FR2792946A1 - Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique - Google Patents
Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique Download PDFInfo
- Publication number
- FR2792946A1 FR2792946A1 FR9905496A FR9905496A FR2792946A1 FR 2792946 A1 FR2792946 A1 FR 2792946A1 FR 9905496 A FR9905496 A FR 9905496A FR 9905496 A FR9905496 A FR 9905496A FR 2792946 A1 FR2792946 A1 FR 2792946A1
- Authority
- FR
- France
- Prior art keywords
- catalyst
- weight
- noble metal
- effluent
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 30
- 230000008569 process Effects 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 title claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 12
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 40
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 33
- 239000002808 molecular sieve Substances 0.000 claims abstract description 20
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 239000010457 zeolite Substances 0.000 claims abstract description 10
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001657 ferrierite group Inorganic materials 0.000 claims abstract description 6
- 230000002378 acidificating effect Effects 0.000 claims abstract description 4
- 239000011959 amorphous silica alumina Substances 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 51
- 239000001257 hydrogen Substances 0.000 claims description 51
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 46
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 43
- 239000003921 oil Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 28
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 24
- 238000009835 boiling Methods 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 238000004821 distillation Methods 0.000 claims description 19
- 229910052697 platinum Inorganic materials 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 14
- 125000004429 atom Chemical group 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical class O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims description 8
- 239000002923 metal particle Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910001868 water Inorganic materials 0.000 claims description 8
- 238000005292 vacuum distillation Methods 0.000 claims description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052810 boron oxide Inorganic materials 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- TYSIILFJZXHVPU-UHFFFAOYSA-N 5-methylnonane Chemical compound CCCCC(C)CCCC TYSIILFJZXHVPU-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 2
- 229910052570 clay Inorganic materials 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- PLZDDPSCZHRBOY-UHFFFAOYSA-N inaktives 3-Methyl-nonan Natural products CCCCCCC(C)CC PLZDDPSCZHRBOY-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000002199 base oil Substances 0.000 abstract description 5
- 238000011282 treatment Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000003350 kerosene Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003502 gasoline Substances 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000004517 catalytic hydrocracking Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910003294 NiMo Inorganic materials 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 2
- 229910003446 platinum oxide Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000006641 Fischer synthesis reaction Methods 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 aluminas Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- PQLXHQMOHUQAKB-UHFFFAOYSA-N miltefosine Chemical compound CCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C PQLXHQMOHUQAKB-UHFFFAOYSA-N 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/62—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/043—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
L'invention concerne un procédé, amélioré, de fabrication d'huiles de base de très haute qualité et de production simultanée de distillats moyens de haute qualité, comportant les étapes successives d'hydroisomérisation et déparaffinage catalytique.L'hydroisomérisation se déroule en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal étant inférieure à 20%. De préférence le support est une silice-alumine amorphe. Le déparaffinage catalytique se déroule en présence d'un catalyseur contenant au moins un élément hydro-déshydrogénant (groupe VIII) et au moins un tamis moléculaire (zéolithe préférée). De préférence le tamis est choisie parmi la zéolithe NU-10, EU-1, EU-13 et ferrierite.
Description
La présente invention concerne un procédé amélioré de fabrication d'huiles
de base de très haute qualité c'est à dire possédant un haut indice de viscosité (Vl), une bonne stabilité UV et un faible point d'écoulement, à partir de charges hydrocarbonées et de préférence à partir de charges hydrocarbonées issues du procédé Fischer-Tropsch, avec éventuellement simultanément la production de distillats moyens (gazoles, kérosène notamment) de très haute qualité, c'est-à-dire
possédant un faible point d'écoulement et un indice de cétane élevé.
Art antérieur Les lubrifiants de haute qualité sont d'une importance primordiale pour le bon
fonctionnement des machines modernes, des automobiles, et des camions.
Ces lubrifiants sont le plus souvent obtenus par une succession d'étapes de raffinage permettant l'amélioration des propriétés d'une coupe pétrolière. En particulier un traitement des fractions pétrolières lourdes à fortes teneurs en paraffines linéaires ou peu ramifiées est nécessaire afin d'obtenir des huiles de base de bonne qualité et ce avec les meilleurs rendements possibles, par une opération qui vise à éliminer les paraffines linéaires ou très peu branchées, des charges qui
seront ensuite utilisées en tant que huiles de base.
En effet, les paraffines de haut poids moléculaire qui sont linéaires ou très faiblement branchées et qui sont présentes dans les huiles conduisent à des points d'écoulement hauts et donc à des phénomènes de figeage pour des utilisations à basse température. Afin de diminuer les valeurs des points d'écoulement, ces paraffines linéaires pas ou très peu branchées doivent être entièrement ou
partiellement éliminées.
Un autre moyen est le traitement catalytique en présence ou en absence d'hydrogène et, compte tenu de leur sélectivité de forme, les zéolithes sont parmi les
catalyseurs les plus utilisés.
Des catalyseurs à base de zéolithes telles que les ZSM-5, ZSM-11, ZSM-12, ZSM-
22, ZSM-23, ZSM-35 et ZSM-38 ont été décrits pour leur utilisation dans ces
procédés.
Tous les catalyseurs utilisés actuellement en hydroisomérisation sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g'1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines amorphes et les silice-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et
tungstène et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur. La demanderesse se propose donc, selon le procédé décrit dans l'invention, de produire conjointement des distillats moyens de très bonne qualité, des bases huiles de VIl et de point d'écoulement au moins égaux à ceux obtenus avec un procédé
d'hydroraffinage et/ou d'hydrocraquage.
Obiet de l'invention La demanderesse a porté ses efforts de recherche sur la mise au point d'un procédé amélioré de fabrication d'huiles lubrifiantes de très haute qualité et de distillats moyens de haute qualité à partir de charges hydrocarbonées et de préférence à
partir de charges hydrocarbonées issues du procédé Fischer-Tropsch.
La présente invention porte donc sur un enchaînement de procédés pour la fabrication conjointe d'huiles de bases de très haute qualité et de distillats moyens (gazoles notamment) de très haute qualité. Les huiles obtenues possèdent un haut indice de viscosité (VI), une faible volatilité, une bonne stabilité UV et un faible point d'écoulement, à partir de coupes pétrolières et de préférence à partir de charges
hydrocarbonées issues du procédé Fischer-Tropsch.
Plus précisément, I'invention concerne un procédé pour la production d'huiles à partir d'une charge hydrocarbonée (dont de préférence au moins 20 % volume a une 1o température d'ébullition d'au au moins 340 C), ledit procédé comportant les étapes successives suivantes: (a) conversion de la charge avec hydroisomérisation simultanée des n- paraffines de la charge, ladite charge ayant une teneur en soufre inférieure à 1000 ppm pds, une teneur en azote inférieure à 200 ppm pds, une teneur en métaux inférieure à 50 ppm pds, une teneur en oxygène d'au plus 0,2 % pds, ladite étape se déroulant à une température de 200- 500 C, sous une pression de 5 Mpa, avec une vitesse spatiale de 0, 1 - 5h-', en présence d'hydrogène, et en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la
dispersion en métal noble étant inférieure à 20%.
(b) déparaffinage catalytique d'au moins une partie de l'effluent issu de l'étape a), réalisé à une température de 200 - 500 C, sous une pression de 1-25 Mpa, avec une vitesse volumique horaire de 0,05-50h1-', en présence de 50-2000 litre d'hydrogène/litre d'effluent entrant dans l'étape (b) et en présence d'un catalyseur comprenant au moins un élément hydro-déshydrogénant et au moins un tamis moléculaire. L'étape (a) est donc éventuellement précédée d'une étape hydrotraitement généralement réalisée à une température de 200-450 C, sous une pression de 2 à Mpa, avec une vitesse spatiale de 0,1-6h-', en présence d'hydrogène dans le rapport volumique hydrogène/hydrocarbure de 100-2000 I/1, et en présence d'un catalyseur amorphe comprenant au moins un métal du groupe VIII et au moins un métal du groupe Vl B. L'étape (a) est avantageusement suivie d'une séparation des gaz légers de l'effluent
obtenu à l'issue de l'étape (a).
