PROCEDE D'HYDROXYLATION DE COMPOSES PHENOLIQUES
La présente invention a pour objet un procédé d'hydroxylation de composés phénoliques et plus particulièrement un procédé d'hydroxylation de phénols et d'éthers de phénol, par le peroxyde d'hydrogène.
A l'heure actuelle, on est à la recherche d'un procédé d'hydroxylation du phénol en hydroquinone et pyrocatéchine faisant appel à une catalyse hétérogène.
En effet, l'un des grands procédés industriels d'hydroxylation du phénol décrit dans FR-A 2 071 464 met en u̇vre une catalyse homogène acide à savoir un acide fort, acide sulfurique ou acide perchlorique.
L'hydroxylation du phénol effectuée dans les conditions décrites conduit à un mélange d'hydroquinone et de pyrocatéchine, avec prédominance de celle-ci puisque le rapport hydroquinone/pyrocatéchine varie le plus souvent entre 0,3 et 0,7.
Bien que ce procédé soit très intéressant, il présente l'inconvénient de faire appel à une catalyse homogène. Il s'en suit un problème pour se débarrasser du catalyseur acide en fin de réaction ce qui implique des traitements additionnels de lavages et distillation.
En ce qui concerne l'hydroxylation faisant appel à un catalyseur acide hétérogène, on a proposé selon FR-A d'effectuer la réaction en présence d'un d'une quantité efficace d'un catalyseur minéral solide à propriétés acides tels que silice-alumine, silice-Ga203, silice-B203 ; argiles acides ou pontées ; zéolithes naturelles ou synthétiques ; phosphates, phosphates ou phosphonates lamellaires ; oxydes rendus acides par un traitement, de préférence les oxydes sulfatés de titane, de zirconium ou de fer.
Toutefois, les meilleurs rendements en diphénols obtenus avec une zéolithe Y sont de l'ordre de 72 % pour une température de réaction de 75[deg]C, ce qui est incompatible avec une exploitation industrielle.
Le procédé décrit dans US-A 6 441 250 requiert également la présence d'un catalyseur hétérogène à savoir une zéolithe beta . Bien que les rendements soient élevés de l'ordre de 90 %, l'inconvénient de ce procédé est de l'ordre économique car la zéolithe beta est un catalyseur onéreux.
L'objectif de la présente invention est fournir un procédé permettant de remédier aux inconvénients précités.
Plus précisément, l'objet de la présente invention est un procédé d'hydroxylation d'un composé phénolique par le peroxyde d'hydrogène en présence d'un catalyseur solide, ledit procédé étant caractérisé par le fait que la réaction est conduite en présence d'un composé cétonique et d'une quantité efficace d'une zéolithe MCM-22.
Il a maintenant été trouvé que la présence d'un composé cétonique associé à un catalyseur zéolithique permettait d'obtenir des rendements réactionnels intéressants.
La zéolithe intervenant dans la procédé de l'invention est une zéolithe MCM-22 possédant une structure du type MWW.
Cette structure est caractérisée par 2 types de canaux indépendants multidimensionnels (ref. Science , 264, 1910-1913, (1994) : Leonowics, M.E., Lawton, J.A., Lawton, S.L. and Rubin, M.K.).
La zéolithe MCM-22 peut être synthétisée selon les procédés décrits dans l'état de la technique et plus particulièrement selon le mode opératoire décrit dans le périodique Zeolites, 15, 2, (1995) : A. Corma, C. Corell, J. PérezPariente.
La forme préférée de la zéolithe MCM-22 est sous la forme H-MCM-22 Une première caractéristique du procédé de l'invention réside dans le choix du catalyseur qui est un solide microporeux ayant les caractéristiques précisées ci-après.
Il s'agit d'un solide minéral qui possède des propriétés acides.
Le rapport molaire Si/AI est compris entre entre 5 et 1000, de préférence, compris entre 5 et 100 et encore plus préférentiellement entre 5 et 50.
Pour ce qui est des caractéristiques physico-chimiques, il présente avantageusement une surface spécifique BET comprise entre 400 et 800 m /g, de préférence comprise entre 500 et 800 m /g.
Pour la détermination de la surface spécifique on peut utiliser la méthode BRUNEAU-EMMETT-TELLER décrite dans le périodique The Journal of American Society 60,309 (1938) .
Il possède un volume poreux variant entre 0,11 et 0,16 cm /g, de préférence compris entre 0,12 et 0,16 cm /g.
Pour la détermination du volume poreux, il peut se faire selon la méthode du porosimètre à mercure (par exemple en suivant la norme ASTM-D 4284-83).
La zéolithe mise en u̇vre dans le procédé de l'invention peut être sous forme d'une poudre ou bien mis en forme, extrudés, billes, pastilles ou granulés.
Il existe des formes commerciales de zéolithe MCM-22 sous forme de poudre ou d'extrudés.
Généralement, les extrudés ont un diamètre de 2 à 6, de préférence, de 3 à 5 mm et une longueur de 2 à 100 mm, de préférence, de 5 à 50 mm.
Une autre caractéristique du procédé de l'invention est de mettre en oeuvre un composé cétonique et plus particulièrement ceux répondant à la formule (II) :
dans ladite formule (II) : - Ra et Rb, identiques ou différents, représentent des groupes hydrocarbonés ayant de 1 à 30 atomes de carbone ou forment ensemble un groupe divalent, éventuellement substitués par un ou plusieurs atomes d'halogène ou groupes fonctionnels stables dans les conditions de la réaction, - X représente un lien valentiel, un groupe -CO-, un groupe -CHOH ou un groupe -(R)n- dans lequel R représente un groupe alkylène ayant de préférence de 1 à 4 atomes de carbone et n est un nombre entier choisi entre 1 et 16.
