FR2957136A1 - Heat producing installation for heating and producing domestic hot water in e.g. home, during winter, has atmospheric sensors connected with heat pump, where atmospheric sensors are made of plastic material - Google Patents
Heat producing installation for heating and producing domestic hot water in e.g. home, during winter, has atmospheric sensors connected with heat pump, where atmospheric sensors are made of plastic material Download PDFInfo
- Publication number
- FR2957136A1 FR2957136A1 FR1000867A FR1000867A FR2957136A1 FR 2957136 A1 FR2957136 A1 FR 2957136A1 FR 1000867 A FR1000867 A FR 1000867A FR 1000867 A FR1000867 A FR 1000867A FR 2957136 A1 FR2957136 A1 FR 2957136A1
- Authority
- FR
- France
- Prior art keywords
- sensors
- sensor
- installation according
- heat pump
- atmospheric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
- F24D11/0221—Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/0015—Domestic hot-water supply systems using solar energy
- F24D17/0021—Domestic hot-water supply systems using solar energy with accumulation of the heated water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
- F24H4/04—Storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/73—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being of plastic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/74—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
- F24S10/742—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/40—Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/60—Solar heat collectors integrated in fixed constructions, e.g. in buildings
- F24S20/62—Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of fences, balustrades or handrails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V50/00—Use of heat from natural sources, e.g. from the sea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
- F24D2200/123—Compression type heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/14—Solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2220/00—Components of central heating installations excluding heat sources
- F24D2220/06—Heat exchangers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
Description
i La présente invention concerne un système de captage de la chaleur atmosphérique couplé ou non à une pompe à chaleur. Le capteur atmosphérique assure le chauffage de la solution antigel y circulant, celle-ci étant en relation avec la source froide d'une pompe à chaleur dont le rôle est d'assurer par sa source chaude le chauffage de l'eau sanitaire ou de la maison. Le capteur atmosphérique sera installé en clôture ou contre le mur de la maison ; son alimentation en fluide pourra également être enterrée et former ainsi un capteur géothermique de type basse énergie. Le capteur atmosphérique permet, grâce à la pompe à chaleur, d'assurer en hiver la captation de la chaleur du soleil, de la pluie, io du vent et de l'air extérieur. On connaît déjà des capteurs aérosolaires, du même inventeur Jacques BERNIER, destinés à servir de source froide de pompes à chaleur. Ces systèmes utilisent la détente directe d'un fluide frigorigène de type hydro fluoro carbure et imposent une liaison frigorifique entre le capteur d'énergie et la pompe à chaleur proprement dite. 15 Ils présentent également l'inconvénient de nécessiter des quantités importantes de fluide frigorigène avec des risques de fuites ce qui a pour effet une augmentation importante de l'effet de serre. On connaît aussi des installations de capteurs atmosphériques, du même inventeur Jacques BERNIER, assurant le rôle de clôture énergétique ; ceux-ci présentent 20 l'inconvénient de nécessiter la présence d'un purgeur d'air en raison de leur alimentation en fluide par le bas et aussi l'inconvénient de vidanger totalement le circuit de liquide antigel en cas de fuite sur l'un des capteurs. On connaît également des systèmes de capteurs solaires vitrés à simple ou double vitrage ou à tubes sous vide. Ces systèmes présentent l'inconvénient de ne pas 25 récupérer d'énergie dès que le climat est froid, car ils sont déperditifs et également en absence de soleil, ils limitent donc leur utilisation aux périodes d'été et de demi saisons. Par ailleurs en période chaude lorsque aucun besoin d'énergie n'est nécessaire, les capteurs solaires traditionnels montent en température, ce qui les met en défaut de surpression et nécessite, de ce