ledit premier filtre comprend un empilement de trois couches d'un premier, d'un deuxième et d'un troisième matériau filtrant, lesdits premier, deuxième et troisième matériaux filtrant présentant des granulométries décroissantes. According to a preferred characteristic, said first material is anthracite and said second material consists of grains of sand or garnet. According to another preferred feature, said first material is pumice stone and said second material consists of grains of sand or garnet. According to another particular embodiment, said first filter comprises a stack of three layers of a first, a second and a third filtering material, said first, second and third filtering materials having decreasing particle sizes.
Un affinage encore plus poussé peut être obtenu en mettant en oeuvre une troisième couche de matériau encore plus dense et plus fin que le matériau de la deuxième couche. Un tel affinage permet d'augmenter l'élimination des particules en suspension et de réduire la valeur du SDI15 de l'eau traitée de 0,2 à 0,5. Dans ce cas, la hauteur desdits premier, deuxième et troisième matériaux représentent respectivement entre 40 et 75%, entre 7,5 et 40% et 7,5 et 20% de la hauteur totale de ladite masse filtrante. Selon une caractéristique préférée, les grains desdits matériaux (17, 18, 17', 18', 22) desdites couches dudit filtre granulaire (15) présentent des densités croissantes depuis la couche supérieure vers la couche inférieure dudit filtre. Further refinement can be achieved by employing a third layer of even more dense and thinner material than the material of the second layer. Such refining makes it possible to increase the removal of suspended particles and to reduce the SDI15 value of the treated water from 0.2 to 0.5. In this case, the height of said first, second and third materials respectively represent between 40 and 75%, between 7.5 and 40% and 7.5 and 20% of the total height of said filtering mass. According to a preferred characteristic, the grains of said materials (17, 18, 17 ', 18', 22) of said layers of said granular filter (15) have increasing densities from the upper layer to the lower layer of said filter.
Le fait que la densité des grains des matériaux constituant les différentes couches du filtre granulaire soit plus importantes à partir de la couche inférieure vers la couche supérieure permet, après que le filtre est lavé, aux différentes couches le constituant de se reformer de manière naturelle. En effet, après que l'agitation des couches de matériaux due au rétrolavage du filtre a cessé, les grains de matériaux les plus denses constituant la couche inférieure se déposent en premier alors que les autres grains se déposent par ordre de densité décroissante. Une installation selon l'invention est en outre optionnellement constituée d'une unité de tamisage placée en amont de ladite zone de coagulation. 6. Liste des figures D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de modes de réalisation préférentiels, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels : - la figure 1 présente un schéma d'une installation de traitement d'eau selon un premier mode de réalisation de l'invention ; - la figure 2 présente un schéma d'une installation de traitement d'eau selon un deuxième mode de réalisation de l'invention ; - la figure 3 est une courbe qui illustre l'évolution du SDI15 d'une eau filtrée selon l'art antérieur dans un filtre bi-couche (anthracite-sable) de 1,6 mètres de haut à 7,5 m/h ; - la figure 4 est une courbe qui illustre l'évolution du SDI15 d'une eau filtrée selon l'art antérieur dans un filtre bi-couche (anthracite-sable) de 1,6 mètres de haut à 9,5 m/h ; - la figure 5 est une courbe qui illustre l'évolution du SDI15 d'une eau filtrée selon l'invention dans un filtre bi-couche (anthracite-sable) de 3 mètres de haut à 15 m/h. 7. Description d'un mode de réalisation de l'invention 7.1. Principe général de l'invention Le principe général de l'invention repose sur la combinaison d'une coagulation, d'une floculation, d'une filtration à travers un filtre granulaire à grande vitesse, c'est-à-dire entre 15 et 25 m/h, et d'une filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres d'une eau dans le but de produire une eau d'alimentation d'une filtration par osmose inverse. Compte tenu de la haute vitesse de filtration de l'eau, une part importante 30 des flocs titrant en SDI15 présents dans l'eau est rapidement absorbée dans la masse filtrante essentiellement sur toute sa hauteur sans observation d'un encrassement de la surface de la masse filtrante. La mise en oeuvre de la technique selon l'invention permet donc de produire une eau dont le SDI15 est compris entre 3 et 3,5. Cette eau peut ensuite être filtrée de manière optimale à travers des membranes d'osmose inverse en vue d'être dessalée. Par opposition aux techniques selon l'art antérieur, la technique selon l'invention permet de proscrire la mise en oeuvre d'une séparation par exemple par décantation ou par flottation en amont de la filtration granulaire lorsque le SDI3 de l'eau brute se situe entre 15 et 20. 