De préférence, I'effluent issu du traitement d'hydroisomérisation est soumis à une étape de distillation (de préférence atmosphérique) de façon à séparer les composés ayant un point d'ébullition inférieur à 340 C (gaz, essence, kérosène, gazole) des produits ayant un point d'ébullition initial supérieur à au moins 340 C et qui forment le résidu. On sépare ainsi au moins une fraction distillat moyen présentant un point d'écoulement d'au plus -20 C, et un indice de cétane d'au moins 50. L'étape (b) de déparaffinage catalytique s'applique alors au moins au résidu à l'issu de la distillation qui contient des composés à point d'ébullition supérieur à au moins 340 C. Dans un autre mode de réalisation de l'invention, I'effluent issu de l'étape (a) n'est pas distillé avant de mettre en oeuvre l'étape (b). Tout au plus, il subit une séparation d'au moins une partie des gaz légers (par flash....) et il est ensuite soumis
au déparaffinage catalytique.
De préférence, l'étape (b) est réalisée avec un catalyseur contenant au moins un tamis moléculaire dont le système microporeux présente au moins un type principal de canaux à ouvertures de pores ayant 9 ou 10 atomes T. T étant choisi dans le groupe formé par Si, AI, P, B, Ti, Fe, Ga, alternant avec un nombre égal d'atomes oxygène, la distance entre deux ouvertures de pores accessibles à 9 ou 10 atomes
T étant d'au plus à 0,75 nm, et ledit tamis présentant au test n-décane un rapport 2-
méthylnonane/5-méthylnonane supérieur à 5.
Avantageusement, I'effluent issu du traitement de déparaffinage est soumis à une étape de distillation comprenant avantageusement une distillation atmosphérique et une distillation sous vide de façon à séparer au moins une fraction huile à un point d'ébullition supérieur à au moins 340 C. Elle présente le plus souvent un point d'écoulement inférieur à -10 C et un Vl supérieur à 95, une viscosité à 100 C d'au moins 3cSt (soit 3mm2/s). Cette étape de distillation est essentielle lorsque il n'y a
pas de distillation entre les étapes (a) et (b).
Description détaillée de l'invention
Le procédé selon l'invention comprend les étapes suivantes: La charge La charge hydrocarbonée à partir de laquelle les huiles et éventuellement les distillats moyens de haute qualité, sont obtenus contient de préférence au moins 20 % volume bouillant au-dessus de 340 C, de préférence à au moins 350 C et avantageusement à au moins 380 C. Cela ne signifie pas que le point d'ébullition
est de 380 C et plus, mais de 380 C ou plus.
La charge contient des n-paraffines. De préférence la charge est un effluent issu d'une unité de Fischer-Tropsch. Des charges très variées peuvent être traitées par le procédé. La charge peut être aussi par exemple des distillats sous vide issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction, ou provenant d'unités d'extraction d'aromatiques, ou provenant de désulfuration ou d'hydroconversion de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide), ou encore la charge peut être une huile désasphaltée, ou encore un résidu d'hydrocraquage par exemple issu de DSV ou tout mélange des
charges précédemment citées. La liste ci-dessus n'est pas limitative.
En général, les charges convenant pour l'objectif huiles ont un point d'ébullition initial
supérieur à au moins 340 C et mieux encore supérieur à au moins 370 C.
La charge introduite dans l'étape (a) de conversion-hydroisomérisation doit être propre. Nous entendrons par charge propre les charges dont la teneur en soufre est inférieure à 1000 ppm poids et de préférence inférieure à 500 ppm poids et de façon encore plus préférée inférieure à 300 ppm poids ou mieux à 200 ppm poids. La teneur en azote est inférieure à 200 ppm poids et de préférence inférieure à 100 ppm poids et de manière encore plus préférée inférieure à 50 ppm poids. La teneur
en métaux de la charge tels que nickel et vanadium est extrêmement réduite c'est-à-
dire inférieure à 50 ppm poids et de manière plus avantageuse inférieure à 10 ppm
poids, ou mieux inférieure à 2 ppm pds.
Dans le cas o les teneurs en produits insaturés ou oxygénés sont susceptibles d'entraîner une désactivation trop importante du système catalytique, la charge (par exemple issue du procédé Fischer- Tropsch) devra, avant d'entrer dans la zone d'hydroisomérisation, subir un hydrotraitement dans une zone d'hydrotraitement. On fait réagir de l'hydrogène avec la charge au contact d'un catalyseur d'hydrotraitement dont le rôle est de réduire la teneur en molécules hydrocarbonées
insaturées et oxygénées (produites par exemple lors de la synthèse Fischer-
Tropsch).
La teneur en oxygène est ainsi réduite à au plus 0,2 % poids.
Dans le cas o la charge à traiter n'est pas propre au sens défini plus haut, elle est soumise dans un premier temps à une étape préalable d'hydrotraitement, durant lequel, elle est mise en contact, en présence d'hydrogène, avec au moins un catalyseur comportant un support amorphe et au moins un métal ayant une fonction hydro-déshydrogénante assurée par exemple par au moins un élément du groupe VIB et au moins un élément du groupe VIII, à une température comprise entre 200 et 450 C, de préférence 250-450 C avantageusement 330-450 C ou 360-420 C, sous une pression comprise en 5 et 25 Mpa ou mieux inférieure à 20 MPa, de préférence entre 5 et 20 Mpa, la vitesse spatiale étant comprise entre 0, 1 et 6 h-', de préférence, 0,3-3h-', et la quantité d'hydrogène introduite est telle que le rapport
volumique hydrogène/hydrocarbure soit compris entre 100 et 2000 litres/litre.
Le support est généralement à base (de préférence constitué essentiellement) d'alumine ou de silice-alumine amorphe; il peut également renfermer de l'oxyde de bore, de la magnésie, de la zircone, de l'oxyde de titane ou une combinaison de ces oxydes. La fonction hydrodéshydrogénante est remplie de préférence par au moins un métal ou composé de métal des groupes VIII et VIB de préférence choisi(s) parmi
; molybdène, tungstène, nickel et cobalt.
Ce catalyseur pourra contenir avantageusement du phosphore; en effet il est connu dans l'art antérieur que le composé apporte deux avantages aux catalyseurs d'hydrotraitement: une facilité de préparation lors notamment de l'imprégnation des
solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation.
Les catalyseurs préférés sont les catalyseurs NiMo et/ou NiW sur alumine, également les catalyseurs NiMo et/ou NiW sur alumine dopée avec au moins un élément compris dans le groupe des atomes formés par le phosphore, le bore, le silicium et le fluor, ou encore les catalyseurs NiMo et/ou NiW sur silice-alumine, ou sur silice-alumine- oxyde de titane dopée ou non par au moins un élément compris
dans le groupe des atomes formés par le phosphore, le bore, le fluor et le silicium.
La concentration totale en oxydes de métaux des groupes VIB et VIII est comprise entre 5 et 40 % en poids et de préférence entre 7 et 30 % et le rapport pondérai exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est de préférence compris entre 20 et 1,25 et encore plus préféré entre 10 et 2. La concentration en oxyde de phosphore P20s sera inférieure
à 15 % poids et de préférence à 10 % poids.