fait, une boucle de rejet thermique 30 extérieur. C'est d'une manière générale un but de l'invention de fournir une installation de chauffage par pompe à chaleur et capteurs atmosphériques ne présentant pas les défauts des installations connues. The present invention relates to a system for collecting atmospheric heat coupled or not to a heat pump. The atmospheric sensor ensures the heating of the anti-freeze solution circulating therein, the latter being in relation with the heat pump's cold source whose role is to ensure, by its hot source, the heating of the sanitary water or the House. The atmospheric sensor will be installed in fence or against the wall of the house; its fluid supply can also be buried and thus form a geothermal sensor low energy type. The atmospheric sensor allows, thanks to the heat pump, to ensure in winter the capture of the heat of the sun, the rain, the wind and the outside air. Already known aerosol sensors, the same inventor Jacques BERNIER, intended to serve as a heat pump source of heat. These systems use the direct expansion of a hydro-fluoro carbide refrigerant and impose a refrigerant connection between the energy sensor and the heat pump itself. They also have the disadvantage of requiring large quantities of refrigerant with risks of leakage which has the effect of a significant increase in the greenhouse effect. We also know installations of atmospheric sensors, the same inventor Jacques BERNIER, ensuring the role of energy fence; these have the disadvantage of requiring the presence of an air vent because of their fluid supply from the bottom and also the disadvantage of completely emptying the antifreeze liquid circuit in case of leakage on one sensors. Glazed solar collector systems with single or double glazing or with vacuum tubes are also known. These systems have the disadvantage of not recovering energy as soon as the climate is cold, because they are wasted and also in the absence of sun, so they limit their use to the summer and half seasons. Furthermore, in hot weather when no energy requirement is needed, traditional solar collectors rise in temperature, which puts them in default of overpressure and therefore requires an external heat rejection loop. It is generally an object of the invention to provide a heat pump heating system and atmospheric sensors not having the defects of known installations.
C'est en particulier un but de l'invention de fournir un capteur atmosphérique occultant comportant l'entrée et la sortie de liquide antigel sur le dessus éliminant ainsi les problèmes de purge d'air et ne permettant pas de voir au travers. C'est encore un but de l'invention de fournir une installation de pompe à chaleur entièrement chargée de fluide frigorigène en usine permettant ainsi l'utilisation de fluides hydrocarbures comme le propane ou l'isobutane. C'est toujours un but de l'invention de fournir une installation de capteurs atmosphériques couplés à une pompe à chaleur dont le remplissage en liquide antigel s'effectue tout simplement à l'aide d'un entonnoir. io L'invention sera bien comprise par la description qui suit faite à titre d'exemple et en référence aux dessins annexés dans lesquels : • La figure 1 est un schéma d'une installation selon l'invention, • La figure 2 représente la vue en coupe d'un élément de capteur atmosphérique, • La figure 3 représente la vue en plan d'un élément de capteur atmosphérique, 15 • La figure 4 représente le principe de remplissage en antigel du circuit, La figure 5 montre le principe d'assemblage d'une installation horizontale de capteurs atmosphériques en clôture énergétique, • La figure 6 montre le principe d'assemblage vertical de plusieurs éléments de clôture, 20 • La figure 7 est une vue de dessus d'une bande de panneaux de clôture, • La figure 8 représente le principe de fixation murale d'un élément de capteur atmosphérique, • La figure 9 représente une patte universelle de fixation du capteur en mural. Une installation de pompe à chaleur à capteur atmosphérique selon l'invention figure 25 1 comporte un ou plusieurs capteurs solaires (C), installés verticalement et réalisés de préférence en polyéthylène. Les capteurs ne comportent pas de raccordement en point bas afin d'éviter la perte d'antigel en cas de fuite. Ils comportent en partie haute une entrée (27) et une sortie (28) cannelées permettant l'alimentation en