7.2. Exemple d'un premier mode de réalisation d'une installation de traitement selon l'invention On présente, en relation avec la figure 1, un premier mode de réalisation d'une installation de traitement d'eau selon l'invention. The fact that the grain density of the materials constituting the different layers of the granular filter is greater from the lower layer to the upper layer allows, after the filter is washed, the various layers of the constituent to reform naturally. Indeed, after the agitation of the layers of materials due to backwashing of the filter has ceased, the densest material grains constituting the lower layer are deposited first while the other grains are deposited in order of decreasing density. An installation according to the invention is furthermore optionally constituted by a sieving unit placed upstream of said coagulation zone. 6. List of Figures Other features and advantages of the invention will appear more clearly on reading the following description of preferred embodiments, given as simple illustrative and non-limiting examples, and the appended drawings, among which: - Figure 1 shows a diagram of a water treatment plant according to a first embodiment of the invention; - Figure 2 shows a diagram of a water treatment plant according to a second embodiment of the invention; FIG. 3 is a curve which illustrates the evolution of the SDI15 of a filtered water according to the prior art in a two-layer filter (anthracite-sand) of 1.6 meters high at 7.5 m / h; FIG. 4 is a curve which illustrates the evolution of the SDI15 of a filtered water according to the prior art in a two-layer filter (anthracite-sand) of 1.6 meters high at 9.5 m / h; - Figure 5 is a curve which illustrates the evolution of the SDI15 of a filtered water according to the invention in a two-layer filter (anthracite-sand) from 3 meters high to 15 m / h. 7. Description of an embodiment of the invention 7.1. General Principle of the Invention The general principle of the invention is based on the combination of coagulation, flocculation, filtration through a granular filter at high speed, that is to say between 15 and 25 m / h, and filtration at a cutoff threshold of between 10 nanometers and 10 micrometers of water for the purpose of producing a feedwater of reverse osmosis filtration. In view of the high water filtration rate, a large portion of the SDI15 titrating flocs present in the water is rapidly absorbed into the filter mass essentially over its entire height without observation of fouling of the surface of the water. filter mass. The implementation of the technique according to the invention therefore makes it possible to produce a water whose SDI15 is between 3 and 3.5. This water can then be optimally filtered through reverse osmosis membranes to be desalted. As opposed to the techniques according to the prior art, the technique according to the invention makes it possible to proscribe the implementation of a separation for example by decantation or by flotation upstream of the granular filtration when the SDI3 of the raw water is situated between 15 and 20. 7.2. Example of a first embodiment of a treatment plant according to the invention In relation with FIG. 1, a first embodiment of a water treatment installation according to the invention is presented.
Tel que cela est représenté sur cette figure 1, une installation selon ce premier mode de réalisation comprend une canalisation 10 d'amenée d'une eau à traiter dans une zone de coagulation 11 à l'intérieur de laquelle est injecté un agent coagulant qui dans ce mode de réalisation est du chlorure ferrique (FeC13). La zone de coagulation 11 est reliée par une canalisation 12 à une zone de floculation 13 à l'intérieur de laquelle est injecté un agent floculant qui dans ce mode de réalisation est le polymère floculant synthétique FLOPAM AN905. Dans une variante, un polymère floculant naturel pourra être mis en oeuvre. La zone de floculation 13 est reliée par une canalisation 14 à un filtre 15. Le filtre 15 est un filtre granulaire ouvert à travers lequel l'eau à traiter préalablement coagulée et floculée circule sous l'effet de la gravité. Dans une variante, ce filtre 15 pourra être un filtre granulaire sous pression à travers lequel l'eau à traiter circule sous pression par la mise en oeuvre de moyens de soutirage comme une pompe. Dans ce mode de réalisation, il comprend une masse filtrante 16 qui est constituée par un empilement de deux couches 17, 18 de deux matériaux filtrants granulaires. Les couches 17 et 18 constituent respectivement la couche supérieure et la couche inférieure du filtre. Les matériaux constituant les couches 17, 18 présentant des granulométries décroissantes et des densités croissantes depuis la couche supérieure 17 vers la couche inférieure 18. La première couche 17 est constituée par de l'anthracite dont la granulométrie est comprise entre 0,8 et 2,5 millimètres. La deuxième couche 18 est constituée par du sable dont la granulométrie est comprise entre 0,5 et 0,9 millimètres. Dans ce mode de réalisation, la hauteur de chacune des couches de matériau représente environ 50% de la hauteur totale de la masse filtrante 16. As represented in this FIG. 1, an installation according to this first embodiment comprises a pipe 10 for supplying a water to be treated in a coagulation zone 11 inside which a coagulating agent is injected which this embodiment is ferric chloride (FeCl 3). The coagulation zone 11 is connected by a pipe 12 to a flocculation zone 13 inside which is injected a flocculating agent which in this embodiment is the FLOPAM AN905 synthetic flocculating polymer. In a variant, a natural flocculating polymer may be used. The flocculation zone 13 is connected by a line 14 to a filter 15. The filter 15 is an open granular filter through which the water to be treated previously coagulated and flocculated circulates under the effect of gravity. In a variant, this filter 15 may be a granular filter under pressure through which the water to be treated circulates under pressure by the implementation of withdrawal means such as a pump. In this embodiment, it comprises a filtering mass 16 which consists of a stack of two layers 17, 18 of two granular filter materials. The layers 17 and 18 constitute respectively the upper layer and the lower layer of the filter. The materials constituting the layers 17, 18 having decreasing granulometries and increasing densities from the top layer 17 to the lower layer 18. The first layer 17 is constituted by anthracite whose particle size is between 0.8 and 2, 5 millimeters. The second layer 18 consists of sand whose particle size is between 0.5 and 0.9 millimeters. In this embodiment, the height of each of the layers of material represents about 50% of the total height of the filtering mass 16.
