FR2611150A1 - COMPOSITION FOR MOLDING A CERAMIC CORE, METHOD FOR MANUFACTURING SUCH CORE AND CERAMIC CORE THUS OBTAINED - Google Patents
COMPOSITION FOR MOLDING A CERAMIC CORE, METHOD FOR MANUFACTURING SUCH CORE AND CERAMIC CORE THUS OBTAINED Download PDFInfo
- Publication number
- FR2611150A1 FR2611150A1 FR8802250A FR8802250A FR2611150A1 FR 2611150 A1 FR2611150 A1 FR 2611150A1 FR 8802250 A FR8802250 A FR 8802250A FR 8802250 A FR8802250 A FR 8802250A FR 2611150 A1 FR2611150 A1 FR 2611150A1
- Authority
- FR
- France
- Prior art keywords
- composition
- ceramic
- binder
- core
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/106—Vented or reinforced cores
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/481—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6316—Binders based on silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/6325—Organic additives based on organo-metallic compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5224—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5232—Silica or silicates other than aluminosilicates, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5236—Zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6021—Extrusion moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6587—Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Mold Materials And Core Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
LA PRESENTE INVENTION CONCERNE UNE COMPOSITION DE MOULAGE DE NOYAU QUI EST DESTINEE A LA PRODUCTION D'UN NOYAU EN CERAMIQUE CONVENANT POUR UNE UTILISATION DANS UN PROCEDE DE MOULAGE A LA CIRE PERDUE. CETTE COMPOSITION EST CARACTERISEE EN CE QU'ELLE COMPREND UN MELANGE CERAMIQUE COMPORTANT DES PARTICULES CERAMIQUES DISPERSEES DANS UN LIANT, CE LIANT ETANT AJOUTE EN UNE QUANTITE SUFFISANTE POUR MOULER ET MAINTENIR UNE FORME MOULEE AVANT LA CUISSON, DES FIBRES STABLES A HAUTE TEMPERATURE REPARTIES DANS LE MELANGE CERAMIQUE, CES FIBRES ETANT AJOUTEES EN UNE QUANTITE SUFFISANTE POUR REDUIRE LES CONTRAINTES DE RETRAIT PENDANT LA FABRICATION DU NOYAU, ET UN MATERIAU CERAMIQUE SOUS FORME DE TRES FINES PARTICULES QUI EST AJOUTE EN UNE QUANTITE SUFFISANTE POUR PERMETTRE D'EFFECTUER LE FRITTAGE A BASSE TEMPERATURE ET POUR INTERAGIR AVEC LES FIBRES AFIN DE REDUIRE LES CONTRAINTES DE RETRAIT ET DE CONTROLER LA DEVITRIFICATION.THE PRESENT INVENTION RELATES TO A CORE MOLDING COMPOSITION FOR THE PRODUCTION OF A CERAMIC CORE SUITABLE FOR USE IN A LOST WAX MOLDING PROCESS. THIS COMPOSITION IS CHARACTERIZED IN THAT IT INCLUDES A CERAMIC MIXTURE INCLUDING CERAMIC PARTICLES DISPERSE IN A BINDER, THIS BINDER BEING ADDED IN SUFFICIENT QUANTITY TO MOLD AND MAINTAIN A MOLDED SHAPE BEFORE BAKING, STABLE FIBERS IN HIGH TEMPERATURE. CERAMIC MIXTURE, THESE FIBERS BEING ADDED IN AN AMOUNT SUFFICIENT TO REDUCE THE REMOVAL CONSTRAINTS DURING THE MANUFACTURING OF THE CORE, AND A CERAMIC MATERIAL IN THE FORM OF VERY FINE PARTICLES WHICH IS ADDED IN A SUFFICIENT QUANTITY OF THE LOW TEMPERATURE PERFORMANCE AND TO INTERACT WITH FIBERS TO REDUCE REMOVAL CONSTRAINTS AND TO CONTROL DEVITRIFICATION.
Description
La présente invention concerne des noyaux en céra-The present invention relates to ceramic cores
mique utilisés dans le procédé de moulage à la cire perdue et plus particulièrement une composition de moulage de noyau qui réduit les contraintes de retrait pendant le processus de production des noyaux. The process of the present invention is directed to the use of the casting method and more particularly to a core molding composition which reduces shrinkage stress during the core production process.