liquide antigel du capteur atmosphérique par deux tuyauteries (24) et (25) installées de 30 préférence en tranchée et pouvant avoir une longueur jusqu'à 50 mètres et plus afin de jouer le rôle de capteur géothermique associé. Les deux tuyauteries en polyéthylène sont reliées à la pompe à chaleur par deux raccords à compression (23, 26). L'évaporateur (17) prélève de la chaleur au liquide arrivant par la tuyauterie (29) et le ressort refroidi par la tuyauterie (21) avant de le renvoyer dans le capteur par l'intermédiaire de la pompe (22) où il se réchauffera. L'expansion du liquide de refroidissement, qui sera de préférence du propylène glycol à 33%, est assuré tout simplement par le capteur (C). La pompe à chaleur est placée à l'intérieur du volume (V) d'une carrosserie (20) étanche, de telle manière qu'une perte accidentelle de s fluide frigorigène serait évacuée à l'extérieur du local où est placée la pompe à chaleur, par l'intermédiaire d'une tuyauterie (non représentée). La pompe à chaleur pourra assurer le chauffage de l'eau sanitaire d'un ballon (10) par le condenseur (15). Le compresseur (13) placé sur une chaise (12) fixé sur la bride (11) assure la circulation du fluide frigorigène, (avantageusement un hydrocarbure propane ou io isobutane par exemple), entre le condenseur (15) et l'évaporateur (17). Une sonde de température (19) commande la mise en service et l'arrêt du compresseur (13). Les capteurs (C) fonctionnent grâce à la convection naturelle de l'air extérieur et du vent, si ils sont à température inférieure à celle de l'air, ils récupéreront de la chaleur dans l'air qui arrivera en partie haute et sortira naturellement en partie basse. Si le is soleil est présent, son rayonnement sera capté par le capteur atmosphérique (C). Un capteur atmosphérique selon l'invention figures 2 et 3, comporte une entrée cannelée (37) reliée au collecteur creux d'entrée (32) qui va répartir le liquide antigel dans les différentes lattes horizontales creuses (311, 312, 313----31 n_1, 31 n). Un collecteur creux de sortie (33) recueille le liquide antigel provenant des lattes (311, 20 312, 313----31ä_I, 31n) et le fait sortir du capteur (C) par la sortie cannelée (34).Les lattes (31) sont inclinées dans un sens afin de mieux capter le rayonnement solaire. Pour la rigidité, elles sont reliées entre elles par des recollements (351, 352, 353----35ä _1). Le capteur atmosphérique (C) sera réalisé de préférence en polyéthylène haute densité par extrusion soufflage (ou autre), en un seul morceau et sera de 25 couleur sombre (noire, verte ou marron par exemple) afin de mieux capter le rayonnement solaire. Les lattes (31) et les recollements (35) rendent le capteur (C) entièrement occulte. Les collecteurs (32, 33) comportent un arrondi (39, 38) en partie basse afin de permettre la superposition verticale et le raccordement des entrées et sortie (37, 34) des capteurs situés en dessous. 30 La figure 4 représente le dispositif de remplissage en antigel du circuit par gravité. Une vanne (30) installée à l'entrée de l'évaporateur (17) sera ouverte en phase remplissage, on y raccorde une tuyauterie (40) équipée d'un entonnoir (41) qui devra être situé à la partie la plus haute de l'ensemble du circuit. Le liquide antigel (42) (du propylène glycol de préférence et dosé à 33%) sera versé dans le circuit par l'entonnoir (41). Si le positionnement vertical (H2) de l'entonnoir (41) est plus bas que le positionnement (H1) de la sortie capteur (28), le remplissage en antigel pourra être effectué par l'entrée ou la sortie (27, 28) du capteur (C) ; on pourra à la place mettre en service la pompe (21) pour aider au remplissage en antigel du capteur (C). It is particularly an object of the invention to provide an occulting atmospheric sensor having the inlet and the outlet of antifreeze liquid on the top thus eliminating the problems of purging air and not allowing to see through. It is another object of the invention to provide a heat pump installation fully charged with refrigerant in the factory thus allowing the use of hydrocarbon fluids such as propane or isobutane. It is always an object of the invention to provide an installation of atmospheric sensors coupled to a heat pump whose filling antifreeze liquid is simply done using a funnel. The invention will be better understood from the following description given by way of example and