Le produit obtenu à l'issue de l'hydrotraitement subit, si besoin, une séparation intermédiaire de l'eau (H20), H2S et NH3 de façon à amener les teneurs en eau, en H2S et NH3 à des valeurs respectivement inférieures à au plus 100 ppm, 200 ppm, ppm dans la charge introduite dans l'étape (a). On peut à ce niveau prévoir une éventuellement séparations des produits ayant un point d'ébullition inférieur à 340 C
de façon à ne traiter dans l'étape (a) qu'un résidu.
Etape (a): Hydroisomérisation-Conversion Le catalyseur L'étape (a) a lieu en présence d'hydrogène et en présence d'un catalyseur bifonctionnel comportant au moins un métal noble déposé sur un support acide
amorphe, la dispersion en métal noble étant inférieure à 20 %.
Durant cette étape les n-paraffines en présence d'un catalyseur bifonctionnel subissent une isomérisation puis éventuellement un hydrocraquage pour conduire respectivement à la formation d'isoparaffines et de produits de craquage plus légers
tels que les gazoles et le kérosène.
De préférence, la fraction des particules de métal noble ayant une taille inférieure à 2
nm représente au plus 2 % pds du métal noble déposé sur le catalyseur.
Avantageusement, au moins 70 % (de préférence au moins 80 %, et mieux au moins %), des particules de métal noble présentent une taille supérieure à 4 nm (% nombre). Le support est amorphe, il ne contient pas de tamis moléculaire; le catalyseur ne
contient pas non plus de tamis moléculaire.
Le support acide amorphe est généralement choisi dans le groupe formé par une silice-alumine, une alumine halogénée (fluorée de préférence), une alumine dopée au silicium (silicium déposé), un mélange alumine oxyde de titane, une zircone sulfatée, une zircone dopée au tungstène, et leurs mélanges entre eux ou avec au moins une matrice amorphe choisie dans le groupe formé par l'alumine, I'oxyde de titane, la
silice, I'oxyde de bore, la magnésie, la zircone, I'argile par exemple.
Io Un catalyseur préféré, selon l'invention, comprend (de préférence est essentiellement constitué de) 0,05 à 10 % en poids d'au moins un métal noble du groupe VIII déposé
sur un support amorphe de silice-alumine.
Les caractéristiques du catalyseur sont plus en détail Teneur en silice: le support préféré utilisé pour l'élaboration du catalyseur décrit dans
le cadre de ce brevet est composé de silice SiO2 et d'alumine Al203 dès la synthèse.
La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95 %, avantageusement entre 5 et 95 % et de manière préférée entre 10 et 80 % et de manière encore plus préférée entre 20 et 70 % voire entre 22 et 45%. Cette teneur est parfaitement mesurée à l'aide de la fluorescence X. Nature du métal noble: pour ce type particulier de réaction, la fonction métallique est apportée par au moins un métal noble du groupe VIII de la classification périodique
des éléments et plus particulièrement le platine et/ou le palladium.
Teneur en métal noble: la teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement
comprise entre 0,1 et 5.
Dispersion du métal noble: la dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, peut être mesurée, par exemple, par titrage HJO2. Le métal est préalablement réduit c'est-à-dire qu'il subit un traitement sous flux d'hydrogène à haute température dans ces conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO2. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport
quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur.
Dans notre cas, la dispersion est inférieure à 20 %, elle est généralement supérieure
à 1% ou mieux à 5%.
Taille des particules mesurée par Microscopie Electronique à Transmission: afin de déterminer la taille et la répartition des particules de métal nous avons utilisé la Microscopie Electronique à Transmission. Après préparation, l'échantillon de catalyseur est finement broyé dans un mortier en agate puis il est dispersé dans de l'éthanol par ultrasons. Des prélèvements à différents endroits permettant d'assurer une bonne représentativité en taille sont réalisés et déposés sur une grille en cuivre recouverte d'un film de carbone mince. Les grilles sont ensuite séchées à l'air sous lampe infra-rouge avant d'être introduites dans le microscope pour l'observation. Afin d'estimer la taille moyenne des particules de métal noble, plusieurs centaines de mesures sont effectuées à partir de plusieurs dizaines de clichés. L'ensemble de ces
mesures permet de réaliser un histogramme de répartition de la taille des particules.
Ainsi, nous pouvons estimer précisément la proportion de particules correspondant à
chaque domaine de taille des particules.
Répartition du métal noble: la répartition du métal noble représente la distribution du
métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé.
Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à-dire que tous les atomes de platine, situés en couronne, seront
accessibles aux réactifs. Dans notre cas, la répartition du platine est bonne c'est-à-
dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 avantageusement supérieur à
0,2 et de préférence supérieur à 0,5.
3 5 Surface BET: la surface BET du support est généralement comprise entre 100 m2/g et 500 m2/g et de préférence comprise entre 250 m2/g et 450m2/g et pour les supports I0
à base de silice alumine, de manière encore plus préférée entre 310 m2/g et 450 m2/g.
Volume poreux global du support: pour les supports à base de silice alumine, il est généralement inférieur à 1,2 ml/g et de préférence compris entre 0,3 et 1,1 ml/g et encore plus avantageusement inférieur à 1,05 ml/g. La préparation et la mise en forme de la silice- alumine et de tout support en général est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une Io calcination comme par exemple un traitement thermique à 300-750 C (600 C préféré) pendant une durée comprise entre 0,25 et 10 heures (2 heures préféré) sous 0-30 %
volume de vapeur d'eau (environ7,5 % préféré pour une silice-alumine).
Le sel de métal est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction et pour obtenir la répartition en taille des
particules métalliques, le catalyseur subit une calcination sous air humidifié à 300-
750 C (550 C préféré) pendant 0,25-10 heures (2 heures préféré). La pression partielle d'H20 lors de la calcination est par exemple 0,05 bar à 0,50 bar (0,15 bar préférée). D'autres méthodes de traitement connues permettant d'obtenir la
dispersion inférieure à 20 % conviennent dans le cadre de l'invention.
Dans cette étape (a) la conversion est le plus souvent accompagnée d'une hydroisomérisation des paraffines. Le procédé a l'avantage de la flexibilité: selon le degré de conversion, la production est plus dirigée sur les huiles ou les distillats
moyens. La conversion varie généralement entre 5-90 %.
Avant utilisation dans la réaction de conversion, le métal contenu dans le catalyseur est réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150 C et 650 C et une pression totale comprise entre 0,1 et 25 MPa. Par exemple, une réduction consiste en un palier à 150 C de 2 heures puis une montée en température jusqu'à 450 C à la vitesse de 1 C/min puis un palier de 2 heures à 450 C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 I hydrogène/ catalyseur. Notons Il
également que toute méthode de réduction ex-situ est convenable.
Les conditions opératoires dans lesquelles est effectuée cette étape (a) sont importantes. La pression sera maintenue entre 2 et 25 MPa et de préférence 2 (ou 3) à 20 Mpa et avantageusement de 2 à 18 MPa, la vitesse spatiale sera comprise entre 0,1 h-1 et h-1 et de préférence entre 0,2 et 1 Oh-' est avantageusement entre 0,5 et 5,0h-1. Et Io un taux d'hydrogène compris entre 100 et 2000 litres d'hydrogène par litre de charge
et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
La température utilisée dans cette étape est comprise entre 200 et 450 C et préférentiellement de 250 C à 450 C avantageusement de 300 à 450 C, et encore
plus avantageusement supérieure à 340 C, par exemple entre 320-450 C.
Les étapes d'hydrotraitement et de conversion peuvent être réalisées sur les deux types de catalyseurs dans des (deux ou plusieurs) réacteurs différents, ou/et sur au
moins deux lits catalytiques installés dans un même réacteur.