Dans la formule (II), Ra et Rb représentent plus particulièrement : - des groupes alkyle linéaires ou ramifiés, - des groupes alcényle linéaires ou ramifiés, - des groupes cycloalkyle ou cycloalcényle comportant de 4 à 6 atomes de carbone, - des groupes aryle mono- ou polycycliques ; dans ce dernier cas, les cycles formant entre eux un système ortho- ou ortho- et péricondensé ou étant liés entre eux par un lien valentiel, - des groupes arylalkyle ou arylalcényle, - Ra et Rb peuvent former ensemble un groupe alkylène ou alcénylène comportant de 3 à 5 atomes de carbone, éventuellement substitué par un groupe alkyle à faible condensation en carbone ou par un groupe cycloalkyle ou cycloalcényle ayant 4 à 6 atomes de carbone ;2 à 4 des atomes de carbone des groupes alkylène ou alcénylène pouvant faire partie d'un ou deux cycles benzéniques éventuellement substitués par 1 à 4 groupes hydroxyle et/ou alkyle et/ou alkoxy à faible condensation en carbone.
Dans l'exposé qui suit de l'invention, on entend par groupe alkyle de faible condensation en carbone, un groupe alkyle linéaire ou ramifié ayant généralement de 1 à 4 atomes de carbone.
Les groupes hydrocarbonés précités peuvent être substitués par 1 ou plusieurs, de préférence, 1 à 4, groupes alkyle de faible condensation en carbone ou groupes fonctionnels tels que les groupes hydroxyle, alkoxy à faible condensation en carbone, hydroxycarbonyle, alkyloxycarbonyle comportant de 1 à 4 atomes de carbone dans le groupe alkyle, un groupe nitrile, -S03H, nitro ou par un ou plusieurs atomes d'halogènes, et notamment de chlore et de brome.
De préférence, Ra et Rb représentent plus particulièrement : - des groupes alkyle linéaires ou ramifiés ayant de 1 à 10 atomes de carbone, - des groupes alcényle linéaires ou ramifiés ayant de 2 à 10 atomes de carbone, - des groupes cycloalkyle ou cycloalcényle comportant de 4 à 6 atomes de carbone, - des groupes phényle éventuellement substitués par 1 à 4 groupes alkyle et/ou hydroxyle et/ou alkoxy, - des groupes phénylalkyle ou phénylacényle comportant 1 (ou 2) à 10 atomes de carbone dans la partie aliphatique, et plus particulièrement encore de 1 (ou 2) à 5 atomes de carbone dans la partie aliphatique, - Ra et Rb peuvent former ensemble un groupe alkylène ou alcénylène comportant de 3 à 5 atomes de carbone, éventuellement substitué par 1 à 4 groupes alkyle à faible condensation en carbone.
Comme exemples spécifiques de cétones qui peuvent être utilisées dans le procédé de l'invention, on peut citer, plus particulièrement :
- l'acétone, - la 2-butanone - la méthylisopropylcétone - la pivalone - la 2-pentanone - la 3-pentanone - la 4-méthyl-2-pentanone - la 3,3-diméthyl-2-butanone - la 2-hexanone - la 3-hexanone - la 2-heptanone - la 4-heptanone - la 2-octanone - la 3-octanone - la 2-nonanone - la 5-nonanone - la 8-pentadécanone - la 2-méthyl-3-hexanone - la 5-méthyl-2-hexanone - la 5-méthyl-3-hexanone - la 2,4-diméthyl-3-pentanone - la 5-méthyl-3-heptanone - la méthylvinylcétone - l'oxyde de mésityle - la 1 -pentène-3-one - la 3-pentène-2-one - la 5-hexène-2-one - la 5-méthyl-3-hexène-2-one - la 6-méthyl-5-heptène-2-one - le diacétyle - le diacétone-alcool - l'acétoïne - la 2,3-butanedione - la 2,4-pentanedione - la 2,5-hexanedione - la dicyclohexylcétone - la méthylcyclohexylcétone - l'acétophénone - la n-propiophénone - la n-butyrophénone - l'isobutyrophénone - la n-valérophénone - la 2-méthylacétophénone - la 2,4-diméthylacétophénone - la phénylvinylcétone - la benzophénone - la 2-méthylbenzophénone - la 2,4-diméthylbenzophénone - la 4,4'-diméthylbenzophénone - la 2,2'-diméthylbenzophénone - la 4,4'-diméthoxybenzophénone - la 4-hydroxybenzophénone - la 4,4'-dihydroxybenzophénone - le 4-benzoylbiphényle - la benzoïne - la 4,4'-dihydroxybenzoïne - la 2,4-diméthylbenzoïne - la 4,4'-diméthylbenzoïne - la diméthoxy-4,4' benzoïne - la 4,4'-difluorobenzoïne - l'a-méthoxybenzoïne - l'a-éthoxybenzoïne - la déoxybenzoïne - la 4-hydroxydéoxybenzoïne - la 4-méthyldéoxybenzoïne - la 4-méthoxydéoxybenzoïne - la 4,4'-diméthoxydéoxybenzoïne - la 4,4'-difluorodéoxybenzoïne - la -phénylpropiophénone - la dibenzylcétone - la 8-phénylvalérophénone - la 1,1-diphénylpropan-2-one - la 1,3-diphénylpropan-1-one - la benzalacétone - la benzalacétophénone - le benzile - la cyclopentanone - la 2-méthylcyclopentanone - la cyclohexanone - la 2-méthylcyclohexanone - la 3,3,5,5-tétraméthylcyclohexanone - la cyclopent-2-én-1-one - la cyclohex-2-én-1-one - l'a-isophorone - la -isophorone - la cyclohexènyl-cyclohexanone - l'cc-indanone - la -indanone - l'a-tétralone - la fluorénone Ainsi, on fait appel, tout particulièrement, aux composés cétoniques de type dialkylcétones répondant à la formule (II) dans laquelle Ra et Rb représentent un groupe alkyle linéaire ou ramifié ayant de 1 à 8 atomes de carbone.