Dans des variantes, la hauteur des première 17 et deuxième 18 couches de matériau pourront varier dans des proportions telles que la hauteur de la première couche 17 pourra atteindre jusqu'à environ 80% de la hauteur totale de la masse filtrante 16. Dans une variante, l'anthracite pourra être remplacé par de la pierre ponce 15 présentant une granulométrie comprise entre 0,8 et 2,5 millimètres. Dans tous les cas, le sable, avantageusement roulé ou concassé, pourra être remplacé par des grains de grenat ou de tout autre matériau équivalent. La hauteur totale de la masse filtrante 16 peut varier entre 2,5 et 4 mètres selon les conditions d'exploitation. 20 Le filtre 15 est relié, à sa sortie, à l'entrée d'une cartouche filtrante 24 au moyen d'une canalisation 20. L'unité d'osmose inverse 19 présente une sortie d'eau traitée 21. Cette cartouche filtrante 24 a un seuil de coupure égal à 5 micromètres. La sortie de cette cartouche filtrante 24 est reliée à l'entrée d'une unité de filtration par osmose inverse 19 par une canalisation 25. 25 7.3. Exemple d'un deuxième mode de réalisation d'une installation de traitement selon l'invention La figure 2 illustre un deuxième mode de réalisation qui ne diffère du premier mode de réalisation qui vient d'être décrit qu'en ce qui concerne la structure du filtre 15. In variants, the height of the first 17 and second 18 layers of material can vary in proportions such that the height of the first layer 17 can reach up to about 80% of the total height of the filtering mass 16. In a variant the anthracite may be replaced by pumice stone having a particle size of between 0.8 and 2.5 millimeters. In all cases, the sand, preferably rolled or crushed, may be replaced by grains of garnet or any other equivalent material. The total height of the filtering mass 16 can vary between 2.5 and 4 meters depending on the operating conditions. The filter 15 is connected, at its outlet, to the inlet of a filter cartridge 24 by means of a pipe 20. The reverse osmosis unit 19 has a treated water outlet 21. This filter cartridge 24 has a cutoff threshold equal to 5 micrometers. The outlet of this filter cartridge 24 is connected to the inlet of a reverse osmosis filtration unit 19 via a pipe 25. 7.3. Example of a Second Embodiment of a Processing Plant According to the Invention FIG. 2 illustrates a second embodiment which differs from the first embodiment which has just been described with regard to the structure of the filter 15.
Dans ce deuxième mode de réalisation, le filtre 15 comprend une masse filtrante 16' qui est constituée par l'empilement de trois couches 17', 18' et 22 de trois matériaux filtrants granulaires présentant des granulométries décroissantes. La première couche 17', ou couche supérieure, est constituée d'une épaisseur de 1,6 à 3 mètres d'anthracite dont la granulométrie est comprise entre 1.0 et 2.5 mm. La deuxième couche 18', ou couche intermédiaire, est constituée d'une épaisseur de 0,3 à 1 mètre de sable dont la granulométrie est comprise entre 0,6 et 0,9 mm. In this second embodiment, the filter 15 comprises a filtering mass 16 'which consists of the stack of three layers 17', 18 'and 22 of three granular filter materials having decreasing particle sizes. The first layer 17 ', or top layer, consists of a thickness of 1.6 to 3 meters of anthracite whose particle size is between 1.0 and 2.5 mm. The second layer 18 ', or intermediate layer, consists of a thickness of 0.3 to 1 meter of sand whose particle size is between 0.6 and 0.9 mm.
