FR2851295A1 - Air collection system for aviation turbo-reactor, has flow adjustment valves on collection ducts extending between clip points that are at respective outlet and inlet of high-pressure compressor - Google Patents
Air collection system for aviation turbo-reactor, has flow adjustment valves on collection ducts extending between clip points that are at respective outlet and inlet of high-pressure compressor Download PDFInfo
- Publication number
- FR2851295A1 FR2851295A1 FR0302016A FR0302016A FR2851295A1 FR 2851295 A1 FR2851295 A1 FR 2851295A1 FR 0302016 A FR0302016 A FR 0302016A FR 0302016 A FR0302016 A FR 0302016A FR 2851295 A1 FR2851295 A1 FR 2851295A1
- Authority
- FR
- France
- Prior art keywords
- compressor
- sampling
- pressure compressor
- air
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 claims description 21
- 238000010079 rubber tapping Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 6
- 238000010257 thawing Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 2
- 206010000269 abscess Diseases 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/06—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
- F02C6/08—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space
- B64D13/02—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space the air being pressurised
- B64D13/04—Automatic control of pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D15/00—De-icing or preventing icing on exterior surfaces of aircraft
- B64D15/02—De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
- B64D15/04—Hot gas application
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D41/00—Power installations for auxiliary purposes
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
SYSTEME DE PRELEVEMENT D'AIR D'UN TURBOREACTEURSYSTEM FOR TAKING AIR FROM A TURBO-JET
DESCRIPTIONDESCRIPTION
Le sujet de l'invention est un système de prélèvement d'air d'un turboréacteur d'aviation. The subject of the invention is an air intake system for an aviation turbojet engine.
De l'air comprimé est toujours nécessaire dans les aéronefs pour mettre sous pression la cabine ou d'autres volumes ou pour des actions de dégivrage. 10 Il est soutiré des turboréacteurs avant d'atteindre les chambres de combustion, alors que les compresseurs l'ont porté à une pression suffisante pour les applications envisagées. Compressed air is always required in aircraft to pressurize the cabin or other volumes or for defrosting actions. 10 It is withdrawn from the turbojets before reaching the combustion chambers, while the compressors have brought it to a pressure sufficient for the envisaged applications.
Une première difficulté que ce procédé 15 occasionne a pour origine les différents régimes du moteur, qui produisent des variations importantes de la température et de la pression de l'air soutiré et contraignent à dédoubler le soutirage en disposant deux conduits de prélèvement séparés qui aboutissent à des 20 points de piquage respectifs du turboréacteur, et se joignent à leurs extrémités opposées. L'air soutiré provient, suivant la phase du vol, exclusivement d'un des deux prélèvements. Chacun des conduits de prélèvement comprend normalement, avant leur jonction, 25 une vanne d'arrêt, et après leur jonction, une vanne de réglage de pression et une vanne de réglage de débit de l'écoulement d'air parcourant le conduit afin de réaliser l'ajustement d'état de l'air. A first difficulty that this process 15 causes has its origin in the different engine speeds, which produce significant variations in the temperature and pressure of the air drawn off and force to duplicate the drawing-off by having two separate sampling conduits which lead to of the respective tapping points of the turbojet engine, and join at their opposite ends. The air drawn comes, depending on the phase of the flight, exclusively from one of the two samples. Each of the sampling conduits normally comprises, before their junction, a stop valve, and after their junction, a pressure regulating valve and a regulating valve for the flow rate of the air flow passing through the conduit in order to achieve air condition adjustment.
Les compresseurs sont généralement à calage 30 variable, c'est-à-dire qu'ils comprennent des étages d'aubes de stator qu'il est possible de faire pivoter SP 21708/JCI pour ajuster le redressement de l'air selon le régime du réacteur. Ces étages sont situés à l'entrée des compresseurs. Comme leur réglage est délicat, on exclut de placer les points de piquage à leur endroit: les 5 systèmes usuels comprennent donc un point de piquage à la sortie du compresseur à haute pression et un second point de piquage au milieu de ce compresseur, derrière les aubes pivotantes. The compressors are generally with variable timing, that is to say that they comprise stages of stator blades which it is possible to rotate SP 21708 / JCI to adjust the air straightening according to the speed of the reactor. These stages are located at the entrance of the compressors. As their adjustment is delicate, we exclude placing the tapping points in their place: the 5 usual systems therefore include a tapping point at the outlet of the high pressure compressor and a second tapping point in the middle of this compressor, behind the pivoting vanes.