Comme exemples plus spécifiques de dialkylcétones, on peut mentionner la 4-méthyl-2-pentanone, la 5-méthyl-2-pentanone, la 2-pentanone et la 3pentanone.
Une variante préférée du procédé de l'invention consiste à ajouter un agent complexant des ions métalliques présents dans le milieu car ceux-ci sont préjudiciables au bon déroulement du procédé de l'invention, notamment dans le cas des phénols où les rendements en produits d'hydroxylation sont faibles. Par conséquent, il est préférable d'inhiber l'action des ions métalliques.
Les ions métalliques néfastes au déroulement de l'hydroxylation sont des ions de métaux de transition et plus particulièrement, les ions fer, cuivre, chrome, cobalt, manganèse et vanadium.
Les ions métalliques sont apportés par les réactifs et notamment les composés aromatiques et l'appareillage utilisé. Pour inhiber l'action de ces ions métalliques, il suffit de conduire la réaction en présence d'un ou plusieurs agents complexants stables vis-à-vis du peroxyde d'hydrogène et donnant des complexes ne pouvant être décomposés par les acides forts présents et dans lesquels le métal ne peut plus exercer d'activité chimique.
A titre d'exemples non limitatifs d'agents complexants, on peut faire appel, notamment, aux divers acides phosphoriques tels que, par exemple, l'acide orthophosphorique, l'acide métaphosphorique, l'acide pyrophosphorique, les acides polyphosphoriques, les acides phosphoniques tels que l'acide (hydroxy-1 éthylidène)diphosphonique, l'acide phosphonique, l'acide éthylphosphonique, l'acide phénylphosphonique.
On peut également mettre en oeuvre les esters des acides précités et l'on peut mentionner, plus particulièrement, les orthophosphates de mono- ou dialkyle, de mono-ou dicycloalkyle, de mono- ou dialkylaryle, par exemple, le phosphate d'éthyle ou de diéthyle, le phosphate d'hexyle, le phosphate de cyclohexyle, le phosphate de benzyle.
La quantité d'agent complexant dépend de la teneur du milieu réactionnel en ions métalliques.
La quantité d'agent complexant exprimée en nombre de moles d'agent complexant par mole de peroxyde d'hydrogène varie avantageusement entre 0,0001 et 0,01.
La présente invention s'applique aux composés phénoliques de formule générale (1) :
dans ladite formule : - R représente un atome d'hydrogène, un groupe alkyle, cycloalkyle, phényle, phénylalkyle, - R1, identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle, alkoxy, halogénoalkyle, cycloalkyle, phényle, phénoxy, phénylalkyle, un atome d'halogène, - n est un nombre compris entre 0 et 5, de préférence égal à 0 ou 1.
Dans le cadre de l'invention, on entend par alkyle , une chaîne hydrocarbonée linéaire ou ramifiée ayant de 1 à 20 atomes de carbone et de préférence de 1 à 4 atomes de carbone.
Par alkoxy on entend un groupe alkyl-oxy ayant de 1 à 12 atomes de carbone dans la chaîne hydrocarbonée, de préférence de 1 à 4 atomes de carbone.
Par halogénoalkyle , on entend un groupe alkyle ayant de 1 à 10 atomes de carbone et portant de 1 à 21 atomes d'halogène. de préférence un groupe perfluoroalkyle et encore plus préférentiellement un groupe trifluorométhyle.
Par cycloalkyle , on entend un groupe hydrocarboné cyclique, satire comprenant de 3 à 8 atomes de carbone, de préférence, un groupe cyclopentyle ou cyclohexyle.
Par aryle , on entend un groupe mono- ou polycyclique aromatique, de préférence, mono- ou bicyclique comprenant de 6 à 12 atomes de carbone, de préférence, phényle ou naphtyle.
Par phénylalkyle , on entend un groupe hydrocarboné, linéaire ou ramifié porteur d'un cycle benzénique et comprenant de 7 à 12 atomes de carbone, de préférence, benzyle.
Par halogène , on entend le fluor, le chlore, le brome ou l'iode..
Les composés phénoliques mis en u̇vre préférentiellement dans le procédé de l'invention répondent à la formule (I) dans laquelle R représente un atome d'hydrogène ou un groupe alkyle ayant de 1 à 4 atomes de carbone, de préférence un groupe méthyle.
Pour ce qui est de Ri, il s'agit préférentiellement d'un atome d'hydrogène ou d'un groupe alkyle ou alkoxy ayant de 1 à 4 atomes de carbone.
Dans la formule (1), n est de préférence égal à 0 ou 1.