La troisième couche 22, ou couche inférieure, est constituée d'une épaisseur de 0,3 à 0,5 mètre de grenat ou de sable dont la granulométrie est comprise entre 0,3 et 0,55 mm. Les matériaux constituant les couches 17', 18' et 22 présentant des granulométries décroissantes et des densités croissantes depuis la couche supérieure 17' vers la couche inférieure 22. La hauteur de la première couche 17' de matériau représente entre environ 40 et 75% de la hauteur totale de la masse filtrante 16'. La hauteur de la deuxième couche 18' de matériau représente entre environ 7,5 et 40% de la hauteur totale de la masse filtrante 16', et la hauteur de la troisième couche 22 de matériau représente environ 7,5 à 20% de la hauteur totale de la masse filtrante 16'. La hauteur totale de la masse filtrante 16' est comprise entre 2,5 et 4,5 mètres. 7.4. Variantes des premier et deuxième modes de réalisation d'une installation de traitement selon l'invention Dans une variante des premiers et deuxième modes de réalisation (non représentée), une installation selon l'invention sera en outre constituée d'une unité de tamisage placée en amont de la zone de coagulation 11. Cette unité de tamisage comprendra préférentiellement des éléments permettant de retenir les algues et/ou les microparticules présentes dans l'eau à traiter ayant une taille supérieure à 500 micromètres. The third layer 22, or lower layer, consists of a thickness of 0.3 to 0.5 meters of garnet or sand whose particle size is between 0.3 and 0.55 mm. The materials constituting the layers 17 ', 18' and 22 having decreasing granulometries and increasing densities from the top layer 17 'to the lower layer 22. The height of the first layer 17' of material represents between about 40 and 75% of the total height of the filtering mass 16 '. The height of the second layer 18 'of material is between about 7.5 and 40% of the total height of the filter mass 16', and the height of the third layer 22 of material is about 7.5 to 20% of the total height of the filter mass 16 '. The total height of the filtering mass 16 'is between 2.5 and 4.5 meters. 7.4. Variants of the first and second embodiments of a treatment plant according to the invention In a variant of the first and second embodiments (not shown), an installation according to the invention will also consist of a sieving unit placed upstream of the coagulation zone 11. This sieving unit will preferably comprise elements making it possible to retain the algae and / or the microparticles present in the water to be treated having a size greater than 500 microns.
Dans une autre variante, le filtre granulaire 15 pourra être composé d'une seule couche de sable présentant une granulométrie comprise entre 0,5 et 1,5 mm. Dans d'autres variantes, la cartouche filtrante pourra être remplacée par : - une unité de filtration par ultrafiltration dont le seuil de coupure sera préférentiellement compris entre 10 nanomètres et 0,1 micromètres et dont la force motrice sera comprise entre 1 et 5 bar, ou - une unité de microfiltration dont le seuil de coupure sera préférentiellement compris entre 0,1 micromètres et 10 micromètres et dont la force motrice sera comprise entre 0,1 et 3 bar. In another variant, the granular filter 15 may be composed of a single layer of sand having a particle size of between 0.5 and 1.5 mm. In other variants, the filter cartridge may be replaced by: an ultrafiltration filtration unit whose cut-off threshold will preferably be between 10 nanometers and 0.1 micrometers and whose driving force will be between 1 and 5 bar, or - a microfiltration unit whose cutoff threshold will preferably be between 0.1 micrometers and 10 micrometers and whose driving force will be between 0.1 and 3 bar.
La mise en oeuvre d'une cartouche filtrante présente toutefois l'avantage de nécessiter une force motrice et donc une consommation énergétique inférieure à celles requises par l'ultrafiltration ou la microfiltration. 7.5. Exemple d'un procédé de traitement selon l'invention On présente en relation avec la figure 1, un procédé de traitement d'eau en vue de son dessalement selon l'invention. Un tel procédé consiste à acheminer une eau brute via la canalisation 10 dans la zone de coagulation 11 de façon telle qu'elle y subisse une étape de coagulation. L'eau coagulée provenant de la zone de coagulation 11 est ensuite 20 introduite via la canalisation 12 dans la zone de floculation 13 de façon telle qu'elle y subisse une étape de floculation. L'eau floculée provenant de la zone de floculation 13 est ensuite introduite via la canalisation 14 dans le filtre granulaire 15. L'eau coagulée et floculée traverse alors la masse filtrante 16 à une vitesse 25 comprise entre 15 et 25 m/h. Les flocs 23 présents dans cette eau pénètrent alors rapidement par diffusion en profondeur à l'intérieur de la masse filtrante 16 et viennent combler, à tout le moins en partie, les interstices de vide laissés entre les grains de média filtrant essentiellement sur toute la hauteur de la masse filtrante. Dans ces 30 circonstances, le filtre granulaire arrive à maturation beaucoup plus rapidement. However, the use of a filter cartridge has the advantage of requiring a driving force and therefore a lower energy consumption than required by ultrafiltration or microfiltration. 7.5. Example of a treatment method according to the invention In relation with FIG. 1, a water treatment process is presented with a view to its desalination according to the invention. Such a method consists in conveying raw water via line 10 into the coagulation zone 11 in such a way that it undergoes a coagulation step therein. The coagulated water from the coagulation zone 11 is then introduced via line 12 into the flocculation zone 13 so that it undergoes a flocculation step. The flocculated water from the flocculation zone 13 is then introduced via the pipe 14 into the granular filter 15. The coagulated and flocculated water then passes through the filtering mass 16 at a speed of between 15 and 25 m / h. The flocs 23 present in this water then penetrate rapidly by diffusion in depth inside the filtering mass 16 and fill, at least in part, the void gaps left between the media grains filtering essentially over the entire height. of the filtering mass. In these circumstances, the granular filter matures much more rapidly.