Traitement de l'effluent issu de l'étape (a) L'effluent issu de l'étape (a) de conversion peut en totalité être traité dans l'étape (b) de déparaffinage. Tout au plus, il pourra subir une séparation d'une partie au moins (et de préférence d'au moins une majeure partie) de gaz légers qui comprennent l'hydrogène, I'ammoniac et l'hydrogène sulfuré éventuellement formés, et éventuellement des composés à au plus 4 atomes de carbone. L'hydrogène peut être
séparé préalablement.
Avantageusement, l'effluent est distillé de façon à séparer les gaz légers et également séparer au moins un résidu contenant les composés à point d'ébullition supérieur à au
moins 340 C. II s'agit de préférence d'une distillation atmosphérique.
On peut avantageusement distiller pour obtenir plusieurs fractions (essence, kérosène, gazole par exemple), à point d'ébullition d'au plus 340 C et une fraction (appelée résidu) à point d'ébullition initial supérieur à au moins 340 C et mieux
supérieur à 350 C et de préférence d'au moins 3700C ou 380 C.
Selon un mode préféré de l'invention, cette fraction (résidu) sera ensuite traité dans
l'étape de déparaffinage catalytique, c'est à dire sans subir de distillation sous vide.
Mais dans un autre mode de réalisation, on peut utiliser un distillation sous vide. Dans un mode de réalisation plus axé sur un objectif de production de distillats moyens, et toujours selon l'invention, il est possible de recycler une partie du résidu
issu de l'étape de séparation vers le réacteur contenant le catalyseur de conversion-
nO hydroisomérisation de manière à le convertir et augmenter la production de distillats moyens. D'une façon générale, on appelle dans ce texte distillats moyens, la (les) fraction(s) à
point d'ébullition initial d'au moins 150 C et final allant jusqu'avant le résidu, c'est-à-
dire généralement jusqu'à 340 C, 350 C ou de préférence inférieur à 370 C ou à
380 C.
L'effluent issu de l'étape (a) peut subir, avant ou après distillation, d'autres traitements
tel que par exemple une extraction d'une partie au moins des composés aromatiques.
Etape (b): Hydrodéparaffinage catalytique Une partie au moins de l'effluent issu de l'étape (a), effluent ayant éventuellement subi les séparations eVt/ou traitements décrits ci-dessus, est alors soumise à une étape de déparaffinage catalytique en présence d'hydrogène et d'un catalyseur
d'hydrodéparaffinage comportant une fonction acide, une fonction métallique hydro-
déshydrogénante et au moins une matrice.
Notons que les composés bouillant au-dessus de au moins 340 C sont toujours
soumis au déparaffinage catalytique.
Le catalyseur La fonction acide est assurée par au moins un tamis moléculaire et de préférence un tamis moléculaire dont le système microporeux présente au moins un type principal de canaux dont les ouvertures sont formées d'anneaux qui contiennent 9 ou 10 atomes T. Les atomes T sont les atomes tétraédriques constitutifs du tamis moléculaire et peuvent être au moins un des éléments contenus dans l'ensemble suivant des atomes (Si, AI, P, B, Ti, Fe, Ga). Dans les anneaux constitutifs des ouvertures de canaux, les atomes T, définis précédemment, alternent avecun nombre égal d'atomes d'oxygène. Il est donc équivalent de dire que les ouvertures sont formées d'anneaux qui contiennent 9 ou 10 atomes d'oxygène ou formées d'anneaux qui contiennent 9 ou 10 atomes T. Le tamis moléculaire entrant dans la composition du catalyseur d'hydrodéparaffinage peut aussi comporter d'autres types de canaux mais dont les ouvertures sont formées
d'anneaux qui contiennent moins de 10 atomes T ou atomes d'oxygène.
Le tamis moléculaire entrant dans la composition du catalyseur préféré possède en outre une largeur de pont, distance entre deux ouvertures de pores, telle que définie précédemment, qui est d'au plus 0,75 nm (lnm =10-9 m) de préférence comprise entre 0,50 nm et 0,75 nm, de manière encore plus préférée entre 0,52 nm et 0,73 nm; de tels tamis permettent l'obtention de bonnes performances catalytiques dans
l'étape d'hydrodéparaffinage.
La mesure de largeur de pont est réalisée en utilisant un outil de graphisme et de modélisation moléculaire tel que Hyperchem ou Biosym, qui permet de construire la surface des tamis moléculaires en question et, en tenant compte des rayons ioniques
des éléments présents dans la charpente du tamis, de mesurer la largeur de pont.
Le catalyseur préféré convenant pour ce procédé peut être également caractérisé par un test catalytique dit test standard de transformation du n-décane pur qui est réalisé sous une pression partielle de 450 kPa d'hydrogène et une pression partielle de n-Clo de 1, 2 kPa soit une pression totale de 451,2 kPa en lit fixe et avec un débit de n-C10 constant de 9,5 ml/h, un débit total de 3,6 I/h et une masse de catalyseur de 0,2 g. La réaction est réalisée en flux descendant. Le taux de conversion est réglé par la température à laquelle se déroule la réaction. Le catalyseur soumis au dit test est
constitué de zéolithe pure pastillée et de 0,5% poids de platine.
Le n-décane en présence du tamis moléculaire et d'une fonction hydro-
déshydrogénante va subir des réactions d'hydroisomérisation qui vont produire des produits isomérisés à 10 atomes de carbone, et des réactions d'hydrocraquage
conduisant à la formation de produits contenant moins de 10 atomes de carbone.
Dans ces conditions un tamis moléculaire utilisé dans l'étape d'hydrodéparaffinage
avec le catalyseur préféré selon l'invention doit présenter les caractéristiques physico-
chimiques décrites ci-dessus et conduire, pour un rendement en produits isomérisés du n-C10 de l'ordre de 5% poids (le taux de conversion est réglé par la température), à un rapport 2-méthylnonane/5-méthylnonane supérieur à 5 et de préférence supérieur à 7.
L'utilisation de tamis moléculaires ainsi sélectionnés, dans les conditions décrites ci-
dessus, parmi les nombreux tamis moléculaires existants déjà, permet notamment la production de produits à faible point d'écoulement et haut indice de viscosité avec de
bons rendements dans le cadre du procédé selon l'invention.
Les tamis moléculaires pouvant entrer dans la composition du catalyseur préféré d'hydrodéparaffinage catalytique sont, à titre d'exemples, les zéolithes suivantes:
Ferrierite, NU-10, EU-13, EU-1.
De préférence les tamis moléculaires entrant dans la composition du catalyseur d'hydrodéparaffinage sont compris dans l'ensemble formé par la ferrierite et la
zéolithe EU-1.
D'une manière générale, le catalyseur d'hydrodéparaffinage comprend une zéolithe choisie dans le groupe formé par NU-10, EU-1, EU-13, ferrierite, ZSM-22, Theta-1,
ZSM-50, NU-23, ZSM-35, ZSM-38, ZSM-23, ISI-1, KZ-2, ISI-4, KZ-1.
La teneur pondérale en tamis moléculaire dans le catalyseur d'hydrodéparaffinage est comprise entre 1 et 90 %, de préférence entre 5 et 90% et de manière encore plus
préférée entre 10 et 85 %.
Les matrices utilisées pour réaliser la mise en forme du catalyseur sont à titre d'exemples et de façon non limitative, les gels d'alumine, les alumines, la magnésie, les silice-alumines amorphes, et leurs mélanges. Des techniques telles que l'extrusion, le pastillage ou la dragéification, peuvent être utilisées pour réaliser
l'opération de mise en forme.