Parmi les composés phénoliques de formule (I) qui pourront être mis en oeuvre dans le procédé de l'invention, on peut citer à titre non limitatif, le phénol, l'anisole, l'orthocrésol, le paracrésol, le métacrésol, le 4-tertiobutylphénol, le 2méthoxyphénol, le 4-méthoxyphénol.
Conformément au procédé de l'invention, on fait intervenir au cours du procédé d'hydroxylation du composé phénolique de formule (1), un catalyseur solide minéral à propriétés acides et un composé cétonique.
La quantité de catalyseur acide que l'on met en oeuvre dans le procédé de l'invention peut varier dans de larges limites.
Lorsque l'on réalise le procédé en discontinu, le catalyseur peut représenter en poids par rapport au composé phénolique de formule (I) engagé, de 0,1 à 20 %, de préférence, de 0,5 à 10 %. Cependant si l'on réalise le procédé en continu, par exemple en faisant réagir un mélange de composé phénolique (1), de solution de peroxyde d'hydrogène sur un lit fixe de catalyseur, ces rapports catalyseur/composé phénolique de formule (I) n'ont pas de sens et à un instant donné, on pourra avoir un excès pondéral de catalyseur par rapport au composé phénolique de formule (1).
Le composé cétonique de formule (II) qui a été précédemment définie intervient en une quantité définie ci-après.
Généralement, la quantité du composé cétonique de formule (II) exprimée en moles par mole de peroxyde d'hydrogène varie entre 1.10-3 mole et 10. Il n'est pas nécessaire de dépasser 2,0 moles de composé cétonique par mole de peroxyde d'hydrogène. Dans la pratique, la quantité de composé cétonique est le plus souvent comprise entre 0,05 et 2,0 moles par mole de peroxyde d'hydrogène.
Le peroxyde d'hydrogène mis en oeuvre selon l'invention peut être sous forme de solution aqueuse ou de solution organique.
Les solutions aqueuses étant commercialement plus facilement disponibles sont utilisées, de préférence.
La concentration de la solution aqueuse de peroxyde d'hydrogène bien que non critique en soi est choisie de façon à introduire le moins d'eau possible dans le milieu réactionnel. On utilise généralement une solution aqueuse de peroxyde d'hydrogène à au moins 20 % en poids de H202 et, de préférence, aux environs de 70 %.
La quantité de peroxyde d'hydrogène peut aller jusqu'à 1 mole de H202 pour 1 mole de composé phénolique de formule (1).
Il est cependant préférable pour obtenir un rendement industriellement acceptable d'utiliser un rapport molaire peroxyde d'hydrogène/ composé phénolique de formule (I) de 0,01 à 0,3 et, de préférence, de 0,05 à 0,15.
Afin d'avoir une vitesse de réaction suffisante, on limite la teneur initiale du milieu en eau à 20 % en poids et, de préférence, à 10 % en poids.
Les teneurs pondérales indiquées sont exprimées par rapport au mélange composé phénolique de formule ())/peroxyde d'hydrogène/eau.
Cette eau initiale correspond à l'eau introduite avec les réactifs et notamment avec le peroxyde d'hydrogène.
Conformément au procédé de l'invention, on réalise l'hydroxylation du composé phénolique de formule (I) à une température qui peut être comprise entre 40[deg]C et 150[deg]C.
Une variante préférée du procédé de l'invention consiste à choisir la température entre 40[deg]C et 70[deg]C.
La réaction est conduite avantageusement sous pression atmosphérique.
D'un point de vue pratique, le procédé selon l'invention est simple à mettre en oeuvre de façon continue ou discontinue.
On choisit préférentiellement la zéolithe sous forme de poudre dans le cas d'un procédé discontinu et sous une forme d'extrudés lors d'une voie continue.
D'un manière préférée, on choisit l'ordre des réactifs suivants : on introduit le composé phénolique de formule (1), le catalyseur zéolithique puis le composé cétonique de formule (II) éventuellement l'agent complexant.
On porte le milieu réactionnel à la température désirée puis, l'on ajoute la solution de peroxyde d'hydrogène, de manière progressive.
En fin de réaction, le composé phénolique non transformé, et le composé cétonique de formule (II), sont séparés des produits d'hydroxylation par les moyens usuels, notamment, par distillation et sont renvoyés dans la zone réactionnelle.
L'autre variante de l'invention consiste à conduire la réaction en continu, dans un réacteur tubulaire comportant le catalyseur solide disposé en lit fixe.
Le composé phénolique et le composé cétonique, éventuellement l'agent complexant d'une part, et le peroxyde d'hydrogène d'autre part, sont introduits avantageusement, en parallèle dans le réacteur.
Le temps de séjour du flux de matière sur le lit catalytique varie, par exemple, entre 15 min et 10 heures, et de préférence, entre 30 min et 5 heures.
En fin de réaction, on récupère une phase liquide comprenant le composé phénolique hydroxylé qui peut être récupéré tel que précédemment décrit.
La présente invention s'applique aux composés phénoliques de formule générale (I) et convient tout particulièrement bien à la préparation d'hydroquinone et de pyrocatéchol à partir du phénol.PROCESS FOR HYDROXYLATION OF PHENOLIC COMPOUNDS
The present invention relates to a process for the hydroxylation of phenolic compounds and more particularly to a process for the hydroxylation of phenols and phenol ethers with hydrogen peroxide.
Currently, we are looking for a process for the hydroxylation of phenol to hydroquinone and pyrocatechol using heterogeneous catalysis.