Compte tenu du fait qu'une partie de ces flocs vient combler les interstices vides laissés entre les grains constituant la masse filtrante, les microparticules présentant une taille inférieure à la taille de ces interstices sont également retenues dans la masse filtrante. Given that a portion of these flocs fills the empty interstices left between the grains constituting the filter mass, the microparticles having a size smaller than the size of these interstices are also retained in the filter mass.
La combinaison selon l'invention d'une coagulation, d'une floculation et d'une filtration granulaire à grande vitesse permet en outre de prévenir la formation d'une couche de flocs en surface de la masse filtrante ce qui conduit à diminuer la fréquence de lavage du filtre granulaire. La mise en oeuvre de cette étape de filtration granulaire conduit à la production d'un effluent dont le SDI15 a une valeur comprise entre 3 et 3,5. Cet effluent présente donc un niveau de qualité qui est conforme aux recommandations des fabricants de membranes d'osmose inverse. Cet effluent peut alors constituer une eau d'alimentation des membranes de l'unité de filtration par osmose inverse 19. The combination according to the invention of coagulation, flocculation and granular filtration at high speed also makes it possible to prevent the formation of a layer of flocs on the surface of the filtering mass, which leads to a reduction in the frequency washing the granular filter. The implementation of this granular filtration step leads to the production of an effluent whose SDI15 has a value between 3 and 3.5. This effluent therefore has a level of quality that is in line with the recommendations of manufacturers of reverse osmosis membranes. This effluent can then constitute a feed water of the membranes of the reverse osmosis filtration unit 19.
Néanmoins, il peut arriver, de manière tout à fait exceptionnelle, que cet effluent présente un SDI15 dont la valeur est légèrement supérieure à 3,5. Ceci peut par exemple être lié au fait que la qualité de l'eau brute se soit dégradée. Pour cette raison, l'effluent est dirigé vers l'entrée d'une cartouche filtrante 24. Cette cartouche filtrante 24 agit comme un fusible qui retient, le cas échéant, les particules présentes dans l'effluent en sortie du filtre granulaire de manière que l'eau d'alimentation de l'unité d'osmose inverse 19 présente en toute circonstance un SDI15 dont la valeur est comprise entre 3 et 3,5. Cet effluent est alors systématiquement dirigé vers des moyens de filtration à un seuil de coupure compris entre 10 nanomètres et 10 micromètres, qui dans ce mode de réalisation comprennent l'unité de filtration par osmose inverse 19 de manière à en soustraire, à tout le moins en partie, les sels qu'il contient et à produire une eau dessalée. Dans des variantes, la cartouche filtrante pourra être remplacée par une unité de filtration par ultrafiltration ou par microfiltration. Nevertheless, it can happen, quite exceptionally, that this effluent has a SDI15 whose value is slightly greater than 3.5. This may for example be related to the fact that the quality of the raw water has deteriorated. For this reason, the effluent is directed towards the inlet of a filter cartridge 24. This filter cartridge 24 acts as a fuse which retains, if appropriate, the particles present in the effluent at the outlet of the granular filter so that the feed water of the reverse osmosis unit 19 presents in all circumstances a SDI15 whose value is between 3 and 3.5. This effluent is then systematically directed to filtration means with a cutoff threshold of between 10 nanometers and 10 micrometers, which in this embodiment comprise the reverse osmosis filtration unit 19 so as to subtract it, at the very least in part, the salts it contains and to produce desalinated water. In variants, the filter cartridge may be replaced by a filtration unit by ultrafiltration or by microfiltration.