Le moulage à la cire perdue est utilisé d'une maniè- The lost wax casting is used in a manner
re extensive dans la fabrication d'ailettes et d'aubes en superalliage à base de nickel et de cobalt pour des moteurs' à turbine à gaz et en particulier pour celles exigeant des passages de refroidissement internes. et il assure des tolérances dimensionnelles précises et d'excellents finis superficiels. Dans le moulage à la cire perdue on forme un moule coquille en céramique autour d'une masse de cire dans extensively in the manufacture of nickel and cobalt-based superalloy vanes and vanes for gas turbine engines and in particular for those requiring internal cooling passages. and it provides precise dimensional tolerances and excellent surface finishes. In lost wax casting a ceramic shell mold is formed around a mass of wax in
laquelle sont placés. d'une manière précise. un ou plu- which are placed. in a precise way. one or more
sieurs noyaux en céramique lesquels sont destinés à simuler les trous et passages exigés. La masse de cire est éliminée pendant une opération de cuisson tandis que le moule et les noyaux demeurent en place. ce qui conduit à l'obtention d'une cavité de moule. Du métal fondu est ensuite versé dans ceramic cores which are intended to simulate the holes and passages required. The mass of wax is removed during a cooking operation while the mold and the cores remain in place. which leads to obtaining a mold cavity. Molten metal is then poured into
la cavité et solidifié dans celle ci et les noyaux en cé- the cavity and solidified in it and the cores in
ramique sont éliminés chimiquement par exemple par attaque au moyen d'une solution alcaline chaude. L'utilisation de For example, ramic acid is chemically removed by etching with a hot alkaline solution. The use of
noyaux en céramique éliminables permet d'éviter les opéra- eliminable ceramic cores makes it possible to avoid
tions d'usinage ou de perçage qui peuvent être impossibles à machining or drilling operations that may be impossible to
exécuter sur des matériaux du type superalliage. perform on superalloy type materials.
Les noyaux en céramique sont fabriqués habituelle- Ceramic cores are usually made
ment en moulant par injection un matériau céramique pour lui donner la forme d'un noyau et en effectuant une cuisson afin de produire un frittage. Le matériau du noyau comporte des by injection molding a ceramic material into a core shape and baking to produce sintering. The core material has
particules de céramique dispersées dans un liant qui favori- ceramic particles dispersed in a binder which favors
se la moulabilité, ce liant étant éliminé avant le frittaqe. moldability, this binder being removed before the frittaqe.
Généralement des additifs ou des éléments de maintien méca- Generally, additives or mechanical holding elements
niques sont exigés pour maintenir la forme du noyau entre l'élimination du liant et le frittage des particules. Dans le brevet US-3 234 308 est décrite une composition de noyau qui comporte à la fois un liant organique et une résine thermodurcissable. Cette résine maintient la forme du noyau entre l'élimination du liant et le frittage. cette résine They are required to maintain the shape of the core between binder removal and particle sintering. In US Pat. No. 3,234,308 there is disclosed a core composition which comprises both an organic binder and a thermosetting resin. This resin maintains the shape of the core between binder removal and sintering. this resin
étant brûlée pendant le chauffage à la température de frit- being burnt during heating at the frying temperature
tsge.Naturellement une telle composition nécessite une for- tsge.Naturellement such a composition requires a form-
mation et un traitement additionnels et elle peut conduire à additional treatment and treatment and may lead to
laisser des résidus additionnels dans le noyau. leave additional residues in the core.
L'élimination du liant est critique en ce qui con- cerne la production parfaite de noyaux en céramique. Il est essentiel que l'élimination du liant soit effectué à des températures suffisamment élevées afin de réduire au minimum la période d'élimination du liant. ces températures étant toutefois suffisamment basses pour éviter une formation de The removal of the binder is critical in the perfect production of ceramic cores. It is essential that the binder be removed at sufficiently high temperatures to minimize the binder removal period. however, these temperatures are low enough to prevent formation of
gaz ou une vaporisation rapide dans le noyau et un boursou- gas or rapid vaporization into the nucleus and a
flage superficiel. En outre le retrait doit être contrôlé afin d empêcher l'apparition de défauts dimensionnels dans le produit métallique final. Ceci exige habituellement un abaissement des températures et en outre une extension de la période d'élimination du liant pouvant aller jusqu'à 20 heures. De telles extensions contribuent d'une manière si gnificative à l'augmentation du coût de fabrication d'un noyau. En plus des défauts dimensionnels des fissures du corps du noyau peuvent se produire tandis que le matériau du noyau se rétracte suivant différents axes de contrainte pendant l'élimination du liant et le frittage. Par exemple un noyau peut se rétracter davantage suivant sa largeur que superficial flow. In addition, the shrinkage must be controlled in order to prevent the appearance of dimensional defects in the final metal product. This usually requires lowering temperatures and further extending the binder removal period up to 20 hours. Such extensions contribute so significantly to the increased cost of manufacturing a core. In addition to dimensional defects, cracks in the core body may occur as the core material shrinks along different stress axes during binder removal and sintering. For example, a nucleus can retract further along its width than
suivant sa longueur et il peut également se rétracter da- along its length and it can also retract
vantage suivant des plans différents en travers de sa lar- vantage following different plans across its lar-
geur. Cette contrainte est éliminée pendant le frittaqe par l'apparition de fissures Tandis que le microfissurage peut geur. This stress is eliminated during the frittaqe by the appearance of cracks While the microcracking can
être tolérable et en fait désirable, le macrofissurage em- to be tolerable and indeed desirable, macrofissuring
pêche l'utilisation du noyau dans un procédé de moulage. the use of the core in a molding process.