Indeed, one of the major industrial processes for the hydroxylation of phenol described in FR-A 2 071 464 implements a homogeneous acid catalysis, namely a strong acid, sulfuric acid or perchloric acid.
The hydroxylation of phenol carried out under the conditions described leads to a mixture of hydroquinone and pyrocatechin, with a predominance of this since the hydroquinone / pyrocatechin ratio most often varies between 0.3 and 0.7.
Although this process is very interesting, it has the drawback of using a homogeneous catalysis. There follows a problem in getting rid of the acid catalyst at the end of the reaction, which involves additional washing and distillation treatments.
As regards hydroxylation using a heterogeneous acid catalyst, it has been proposed according to FR-A to carry out the reaction in the presence of an effective amount of a solid mineral catalyst with acid properties such as silica- alumina, silica-Ga203, silica-B203; acid or bridged clays; natural or synthetic zeolites; lamellar phosphates, phosphates or phosphonates; oxides made acidic by treatment, preferably sulfated oxides of titanium, zirconium or iron.
However, the best yields of diphenols obtained with a Y zeolite are of the order of 72% for a reaction temperature of 75 [deg] C, which is incompatible with industrial exploitation.
The process described in US Pat. No. 6,441,250 also requires the presence of a heterogeneous catalyst, namely a beta zeolite. Although the yields are high on the order of 90%, the disadvantage of this process is economic since the beta zeolite is an expensive catalyst.
The objective of the present invention is to provide a method making it possible to remedy the aforementioned drawbacks.
More specifically, the subject of the present invention is a process for the hydroxylation of a phenolic compound by hydrogen peroxide in the presence of a solid catalyst, said process being characterized in that the reaction is carried out in the presence of 'a ketone compound and an effective amount of a MCM-22 zeolite.
It has now been found that the presence of a ketone compound combined with a zeolitic catalyst makes it possible to obtain advantageous reaction yields.
The zeolite involved in the process of the invention is an MCM-22 zeolite having a structure of the MWW type.
This structure is characterized by 2 types of independent multidimensional channels (ref. Science, 264, 1910-1913, (1994): Leonowics, ME, Lawton, JA, Lawton, SL and Rubin, MK).
The MCM-22 zeolite can be synthesized according to the methods described in the prior art and more particularly according to the procedure described in the periodical Zeolites, 15, 2, (1995): A. Corma, C. Corell, J. PérezPariente.
The preferred form of the MCM-22 zeolite is in the H-MCM-22 form. A first characteristic of the process of the invention resides in the choice of the catalyst which is a microporous solid having the characteristics specified below.
It is a mineral solid which has acidic properties.
The Si / Al molar ratio is between 5 and 1000, preferably between 5 and 100 and even more preferably between 5 and 50.
As regards the physicochemical characteristics, it advantageously has a BET specific surface of between 400 and 800 m / g, preferably between 500 and 800 m / g.
For the determination of the specific surface, the BRUNEAU-EMMETT-TELLER method described in the periodical The Journal of American Society 60,309 (1938) can be used.
It has a pore volume varying between 0.11 and 0.16 cm / g, preferably between 0.12 and 0.16 cm / g.
For the determination of the pore volume, it can be done according to the mercury porosimeter method (for example by following standard ASTM-D 4284-83).
The zeolite used in the process of the invention can be in the form of a powder or else shaped, extruded, beads, pellets or granules.
There are commercial forms of MCM-22 zeolite in powder or extruded form.
Generally, the extrudates have a diameter of 2 to 6, preferably 3 to 5 mm and a length of 2 to 100 mm, preferably 5 to 50 mm.
Another characteristic of the process of the invention is to use a ketone compound and more particularly those corresponding to formula (II):
in said formula (II): - Ra and Rb, identical or different, represent hydrocarbon groups having from 1 to 30 carbon atoms or together form a divalent group, optionally substituted by one or more halogen atoms or stable functional groups in the reaction conditions, - X represents a valence bond, a group -CO-, a group -CHOH or a group - (R) n- in which R represents an alkylene group preferably having from 1 to 4 carbon atoms and n is an integer chosen between 1 and 16.
In formula (II), Ra and Rb represent more particularly: - linear or branched alkyl groups, - linear or branched alkenyl groups, - cycloalkyl or cycloalkenyl groups containing from 4 to 6 carbon atoms, - mono aryl groups - or polycyclic; in the latter case, the rings forming between them an ortho- or ortho- and pericondensed system or being linked together by a valential bond, - arylalkyl or arylalkenyl groups, - Ra and Rb can together form an alkylene or alkenylene group comprising 3 to 5 carbon atoms, optionally substituted by a low-carbon alkyl group or by a cycloalkyl or cycloalkenyl group having 4 to 6 carbon atoms; 2 to 4 carbon atoms of the alkylene or alkenylene groups which may be part of one or two benzene rings optionally substituted with 1 to 4 hydroxyl and / or alkyl and / or alkoxy groups with low carbon condensation.
In the following description of the invention, the expression “low carbon alkyl group” means a linear or branched alkyl group generally having from 1 to 4 carbon atoms.
The aforementioned hydrocarbon groups can be substituted by 1 or more, preferably 1 to 4, low carbon condensation alkyl groups or functional groups such as hydroxyl groups, low carbon condensation alkoxy, hydroxycarbonyl, alkyloxycarbonyl comprising from 1 to 4 carbon atoms in the alkyl group, a nitrile group, -SO3H, nitro or by one or more halogen atoms, and in particular of chlorine and bromine.