Dans une variante, l'eau coagulée et floculée sera filtrée à travers un filtre tri couches selon le deuxième mode de réalisation. Dans une autre variante, l'eau brute subira une étape de tamisage avant l'étape de coagulation. 7.6. Autres avantages La mise en oeuvre d'un filtre granulaire selon les techniques de l'art antérieur est insuffisante pour produire une eau présentant les qualités requises afin d'être ultérieurement filtrée au travers de membranes d'osmose inverse. Il est donc nécessaire de multiplier les équipements mis en oeuvre de manière à atteindre le niveau de qualité requis. Ceci engendre une augmentation de la taille des installations. L'invention permet au contraire de produire de l'eau présentant la qualité requise notamment au moyen d'un filtre granulaire fonctionnant à grande vitesse et en amont duquel il n'est pas nécessaire de mettre en oeuvre de moyen de séparation comme par exemple un décanteur ou des moyens de flottation. Sa mise en oeuvre permet donc de réduire la taille globale et notamment la surface au sol occupée par une installation de dessalement. La technique selon l'invention permet également de réduire les coûts liés au dessalement de l'eau. D'une part, les installations nécessaires au dessalement selon l'invention sont moins complexes, moins encombrantes et donc moins coûteuses. D'autre part, la technique selon l'invention permet de réduire les fréquences de lavage et de remplacement des membranes d'osmose inverse. Le fait de réduire la fréquence de lavage des membranes d'osmose inverse permet en outre de réduire les pertes en eau employée à cet effet. La mise en oeuvre de l'invention contribue également à réduire les volumes de réactifs employés pour le dessalement de l'eau. En effet, la maturation progressive d'un filtre selon l'invention, qui se caractérise par le fait qu'il accumule des flocs au sein de sa masse filtrante au cours de la filtration, permet de maintenir les cinétiques d'adsorption des matières colmatantes (et donc du SDI) même si on réduit le dosage de coagulant initialement injecté. Cette réduction progressive de la quantité de coagulant injectée pendant un cycle de filtration, permet de réduire la consommation globale de réactifs. 7.7. Essais Des essais ont été réalisés afin de démontrer l'efficacité d'un procédé de traitement d'eau selon l'invention. Une première série d'essais a consisté à filtrer, selon l'art antérieur, une eau dans une colonne de filtration contenant une couche de 0,8 mètre d'anthracite et une couche de 0,8 mètre de sable, à une vitesse de 7,5 m/h puis dans une cartouche filtrante à 5 micromètres. La figure 3, qui illustre les résultats de ces essais, permet de constater que le SDI15 de l'eau filtrée au cours de ces essais était généralement supérieur à 3,5. In a variant, the coagulated and flocculated water will be filtered through a tri-layer filter according to the second embodiment. In another variant, the raw water will undergo a sieving step before the coagulation step. 7.6. Other advantages The use of a granular filter according to the techniques of the prior art is insufficient to produce water having the required qualities in order to be subsequently filtered through reverse osmosis membranes. It is therefore necessary to multiply the equipment used so as to reach the required level of quality. This leads to an increase in the size of the facilities. On the contrary, the invention makes it possible to produce water of the required quality, in particular by means of a granular filter operating at high speed and upstream of which it is not necessary to use separation means such as, for example, a decanter or flotation means. Its implementation therefore reduces the overall size and especially the floor area occupied by a desalination plant. The technique according to the invention also makes it possible to reduce the costs associated with the desalination of water. On the one hand, the facilities required for desalination according to the invention are less complex, less bulky and therefore less expensive. On the other hand, the technique according to the invention makes it possible to reduce the washing and replacement frequencies of reverse osmosis membranes. Reducing the washing frequency of reverse osmosis membranes also makes it possible to reduce the water losses used for this purpose. The implementation of the invention also contributes to reducing the volumes of reagents used for the desalination of water. Indeed, the progressive maturation of a filter according to the invention, which is characterized by the fact that it accumulates flocs within its filtering mass during filtration, makes it possible to maintain the adsorption kinetics of the clogging materials. (and therefore SDI) even if the dosage of coagulant initially injected is reduced. This gradual reduction in the amount of coagulant injected during a filtration cycle makes it possible to reduce the overall consumption of reagents. 7.7. Tests Tests were carried out to demonstrate the effectiveness of a water treatment process according to the invention. A first series of tests consisted in filtering, according to the prior art, a water in a filtration column containing a 0.8 meter layer of anthracite and a layer of 0.8 meter of sand, at a rate of 7.5 m / h then in a filter cartridge at 5 micrometers. Figure 3, which illustrates the results of these tests, shows that the SDI15 of the water filtered during these tests was generally greater than 3.5.
Une deuxième série d'essais a consisté à filtrer, selon l'art antérieur, les eaux d'une première station (St 1) et d'une deuxième station (St 2) dans une colonne de filtration contenant une couche de 1,5 mètres d'anthracite et une couche de 1,5 mètres de sable, à une vitesse de 9,5 m/h puis dans une cartouche filtrante à 5 micromètres. La figure 4, qui illustre les résultats de ces essais, permet de constater que le SDI15 de l'eau filtrée au cours de ces essais était en moyenne compris entre 4 et 5. Une troisième série d'essais a consisté à filtrer, selon l'invention, une eau dans une colonne de filtration contenant une couche de 1,5 mètres d'anthracite et une couche de 1,5 mètres de sable, à une vitesse de 15 m/h puis dans une cartouche filtrante à 5 micromètres. La figure 5, qui illustre les résultats de ces essais, permet de constater que le SDI15 de l'eau filtrée au cours de ces essais était toujours inférieur à 3,5. A second series of tests consisted in filtering, according to the prior art, the waters of a first station (St 1) and a second station (St 2) in a filtration column containing a layer of 1.5 meters of anthracite and a layer of 1.5 meters of sand, at a speed of 9.5 m / h and then in a filter cartridge at 5 micrometers. Figure 4, which illustrates the results of these tests, shows that the SDI15 of the water filtered during these tests was on average between 4 and 5. A third series of tests consisted in filtering, according to The invention is a water in a filter column containing a 1.5 meter layer of anthracite and a 1.5 meter layer of sand, at a speed of 15 m / h and then in a 5 micron filter cartridge. FIG. 5, which illustrates the results of these tests, shows that the SDI of the water filtered during these tests was always less than 3.5.