Actuellement il n'est pas inhabituel de rencontrer des ma- At present it is not unusual to meet
crofissures dans un pourcentage allant jusqu'à 50% des no- crofes in a percentage of up to 50% of
yaux en céramique fabriqués.Ceramic yaux manufactured.
Les formules à base de silice amorphe qui peuvent comporter du zircon ou d'autres matériaux afin d'améliorer les propriétés. ont été utilisées dans la fabrication de noyaux de moulage à la cire perdue pour divers alliages. à cause de leur stabilité pendant la coulée leur faible coût Formulas based on amorphous silica that may include zircon or other materials to improve properties. have been used in the manufacture of lost wax casting cores for various alloys. because of their stability during casting their low cost
Z611150Z611150
et leur disponibilité. Une limitation dans l'utilisation de and their availability. A limitation in the use of
noyaux à base de silice amorphe est la dévitrification. Amorphous silica-based nuclei is devitrification.
c'est-à-dire la transformation de la silice amorphe en for- that is, the transformation of amorphous silica into
mes cristallines à une température de transition, et en particulier en crystobalite et dans une moindre mesure. en quartz et en tridymite, avec des variations consécutives de volume des cristaux. L'apparition de ces formes cristallines my crystalline at a transition temperature, and in particular in crystobalite and to a lesser extent. in quartz and tridymite, with consequent changes in crystal volume. The appearance of these crystalline forms
entraîne la production de fissures pendant le refroidisse- leads to the production of cracks during cooling
ment après frittage. Généralement ceci est évité en effec- after sintering. Generally this is avoided by
tuant le frittage à des températures et pendant des périodes killing sintering at temperatures and for periods
de temps qui fournissent une teneur en crystobalite d'envi- of time that provide a crystallobalite content of about
ron 15 à 30%. Par exemple le frittaqe pendant 18 heures à une température d'environ 1150oc permet d'obtenir une teneur en crystobalite désirable. Pour des teneurs supérieures à 30%. les noyaux deviennent généralement trop fissurés et ils ne peuvent pas être utilisés. Par conséquent le frittage doit être effectué à basse température pendant des périodes 15-30%. For example, frittaqe for 18 hours at a temperature of about 1150 ° C makes it possible to obtain a desirable level of crystobalite. For contents above 30%. the nuclei usually become too cracked and they can not be used. Therefore, the sintering must be carried out at low temperature for periods
de temps étendues ou bien d'autres moyens doivent être uti- extended time or other means should be used.
lisés pour empêcher la formation de crystobalite pendant la to prevent the formation of crystobalite during the
fabrication des noyaux.manufacture of the cores.
Par conséquent ce qui est nécessaire dans cette technique est une composition de noyau qui réduit le retrait Therefore what is needed in this technique is a core composition that reduces shrinkage
et limite la dévitrification pendant le processus de fabri- and limits devitrification during the manufacturing process.
cation des noyaux.cation of the nuclei.
Un but de la présente invention est de fournir une composition de moulage de noyau ayant des propriétés de An object of the present invention is to provide a core molding composition having
retrait contrôlable.controllable removal.
Un autre but de la présente invention est de fournir une composition de moulage de noyau qui limite l'apparition Another object of the present invention is to provide a core molding composition which limits the onset of
de macrofissures pendant la fabrication des noyaux. macrocracks during the manufacture of the cores.
Ces buts de l'invention ainsi que d'autres sont atteints en utilisant une composition de moulage de noyau comprenant des fibres stables à haute température qui sont disposées dans un mélange céramique amorphe convenant à une utilisation pour la formation de noyaux de moulage à la cire perdue. Les fibres sont ajoutées en une quantité suffisante pour réduire les contraintes de retrait en dessous d'un niveau auquel des macrofissures apparaitraient. Le mélange peut comporter également un matériau céramique sous forme de These and other objects of the invention are achieved by using a core molding composition comprising high temperature stable fibers which are disposed in an amorphous ceramic blend suitable for use in forming wax casting cores. lost. Fibers are added in an amount sufficient to reduce shrinkage stresses below a level at which macrofissures would occur. The mixture may also comprise a ceramic material in the form of
très fines particules qui est ajouté en une quantité suffi- very fine particles which is added in sufficient quantity
sante pour favoriser le frittage à basses températures. La to promote sintering at low temperatures. The
combinaison des fibres et du matériau à très fines particu- combination of fibers and very fine particulate material
les a un effet de synergie afin d'empêcher la dévitrifica- has a synergistic effect to prevent the devitrifica-
tion à basse température, tout en empêchant additionnelle- low temperature, while at the same time preventing
ment la formation de fissures.the formation of cracks.