with reference to the appended drawings, in which: FIG. 1 is a diagram of an installation according to the invention, FIG. In sectional view of an atmospheric sensor element, FIG. 3 shows the plan view of an atmospheric sensor element. FIG. 4 shows the principle of antifreeze filling of the circuit. FIG. assembly of a horizontal installation of atmospheric sensors in energy fence, • Figure 6 shows the principle of vertical assembly of several fence elements, 20 • Figure 7 is a top view of a band of fence panels, • FIG. 8 represents the principle of wall mounting of an atmospheric sensor element; FIG. 9 represents a universal bracket for fixing the sensor in a wall. An atmospheric sensor heat pump installation according to the invention FIG. 1 comprises one or more solar collectors (C) installed vertically and preferably made of polyethylene. The sensors do not have a low point connection to prevent loss of antifreeze in the event of a leak. They comprise at the top a grooved inlet (27) and outlet (28) for supplying antifreeze liquid from the atmospheric sensor via two pipes (24) and (25) preferably installed in trench and having a length up to 50 meters or more in order to act as an associated geothermal sensor. The two polyethylene pipes are connected to the heat pump by two compression fittings (23, 26). The evaporator (17) takes heat from the liquid coming from the piping (29) and the spring cooled by the pipe (21) before returning it to the sensor via the pump (22) where it will heat up . Expansion of the coolant, which will preferably be 33% propylene glycol, is simply provided by the sensor (C). The heat pump is placed inside the volume (V) of a sealed body (20) in such a way that an accidental loss of refrigerant would be evacuated outside the room where the pump is placed. heat, via piping (not shown). The heat pump can ensure the heating of the sanitary water of a balloon (10) by the condenser (15). The compressor (13) placed on a chair (12) fixed on the flange (11) ensures the circulation of the refrigerant, (advantageously a propane or isobutane hydrocarbon for example), between the condenser (15) and the evaporator (17). ). A temperature sensor (19) controls the commissioning and stopping of the compressor (13). The sensors (C) work thanks to the natural convection of the outside air and the wind, if they are at temperature lower than that of the air, they will recover heat in the air which will arrive at the high part and will leave naturally in the lower part. If the sun is present, its radiation will be captured by the atmospheric sensor (C). An atmospheric sensor according to the invention FIGS. 2 and 3 comprises a corrugated inlet (37) connected to the hollow inlet manifold (32) which will distribute the antifreeze liquid in the different hollow horizontal slats (311, 312, 313 --- -31 n_1, 31 n). A hollow outlet manifold (33) collects antifreeze liquid from the slats (311, 312, 313, 3131, 31n) and discharges it from the sensor (C) through the corrugated outlet (34). 31) are inclined in one direction to better capture solar radiation. For rigidity, they are connected to each other by gluing (351, 352, 353 ~ 351). The atmospheric sensor (C) will preferably be made of high-density polyethylene by extrusion blow molding (or other), in one piece and will be of a dark color (black, green or brown, for example) in order to better capture the solar radiation. The slats (31) and the glueings (35) make the sensor (C) completely hidden. The manifolds (32, 33) have a rounded portion (39, 38) at the bottom to allow vertical superposition and connection of the inputs and outputs (37, 34) of the sensors below. Figure 4 shows the anti-freeze filling device of the gravity circuit. A valve (30) installed at the inlet of the evaporator (17) will be open in the filling phase, there is connected a pipe (40) equipped with a funnel (41) to be located at the highest part of the whole circuit. The antifreeze liquid (42) (propylene glycol preferably and dosed at 33%) will be poured into the circuit by the funnel (41). If the vertical positioning (H2) of the funnel (41) is lower than the positioning (H1) of the sensor output (28), the antifreeze filling can be carried out via the inlet or the outlet (27, 28) the sensor (C); instead, the pump (21) can be put into operation to assist in antifreeze filling of the sensor (C).