Claims (13)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1052964A FR2958929B1 (en) | 2010-04-19 | 2010-04-19 | METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. |
AU2011244513A AU2011244513B2 (en) | 2010-04-19 | 2011-04-12 | Method for treating water with a view to desalinating same including high-speed filtration, and corresponding facility |
CN201180020004.0A CN102985377B (en) | 2010-04-19 | 2011-04-12 | To the method that water processes for the purpose of desalination |
PCT/EP2011/055738 WO2011131523A1 (en) | 2010-04-19 | 2011-04-12 | Method for treating water with a view to desalinating same including high-speed filtration, and corresponding facility |
IL222483A IL222483B (en) | 2010-04-19 | 2012-10-16 | Process for treating water with a view to its desalination, including a high-speed filtering and corresponding installation |
ZA2012/07767A ZA201207767B (en) | 2010-04-19 | 2012-10-17 | Process for treating water with a view to its desalination, including a high-speed filtering, and corresponding installation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1052964A FR2958929B1 (en) | 2010-04-19 | 2010-04-19 | METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2958929A1 true FR2958929A1 (en) | 2011-10-21 |
FR2958929B1 FR2958929B1 (en) | 2013-07-05 |
Family
ID=43084484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1052964A Expired - Fee Related FR2958929B1 (en) | 2010-04-19 | 2010-04-19 | METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. |
Country Status (6)
Country | Link |
---|---|
CN (1) | CN102985377B (en) |
AU (1) | AU2011244513B2 (en) |
FR (1) | FR2958929B1 (en) |
IL (1) | IL222483B (en) |
WO (1) | WO2011131523A1 (en) |
ZA (1) | ZA201207767B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995603A1 (en) * | 2012-09-19 | 2014-03-21 | Veolia Water Solutions & Tech | WATER TREATMENT METHOD COMPRISING A FLOTATION COMBINED WITH GRAVITY FILTRATION AND CORRESPONDING INSTALLATION |
EP3444017A1 (en) * | 2017-08-17 | 2019-02-20 | Yassine Rezgui | Printworks effluent recycling method and unit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2767521A1 (en) * | 1997-08-22 | 1999-02-26 | Omnium Traitement Valorisa | High throughput suspended solids removal from water streams |
US20080173583A1 (en) * | 2007-01-19 | 2008-07-24 | The Purolite Company | Reduced fouling of reverse osmosis membranes |
JP2008173534A (en) * | 2007-01-16 | 2008-07-31 | Toray Ind Inc | Water treatment method and water treatment apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101391826A (en) * | 2008-10-17 | 2009-03-25 | 中国海洋大学 | A cyclone-membrane separation desalination method for seawater containing solid insoluble matter |
-
2010
- 2010-04-19 FR FR1052964A patent/FR2958929B1/en not_active Expired - Fee Related
-
2011
- 2011-04-12 AU AU2011244513A patent/AU2011244513B2/en not_active Ceased
- 2011-04-12 CN CN201180020004.0A patent/CN102985377B/en not_active Expired - Fee Related
- 2011-04-12 WO PCT/EP2011/055738 patent/WO2011131523A1/en active Application Filing
-
2012
- 2012-10-16 IL IL222483A patent/IL222483B/en not_active IP Right Cessation
- 2012-10-17 ZA ZA2012/07767A patent/ZA201207767B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2767521A1 (en) * | 1997-08-22 | 1999-02-26 | Omnium Traitement Valorisa | High throughput suspended solids removal from water streams |
JP2008173534A (en) * | 2007-01-16 | 2008-07-31 | Toray Ind Inc | Water treatment method and water treatment apparatus |
US20080173583A1 (en) * | 2007-01-19 | 2008-07-24 | The Purolite Company | Reduced fouling of reverse osmosis membranes |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995603A1 (en) * | 2012-09-19 | 2014-03-21 | Veolia Water Solutions & Tech | WATER TREATMENT METHOD COMPRISING A FLOTATION COMBINED WITH GRAVITY FILTRATION AND CORRESPONDING INSTALLATION |
WO2014044619A1 (en) * | 2012-09-19 | 2014-03-27 | Veolia Water Solutions & Technologies Support | Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment |
CN104781198A (en) * | 2012-09-19 | 2015-07-15 | 威立雅水务解决方案与技术支持公司 | Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment |
AP3956A (en) * | 2012-09-19 | 2016-12-22 | Veolia Water Solutions & Tech | Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment |
CN104781198B (en) * | 2012-09-19 | 2017-06-13 | 威立雅水务解决方案与技术支持公司 | The method for treating water and relevant device of the flotation including being combined with gravity filtration |