Dans une forme d'exécution préférée la composition de moulage de noyau comprend des fibres d'alumine jusqu'h 6,5% en poids, du zircon jusqu'à 35%. de la silice fumée In a preferred embodiment, the core molding composition comprises alumina fibers up to 6.5% by weight, zircon up to 35%. fumed silica
jusqu'à 5%, le reste étant constitué par de la silice amor- up to 5%, the remainder being amorphous silica
phe. un liant étant ajouté en quantité suffisante afin de mouler et de maintenir une forme moulée avant la cuisson. En phe. a binder being added in sufficient quantity to mold and maintain a molded shape prior to baking. In
utilisant la composition suivant l'invention on peut fabri- using the composition according to the invention, it is possible to
quer un noyau en céramique par Les étapes consistant à mé- a ceramic core by the steps of
langer les ingrédients de la composition précitée. à mouler le mélange sous la forme désirée et h cuire la forme moulée de telle façon que le liant soit éliminé et que le mélange change the ingredients of the aforementioned composition. to mold the mixture into the desired shape and to cure the molded form such that the binder is removed and the mixture is
céramique soit fritté.ceramic is sintered.
La figure unique du dessin est un diaqramme illus- The single figure in the drawing is an illustrative diagrams.
trant le retrait qui apparait avec des noyaux du type si- the shrinkage that appears with cores of the type si-
lice/zircon contenant respectivement aucune fibre d'alumine. lice / zircon respectively containing no alumina fiber.
1,5% de fibres d'alumine et 6,5% de fibres d'alumine, pour 1.5% of alumina fibers and 6.5% of alumina fibers, for
des périodes de cuisson de 1.5 et 5 heures. cooking periods of 1.5 and 5 hours.
La composition de moulage de noyau suivant l'inven- The core molding composition according to the invention
tion comporte un mélange céramique en tant que base. Par exemple un mélange céramique typique peut comprendre jusqu'h % en poids de poudre de zircon, le reste étant constitué It comprises a ceramic mixture as a base. For example, a typical ceramic mixture may comprise up to 1% by weight of zircon powder, the remainder being
par de la silice amorphe, avec un liant en quantité suffi- by amorphous silica, with a binder in sufficient quantity
sante pour mouler et maintenir la forme moulée du noyau avant le frittage. Bien que ce mélange céramique soit donné à titre d'exemple. l'homme du métier comprendra que d'autres mélanges céramiques, qui comporte des particules céramiques to mold and maintain the molded shape of the core prior to sintering. Although this ceramic mixture is given as an example. those skilled in the art will understand that other ceramic mixtures, which include ceramic particles
en silice, alumine et zircon et des mélanges de celles-ci. silica, alumina and zircon and mixtures thereof.
peuvent être utilisés dans la composition suivant l'inven- can be used in the composition according to the invention
tion et que d'autres additifs peuvent être inclus afin d'a- tion and that other additives may be included in order to
juster les propriétés.to juster the properties.
Pour assurer une stabilité dimensionnelle et réduire To ensure dimensional stability and reduce
les contraintes de retrait, des fibres stables à haute tem- shrinkage stresses, stable fibers at high tempe-
pérature sont ajoutées au mélange céramique. Ces fibres stables à haute température sont définies présentement comme étant celles qui sont capables de résister en tant que fibres aux températures de coulée du métal. Par exemple des fibres d'alumine ou de silice présentent une stabilité à haute température et elles peuvent être utilisées dans la composition de moulage de noyau suivant l'invention. La présence des fibres stables à haute température, en parti culier de fibres ayant une longueur allant d'environ 2,54 à 6,35mm et un diamètre d'environ 3-5 micromètres, entraîne are added to the ceramic mixture. These high temperature stable fibers are presently defined as being able to resist as fibers at the casting temperatures of the metal. For example, alumina or silica fibers exhibit high temperature stability and can be used in the core molding composition according to the invention. The presence of high temperature stable fibers, particularly fibers having a length of about 2.54 to 6.35 mm and a diameter of about 3-5 microns, results in
une homogénéisation des contraintes de retrait. une réduc- a homogenization of the withdrawal constraints. a reduction
tion des macrofissures et limite la propagation des fissures à travers le corps du noyau. En général une quantité de fibres allant jusqu'à 6,5% en poids est ajoutée au mélange macrofissures and limits the propagation of cracks through the core body. In general, a fiber content of up to 6.5% by weight is added to the mixture
céramique. Au-dessus de 6.5% la composition devient diffi- ceramic. Above 6.5% the composition becomes difficult.
cile à mouler par injection.Injection molding.