La purge d'air s'effectue naturellement par la vanne (30) pendant les opérations de remplissage. La figure 5 montre le principe d'assemblage d'une installation horizontale de capteurs atmosphériques en clôture énergétique. Le premier capteur (Cl) est alimenté en (EA) en liquide antigel ; la sortie du capteur (Cl) est raccordée à l'entrée io du capteur (C2) par l'intermédiaire d'une durite souple (50), en caoutchouc par exemple afin d'absorber la dilatation des capteurs. De même, la sortie du capteur (C2) est raccordée à l'entrée du capteur (C3) par l'intermédiaire d'une durite souple (51) et ainsi de suite jusqu'au dernier capteur (Cn) d'où sort en (SA). Au moment du remplissage en antigel et après mise en service de la pompe de circulation (22), l'air 15 contenu dans le capteur (Cl) sera évacué vers le capteur (C2) et ainsi de suite sans nécessiter la présence d'un purgeur. Les capteurs seront espacés entre eux de quelques centimètres afin de compenser la dilatation des panneaux entre été et hiver. Les durites (50, 51) de la forme d'un demi tore creux sont fixées sur les sorties et entrées cannelées des capteurs au moyen de colliers en acier (non représentés).The air purge is naturally done by the valve (30) during the filling operations. Figure 5 shows the assembly principle of a horizontal installation of atmospheric sensors in energy fence. The first sensor (C1) is supplied with (EA) antifreeze liquid; the output of the sensor (C1) is connected to the input of the sensor (C2) via a flexible hose (50), made of rubber for example to absorb the expansion of the sensors. Similarly, the output of the sensor (C2) is connected to the sensor input (C3) via a flexible hose (51) and so on until the last sensor (Cn) from which comes out (HER). At the time of antifreeze filling and after commissioning of the circulation pump (22), the air contained in the sensor (C1) will be discharged to the sensor (C2) and so on without requiring the presence of a trap. The sensors will be spaced a few centimeters apart to compensate for the expansion of the panels between summer and winter. The hoses (50, 51) of the form of a hollow half-torus are fixed on the outputs and corrugated inputs of the sensors by means of steel collars (not shown).
20 La figure 6 montre le principe d'assemblage de plusieurs éléments de clôture horizontalement et verticalement. On voit là tout l'intérêt des arrondis (38,39) (voir figure 3) qui permettent de disposer un capteur (C2) sur un capteur (Cl) et un capteur (C4) sur un capteur (C3) tout en laissant un espace permettant le raccordement des durites (52, 54) sur leurs capteurs correspondants. Les tuyauteries 25 (56, 57) correspondant à l'entrée de chaque bande horizontale de capteurs peuvent être raccordées en parallèle ou en série. La figure 7 est une vue de dessus d'une bande horizontale de panneaux de clôture. Les capteurs (Cl, C2, C3 --- Cn-1) sont placés entre plusieurs poteaux de clôture (P1, P2, P3 --- Pn) fixés dans le sol. Les poteaux ont une forme de H afin de 30 permettre d'y glisser entre eux les capteurs. Le premier et le dernier poteau (P1 et Pn) permettent de loger les tubes (60, 61) d'arrivée et de sortie du liquide dans les capteurs. Des embouts (63, 64) seront fixés sur les poteaux respectifs (P1, Pn) afin de dissimuler les tubes (60, 61). Les durites d'alimentation et de raccordement entre capteurs ne sont pas représentés sur la figure 7 mais sont similaires à celles représentées sur les figures 5 et 6. La figure 8 représente le principe de fixation murale d'un élément de capteur atmosphérique. Le panneau est espacé du mur d'environ 10 cm afin de laisser la s circulation d'air par convection naturelle sur la partie arrière du capteur (C). Des pattes de fixation (70, 71) sont placées de chaque côté, à gauche et à droite du capteur et sont fixées au mur (72) par l'intermédiaire de vis (74). Les deux pattes (71) du bas supportent le poids du capteur et les deux pattes (70) du haut empêchent le mouvement latéral du panneau tant à gauche qu'à droite. Le capteur io (C) reste libre de ses mouvements de dilatation et peut être glissé entre ses quatre pattes après fixation au mur de celles-ci. Le bas du capteur sera placé à une hauteur