Preferably, Ra and Rb represent more particularly: - linear or branched alkyl groups having from 1 to 10 carbon atoms, - linear or branched alkenyl groups having from 2 to 10 carbon atoms, - cycloalkyl or cycloalkenyl groups comprising 4 to 6 carbon atoms, - phenyl groups optionally substituted by 1 to 4 alkyl and / or hydroxyl and / or alkoxy groups, - phenylalkyl or phenylacenyl groups containing 1 (or 2) to 10 carbon atoms in the aliphatic part, and more particularly still from 1 (or 2) to 5 carbon atoms in the aliphatic part, - Ra and Rb may together form an alkylene or alkenylene group comprising from 3 to 5 carbon atoms, optionally substituted by 1 to 4 alkyl groups with low carbon condensation.
As specific examples of ketones which can be used in the process of the invention, there may be mentioned, more particularly:
- acetone, - 2-butanone - methyl isopropyl ketone - pivalone - 2-pentanone - 3-pentanone - 4-methyl-2-pentanone - 3,3-dimethyl-2-butanone - 2- hexanone - 3-hexanone - 2-heptanone - 4-heptanone - 2-octanone - 3-octanone - 2-nonanone - 5-nonanone - 8-pentadecanone - 2-methyl-3-hexanone - 5-methyl-2-hexanone - 5-methyl-3-hexanone - 2,4-dimethyl-3-pentanone - 5-methyl-3-heptanone - methylvinyl ketone - mesityl oxide - 1 -pentene-3-one - 3-pentene-2-one - 5-hexene-2-one - 5-methyl-3-hexene-2-one - 6-methyl-5-heptene-2-one - diacetyl - diacetone alcohol - acetoin - 2,3-butanedione - 2,4-pentanedione - 2,5-hexanedione - dicyclohexyl ketone - methylcyclohexyl ketone - acetophenone - n-propiophenone - la n-butyrophenone - isobutyrophenone - n-valerophenone - 2-methylacetophenone - 2,4-dimethylacetophenone - phenylvinylketone - l a benzophenone - 2-methylbenzophenone - 2,4-dimethylbenzophenone - 4,4'-dimethylbenzophenone - 2,2'-dimethylbenzophenone - 4,4'-dimethoxybenzophenone - 4-hydroxybenzophenone - 4,4'- dihydroxybenzophenone - 4-benzoylbiphenyl - benzoin - 4,4'-dihydroxybenzoin - 2,4-dimethylbenzoin - 4,4'-dimethylbenzoin - dimethoxy-4,4 'benzoin - 4,4'-difluorobenzoin - a-methoxybenzoin - a-ethoxybenzoin - deoxybenzoin - 4-hydroxydoxyoxybenzoin - 4-methyldoxybenzoin - 4-methoxydeoxybenzoin - 4,4'-dimethoxy-oxybenzoin - 4,4'-difluorodeiophenoin dibenzylketone - 8-phenylvalerophenone - 1,1-diphenylpropan-2-one - 1,3-diphenylpropan-1-one - benzalacetone - benzalacetophenone - benzile - cyclopentanone - 2-methylcyclopentanone - cyclohexanone - 2-methylcyclohexanone - 3,3,5,5-tetramethylcyclohexanone - cyclopen t-2-en-1-one - cyclohex-2-en-1-one - a-isophorone - la -isophorone - cyclohexènyl-cyclohexanone - cc-indanone - la -indanone - a- tetralone - fluorenone Thus, use is made, in particular, of ketone compounds of the dialkyl ketone type corresponding to formula (II) in which Ra and Rb represent a linear or branched alkyl group having from 1 to 8 carbon atoms.
As more specific examples of dialkylketones, mention may be made of 4-methyl-2-pentanone, 5-methyl-2-pentanone, 2-pentanone and 3pentanone.
A preferred variant of the process of the invention consists in adding an agent complexing metal ions present in the medium since these are detrimental to the good progress of the process of the invention, in particular in the case of phenols where the yields of products d 'hydroxylation are low. Therefore, it is better to inhibit the action of metal ions.
The metal ions harmful to the course of the hydroxylation are transition metal ions and more particularly, the iron, copper, chromium, cobalt, manganese and vanadium ions.
The metal ions are provided by the reagents and in particular the aromatic compounds and the apparatus used. To inhibit the action of these metal ions, it suffices to conduct the reaction in the presence of one or more complexing agents which are stable with respect to hydrogen peroxide and which give complexes which cannot be broken down by the strong acids present and in which the metal can no longer exercise chemical activity.
By way of nonlimiting examples of complexing agents, use may be made, in particular, of various phosphoric acids such as, for example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, polyphosphoric acids, acids phosphonic acids such as (1-hydroxyethylidene) diphosphonic acid, phosphonic acid, ethylphosphonic acid, phenylphosphonic acid.
It is also possible to use the esters of the abovementioned acids and mention may be made, more particularly, of the orthophosphates of mono- or dialkyl, of mono- or dicycloalkyl, of mono- or dialkylaryl, for example, ethyl phosphate or diethyl, hexyl phosphate, cyclohexyl phosphate, benzyl phosphate.
The amount of complexing agent depends on the content of metal ions in the reaction medium.
The amount of complexing agent expressed in number of moles of complexing agent per mole of hydrogen peroxide advantageously varies between 0.0001 and 0.01.