En plus du mélange céramique et des fibres stables à haute température un matériau céramique sous forme de très fines particules est ajouté à la composition de moulage de noyau. La silice fumée, telle que la silice fumée connue sous le nom "CAB-0-SIL", fabriquée par la société CABOT Corporation, Tuscola. Illinois. est un exemple de matériau In addition to the ceramic mixture and high temperature stable fibers, a ceramic material in the form of very fine particles is added to the core molding composition. The fumed silica, such as the fumed silica known as "CAB-0-SIL", manufactured by CABOT Corporation, Tuscola. Illinois. is an example of material
ayant une dimension de particule d'environ 0,007-O.014mi- having a particle size of about 0.007-0.014mi-
cromètre. L'énergie de surface élevée des particules sub- cromètre. The high surface energy of the sub-particles
microniques permet à l'amorçage du frittage de se produire micronic allows the initiation of sintering to occur
à des températures plus basses que dans le cas de particu- at lower temperatures than in the case of
les plus grandes de l'ordre du micromètre. Les grandes par- the largest of the order of a micrometer. Large areas
ticules de silice et de zircon commencent par conséquent à ticles of silica and zircon therefore begin to
former des ponts et à se lier les unes aux autres à des tem- build bridges and bond with each other at times
pératures plus basses, ce qui apparaît limiter la dévitrifi- lower temperatures, which appears to limit the devitrifi-
cation. La combinaison de fibres stables à haute température cation. The combination of stable fibers at high temperatures
et de particules submicroniques est considérée comme provo- and submicron particles is considered to be
quant également une élévation de la température à laquelle apparaît la dévitrification. ce qui permet d'achever le as also an increase in the temperature at which devitrification occurs. which makes it possible to complete the
frittage à une température plus élevée dans une courte pé- sintering at a higher temperature in a short time
riode de temps, en réduisant par conséquent le temps du traitement. Si on se réfère à la figure du dessin on voit que cette figure montre qu'une diminution du retrait spparait lorsque la quantité de fibres utilisées dans la composition de moulage de noyau est augmentée. Si aucune fibre n'est présente dans la composition de moulage de noyau. ainsi qu'il est représenté par les courbes A et B, le retrait total peut varier d'environ 3 à 5%. La courbe A représente le retrait après 1 1/2 h de cuisson tandis que la courbe B représente le retrait après 5h de cuisson. Cependant en aJoutant environ 1,5% en poids de fibres d'alumine à la time, thus reducing the processing time. Referring to the figure of the drawing, it will be seen that this figure shows that shrinkage decreases as the amount of fiber used in the core molding composition is increased. If no fiber is present in the core molding composition. as represented by curves A and B, the total shrinkage can vary from about 3 to 5%. Curve A represents the shrinkage after 1 1/2 h of cooking while curve B represents shrinkage after 5 h of cooking. However, adding about 1.5% by weight of alumina fibers to the
composition de moulage de noyau, le retrait total est ré- core molding composition, the total shrinkage is
duit, comme il est représenté par les courbes C et D, à une plage comprise entre 1,5 et 2.5%. 1 le retrait différentiel étant mois affecté par les variations de la durée de cuisson ou de la température. Si on augmente la teneur en fibres pour la porter à environ 6,5%, le retrait peut être réduit à as represented by the curves C and D at a range of between 1.5 and 2.5%. 1 differential shrinkage being affected by changes in cooking time or temperature. If the fiber content is increased to about 6.5%, the shrinkage can be reduced to
une plage comprise entre 0,5 et 1,5%, comme il est repré- a range of between 0.5 and 1.5%, as represented by
senté par les courbes Eet F. respectivement pour des durées de cuisson de 1.5 et 5 heures. Bien que l'interaction ne Eet F. curves for 1.5 and 5 hour cooking times, respectively. Although the interaction does not
soit pas totalement comprise. la présence de fibres d'alu- not completely understood. the presence of aluminum fibers
mine dans le noyau peut avoir l'effet de réduire ou d'em- mine in the nucleus may have the effect of reducing or
pêcher le degré de frittage et par conséquent ces fibres interagissent, avec un effet de synergie. avec la silice the degree of sintering and therefore these fibers interact with a synergistic effect. with silica
fumée afin de réduire les contraintes de retrait et d'em- smoke to reduce shrinkage and stress
pêcher la dévitrification, en produisant ainsi des noyaux à faible retrait. Avec la composition de moulage de noyau suivant l'invention plus de 95% des noyaux produits sont reproductibles dimensionnellement en étant exempts de ma fishing for devitrification, thus producing low shrinkage kernels. With the core molding composition according to the invention more than 95% of the cores produced are dimensionally reproducible by being free of
crofissurea et par conséquent ils conviennent pour une uti- crofissurea and therefore they are suitable for use
lisation dans le moulage à la cire perdue sans exiqer une lost wax casting without exerting a
imprégnation par une résine.impregnation with a resin.