Le catalyseur comporte aussi une fonction hydro-déshydrogénante assurée, par exemple, par au moins un élément du groupe VIII et de préférence au moins un élément noble compris dans l'ensemble formé par le platine et le palladium. La teneur pondérale en métal non noble du groupe VIII, par rapport au catalyseur final, est comprise entre 1 et 40% de préférence entre 10 et 30%. Dans ce cas, le métal non
noble est souvent associé à au moins un métal du groupe VIB (Mo et W préférés).
S'il s'agit d'au moins un métal noble du groupe VIII, la teneur pondérale, par rapport au catalyseur final, est inférieure à 5%, de préférence inférieure à 3% et de manière
encore plus préférée inférieure à 1,5%.
Dans le cas de l'utilisation de métaux nobles du groupe VIII, le platine et/ou le
palladium sont de préférence localisés sur la matrice.
Le catalyseur d'hydrodéparaffinage selon l'invention peut en outre contenir de 0 à %, de préférence de 0 à 10% poids (exprimées en oxydes) de phosphore. La combinaison de métal (aux) du groupe Vl B et/ou de métal (aux) du groupe VIII avec
le phosphore est particulièrement avantageux.
Le traitement Un résidu obtenu à l'issu à l'étape (a) et de la distillation et qui est intéressant à traiter dans cette étape (b) d'hydrodéparaffinage, possède les caractéristiques suivantes: il présente, un point d'ébullition initial supérieur à 340 C et de préférence supérieur à 370 C, un point d'écoulement d'au moins 15 C, un indice de viscosité de 35 à 165 (avant déparaffinage), de préférence au moins égal à 110 et de manière encore plus préférée inférieur à 150, une viscosité à 100 C supérieure ou égale à 3 cSt (mm2/s), une teneur en composés aromatiques inférieure à 10 % pds, une teneur en azote inférieure à 10 ppm pds, une teneur en soufre inférieure à 50 ppm pds ou mieux à 10
ppm pds.
Les conditions opératoires dans lesquelles s'opère l'étape catalytique du procédé de l'invention sont les suivantes: - la température de réaction est comprise entre 200 et 500 C et de préférence entre 250 et 470 C, avantageusement 270-430 C; - la pression est comprise entre 0,1 et 25 MPa (106 Pa) et de préférence entre 1,0 et 20 MPa; - la vitesse volumique horaire (wvvh exprimée en volume de charge injectée par unité de volume de catalyseur et par heure) est comprise entre environ 0,05 et environ et de préférence entre environ 0,1 et environ 20 h-' et de manière encore plus
préférée entre 0,2 et 10 h-'.
Elles sont choisies pour obtenir le point d'écoulement recherché.
Le contact entre la charge et le catalyseur est réalisé en présence d'hydrogène. Le taux d'hydrogène utilisé et exprimé en litres d'hydrogène par litre de charge est compris entre 50 et environ 2000 litres d'hydrogène par litre de charge et de
préférence entre 100 et 1500 litres d'hydrogène par litre de charge.
L'effluent obtenu L'effluent en sortie de l'étape (b) d'hydrodéparaffinage, est envoyé dans le train de distillation, qui intègre de préférence une distillation atmosphérique et une distillation sous vide, qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 340 C et de préférence inférieur à 370 C, (et incluant notamment ceux formés lors de l'étape d'hydrodéparaffinage catalytique), et de séparer la fraction qui constitue la base huile et dont le point initial d'ébullition est supérieur à au moins
340 C et de préférence supérieur ou égal à 370 C.
Par ailleurs, cette section de distillation sous vide permet de séparer les différents
grades d'huiles.
De préférence, avant d'être distillé, I'effluent en sortie de l'étape (b) d'hydrodéparaffinage catalytique est, au moins en partie et de préférence, dans sa totalité, envoyé sur un catalyseur d'hydrofinishing (hydrofinition) en présence d'hydrogène de manière à réaliser une hydrogénation poussée des composés aromatiques qui nuisent à la stabilité des huiles et des distillats. Cependant, I'acidité du catalyseur doit être suffisamment faible pour ne pas conduire à la formation de produit de craquage de point d'ébullition inférieur à 340 C de manière à ne pas
dégrader les rendements finaux notamment en huiles.
Le catalyseur utilisé dans cette étape comporte au moins un métal du groupe VIII et/ou au moins un élément du groupe VIB de la classification périodique. Les
fonctions métalliques fortes: platine et/ou palladium, ou des combinaisons nickel-
tungstène, nickel-molydbène seront avantageusement utilisées pour réaliser une
hydrogénation poussée des aromatiques.
Ces métaux sont déposés et dispersés sur un support de type oxyde amorphe ou cristallin, tel que par exemple, les alumines, les silices, les silice-alumines. Le catalyseur d'hydrofinition (HDF) peut aussi contenir au moins un élément du groupe VII A de la classification périodique des éléments. De façon préférée ces
catalyseurs contiennent du fluor et/ou du chlore.
Les teneurs pondérales en métaux sont comprises entre 10 et 30 % dans le cas des métaux non-nobles et inférieures à 2 %, de manière préférée comprise entre 0,1 et 1,5 %, et de manière encore plus préférée entre 0, 1 et 1,0 % dans le cas des métaux nobles. La quantité totale d'halogène est comprise entre 0,02 et 30 % pds avantageusement
0,01 à 15 %, ou encore à 0,01 à 10 %, de préférence 0,01 à 5 %.
On pourra citer parmi les catalyseurs utilisables dans cette étape d'hydrofinition, et conduisant à d'excellentes performances, et notamment pour l'obtention d'huiles médicinales, les catalyseurs contenant au moins un métal noble du groupe VIII (platine par exemple) et au moins un halogène (chlore et/ou fluor), la combinaison
chlore et fluor étant préférée.
Les conditions opératoires dans lesquelles s'opère l'étape d'hydrofinition du procédé de l'invention sont les suivantes: - la température de réaction est comprise entre 180 et 400 C et de préférence entre 210 et 350 C, avantageusement 230-320 C; - la pression est comprise entre 0,1 et 25 Mpa (106 Pa) et de préférence entre 1,0 et Mpa; - la vitesse volumique horaire (vvh exprimée en volume de charge injectée par unité de volume de catalyseur et par heure) est comprise entre environ 0,05 et environ
et de préférence entre environ 0,1 et environ 30 h-'.
Le contact entre la charge et le catalyseur est réalisé en présence d'hydrogène. Le taux d'hydrogène utilisé et exprimé en litres d'hydrogène par litre de charge est compris entre 50 et environ 2000 litres d'hydrogène par litre de charge et de
préférence entre 100 et 1500 litres d'hydrogène par litre de charge.
Avantageusement, la température de l'étape d'hydrofiniton(HDF) est inférieure à la
température de l'étape d'hydrodéparaffinage catalytique (HDPC). La différence THDPC-
THOF est généralement comprise entre 20 et 200, et de préférence entre 30 et 100 C.
L'effluent en sortie d'HDF est envoyé dans le train de distillation.
Les produits Les huiles de bases obtenues selon ce procédé présentent un point d'écoulement inférieur à -10 C, un Vl supérieur à 95, de préférence supérieur à 110 et de manière encore plus préférée supérieur à 120, une viscosité d'au moins 3,0 cSt à 100 C, une couleur ASTM inférieure à 1 et une stabilité aux UV telle que l'accroissement de la
couleur ASTM est compris entre 0 et 4 et de préférence entre 0,5 et 2,5.
Le test de stabilité aux UV, adapté des procédés ASTM D925-55 et Dl114855, fournit une méthode rapide pour comparer la stabilité des huiles de lubrification exposées à une source de rayons ultraviolets. La chambre d'essai est constituée d'une enceinte métallique munie d'un plateau tournant qui reçoit les échantillons d'huiles. Une ampoule produisant les mêmes rayons ultraviolets que ceux de la lumière solaire et
placée au sommet de la chambre d'essai est dirigée vers le bas sur les échantillons.