The present invention applies to phenolic compounds of general formula (1):
in said formula: - R represents a hydrogen atom, an alkyl, cycloalkyl, phenyl, phenylalkyl group, - R1, identical or different, represent a hydrogen atom, an alkyl, alkoxy, haloalkyl, cycloalkyl, phenyl, phenoxy group , phenylalkyl, a halogen atom, - n is a number between 0 and 5, preferably equal to 0 or 1.
In the context of the invention, the term “alkyl” means a linear or branched hydrocarbon chain having from 1 to 20 carbon atoms and preferably from 1 to 4 carbon atoms.
By alkoxy is meant an alkyl oxy group having from 1 to 12 carbon atoms in the hydrocarbon chain, preferably from 1 to 4 carbon atoms.
By haloalkyl is meant an alkyl group having from 1 to 10 carbon atoms and carrying from 1 to 21 halogen atoms. preferably a perfluoroalkyl group and even more preferably a trifluoromethyl group.
The term “cycloalkyl” is intended to mean a cyclic hydrocarbon group, satire comprising from 3 to 8 carbon atoms, preferably a cyclopentyl or cyclohexyl group.
By aryl is meant an aromatic mono- or polycyclic group, preferably mono- or bicyclic comprising from 6 to 12 carbon atoms, preferably phenyl or naphthyl.
The term “phenylalkyl” is intended to mean a linear or branched hydrocarbon group carrying a benzene ring and comprising from 7 to 12 carbon atoms, preferably benzyl.
Halogen means fluorine, chlorine, bromine or iodine.
The phenolic compounds preferably used in the process of the invention correspond to formula (I) in which R represents a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms, preferably a methyl group.
As regards Ri, it is preferably a hydrogen atom or an alkyl or alkoxy group having from 1 to 4 carbon atoms.
In formula (1), n is preferably equal to 0 or 1.
Among the phenolic compounds of formula (I) which may be used in the process of the invention, there may be mentioned, without limitation, phenol, anisole, orthocresol, paracresol, metacresol, 4 -tertiobutylphenol, 2methoxyphenol, 4-methoxyphenol.
In accordance with the process of the invention, during the hydroxylation process of the phenolic compound of formula (1), a solid mineral catalyst with acid properties and a ketone compound is used.
The amount of acid catalyst which is used in the process of the invention can vary within wide limits.
When the process is carried out batchwise, the catalyst can represent, by weight relative to the phenolic compound of formula (I) used, from 0.1 to 20%, preferably from 0.5 to 10%. However, if the process is carried out continuously, for example by reacting a mixture of phenolic compound (1), of hydrogen peroxide solution on a fixed bed of catalyst, these catalyst / phenolic compound ratios of formula (I) do not make sense and at a given time, there may be an excess weight of catalyst compared to the phenolic compound of formula (1).
The ketone compound of formula (II) which has been previously defined intervenes in an amount defined below.
Generally, the amount of the ketone compound of formula (II) expressed in moles per mole of hydrogen peroxide varies between 1.10-3 moles and 10. It is not necessary to exceed 2.0 moles of ketone compound per mole of peroxide hydrogen. In practice, the amount of ketone compound is most often between 0.05 and 2.0 moles per mole of hydrogen peroxide.
The hydrogen peroxide used according to the invention can be in the form of an aqueous solution or an organic solution.
Preferably, aqueous solutions being commercially more readily available are used.
The concentration of the aqueous hydrogen peroxide solution, although not critical in itself, is chosen so as to introduce as little water as possible into the reaction medium. An aqueous solution of hydrogen peroxide generally containing at least 20% by weight of H 2 O 2 and preferably around 70% is generally used.
The amount of hydrogen peroxide can range up to 1 mole of H 2 O 2 for 1 mole of phenolic compound of formula (1).
It is however preferable to obtain an industrially acceptable yield to use a molar ratio hydrogen peroxide / phenolic compound of formula (I) of 0.01 to 0.3 and, preferably, of 0.05 to 0.15.
In order to have a sufficient reaction speed, the initial water content of the medium is limited to 20% by weight and, preferably, to 10% by weight.
The weight contents indicated are expressed relative to the mixture of phenolic compound of formula ()) / hydrogen peroxide / water.
This initial water corresponds to the water introduced with the reagents and in particular with the hydrogen peroxide.
In accordance with the process of the invention, the hydroxylation of the phenolic compound of formula (I) is carried out at a temperature which can be between 40 [deg] C and 150 [deg] C.
A preferred variant of the process of the invention consists in choosing the temperature between 40 [deg] C and 70 [deg] C.
The reaction is advantageously carried out at atmospheric pressure.
From a practical point of view, the method according to the invention is simple to implement continuously or discontinuously.
The zeolite is preferably chosen in the form of powder in the case of a batch process and in the form of extrudates during a continuous process.
Preferably, the order of the following reactants is chosen: the phenolic compound of formula (1), the zeolitic catalyst and then the ketonic compound of formula (II), optionally the complexing agent, are introduced.
The reaction medium is brought to the desired temperature and then the hydrogen peroxide solution is added gradually.
At the end of the reaction, the untransformed phenolic compound and the ketone compound of formula (II) are separated from the hydroxylation products by the usual means, in particular by distillation and are returned to the reaction zone.
The other variant of the invention consists in carrying out the reaction continuously, in a tubular reactor comprising the solid catalyst placed in a fixed bed.
The phenolic compound and the ketone compound, optionally the complexing agent on the one hand, and the hydrogen peroxide on the other hand, are advantageously introduced, in parallel into the reactor.
The residence time of the material flow on the catalytic bed varies, for example, between 15 min and 10 hours, and preferably between 30 min and 5 hours.