Un procédé typique de fabrication de noyaux comprend les étapes de préparation de la composition de moulage de noyau, de moulage du noyau, d'élimination du liant et de A typical core manufacturing process comprises the steps of preparing the core molding, core molding, binder removal and
frittage. D'autres étapes de traitement peuvent être inclu- sintering. Other processing steps may be included
ses, tel qu'un traitement de surface de la poudre. une pré- its, such as a surface treatment of the powder. a pre-
paration du liant et une granulation de la composition de moulage de noyau afin d'améliorer l'écoulement à travers une machine de moulage. Généralement le moulage du noyau est exécuté en utilisant un équipement de moulage par injection traditionnel tel qu'une machine de moulage conventionnelle à piston plongeur ou à vis. Bien que l'une ou l'autre de binder and granulation of the core molding composition to improve flow through a molding machine. Generally the core molding is performed using conventional injection molding equipment such as a conventional plunger or screw molding machine. Although one or the other
ces machines puissent être utilisées, les meilleurs résul- these machines can be used, the best results
tats sont généralement obtenus en utilisant une machine states are usually obtained using a machine
pourvue d'une commande électronique à réaction de la tempé- equipped with an electronic control system with temperature response
rature d'injection, de la vitesse d'injection et de la pres- injection rate, injection speed and pressure.
sion d'injection. L'homme du métier comprendra que des con- injection. Those skilled in the art will understand that
ditions de moulage universelles ne peuvent pas être obtenues et que les conditions de moulage optimales doivent être déterminées à la suite d'essais. Cependant des températures de moulage entre 820C et 110oC et des pressions comprises Universal molding conditions can not be obtained and optimum molding conditions must be determined following tests. However molding temperatures between 820C and 110oC and pressures included
entre 27.6MPa et environ 68,9MPa sont courantes. between 27.6MPa and about 68.9MPa are common.
EXEMPLEEXAMPLE
Une masse de 2,7kg d'une composition de moulage de noyau a été préparée en vue du moulage par injection d'un noyau en céramique. Les proportions de chaque ingrédient sont données dans le tableau I ci-dessous: A mass of 2.7kg of a core molding composition was prepared for injection molding of a ceramic core. The proportions of each ingredient are given in Table I below:
TABLEAU ITABLE I
Ingrédient Teneur (pourcentage en poids) Silice amorphe 62,64 Zircon 27, 84 Silice fumée 4,12 Fibres d'alumine 4.16 (diamètre 5 micromètres longueur 3,17mm) Agent de couplage silane 1.24 Ingredient Grade (wt.%) Amorphous Silica 62.64 Zircon 27, 84 Smoke Silica 4.12 Alumina Fiber 4.16 (Diameter 5 micrometers Length 3.17mm) Silane Coupling Agent 1.24
26 1115026 11150
L'agent de couplage silane convertit la surface de la céramique essentiellement polaire de la composition en une surface de nature non polaire qui est aisément mouillée par un liant non polaire. A titre illustratif l'agent de couplage silane est celui connu sous la référence A1108 de The silane coupling agent converts the surface of the substantially polar ceramic of the composition into a non-polar surface which is readily wetted by a non-polar binder. By way of illustration, the silane coupling agent is that known under the reference A1108 of
la société Union Carbide.Union Carbide.
Après mélangeage des ingrédients avec l'agent de couplage silene, le mélange pulvérulant humide est séché pendant trois heures à une température d'environ 82oC. La poudre est ensuite mélangée avec un liant dans un mélangeur sous vide. Dans le cas de cet exemple 13,5% d'un liant a été After mixing the ingredients with the silene coupling agent, the wet powder mixture is dried for three hours at a temperature of about 82 ° C. The powder is then mixed with a binder in a vacuum mixer. In the case of this example 13.5% of a binder has been
ajouté h la composition de moulage de noyau. Le liant com- added to the core molding composition. The binder
prend 33,3% de cire de paraffine ayant un point de fusion de 33.3% of paraffin wax having a melting point of
131-1360oC. 33,3% de cire de paraffine ayant un point de fu- 131-1360oC. 33.3% of paraffin wax having a melting point
sion de 144-1490C et 33,3% de cire minérale ayant un point de fusion de 163-1720c, du stéarate d'aluminium, de l'acide oléique et de la cire d'abeille étant ajoutés en tant que défloculants lubrifiants et plastifiants. Une atmosphère mise sous vide accélère le mélangeage dans le mélangeur par suite de l'évacuation de l'air, ce qui favorise le contact intime entre les matériaux liquides et solides. La durée de mélangeage dépend de la masse de la composition et dans cet exemple elle de trois heures h une température de 1040C. La composition de moulage est ensuite extrudée, mise sous forme de granules et stockées dans une chambre à faible teneur en of 144-1490C and 33.3% of mineral wax having a melting point of 163-1720c, aluminum stearate, oleic acid and beeswax being added as lubricating and plasticizing deflocculants. . A vacuum atmosphere accelerates mixing in the mixer as a result of air evacuation, which promotes intimate contact between liquid and solid materials. The mixing time depends on the mass of the composition and in this example it is three hours at a temperature of 1040C. The molding composition is then extruded, granulated and stored in a low-grade chamber.