Un document de l'art antérieur qui reprend 10 certaines de ces considérations, tout en donnant d'autres détails de construction, est le brevet américain 5 137 230. A prior art document which takes up some of these considerations, while giving further construction details, is US patent 5,137,230.
Certains inconvénients sérieux subsistent avec un tel système. On constate ainsi que les besoins 15 en air, très différents d'après les moments du vol, perturbent le bon fonctionnement du compresseur, d'autant plus que les débits prélevés sont importants en pratique et peuvent atteindre près de 15% dans certaines circonstances. Some serious drawbacks remain with such a system. It can thus be seen that the air requirements 15, which are very different according to the moments of the flight, disturb the proper functioning of the compressor, all the more since the flow rates taken are significant in practice and can reach nearly 15% in certain circumstances.
L'objet de l'invention est d'améliorer les systèmes de prélèvement d'air en remplaçant ceux qu'on connaît déjà par un qui soit plus économique aussi bien par sa constitution que par une réduction des pertes d'énergie dont il sera la cause. Un autre avantage de 25 ce système est que son réglage est facile. Une de ses caractéristiques est que le piquage de prélèvement le plus en avant, par lequel entre le débit d'air à la pression la moins élevée, est déplacé à l'entrée du compresseur à haute pression, c'est-à-dire entre lui et 30 le compresseur à basse pression. En effet, c'est surtout le prélèvement d'air au milieu du compresseur SP 21708/JCI qui perturbe son bon fonctionnement en produisant une rupture du débit traversant et des risques de pompage, alors que le prélèvement situé à la sortie du compresseur n'a pas cet effet et demeure inchangé dans l'invention. The object of the invention is to improve the air sampling systems by replacing those that are already known by one that is more economical both by its constitution and by a reduction in energy losses which it will be the cause. Another advantage of this system is that its adjustment is easy. One of its characteristics is that the most forward sampling nozzle, by which enters the air flow at the lowest pressure, is moved to the inlet of the high pressure compressor, i.e. between he and the low pressure compressor. Indeed, it is especially the air intake in the middle of the compressor SP 21708 / JCI which disrupts its proper functioning by producing a break in the through flow and risks of pumping, while the intake located at the outlet of the compressor does not does not have this effect and remains unchanged in the invention.
L'air comprimé soutiré à l'entrée du compresseur à haute pression est moins comprimé que s'il l'avait été dans le compresseur; mais sa pression reste suffisante pour qu'il satisfasse aux besoins de 10 mise sous pression et de dégivrage. Et la différence de pression plus grande entre les deux débits d'air permet - ceci est une deuxième caractéristique de l'invention - de remplacer les vannes de réglage de pression usuelles par un turbocompresseur o les pressions des 15 deux débits soutirés s'égalisent, le débit d'air à la sortie du compresseur à haute pression traversant la turbine du turbocompresseur et l'entraînant en cédant une partie de son énergie à l'autre débit, qui traverse le compresseur. L'égalisation des pressions se fait 20 automatiquement, sans réglage extérieur, et avec des pertes beaucoup plus réduites qu'avec des vannes usuelles, par pilotage des deux débits admis. The compressed air drawn from the inlet of the high pressure compressor is less compressed than if it had been in the compressor; but its pressure remains sufficient for it to satisfy the needs for pressurization and defrosting. And the greater pressure difference between the two air flows makes it possible - this is a second characteristic of the invention - to replace the usual pressure control valves with a turbocharger where the pressures of the two withdrawn flows are equalized, the air flow at the outlet of the high pressure compressor passing through the turbine of the turbocharger and driving it by yielding part of its energy to the other flow, which passes through the compressor. The pressure is equalized automatically, without external adjustment, and with much smaller losses than with conventional valves, by controlling the two admitted flow rates.