minimum de 20 cm du sol (T), voire plus pour les régions enneigées. La figure 9 représente une patte universelle de fixation murale du capteur. L'espace entre les plaques (80, 81) correspond à l'épaisseur du capteur atmosphérique (de 5 15 à 8 cm). L'espacement entre les plaques (81, 82) correspond à la distance entre l'arrière du capteur et le mur, soit 10 à 15 cm. Un ou deux trous (84, 85) permettront le passage de la ou les vis de fixation au mur. Les plaques (80, 81, 82, 83) sont réalisées en acier peint ou en acier inoxydable et sont toutes fixées ensemble par pliage et ou soudage.Figure 6 shows the principle of assembling several fence elements horizontally and vertically. We see here all the interest of the roundings (38,39) (see Figure 3) which make it possible to dispose a sensor (C2) on a sensor (Cl) and a sensor (C4) on a sensor (C3) while leaving a space for connecting the hoses (52, 54) to their corresponding sensors. The pipes 25 (56, 57) corresponding to the inlet of each horizontal strip of sensors may be connected in parallel or in series. Figure 7 is a top view of a horizontal strip of fence panels. The sensors (C1, C2, C3 --- Cn-1) are placed between several fence posts (P1, P2, P3 --- Pn) fixed in the ground. The posts are H-shaped to allow the sensors to slide between them. The first and the last pole (P1 and Pn) make it possible to house the liquid inlet and outlet tubes (60, 61) in the sensors. End caps (63, 64) will be attached to the respective posts (P1, Pn) to conceal the tubes (60, 61). The supply and connection hoses between sensors are not shown in FIG. 7 but are similar to those shown in FIGS. 5 and 6. FIG. 8 represents the principle of wall mounting of an atmospheric sensor element. The panel is spaced approximately 10 cm from the wall to allow for natural convection airflow over the back of the sensor (C). Fastening tabs (70, 71) are placed on each side to the left and right of the sensor and are fixed to the wall (72) by means of screws (74). The two tabs (71) at the bottom support the weight of the sensor and the two tabs (70) at the top prevent lateral movement of the panel to the left and right. The sensor (C) remains free of its expansion movements and can be slid between its four legs after fixing to the wall thereof. The bottom of the sensor will be placed at a minimum height of 20 cm from the ground (T), or more for snow-covered areas. Figure 9 shows a universal bracket for wall mounting of the sensor. The space between the plates (80, 81) corresponds to the thickness of the atmospheric sensor (5 to 8 cm). The spacing between the plates (81, 82) corresponds to the distance between the back of the sensor and the wall, ie 10 to 15 cm. One or two holes (84, 85) will allow the passage of the mounting screw or screws to the wall. The plates (80, 81, 82, 83) are made of painted steel or stainless steel and are all fastened together by folding and / or welding.
20 La description faite ci avant définit le principe de fonctionnement du système ; des variantes de l'invention sont possibles en utilisant par exemple plusieurs tuyauteries de captage enterré et ou plusieurs clôtures énergétiques indépendantes. Une application particulièrement intéressante de l'invention est son utilisation dans les pompes à chaleur de type eau/eau ou eau glycolée/eau destinées à l'habitat 25 individuel afin d'assurer le chauffage et ou la production d'eau chaude sanitaire. L'installation trouvera une excellente application pour les systèmes de plancher chauffants solaires directs. Une autre application intéressante est l'utilisation des capteurs atmosphériques clôture pour assurer en été la recharge thermique des capteurs enterrés verticaux 30 notamment. D'une manière générale et non limitative, l'invention s'applique dans tous systèmes nécessitant l'utilisation de la chaleur solaire en hiver. L'invention peut également être utilisée dans des systèmes de chauffage industriel, agricole ou tertiaire. The description given above defines the operating principle of the system; variants of the invention are possible using, for example, several buried collection pipes and / or several independent energy fences. A particularly interesting application of the invention is its use in water / water or brine / water type heat pumps for the individual habitat to provide heating and or hot water production. The installation will find an excellent application for direct solar heating floor systems. Another interesting application is the use of atmospheric fence sensors to ensure in summer the thermal recharge of the vertical buried sensors 30 in particular. In general and not limitation, the invention is applicable in all systems requiring the use of solar heat in winter. The invention can also be used in industrial, agricultural or tertiary heating systems.