humidité jusqu'h ce qu'elle soit exigée pour son utilisa- humidity until required for its use.
tion. Des noyaux sont moulés par injection en utilisant une machine de moulage conventionnelle du type à piston plongeur et des moules conventionnels. Les noyaux moulés sont ensuite enlevés des moules et enrobés dans un sable d'alumine contenu dans un pot de cuisson. Le pot, le sable et les noyaux sont ensuite placés dans un four et ils sont soumis à un cycle de cuisson d'élimination du liant et de frittage, l'élimination du liant ayant lieu pendant une augmentation de la température à partir de la température ambiante jusqu'h 4000C. à raison de 750C par heure. Les noyaux sont ensuite chauffés additionnellement jusqu'h la tion. Cores are injection molded using a conventional plunger type molding machine and conventional molds. The molded cores are then removed from the molds and embedded in an alumina sand contained in a cooking pot. The pot, the sand and the cores are then placed in an oven and they are subjected to a binder removal and sintering cycle, the binder removal taking place during an increase in temperature from the temperature. ambient up to 4000C. at a rate of 750C per hour. The nuclei are then heated additionally until the
2611150'2611150 '
température de frittage de 1235oC. avec une augmentation de température de 1500C par heure. Les noyaux sont maintenus à la température de frittage pendant environ trois heures puis ils sont refroidis dans le four. Dans une demande de brevet parallèle de la demanderesse déposée ce même jour est décrit un procédé pour l'enlèvement du liant et le frittage de sintering temperature of 1235oC. with a temperature increase of 1500C per hour. The cores are held at the sintering temperature for about three hours and then cooled in the oven. In a parallel patent application of the applicant filed on the same day is described a process for the removal of the binder and the sintering of
noyaux moulés en un seul cycle.cores molded in a single cycle.
Bien que la forme d'exécution préférée de la pré- Although the preferred embodiment of the preface
sente invention ait été décrite à propos d'une composition this invention has been described in connection with a
de moulage de noyau ayant des quantités particulières d'in- core molding having particular amounts of
grédients. il sera clair pour l'homme du métier que diverses modifications dans le mélange céramique. les conditions de moulage, la durée et les températures de cuisson peuvent grédients. it will be clear to those skilled in the art that various modifications in the ceramic mixture. molding conditions, cooking time and temperatures can
être effectuées sans sortir du cadre de la présente inven- without departing from the scope of this invention.
tion.tion.
Claims (21)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1811387A | 1987-02-24 | 1987-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2611150A1 true FR2611150A1 (en) | 1988-08-26 |
FR2611150B1 FR2611150B1 (en) | 1994-03-25 |
Family
ID=21786313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8802250A Expired - Fee Related FR2611150B1 (en) | 1987-02-24 | 1988-02-24 | COMPOSITION FOR MOLDING A CERAMIC CORE, METHOD FOR MANUFACTURING SUCH A CORE, AND CERAMIC CORE THUS OBTAINED |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS63268536A (en) |
FR (1) | FR2611150B1 (en) |
GB (1) | GB2202542B (en) |
IL (1) | IL85506A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3062323A1 (en) * | 2017-01-30 | 2018-08-03 | Safran | PROCESS FOR PRODUCING A CERAMIC CORE |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5696933B2 (en) * | 2011-02-04 | 2015-04-08 | 日立金属株式会社 | Ceramic core and manufacturing method thereof |
EP2740550B1 (en) * | 2011-08-03 | 2016-07-20 | Hitachi Metals, Ltd. | Ceramic core and method for producing same |
US20190060982A1 (en) | 2017-08-29 | 2019-02-28 | General Electric Company | Carbon fibers in ceramic cores for investment casting |
CN114988852B (en) * | 2022-05-13 | 2023-09-05 | 潍坊科技学院 | Preparation method of ceramic core with multilayer sandwich structure |