Un autre avantage de la solution retenue est que l'air prélevé par le piquage entre les 25 compresseurs est aussi plus frais qu'après avoir traversé une partie du compresseur à haute pression, de même que le mélange réalisé ensuite. Il était souvent nécessaire de compléter le système antérieur par un troisième conduit de soutirage qui aboutissait dans la 30 soufflante du turboréacteur et y prélevait donc de l'air pour rafraîchir celui qui était prélevé des SP 21708/JCI compresseurs, ce qui gâchait de l'énergie. Il est évident que ce nouveau soutirage abaisse beaucoup le rendement du turboréacteur; il devient complètement inutile dans l'invention, o on peut au contraire 5 trouver parfois que le mélange n'est plus assez chaud, par exemple pour le dégivrage. On remédiera à ce genre de difficulté en faisant passer le mélange, ou une portion de celui-ci, devant des portions chaudes du turboréacteur qui serviront alors de radiateur de 10 chaleur sans perte d'énergie mécanique. Another advantage of the solution adopted is that the air taken up by the connection between the compressors is also cooler than after having passed through part of the high pressure compressor, as is the mixture produced thereafter. It was often necessary to complete the previous system with a third withdrawal duct which terminated in the fan of the turbojet engine and therefore took air there to cool the one which was taken from the SP 21708 / JCI compressors, which wasted the energy. It is obvious that this new withdrawal greatly reduces the efficiency of the turbojet; it becomes completely unnecessary in the invention, where on the contrary it can sometimes be found that the mixture is no longer hot enough, for example for defrosting. This kind of difficulty will be remedied by passing the mixture, or a portion thereof, past hot portions of the turbojet which will then serve as a heat radiator without loss of mechanical energy.
Dans les dessins, la figure 1 illustre une réalisation de l'invention, et la figure 2 certains résultats d'essais. In the drawings, Figure 1 illustrates an embodiment of the invention, and Figure 2 some test results.
L'invention sera maintenant décrite en 15 référence à la figure 1. Un turboréacteur partiellement représenté comprend une soufflante 1, un compresseur à basse pression 2 et un compresseur à haute pression 3. The invention will now be described with reference to FIG. 1. A partially represented turbojet engine comprises a fan 1, a low pressure compressor 2 and a high pressure compressor 3.
Deux points de piquage d'air comprimé sont disposés respectivement entre les deux compresseurs 2 et 3 et à 20 la sortie du compresseur à haute pression 3 et portent les références 4 et 5. Deux conduits de prélèvement 6 et 7 s'y abouchent. Les débits d'air comprimé qui les traversent sont ajustés par des vannes 8 et 9 réglées par un calculateur attaché à l'avion ou au moteur. Les 25 conduits de prélèvement 6 et 7 sont encore affectés d'un turbocompresseur 10 comprenant une turbine 11 aménagée sur le conduit de prélèvement 6 menant au point de piquage 4 à la sortie du compresseur à haute pression 2, un compresseur 12 aménagé sur l'autre 30 conduit de prélèvement 7, et un arbre 13 reliant en rotation la turbine 11 au compresseur 12. Les pressions SP 21708/JCI dans les conduits 6 et 7 s'égalisent par la traversée du turbocompresseur 10, ce qui permet de mélanger les deux débits d'air à une jonction des conduits de prélèvement 6 et 7 qui est occupée par un mélangeur 14 5 pouvant comprendre différents dispositifs de création de turbulences qui favorisent le mélange des débits. Le mélange circule ensuite dans un conduit de service 15 qui peut bifurquer vers différents endroits o l'air comprimé sera requis; si le mélange risque d'être trop 10 frais pour opérer un dégivrage, on préconise de faire passer les branches telles que 16 du conduit servant au dégivrage devant un endroit chaud 17 de l'aéronef, un moyen de chauffage idoine ou toute source de chaleur, pour obtenir l'échauffement souhaité. Two compressed air tapping points are disposed respectively between the two compressors 2 and 3 and at the outlet of the high pressure compressor 3 and bear the references 4 and 5. Two sampling conduits 6 and 7 are connected thereto. The compressed air flows passing through them are adjusted by valves 8 and 9 regulated by a computer attached to the aircraft or to the engine. The 25 sampling conduits 6 and 7 are also assigned a turbocharger 10 comprising a turbine 11 arranged on the sampling conduit 6 leading to the tapping point 4 at the outlet of the high pressure compressor 2, a compressor 12 arranged on the another 30 sampling duct 7, and a shaft 13 which rotates the turbine 11 to the compressor 12. The pressures SP 21708 / JCI in the ducts 6 and 7 are equalized by crossing the turbocharger 10, which makes it possible to mix the two air flows at a junction of the sampling conduits 6 and 7 which is occupied by a mixer 14 5 which may include various devices for creating turbulence which promote the mixing of the flow rates. The mixture then circulates in a service conduit 15 which can branch off to different places where compressed air will be required; if the mixture is likely to be too fresh to operate a defrost, it is recommended to pass the branches such as 16 of the duct used for defrosting in front of a hot place 17 of the aircraft, a suitable heating means or any heat source , to obtain the desired heating.