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1000867A FR2957136B1 (en) | 2010-03-03 | 2010-03-03 | ATMOSPHERIC SENSOR SYSTEM WITHOUT GLAZING AND HEAT PUMP |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1000867A FR2957136B1 (en) | 2010-03-03 | 2010-03-03 | ATMOSPHERIC SENSOR SYSTEM WITHOUT GLAZING AND HEAT PUMP |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2957136A1 true FR2957136A1 (en) | 2011-09-09 |
FR2957136B1 FR2957136B1 (en) | 2015-11-20 |
Family
ID=42735292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1000867A Expired - Fee Related FR2957136B1 (en) | 2010-03-03 | 2010-03-03 | ATMOSPHERIC SENSOR SYSTEM WITHOUT GLAZING AND HEAT PUMP |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2957136B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3270066A1 (en) * | 2016-07-12 | 2018-01-17 | Viessmann Werke GmbH & Co. KG | Method for operating an energy supply system comprising a latent heat accumulator, energy supply system for carrying out the method, and collector field for an energy supply system |
CN108151336A (en) * | 2017-12-31 | 2018-06-12 | 佛山市南海区会斌金属贸易有限公司 | A kind of energy-saving and emission-reducing heat-exchange apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2439369A1 (en) * | 1978-10-19 | 1980-05-16 | Bernier Jacques | A light, hollow inflatable flexible base for a solar energy trap - for simplicity of movement and support to provide background insulation |
DE3013986A1 (en) * | 1980-04-11 | 1981-10-15 | Gerbert, Heinz, Dipl.-Ing., 7951 Erlenmoos | Air and solar heat collector tubular frame - has channels holding circulating tubes, used as garden fence or wall cladding structure |
JP2001330327A (en) * | 2000-05-19 | 2001-11-30 | Sueaki Watanabe | building. Vertical embedded solar collector for condominiums |
EP1837443A1 (en) * | 2006-03-20 | 2007-09-26 | Rainer Sedelmayer | Device for the arrangement of photovoltaic cells on a wall, in particular on an antinoise wall. |
EP1980705A1 (en) * | 2007-04-11 | 2008-10-15 | Oranjedak B.V. | Building comprising a heat exchanger and a sunblind |
US20080251066A1 (en) * | 2005-10-12 | 2008-10-16 | Ferdinando Tessarolo | Solar Radiator |
FR2917158A1 (en) * | 2007-06-06 | 2008-12-12 | Airpac Sarl | Heat pump e.g. water/water type pump, installation for direct solar heating flooring system, has atmospheric sensors installed in barrier, where antigel liquid circulates in sensors and space arranged between channels to pass air outside |
-
2010
- 2010-03-03 FR FR1000867A patent/FR2957136B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2439369A1 (en) * | 1978-10-19 | 1980-05-16 | Bernier Jacques | A light, hollow inflatable flexible base for a solar energy trap - for simplicity of movement and support to provide background insulation |
DE3013986A1 (en) * | 1980-04-11 | 1981-10-15 | Gerbert, Heinz, Dipl.-Ing., 7951 Erlenmoos | Air and solar heat collector tubular frame - has channels holding circulating tubes, used as garden fence or wall cladding structure |
JP2001330327A (en) * | 2000-05-19 | 2001-11-30 | Sueaki Watanabe | building. Vertical embedded solar collector for condominiums |
US20080251066A1 (en) * | 2005-10-12 | 2008-10-16 | Ferdinando Tessarolo | Solar Radiator |
EP1837443A1 (en) * | 2006-03-20 | 2007-09-26 | Rainer Sedelmayer | Device for the arrangement of photovoltaic cells on a wall, in particular on an antinoise wall. |
EP1980705A1 (en) * | 2007-04-11 | 2008-10-15 | Oranjedak B.V. | Building comprising a heat exchanger and a sunblind |