Parmi les échantillons est incluse une huile standard à caractéristiques U.V connues.
La couleur ASTM D1500 des échantillons est déterminée à t=0 puis après 45 h d'exposition à 55 C. Les résultats sont transcrits pour l'échantillon standard et les échantillons de l'essai comme suit: a) couleur initiale ASTM D1 500, b) couleur finale ASTM D1500, c) accroissement de la couleur, d) trouble,
e) précipité.
Les distillats moyens obtenus ont des points d'écoulement améliorés (d'au plus-20 C),
un indice de cétane supérieur à 50, et même supérieur à 52.
La figure 1 Le procédé est illustré sur la figure 1 représentant le traitement d'une charge, par
exemple, issue du procédé Fischer-Tropsch.
Sur la figure 1, la charge entre par la conduite (1) dans une zone d'hydrotraitement (2) (qui peut être composée de un ou plusieurs réacteurs, et comprendre un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) dans laquelle entre de l'hydrogène
(par exemple par la conduite (3)) et o est réalisée l'étape d'hydrotraitement.
La charge hydrotraitée est transférée par la conduite (4) dans la zone d'hydroisomérisation (7) (qui peut être composée de un ou plusieurs réacteurs, et comprendre un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) o est réalisée, en présence d'hydrogène, l'étape (a) d'hydroisomérisation. De l'hydrogène
peut être amené par la conduite (8).
Dans cette figure, avant d'être introduite dans la zone (7), la charge à hydroisomériser est débarrassée d'une grande partie de son eau dans le ballon (5), I'eau sortant par la conduite (6) et éventuellement de l'ammoniac et de l'hydrogène sulfuré H2S, dans le
cas o la charge qui entre par la conduite 1 contient du soufre et de l'azote.
L'effluent issu de la zone (7) est envoyé par une conduite (9) dans un ballon (10) pour séparation de l'hydrogène qui est extrait par une conduite (11), I'effluent est ensuite distillé à pression atmosphérique dans la colonne (12) d'o est extraite en tête par la conduite (13) une fraction légère contenant les composés à au plus 4 atomes de
carbone et ceux bouillant en-dessous (NH3, H2S etc...).
Il est obtenu également au moins une fraction essence (14) et au moins une fraction
distillat moyen (kérosène(15) et gazole (16) par exemple).
Il est obtenu en fond de colonne une fraction contenant les composés à point d'ébullition supérieur à au moins 340 C. Cette fraction est évacuée par la conduite
(17) vers la zone (18) de déparaffinage catalytique.
La zone (18) de déparaffinage catalytique (comportant un ou plusieurs réacteurs, un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) reçoit également de
l'hydrogène par une conduite (19) pour réaliser l'étape (b) du procédé.
L'effluent obtenu sortant par la conduite (20) est séparé dans un train de distillation comportant outre le ballon (21) pour séparer l'hydrogène par une conduite (22), une colonne de distillation atmosphérique (23) et une colonne sous vide (24) qui traite le résidu de distillation atmosphérique transféré par la conduite (25), résidu à point d'ébullition initial supérieur à 340 C. Il est obtenu comme produits à l'issue des distillations, une fraction huile (conduite 26) et des fractions bouillant plus bas, comme le gazole (conduite 27), kérosène (conduite 28) essence (conduite 29); les gaz légers s'éliminant par la conduite (30) de la colonne atmosphérique et par la conduite (31) de la colonne de distillation sous vide. L'effluent sortant par la conduite (20) peut avantageusement être envoyé dans une zone d'hydrofinition (non représentée) (comportant un ou plusieurs réacteurs, un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs). De l'hydrogène peut être ajout si besoin dans cette zone. L'effluent sortant est alors transféré dans le ballon
(21) et le train de distillation décrit.
Pour ne pas alourdir la figure, le recyclage hydrogène n'a pas été représenté, que ce soit au niveau du ballon (10) vers l'hydrotraitement et/ou l'hydroisomérisation, et/ou au
niveau du ballon (21) vers le déparaffinage et/ou l'hydrofinition.
Exemple 1: Préparation du catalyseur A1 conforme à l'invention Le support est une silice-alumine utilisée sous forme d'extrudés. Elle contient 29,3 % poids de silice SiO2 et 70,7 % poids d'alumine Al O3. La silice-alumine, avant ajout du métal noble, présente une surface de 330 m2/g et son volume poreux total est de 0,87 cm3/g. Le catalyseur A correspondant est obtenu après imprégnation du métal noble sur le support. Le sel de platine Pt(NH3)4CI2 est dissous dans un volume de solution correspondant au volume poreux total à imprégner. Le solide est ensuite calciné pendant 2 heures sous air humidifié (pression partielle de H20 = 0,15 bar) à 550 C. La teneur en platine est de 0,60 % poids. Le volume poreux, mesuré sur le catalyseur, est égal à 0,82 cm3/g, la surface BET, mesuré sur le catalyseur, égale à 287 m2/g et le diamètre moyen des mésopores, mesuré sur le catalyseur, de 7 nm. Le volume poreux correspondant aux pores dont le diamètre est compris entre 4 nm et 10 nm est de 0,37 cm3/g soit 44 % du volume poreux total. La dispersion du platine mesurée par titrage HO02 est de 19 %. Les résultats obtenus par analyses locales sur les clichés de la Microscopie Electronique à Transmission nous indique une répartition des particules en métal noble dont la fraction inférieure à 2 nm représente des traces de Pt, au plus 2 % poids de métal. L'histogramme de la fraction des particules dont la taille est supérieure à 2 nm est représentée sur la figure ci- dessous. Cet histogramme montre que les particules ayant une taille comprise dans l'intervalle de taille 13 + 6 nm
représentent au moins 70 % du nombre des particules.
Histogramme des particules de Pt sur le catalyseur A z 4 - 2 - CDCD0 C 0ao O aO>0 Taille en A Exemple 2: Evaluation du catalyseur Ai en hydroisomérisation d'une charge Fischer-Tropsch suivi d'une séparation et d'un déparaffinage catalytique Le catalyseur dont la préparation est décrite dans l'exemple 1 est utilisé afin d'hydroisomériser une charge de paraffines issues de la synthèse Fischer- Tropsch dans le but d'obtenir des huiles. Afin de pouvoir directement utiliser les catalyseurs d'hydroisomérisation, la charge a été préalablement hydrotraitée et la teneur en oxygène amenée en dessous de 0,1 % poids. Les principales caractéristiques de la charge hydrotraitée sont les suivantes: point initial 170 C point 10% 197 C point 50% 350 C point 90% 537 C point final 674 C fraction 380+ (% poids) 42 point d'écoulement + 73 C densité (20/4) 0,787 L'unité de test catalytique comprend un réacteur en lit fixe, à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 80 ml de catalyseur. Le catalyseur est alors soumis à une atmosphère d'hydrogène pur à une pression de 10 MPa afin d'assurer la réduction de l'oxyde de platine en platine métallique puis la charge est enfin injectée. La pression totale est de 10 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 2 h"' et la température de réaction de 350 C. Après réaction, les effluents sont fractionnés en produits légers (essence Pl-150 C), distillats moyens (150-380 C) et
résidu (380 C).
Le résidu est alors déparaffiné dans un second réacteur à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 80 ml de catalyseur contenant 80% poids d'une zéolithe Ferrierite de rapport Si/AI=10,2 et 20% poids d'alumine ainsi que 0,6% poids de Pt. Le catalyseur est alors soumis à une atmosphère d'hydrogène pur à une pression de 10 MPa afin d'assurer la réduction de l'oxyde de platine en platine métallique puis la charge est enfin injectée. La pression totale est de 10 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 1 h-' et la température de réaction de 350 C. Après réaction, les effluents sont fractionnés en produits légers (essence PI-150 C), distillats
moyens (150-380 C) et résidu (380' C).