Pour résumer, les avantages principaux de l'invention consistent en de meilleurs fonctionnements du compresseur à haute pression 3 grâce à la suppression du prélèvement intermédiaire, et aussi du compresseur à basse pression 2 grâce au point de 20 piquage 4 à sa sortie; une perte de charge moins importante dans les conduits de prélèvement 6 et 7 grâce à la présence d'une seule vanne dans chacun d'eux; l'absence de prélèvement de la soufflante 1; corrélativement, une poussée plus forte disponible 25 grâce à ces meilleurs fonctionnements et aussi parce que la marge de pompage requise pour le compresseur a haute pression 36 peut être réduite; et un gain énergétique global car le mélange soutiré est à une température et une pression plus proches de celles 30 qu'on souhaite. To summarize, the main advantages of the invention consist in better functioning of the high-pressure compressor 3 thanks to the elimination of the intermediate withdrawal, and also of the low-pressure compressor 2 thanks to the tapping point 4 at its outlet; a lower pressure drop in the sampling conduits 6 and 7 thanks to the presence of a single valve in each of them; the absence of blower 1 sampling; correlatively, a higher thrust available thanks to these better operations and also because the pumping margin required for the high pressure compressor 36 can be reduced; and an overall energy gain because the mixture withdrawn is at a temperature and a pressure closer to those desired.
SP 21708/JCI L'utilité de l'invention est très marquée au décollage, o une forte poussée est souhaitée mais o l'air comprimé plus fortement (surtout au milieu du compresseur à haute pression 3) est aussi plus chaud, 5 alors qu'il n'y a pas de nécessité de dégivrer à ce moment, ce qui impose un prélèvement plus important de la soufflante 1 dans la conception antérieure: l'état o le turboréacteur travaillait le plus était donc celui o son rendement était le plus affaibli par le 10 prélèvement, ce qui obligeait soit à le surcharger et à user plus vite le moteur par des températures excesives, soit à renoncer à une partie de sa puissance, soit à renoncer à une partie du débit d'air et des services offerts par le prélèvement. SP 21708 / JCI The utility of the invention is very marked at takeoff, o a strong thrust is desired but o the compressed air more strongly (especially in the middle of the high pressure compressor 3) is also hotter, 5 while '' there is no need to defrost at this time, which imposes a greater removal of the fan 1 in the prior design: the state where the turbojet engine worked the most was therefore that where its performance was the most weakened by the sampling, which required either to overload it and to use the engine faster by excessive temperatures, or to give up part of its power, or to give up part of the air flow and the services offered by sampling.
En régime de croisière, l'invention est encore avantageuse: puisqu'une proportion plus grande d'air à haute pression est soutirée qu'au décollage, le prélèvement à plus basse pression que dans la conception connue reste préférable en général. In cruising mode, the invention is still advantageous: since a greater proportion of air at high pressure is withdrawn than at take-off, the sampling at lower pressure than in the known design remains preferable in general.
Enfin, en régime de ralenti utilisé pour la descente, on n'utilise d'ordinaire que le débit à haute pression. L'invention peut se révéler désavantageuse à cet instant à cause de la perte de charge du turbocompresseur 10, qui devient relativement 25 importante quand les débits sont très différents; toutefois il est fréquent qu'un régime supérieur au ralenti soit choisi alors, pour lutter contre le givre ou l'ingestion de grêle, ce qui empêche cet aspect désavantageux de l'invention d'apparaître. Cet aspect 30 est plus que contrebalancé par les phases de décollage et montée car on compare un grand gain sur une phase SP 21708/JCI très énergétique et une petite perte sur une phase à faible énergie. Finally, in the idle speed used for the descent, only the high pressure flow is usually used. The invention may prove to be disadvantageous at this time because of the pressure drop of the turbocharger 10, which becomes relatively large when the flow rates are very different; however, it is frequent that a regime higher than idling is chosen then, in order to combat frost or ingestion of hail, which prevents this disadvantageous aspect of the invention from appearing. This aspect 30 is more than offset by the takeoff and climb phases because we compare a big gain on a very energetic SP 21708 / JCI phase and a small loss on a low energy phase.