FR2917158A1 (en) * | 2007-06-06 | 2008-12-12 | Airpac Sarl | Heat pump e.g. water/water type pump, installation for direct solar heating flooring system, has atmospheric sensors installed in barrier, where antigel liquid circulates in sensors and space arranged between channels to pass air outside |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3270066A1 (en) * | 2016-07-12 | 2018-01-17 | Viessmann Werke GmbH & Co. KG | Method for operating an energy supply system comprising a latent heat accumulator, energy supply system for carrying out the method, and collector field for an energy supply system |
CN108151336A (en) * | 2017-12-31 | 2018-06-12 | 佛山市南海区会斌金属贸易有限公司 | A kind of energy-saving and emission-reducing heat-exchange apparatus |
Also Published As
Publication number | Publication date |
---|---|
FR2957136B1 (en) | 2015-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202232330U (en) | Heat storage type solar greenhouse | |
CN201163911Y (en) | Solar Thermal Storage Greenhouse | |
US9509249B2 (en) | System and method of cooling of photovoltaic panel and method of installation of system | |
CN104838924A (en) | Solar energy air heat collecting and storing circulating systems of greenhouse | |
US20140283815A1 (en) | Solar collector | |
WO2012168627A2 (en) | Attachment and sealing system for creating a solar roof, and solar roof obtained | |
FR2917158A1 (en) | Heat pump e.g. water/water type pump, installation for direct solar heating flooring system, has atmospheric sensors installed in barrier, where antigel liquid circulates in sensors and space arranged between channels to pass air outside | |
FR2957136A1 (en) | Heat producing installation for heating and producing domestic hot water in e.g. home, during winter, has atmospheric sensors connected with heat pump, where atmospheric sensors are made of plastic material | |
FR2999830B1 (en) | ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT | |
FR3053568A1 (en) | WATERTIGHT VEGETABLE FACADE AND ROOF INSTALLATION SYSTEM COMPATIBLE WITH INSTALLATION OF PHOTOVOLTAIC MODULES | |
EP3737221A2 (en) | Water-tight system for installing green facades and roofs, compatible with the installation of solar panels | |
CN105265239A (en) | Solar heat reservoir for further increasing underground and ground temperature of plastic greenhouse to improve crop yield | |
EP3561402B1 (en) | Method and device for thermal control of a building | |
CN205546718U (en) | Greenhouse system | |
FR2896858A1 (en) | Heat plant for providing domestic hot water, has heat pump stopping circulation of liquid when solar radiation is sufficient and permitting circulation of liquid when solar radiation is insufficient | |
CN204146106U (en) | The solar greenhouse wall body that a kind of function is separated | |
KR101505564B1 (en) | Cover Block for Insulating Plastic House | |
FR2974375A1 (en) | SYSTEM FOR RECOVERING SOLAR INPUTS ON A TRADITIONAL ROOFING ROOF | |
US20120000458A1 (en) | Tankless Solar Water Heater | |
FR2896857A1 (en) | Heat plant for e.g. direct solar heating system of floor, has circulator setting solar collector with respect to medium to be heated, where circulation of liquid is carried out by intermediate of heat pump when radiation is insufficient | |
FR2912444A1 (en) | SOLAR THERMAL SENSOR DEVICE INTEGRATED WITH ROOFS AND TERRACES | |
EP2320155A1 (en) | Energy absorbing pitchroof | |
FR2476805A1 (en) | Solar and off-peak electricity storage heating system - uses heat storing mass in which depression can be made to draw in air from heat collecting panels for later distribution | |
JP2010190498A (en) | Plastic film sheet-shaped solar heat collecting system | |
FR2510732A1 (en) | Solar heat store and converter utilising greenhouse - uses collector at top of greenhouse and fan to direct hot air into adjacent soil for later recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TP | Transmission of property |
Owner name: BERNIER DEVELOPPEMENT, FR Effective date: 20120730 |
|
CL | Concession to grant licences |
Name of requester: BERNIER ENERGIES, FR Effective date: 20120912 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
CL | Concession to grant licences |
Name of requester: BERNIER ENERGIES, FR Effective date: 20190920 Name of requester: BERNIER ENERGIE, FR Effective date: 20190920 |
|
ST | Notification of lapse |
Effective date: 20201110 |