Les caractéristiques de l'huile obtenue sont mesurées.
Dans le tableau ci-après sont reportés les rendements pour les différentes fractions et les caractéristiques des huiles obtenues directement avec la charge et avec les effluents hydroisomérisés sur catalyseur A1 (conforme à l'invention) puis déparaffiné catalytiquement. Charge Effluent hydroisomérisé et hydrotraitée dé paraffiné catalytiquement Catalyseur A1 Déparaffinage au solvant -20 C* déparaffiné catalytiquement _______ _ selon l'exemple Densité des effluents à 15 C 0,790 0,779 % poids 380/ effluents 58 69 % poids 380+/ effluents 42 31 Qualité du résidu 380' Rendement du déparaffinage 6 59 (% poids) Rendement huile / charge 2,5 18,3 Qualité de l'huile VI (Indice de Viscosité) | 143 140 Répartition par coupes
PI-150 0 12
-380 58 57
*380' 42 31
Conversion nette en 380' (%) 26,2
* le solvant utilisé est la méthylisobutylcétone.
On note, de façon très claire, que la charge non hydroisomérisée et déparaffinée au solvant à -20 C, présente un rendement en huile extrêmement faible alors qu'après l'opération d'hydroisomérisation et déparaffinage catalytique, le rendement en huile
est plus élevé.
Exemple 3: Evaluation du catalyseur A1 au cours d'un test effectué pour
I( produire des distillats moyens.
On opère de la même façon que dans l'exemple 2, sur la même charge, mais les conditions opératoires sur le premier réacteur contenant le catalyseur A1 sont modifiées. La pression totale est de 9 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 1 h-' et la température de réaction de 355 C. Après réaction, les effluents sont fractionnés en produits légers (essence Pl-150 C), kérosène (150-250 C), gazole (250- 380 C) et
résidu (380*).
Ci-après sont reportés les rendements et les caractéristiques pour les différentes fractions des effluents hydroisomérisés sur catalyseur A1. Répartition par coupes: (% poids)
PI - 150 C:18
- 250 C:29
250 - 380 C:43
380:10
Qualité des produits distillats: - 250 C Point de fumée: 48 mm Freezing point: - 31 C 250 - 380 C Indice de cétane: 62 Point d'écoulement: - 20 C Le catalyseur A1 permet d'obtenir de bons rendements en distillats moyens( poids fraction 150-250 C + poids fraction 250-380 C = 72 % poids) à partir d'une charge de paraffines issues de la synthèse Fischer-Tropsch et les distillats moyens obtenus
sont de très bonne qualité.
Claims (16)
1. Procédé pour la production d'huiles à partir d'une charge hydrocarbonée ledit s procédé comportant les étapes successives suivantes: (a) conversion de la charge avec hydroisomérisation simultanée des n-paraffines de la charge, ladite charge ayant une teneur en soufre inférieure à 1000 ppm pds, une teneur en azote inférieure à 200 ppm pds, une teneur en métaux inférieure à 50 ppm pds, une teneur en oxygène d'au plus 0,2 % pds, ladite étape se déroulant à une température de 200-500 C, sous une pression de 5 - 25 Mpa, avec une vitesse spatiale de 0,1 - 5h', en présence d'hydrogène, et en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal noble est inférieure à 20%, (b) déparaffinage catalytique d'au moins une partie de l'effluent issu de l'étape (a), réalisé à une température de 200 - 500 C, sous une pression de 1-25 Mpa, avec une vitesse volumique horaire de 0,05-50h-1, en présence de 50-2000 litre d'hydrogène/litre d'effluent entrant dans l'étape b et en présence d'un catalyseur comprenant au moins un élément hydro-déshydrogénant et au
moins un tamis moléculaire.
2. Procédé selon la revendication 1 dans lequel la totalité de l'effluent de l'étape (a)
est traité dans l'étape (b).
3. Procédé selon la revendication 1 dans lequel l'effluent issu de l'étape (a) est distillé de façon à séparer les gaz légers et au moins un résidu contenant les composés à point d'ébullition supérieur à au moins 340 C, ledit résidu étant
soumis à l'étape (b).
4. Procédé selon l'une des revendications précédentes dans lequel l'effluent issu de
l'étape (b) est distillé de façon à séparer une huile contenant les composés à
point d'ébullition supérieur à au moins 340 C.
5. Procédé selon la revendication 4 comportant une distillation atmosphérique suivie
d'une distillation sous vide du résidu atmosphérique.
6. Procédé selon l'une des revendications précédentes dans lequel la charge
soumise à l'étape (a) a subi préalablement un hydrotraitement puis éventuellement
une séparation de l'eau, de l'ammoniac et de l'hydrogène sulfuré.
7. Procédé selon l'une des revendications précédentes caractérisé en ce que dans le
catalyseur de l'étape (a) la fraction des particules de métal noble ayant une taille inférieure à 2 nm représente au plus 2 % pds du métal noble déposé sur le catalyseur.
8. Procédé selon l'une des revendications précédentes caractérisé en ce que dans
le catalyseur de l'étape (a) au moins 70 % des particules de métal noble
présentent une taille supérieure à 4 nm.
9. Procédé selon l'une des revendications précédentes caractérisé en ce que le
support est choisi dans le groupe formé par une silice-alumine, une alumine halogénée, une alumine dopée au silicium, un mélange alumineoxyde de titane,
une zircone sulfatée, une zircone dopée au tungstène, seul ou en mélange.
10. Procédé selon la revendication 9 caractérisé en ce que le support comprend en outre au moins une matrice amorphe choisie dans le groupe formé par l'alumine,
l'oxyde de titane, la silice, l'oxyde de bore, la magnésie, la zircone, I'argile.
11. Procédé selon l'une des revendications précédentes caractérisé en ce que le
support est constitué d'une silice-alumine amorphe.
12. Catalyseur selon l'une des revendications précédentes caractérisé en ce que le
support contient 1 - 95 % poids de silice et le catalyseur 0,05 - 10 % poids de
métal noble.
13. Procédé selon l'une des revendications précédentes caractérisé en ce que le
métal noble du catalyseur de l'étape (a) et le métal hydro- déshydrogénant du catalyseur de l'étape (b) sont choisis dans le groupe formé par le platine et le palladium.
14. Procédé selon l'une des revendications précédentes, dans lequel la catalyseur de
l'étape (b) comporte au moins un tamis moléculaires dont le système microporeux présente au moins un type principal de canaux à ouvertures de pores ayant 9 ou atomes T. T étant choisi dans le groupe formé par Si, AI, P, B, Ti, Fe, Ga, alternant avec un nombre égal d'atomes oxygène, la distance entre deux ouvertures de pores accessibles à 9 ou 10 atomes T étant d'au plus à 0.75 nm, et ledit tamis présentant au test n- décane un rapport 2-méthylnonane/5-
méthylnonane supérieure à 5.
15. Procédé selon la revendication 14 dans lequel le tamis est une zéolithe choisie
dans le groupe formé par Nu-10, EU-1, EU-13, ferrierite, ZSM-22, theta-1, ZSM-
50, ZSM-23, Nu-23, ZSM-35, ZSM-38, IS1I-1, KZ-2, ISI-4, KZ-1.