La figure 2 sera brièvement expliquée. Elle illustre trois courbes donnant le rapport des débits 5 d'air prélevés à l'entrée et à la sortie du compresseur à haute pression 3 (ordonnées) en fonction du régime réduit du compresseur à basse pression (abscises, en pourcentage), soit le rapport régime mécanique 1_o e est la régime de référence | j228,15 température, en degrés kelvin, à l'entrée du compresseur basse pression. Figure 2 will be briefly explained. It illustrates three curves giving the ratio of the air flow rates 5 taken at the inlet and at the outlet of the high pressure compressor 3 (ordered) as a function of the reduced speed of the low pressure compressor (abscesses, in percentage), ie the mechanical speed ratio 1_o e is the reference speed | j228.15 temperature, in kelvin, at the inlet of the low pressure compressor.
La courbe aux losanges (0) représente un vol à 37.000 pieds (= 12 km), à un nombre de Mach de 0,8 et à une pression de sortie de 43 psig (= 30 kPa). The diamond curve (0) represents a flight at 37,000 feet (= 12 km), at a Mach number of 0.8 and at an outlet pressure of 43 psig (= 30 kPa).
La courbe aux carrés (E) représente un vol à une pression de sortie de 27 psig ( 26 kPa),les autres paramètres étant inchangés. The squared curve (E) represents a flight at an outlet pressure of 27 psig (26 kPa), the other parameters being unchanged.
La courbe aux triangles (A) représente un décollage au niveau de la mer, à un nombre de Mach de 20 0,25 et à une pression de sortie de 37 psig (= 19 kPa). The triangle curve (A) represents a takeoff at sea level, at a Mach number of 20 0.25 and at an outlet pressure of 37 psig (= 19 kPa).
Elle montre l'intérêt de l'invention pour cette situation, l'air prélevé venant surtout du premier piquage 4. Les deux premières courbes illustrent des régimes de croisière qui montrent que l'invention reste 25 surtout utile pour des pressurisations plus faibles; mais un gain de rendement notable à été constaté par rapport à la conception ordinaire malgré la faible proportion d'air prélevé. It shows the advantage of the invention for this situation, the air sampled coming mainly from the first tap 4. The first two curves illustrate cruising speeds which show that the invention remains especially useful for weaker pressurizations; but a significant gain in efficiency has been observed compared to the ordinary design despite the small proportion of air taken.
SP 21708/JCISP 21708 / JCI
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0302016A FR2851295B1 (en) | 2003-02-19 | 2003-02-19 | AIR COLLECTION SYSTEM OF A TURBOJET ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0302016A FR2851295B1 (en) | 2003-02-19 | 2003-02-19 | AIR COLLECTION SYSTEM OF A TURBOJET ENGINE |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2851295A1 true FR2851295A1 (en) | 2004-08-20 |
FR2851295B1 FR2851295B1 (en) | 2006-06-23 |
Family
ID=32749684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0302016A Expired - Lifetime FR2851295B1 (en) | 2003-02-19 | 2003-02-19 | AIR COLLECTION SYSTEM OF A TURBOJET ENGINE |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2851295B1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2417524A (en) * | 2004-08-27 | 2006-03-01 | Gen Electric | Air turbine driven aircraft engine accessory |
EP2620616A3 (en) * | 2012-01-24 | 2015-01-07 | The Boeing Company | Bleed air systems for use with aircrafts and related methods |
EP2871349A1 (en) * | 2013-11-06 | 2015-05-13 | Rolls-Royce plc | Pneumatic system for an aircraft and method of operating said system |
EP2960468A1 (en) * | 2014-06-27 | 2015-12-30 | Frederick M. Schwarz | Geared turbofan engine with low pressure environmental control system for aircraft |
EP3085924A1 (en) * | 2015-04-24 | 2016-10-26 | United Technologies Corporation | Cooling air intercooling with cooling air tapped from plural locations |
US9850819B2 (en) | 2015-04-24 | 2017-12-26 | United Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10100739B2 (en) | 2015-05-18 | 2018-10-16 | United Technologies Corporation | Cooled cooling air system for a gas turbine engine |