AU2013320381B2 (en) * | 2012-09-19 | 2017-06-29 | Veolia Water Solutions & Technologies Support | Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment |
EP3444017A1 (en) * | 2017-08-17 | 2019-02-20 | Yassine Rezgui | Printworks effluent recycling method and unit |
FR3070137A1 (en) * | 2017-08-17 | 2019-02-22 | Yassine Rezgui | PRINTING EFFLUENT RECYCLING METHOD AND UNIT |
Also Published As
Publication number | Publication date |
---|---|
AU2011244513A1 (en) | 2012-12-06 |
ZA201207767B (en) | 2013-06-26 |
IL222483B (en) | 2018-03-29 |
AU2011244513B2 (en) | 2015-03-12 |
IL222483A0 (en) | 2012-12-31 |
CN102985377A (en) | 2013-03-20 |
WO2011131523A1 (en) | 2011-10-27 |
CN102985377B (en) | 2016-01-20 |
FR2958929B1 (en) | 2013-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2897913B1 (en) | Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment | |
FR2927622A1 (en) | METHOD FOR WATER TREATMENT BY A NANOFILTRATION OR REVERSE OSMOSIS MEMBRANE SYSTEM FOR HIGH CONVERSION RATES BY ELIMINATING ORGANIC MATTER. | |
EP2835357B1 (en) | Method for separating a liquid and a suspended material of a sludge and sludge cake | |
EP2897714B1 (en) | Method for the underwater testing of a filtration system | |
EP3040312B1 (en) | Water treatment method comprising a step of adsorption on ion-exchange resin and a step of coagulation/ballasted flocculation and separation, and corresponding installation | |
FR2639934A1 (en) | BIOLOGICAL WATER PURIFIER FOR THE PRODUCTION OF DRINKING WATER AND METHOD OF CONTROLLING THE SAME | |
FR3050200A1 (en) | PROCESS FOR WATER TREATMENT BY ADSORPTION ON ACTIVE CHARCOAL AND CLARIFICATION, AND CORRESPONDING INSTALLATION. | |
FR2954174A1 (en) | PROCESS FOR POTABILIZING AND / OR PURIFYING WATER COMPRISING THE REMOVAL OF A TARGET COMPOUND AND FILTRATION WITHIN A FILTER DRUM | |
FR3015969A1 (en) | METHOD AND APPARATUS FOR TREATING WATER ON NANOFILTRATION OR REVERSE OSMOSIS MEMBRANES TO REDUCE BIOLOGICAL ENCRYPTION THEREOF | |
WO2006030081A1 (en) | Effluent treatment installation and clarification and filtration method using same | |
FR2958929A1 (en) | METHOD OF TREATING WATER FOR ITS DESALINATION INCLUDING HIGH SPEED FILTRATION, AND CORRESPONDING INSTALLATION. | |
WO2010012692A1 (en) | Ultra rapid water treatment process and corresponding installation | |
FR2979549A1 (en) | System, useful for treating reflux of civil and industrial livestock, sludge and sewage, comprises device for separating solid product suspended in liquid into solid and liquid fractions, and filters, where flocculant is mixed with product | |
WO2022218939A1 (en) | Water treatment facility and method | |
JP6530996B2 (en) | Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus | |
WO2022171717A1 (en) | Method for operational control of a water treatment unit and water treatment unit for implementing such a method | |
FR2724849A1 (en) | METHOD AND DEVICE FOR REMOVING COMPOUNDS BY MEMBRANE FILTRATION AND ACTIVATED CARBON | |
WO2020249668A1 (en) | Membrane method for making surface water drinkable without adding any sequestering agent | |
FR2904622A1 (en) | Treating leachate containing mineral pollutant like carbonate and organic pollutant, comprises adding lime to leachate to react with the carbonate and microfiltration of the obtained leachate to obtain a treated filtrate and a concentrate | |
WO2013064667A1 (en) | Water treatment process comprising an adsorption on pac, a non-membrane mechanical filtration and a recirculation of pac | |
WO2018115500A1 (en) | Facility and process for treating water | |
FR3087433A1 (en) | METHOD OF TREATMENT BY ADSORPTION ON ACTIVE CARBON WITHOUT FLOCCULATION STAGE AND WITHOUT COAGULANT INJECTION | |
WO2010149909A1 (en) | Method and plant for treating water with material adjustment during a coagulation-flocculation step | |
WO2019228889A1 (en) | Reactor for decanting and filtering water to be treated, corresponding treatment and washing method, and facility comprising said reactor | |
OA16395A (en) | Process for separating liquid and suspended matter from a sludge and device implementing such a process. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CD | Change of name or company name |
Owner name: VEOLIA WATER SOLUTIONS & TECHNOLOGIES SUPPORT, FR Effective date: 20120507 |
|
CJ | Change in legal form |
Effective date: 20120507 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
ST | Notification of lapse |
Effective date: 20211205 |