16. Procédé selon l'une des revendications précédentes dans lequel l'effluent issu de
l'étape (b) est soumis à une étape d'hydrofinition avant d'être distillé.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9905496A FR2792946B1 (fr) | 1999-04-29 | 1999-04-29 | Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
ES200001085A ES2190303B1 (es) | 1999-04-29 | 2000-04-27 | Procedimiento flexible de produccion de bases de aceites y destilados para una conversion-hidroisomerizacion sobre un catalizador ligeramente disperso seguida de un desparafinado catalitico. |
NL1015035A NL1015035C2 (nl) | 1999-04-29 | 2000-04-27 | Flexibel proces voor de productie van basisoliÙn en destillatieproducten door een omzetting-hydroisomerisatie op een weinig gedispergeerde katalysator, gevolgd door een katalytische ontparaffinering. |
KR1020000023056A KR100695181B1 (ko) | 1999-04-29 | 2000-04-29 | 분산도가 낮은 촉매를 사용하는 전환-수소화 이성화 반응후 접촉 탈왁스화 처리에 의한 베이스 오일 및 증류물의 플렉시블 제조 방법 |
US09/562,286 US6602402B1 (en) | 1999-04-29 | 2000-05-01 | Flexible process for producing base stock and distillates by conversion-hydroisomerisation using a catalyst with low dispersion followed by catalytic dewaxing |
JP2000132789A JP2000345171A (ja) | 1999-04-29 | 2000-05-01 | わずかに分散した触媒上での水素化異性化転換およびそれに続く接触脱パラフィンによる基油および留出物の順応性のある生成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9905496A FR2792946B1 (fr) | 1999-04-29 | 1999-04-29 | Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2792946A1 true FR2792946A1 (fr) | 2000-11-03 |
FR2792946B1 FR2792946B1 (fr) | 2003-10-24 |
Family
ID=9545070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9905496A Expired - Fee Related FR2792946B1 (fr) | 1999-04-29 | 1999-04-29 | Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2792946B1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083641A2 (fr) * | 2000-05-02 | 2001-11-08 | Exxonmobil Research And Engineering Company | Production de carburant diesel utilise en hiver a partir de cires obtenues par synthese de fischer-tropsch |
WO2002048290A1 (fr) * | 2000-12-15 | 2002-06-20 | Institut Francais Du Petrole | Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
WO2004003113A1 (fr) * | 2002-06-26 | 2004-01-08 | Shell Internationale Research Maatschappij B.V. | Composition lubrifiante |
FR2851569A1 (fr) * | 2003-02-21 | 2004-08-27 | Inst Francais Du Petrole | Procede d'hydrocraquage en deux etapes utilisant un catalyseur amorphe a base de platine et de palladium |
US7250107B2 (en) | 2000-07-26 | 2007-07-31 | Institut Francais Du Petrole | Flexible method for producing oil bases and distillates from feedstock containing heteroatoms |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995027020A1 (fr) * | 1994-04-01 | 1995-10-12 | Institut Français Du Petrole | Procede de traitement avec hydroisomerisation de charges issues du procede fischer-tropsch |
EP0776959A2 (fr) * | 1995-11-28 | 1997-06-04 | Shell Internationale Researchmaatschappij B.V. | Procédé pour la production d'huiles lubrifiantes |
-
1999
- 1999-04-29 FR FR9905496A patent/FR2792946B1/fr not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995027020A1 (fr) * | 1994-04-01 | 1995-10-12 | Institut Français Du Petrole | Procede de traitement avec hydroisomerisation de charges issues du procede fischer-tropsch |
EP0776959A2 (fr) * | 1995-11-28 | 1997-06-04 | Shell Internationale Researchmaatschappij B.V. | Procédé pour la production d'huiles lubrifiantes |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083641A2 (fr) * | 2000-05-02 | 2001-11-08 | Exxonmobil Research And Engineering Company | Production de carburant diesel utilise en hiver a partir de cires obtenues par synthese de fischer-tropsch |
WO2001083641A3 (fr) * | 2000-05-02 | 2002-09-06 | Exxonmobil Res & Eng Co | Production de carburant diesel utilise en hiver a partir de cires obtenues par synthese de fischer-tropsch |
US6787022B1 (en) | 2000-05-02 | 2004-09-07 | Exxonmobil Research And Engineering Company | Winter diesel fuel production from a fischer-tropsch wax |
US7250107B2 (en) | 2000-07-26 | 2007-07-31 | Institut Francais Du Petrole | Flexible method for producing oil bases and distillates from feedstock containing heteroatoms |
WO2002048290A1 (fr) * | 2000-12-15 | 2002-06-20 | Institut Francais Du Petrole | Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
FR2818285A1 (fr) * | 2000-12-15 | 2002-06-21 | Inst Francais Du Petrole | Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
KR100809507B1 (ko) * | 2000-12-15 | 2008-03-07 | 아이에프피 | 약분산된 촉매 상의 수소화이성화-전환 후 촉매 탈랍에의한 기유 및 증류물의 제조를 위한 개선된 유연 방법 |
US7371315B2 (en) | 2000-12-15 | 2008-05-13 | Institut Francáis du Petrole | Flexible method for producing oil bases and distillates by hydroisomerization-conversion on a weakly dispersed catalyst followed by a catalyctic dewaxing |
WO2004003113A1 (fr) * | 2002-06-26 | 2004-01-08 | Shell Internationale Research Maatschappij B.V. | Composition lubrifiante |
FR2851569A1 (fr) * | 2003-02-21 | 2004-08-27 | Inst Francais Du Petrole | Procede d'hydrocraquage en deux etapes utilisant un catalyseur amorphe a base de platine et de palladium |
Also Published As
Publication number | Publication date |
---|---|
FR2792946B1 (fr) | 2003-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1412458B1 (fr) | Procede flexible ameliore de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique | |
EP1278812B1 (fr) | Procede flexible de production de bases huiles avec une zeolithe zsm-48 | |
EP1307526B1 (fr) | Procede flexible de production de bases huiles et de distillats moyens a partir de charge contenant des heteroatomes | |
EP1346010B1 (fr) | Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique | |
FR2792851A1 (fr) | Catalyseur a base de metal noble faiblement disperse et son utilisation pour la conversion de charges hydrocarbonees | |
FR2718145A1 (fr) | Procédé de traitement avec hydroisomérisation de charges issues du procédé fischer-tropsch. | |
FR2797883A1 (fr) | Procede de production d'huiles ayant un indice de viscosite eleve | |
EP1088879A1 (fr) | Procédé de production d'essences à indice d'octane amélioré | |
WO2009103881A2 (fr) | Procédé multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procédé fischer-tropsch | |
FR2826973A1 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch | |
FR2926086A1 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch | |
FR2826971A1 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch | |
EP1462168B1 (fr) | Catalyseur et son utilistion pour l'amélioration du point d'écoulement de charges hydrocarbonnées | |
EP1157084B1 (fr) | Procede flexible de production d'huiles medicinales et eventuellement de distillats moyens | |
FR2805543A1 (fr) | Procede flexible de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique | |
FR2989381A1 (fr) | Production de distillats moyens a partir d'un effluent issu de la synthese fischer-tropsch comprenant une etape de reduction de la teneur en composes oxygenes | |
FR2805542A1 (fr) | Procede flexible de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique | |
FR2792946A1 (fr) | Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique | |
WO2005012461A1 (fr) | Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch utilisant un catalyseur a base d'un melange de zeolithes | |
EP1462166B1 (fr) | Catalyseur et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonnées | |
FR2792945A1 (fr) | Procede de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique | |
WO2005012460A1 (fr) | Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base de zeolithe zbm-30 | |
FR2785616A1 (fr) | Procede flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite | |
FR2785617A1 (fr) | Procede flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite | |
FR2797270A1 (fr) | Procede et flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CD | Change of name or company name | ||
ST | Notification of lapse |
Effective date: 20111230 |