US10371055B2 (en) | 2015-02-12 | 2019-08-06 | United Technologies Corporation | Intercooled cooling air using cooling compressor as starter |
US10443508B2 (en) | 2015-12-14 | 2019-10-15 | United Technologies Corporation | Intercooled cooling air with auxiliary compressor control |
US10480419B2 (en) | 2015-04-24 | 2019-11-19 | United Technologies Corporation | Intercooled cooling air with plural heat exchangers |
US10550768B2 (en) | 2016-11-08 | 2020-02-04 | United Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
US10577964B2 (en) | 2017-03-31 | 2020-03-03 | United Technologies Corporation | Cooled cooling air for blade air seal through outer chamber |
US10634051B2 (en) | 2012-01-09 | 2020-04-28 | United Technologies Corporation | Geared turbofan engine with low pressure environmental control system for aircraft |
US10669940B2 (en) | 2016-09-19 | 2020-06-02 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and turbine drive |
US10711640B2 (en) | 2017-04-11 | 2020-07-14 | Raytheon Technologies Corporation | Cooled cooling air to blade outer air seal passing through a static vane |
US10718233B2 (en) | 2018-06-19 | 2020-07-21 | Raytheon Technologies Corporation | Intercooled cooling air with low temperature bearing compartment air |
US10731560B2 (en) | 2015-02-12 | 2020-08-04 | Raytheon Technologies Corporation | Intercooled cooling air |
US10738703B2 (en) | 2018-03-22 | 2020-08-11 | Raytheon Technologies Corporation | Intercooled cooling air with combined features |
US10794288B2 (en) | 2015-07-07 | 2020-10-06 | Raytheon Technologies Corporation | Cooled cooling air system for a turbofan engine |
US10794290B2 (en) | 2016-11-08 | 2020-10-06 | Raytheon Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
US10808619B2 (en) | 2018-04-19 | 2020-10-20 | Raytheon Technologies Corporation | Intercooled cooling air with advanced cooling system |
US10830145B2 (en) | 2018-04-19 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air fleet management system |
US10830148B2 (en) | 2015-04-24 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10961911B2 (en) | 2017-01-17 | 2021-03-30 | Raytheon Technologies Corporation | Injection cooled cooling air system for a gas turbine engine |
US10995673B2 (en) | 2017-01-19 | 2021-05-04 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox |
US11255268B2 (en) | 2018-07-31 | 2022-02-22 | Raytheon Technologies Corporation | Intercooled cooling air with selective pressure dump |
US11808210B2 (en) | 2015-02-12 | 2023-11-07 | Rtx Corporation | Intercooled cooling air with heat exchanger packaging |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137230A (en) | 1991-06-04 | 1992-08-11 | General Electric Company | Aircraft gas turbine engine bleed air energy recovery apparatus |
US5899085A (en) * | 1997-08-01 | 1999-05-04 | Mcdonnell Douglas Corporation | Integrated air conditioning and power unit |
US6305156B1 (en) * | 1999-09-03 | 2001-10-23 | Alliedsignal Inc. | Integrated bleed air and engine starting system |
-
2003
- 2003-02-19 FR FR0302016A patent/FR2851295B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137230A (en) | 1991-06-04 | 1992-08-11 | General Electric Company | Aircraft gas turbine engine bleed air energy recovery apparatus |
US5899085A (en) * | 1997-08-01 | 1999-05-04 | Mcdonnell Douglas Corporation | Integrated air conditioning and power unit |
US6305156B1 (en) * | 1999-09-03 | 2001-10-23 | Alliedsignal Inc. | Integrated bleed air and engine starting system |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2417524A (en) * | 2004-08-27 | 2006-03-01 | Gen Electric | Air turbine driven aircraft engine accessory |
US7059136B2 (en) | 2004-08-27 | 2006-06-13 | General Electric Company | Air turbine powered accessory |
GB2417524B (en) * | 2004-08-27 | 2009-08-12 | Gen Electric | Air turbine powered accessory |
US10634051B2 (en) | 2012-01-09 | 2020-04-28 | United Technologies Corporation | Geared turbofan engine with low pressure environmental control system for aircraft |
EP2620616A3 (en) * | 2012-01-24 | 2015-01-07 | The Boeing Company | Bleed air systems for use with aircrafts and related methods |
US9879610B2 (en) | 2013-11-06 | 2018-01-30 | Rolls-Royce Plc | Pnuematic system for an aircraft |