At the end of the reaction, a liquid phase is recovered comprising the hydroxylated phenolic compound which can be recovered as previously described.
The present invention applies to phenolic compounds of general formula (I) and is particularly suitable for the preparation of hydroquinone and pyrocatechol from phenol.
Les exemples qui suivent, illustrent l'invention sans toutefois la limiter.
Dans les exemples, les abréviations suivantes signifient :The examples which follow illustrate the invention without however limiting it.
In the examples, the following abbreviations mean:
EXEMPLES
On donne, ci-après, les conditions opératoires qui vont être suivies dans tous les exemples.
Dans un réacteur de 500 ml en verre muni d'une agitation centrale, d'un réfrigérant et d'une pompe péristaltique on charge : - 300 g de phénol (3,19 mol), - 250 ppm d'acide polyphosphorique, - x g d'un composé cétonique, - y g de zéolithe de rapport molaire Si/AI égal à 15, On porte le mélange réactionnel à la température réactionnelle choisie tout en maintenant sous agitation à 700 tr/min.
On introduit par l'intermédiaire de la pompe péristaltique la solution aqueuse de peroxyde d'hydrogène à 70 % en poids en 5 minutes.
On maintient le mélange réactionnel sous agitation pendant une durée suffisante pour consommer entièrement l'eau oxygénée.EXAMPLES
The operating conditions which will be followed in all the examples are given below.
In a 500 ml glass reactor fitted with central stirring, a condenser and a peristaltic pump, are charged: - 300 g of phenol (3.19 mol), - 250 ppm of polyphosphoric acid, - xg of a ketone compound, - yg of zeolite with a Si / Al molar ratio equal to 15, The reaction mixture is brought to the reaction temperature chosen while maintaining stirring at 700 rpm.
The aqueous solution of hydrogen peroxide at 70% by weight is introduced via the peristaltic pump over 5 minutes.
The reaction mixture is kept under stirring for a time sufficient to completely consume the hydrogen peroxide.
Exemple 1 :
Dans cet exemple on engage : - 18,0 g de 4-méthyl-2-pentanone (0,180 mol), - 6,0 g de zéolithe MCM-22 de la Société Mobil Technology, - 7,80 g de H202 à 70 % (0,160 mol).
La réaction d'hydroxylation est réalisée à 60[deg]C.
Les résultats sont consignés dans le tableau suivant :Example 1:
In this example, we use: - 18.0 g of 4-methyl-2-pentanone (0.180 mol), - 6.0 g of MCM-22 zeolite from the company Mobil Technology, - 7.80 g of H202 at 70% (0.160 mol).
The hydroxylation reaction is carried out at 60 [deg] C.
The results are recorded in the following table:
Exemple 2 :
Tableau (I)
Dans cet exemple, on engage : - 18,0 g de 4-méthyl-2-pentanone (0,180 mol), - 6,0 g de zéolithe MCM-22 de la Société Mobil Technology, - 7,80 g de H202 à 70 % (0,160 mol), La réaction d'hydroxylation est réalisée à 50[deg]C.
Les résultats sont consignés dans le tableau suivant :Example 2:
Table (I)
In this example, we use: - 18.0 g of 4-methyl-2-pentanone (0.180 mol), - 6.0 g of MCM-22 zeolite from the company Mobil Technology, - 7.80 g of H2O2 at 70 % (0.160 mol), The hydroxylation reaction is carried out at 50 [deg] C.
The results are recorded in the following table:
Exemple 3 :
Tableau (II)
Dans cet exemple on engage : - 18,0 g de 4-méthyl-2-pentanone (0,180 mol), - 6,0 g de zéolithe MCM-22 de la Société Mobil Technology, - 15,6 g de H2O2 à 70 % (0,321 mol).
La réaction d'hydroxylation est réalisée à 50[deg]C.
Les résultats sont consignés dans le tableau suivant :Example 3:
Table (II)
In this example, we use: - 18.0 g of 4-methyl-2-pentanone (0.180 mol), - 6.0 g of MCM-22 zeolite from the company Mobil Technology, - 15.6 g of 70% H2O2 (0.321 mol).
The hydroxylation reaction is carried out at 50 [deg] C.
The results are recorded in the following table:
Exemple 4 :
Tableau (III)
Dans cet exemple, on engage : - 18,0 g de 4-méthyl-2-pentanone (0,180 mol), - 3,0 g de zéolithe MCM-22 de la Société Mobil Technology, - 7,80 g de H2O2 à 70 % (0,160 mol).
La réaction d'hydroxylation est réalisée à 50[deg]C Les résultats sont consignés dans le tableau suivant :Example 4:
Table (III)
In this example, we use: - 18.0 g of 4-methyl-2-pentanone (0.180 mol), - 3.0 g of MCM-22 zeolite from the company Mobil Technology, - 7.80 g of H2O2 at 70 % (0.160 mol).
The hydroxylation reaction is carried out at 50 [deg] C The results are given in the following table:
Tableau (IV)Table (IV)
REVENDICATIONS
1 - Procédé d'hydroxylation d'un composé phénolique par le peroxyde d'hydrogène, en présence d'un catalyseur solide caractérisé par le fait que la réaction est conduite en présence d'un composé cétonique et d'une quantité efficace d'une zéolithe MCM-22.
1 - Process for the hydroxylation of a phenolic compound with hydrogen peroxide, in the presence of a solid catalyst characterized in that the reaction is carried out in the presence of a ketone compound and an effective amount of a MCM-22 zeolite.