EP2871349A1 (en) * | 2013-11-06 | 2015-05-13 | Rolls-Royce plc | Pneumatic system for an aircraft and method of operating said system |
JP2016011662A (en) * | 2014-06-27 | 2016-01-21 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Geared turbofan engine with low pressure environmental control system for aircraft |
EP2960468A1 (en) * | 2014-06-27 | 2015-12-30 | Frederick M. Schwarz | Geared turbofan engine with low pressure environmental control system for aircraft |
US9915165B2 (en) | 2014-06-27 | 2018-03-13 | United Technologies Corporation | Geared turbofan engine with low pressure environmental control system for aircraft |
US11808210B2 (en) | 2015-02-12 | 2023-11-07 | Rtx Corporation | Intercooled cooling air with heat exchanger packaging |
US10830149B2 (en) | 2015-02-12 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air using cooling compressor as starter |
US10731560B2 (en) | 2015-02-12 | 2020-08-04 | Raytheon Technologies Corporation | Intercooled cooling air |
US10371055B2 (en) | 2015-02-12 | 2019-08-06 | United Technologies Corporation | Intercooled cooling air using cooling compressor as starter |
US10830148B2 (en) | 2015-04-24 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10221862B2 (en) | 2015-04-24 | 2019-03-05 | United Technologies Corporation | Intercooled cooling air tapped from plural locations |
US11215197B2 (en) | 2015-04-24 | 2022-01-04 | Raytheon Technologies Corporation | Intercooled cooling air tapped from plural locations |
US9850819B2 (en) | 2015-04-24 | 2017-12-26 | United Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10480419B2 (en) | 2015-04-24 | 2019-11-19 | United Technologies Corporation | Intercooled cooling air with plural heat exchangers |
EP3085924A1 (en) * | 2015-04-24 | 2016-10-26 | United Technologies Corporation | Cooling air intercooling with cooling air tapped from plural locations |
US10718268B2 (en) | 2015-04-24 | 2020-07-21 | Raytheon Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10914235B2 (en) | 2015-05-18 | 2021-02-09 | Raytheon Technologies Corporation | Cooled cooling air system for a gas turbine engine |
US10100739B2 (en) | 2015-05-18 | 2018-10-16 | United Technologies Corporation | Cooled cooling air system for a gas turbine engine |
US10794288B2 (en) | 2015-07-07 | 2020-10-06 | Raytheon Technologies Corporation | Cooled cooling air system for a turbofan engine |
US11512651B2 (en) | 2015-12-14 | 2022-11-29 | Raytheon Technologies Corporation | Intercooled cooling air with auxiliary compressor control |
US10443508B2 (en) | 2015-12-14 | 2019-10-15 | United Technologies Corporation | Intercooled cooling air with auxiliary compressor control |
US11002195B2 (en) | 2015-12-14 | 2021-05-11 | Raytheon Technologies Corporation | Intercooled cooling air with auxiliary compressor control |
US11236675B2 (en) | 2016-09-19 | 2022-02-01 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and turbine drive |
US10669940B2 (en) | 2016-09-19 | 2020-06-02 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and turbine drive |
US10794290B2 (en) | 2016-11-08 | 2020-10-06 | Raytheon Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
US10550768B2 (en) | 2016-11-08 | 2020-02-04 | United Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
US10961911B2 (en) | 2017-01-17 | 2021-03-30 | Raytheon Technologies Corporation | Injection cooled cooling air system for a gas turbine engine |
US10995673B2 (en) | 2017-01-19 | 2021-05-04 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox |
US10577964B2 (en) | 2017-03-31 | 2020-03-03 | United Technologies Corporation | Cooled cooling air for blade air seal through outer chamber |
US11773742B2 (en) | 2017-03-31 | 2023-10-03 | Rtx Corporation | Cooled cooling air for blade air seal through outer chamber |
US10711640B2 (en) | 2017-04-11 | 2020-07-14 | Raytheon Technologies Corporation | Cooled cooling air to blade outer air seal passing through a static vane |
US10738703B2 (en) | 2018-03-22 | 2020-08-11 | Raytheon Technologies Corporation | Intercooled cooling air with combined features |
US10808619B2 (en) | 2018-04-19 | 2020-10-20 | Raytheon Technologies Corporation | Intercooled cooling air with advanced cooling system |
US10830145B2 (en) | 2018-04-19 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air fleet management system |
US10718233B2 (en) | 2018-06-19 | 2020-07-21 | Raytheon Technologies Corporation | Intercooled cooling air with low temperature bearing compartment air |
US11255268B2 (en) | 2018-07-31 | 2022-02-22 | Raytheon Technologies Corporation | Intercooled cooling air with selective pressure dump |
US11773780B2 (en) | 2018-07-31 | 2023-10-03 | Rtx Corporation | Intercooled cooling air with selective pressure dump |
Also Published As
Publication number | Publication date |
---|---|
FR2851295B1 (en) | 2006-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2851295A1 (en) | Air collection system for aviation turbo-reactor, has flow adjustment valves on collection ducts extending between clip points that are at respective outlet and inlet of high-pressure compressor | |
US20200025105A1 (en) | Intercooled cooling air with auxiliary compressor control | |
FR2611229A1 (en) | CARENEE BLOWER TURBOREACTOR WITH COMPOUND CYCLE | |
EP3172420B1 (en) | Device for controlling the quantity of air supplied to a supercharged internal combustion engine and method using such a device | |
EP3013689B1 (en) | De-icing and conditioning device for an aircraft | |
US8935923B2 (en) | Gas turbine engine with intercooling turbine section and intercooling turbine section bypass | |
EP3303796B1 (en) | Device for controlling a quantity of air fed into the intake of a supercharged internal combustion engine and cooling the exhaust - method using such a device | |
FR2692936A1 (en) | Apparatus and method for channeling air in a turbine engine. | |
EP2714515B1 (en) | Air conditioning system for an aircraft passenger compartment | |
FR2859500A1 (en) | METHOD FOR ASSEMBLING A TURBINE ENGINE PREVENTING ICE ACCUMULATION IN THE ENGINE AND SYSTEM FOR PROTECTING AGAINST FREEZING | |
FR2629868A1 (en) | GAME CONTROL DEVICE | |
FR2787510A1 (en) | Aircraft propulsion reaction motor cooling system with compressor having central gas flow area and outer electronically controlled ambient/altitude vane outer compartment cooling control. | |
WO2016166087A1 (en) | Device built into a cylinder head for controlling an amount of air fed into the intake of a turbocharged internal combustion engine and method using such a device | |
EP2964906B1 (en) | Nacelle equipped with an oil-cooling circuit comprising an intermediate heat exchanger | |
WO2016083732A1 (en) | Cooling device for a turbomachine supplied by a discharge circuit | |
EP3418194B1 (en) | System and method for environmental control of an aircraft cabin and aircraft provided with such a control system | |
EP0307264A1 (en) | Fuel distribution circuit affording enhanced fuel cooling | |
FR3037616A1 (en) | DEVICE FOR CONTROLLING AN AIR QUANTITY INTRODUCED TO THE ADMISSION OF AN INTERNAL COMBUSTION ENGINE WITH AT LEAST TWO SUPERCURRENT STAGE AND METHOD USING SUCH A DEVICE. | |
FR2481747A1 (en) | GAS TURBINE ENGINE COMPRISING AN IMPROVED AIR COOLING DEVICE | |
FR2487913A1 (en) | METHOD FOR IMPROVING THE OPERATION OF A TURBO-COMPRESSOR FOR SUPERIMUMING A THERMAL MOTOR AND TURBO-COMPRESSOR FOR CARRYING OUT SAID METHOD | |
FR2687433A1 (en) | Propulsion unit with reversed components, with modulated supply | |
EP3342709A1 (en) | Method and device for environmental control of an aircraft supplied with bleed air at intermediate pressure | |
EP0473494B1 (en) | Fuel supply system for a turbo-engine | |
EP3986788B1 (en) | Electric air conditioning system of an aircraft cabin including a motorcompressor and an air cycle turbomachine | |
FR3128492A1 (en) | AUXILIARY POWER UNIT WITH INTEGRATED CHARGE COMPRESSOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CD | Change of name or company name | ||
PLFP | Fee payment |
Year of fee payment: 14 |
|
PLFP | Fee payment |
Year of fee payment: 15 |
|
PLFP | Fee payment |
Year of fee payment: 16 |
|
CD | Change of name or company name |
Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
PLFP | Fee payment |
Year of fee payment: 18 |
|
PLFP | Fee payment |
Year of fee payment: 19 |
|
PLFP | Fee payment |
Year of fee payment: 20 |