CN115108818B (en) * | 2022-07-21 | 2024-03-19 | 中国联合重型燃气轮机技术有限公司 | A raw material for a low shrinkage and low deflection silicon-based ceramic core and its preparation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1380442A (en) * | 1972-02-23 | 1975-01-15 | Foseco Int | Shaped heat-insulating refractory compositions |
JPS5348026A (en) * | 1976-05-25 | 1978-05-01 | Nisshin Steel Co Ltd | Method and apparatus to manupacture core for casting mould |
GB1549819A (en) * | 1976-11-03 | 1979-08-08 | Thermal Syndicate Ltd | Reinforced vitreous silica casting core |
SU697240A1 (en) * | 1977-01-24 | 1979-11-15 | Предприятие П/Я Р-6585 | Ceramic composition for core-making |
-
1988
- 1988-02-23 GB GB8804152A patent/GB2202542B/en not_active Expired - Lifetime
- 1988-02-23 IL IL85506A patent/IL85506A/en not_active IP Right Cessation
- 1988-02-24 JP JP63041786A patent/JPS63268536A/en active Pending
- 1988-02-24 FR FR8802250A patent/FR2611150B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1380442A (en) * | 1972-02-23 | 1975-01-15 | Foseco Int | Shaped heat-insulating refractory compositions |
JPS5348026A (en) * | 1976-05-25 | 1978-05-01 | Nisshin Steel Co Ltd | Method and apparatus to manupacture core for casting mould |
GB1549819A (en) * | 1976-11-03 | 1979-08-08 | Thermal Syndicate Ltd | Reinforced vitreous silica casting core |
SU697240A1 (en) * | 1977-01-24 | 1979-11-15 | Предприятие П/Я Р-6585 | Ceramic composition for core-making |
Non-Patent Citations (2)
Title |
---|
WORLD PATENT INDEX, FILE SUPPLIER, résumé AN=78-42650A, Derwent Publications Ltd, Londres, GB; & JP-A-53 048 026 (NISSIN STEEL & AIKOH) 01-05-1978 * |
WORLD PATENT INDEX, FILE SUPPLIER, résumé AN=80-46006C, Derwent Publications Ltd, Londres, GB; & SU-A-697 240 (DEREVYASHKIN V YA) 15-11-1979 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3062323A1 (en) * | 2017-01-30 | 2018-08-03 | Safran | PROCESS FOR PRODUCING A CERAMIC CORE |
Also Published As
Publication number | Publication date |
---|---|
FR2611150B1 (en) | 1994-03-25 |
IL85506A0 (en) | 1988-08-31 |
GB8804152D0 (en) | 1988-03-23 |
GB2202542A (en) | 1988-09-28 |
GB2202542B (en) | 1990-08-22 |
IL85506A (en) | 1991-09-16 |
JPS63268536A (en) | 1988-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4093017A (en) | Cores for investment casting process | |
JP2604592B2 (en) | Molding method of metal, ceramic powder, etc. and composition therefor | |
JP2001511719A (en) | Metal perfect dense mold and method of forming parts | |
EP1371742B1 (en) | Dry and self lubricant material,mechanical pieces made of a such material and its method of fabrication | |
JPH01245941A (en) | Thermoplastic compound for manufacturing casting core and manufacture of said core | |
GB1590480A (en) | Investment casting method for making a desired casting | |
FR2611150A1 (en) | COMPOSITION FOR MOLDING A CERAMIC CORE, METHOD FOR MANUFACTURING SUCH CORE AND CERAMIC CORE THUS OBTAINED | |
US3263286A (en) | Process and material for precision investment casting | |
US3701379A (en) | Process of casting utilizing magnesium oxide cores | |
CA2539122C (en) | Molding composition and method of use | |
JP5334842B2 (en) | Molded body for powder sintered body, powder sintered body and production method thereof | |
FR2711082A1 (en) | Process for manufacturing ceramic cores for foundry | |
US5518537A (en) | Filler and wax composition for investment casting | |
CA2507171C (en) | Lost wax casting process with contact layer | |
EP0251847B1 (en) | Cristobalitic foundry shell mould, composition of the slurry and method of making the mould | |
EP0502580A1 (en) | Casting mould | |
US4605057A (en) | Process for producing core for casting | |
US2883724A (en) | Casting processes | |
FR2845988A1 (en) | Ceramic mixture with a refractory plaster base and charged with minerals to improve the strength of the refractory blocks used in precision casting operations for a wide range of industries | |
JP2000254759A (en) | Manufacture of mold for precision casting | |
FR3062323A1 (en) | PROCESS FOR PRODUCING A CERAMIC CORE | |
KR0149240B1 (en) | Binder | |
JP2021146355A (en) | Investment material for investing resin pattern and manufacturing cast material | |
FR2845987A1 (en) | Ceramic mixture with a refractory plaster base and some mineral charges containing synthetic fibres for the fabrication of refractory blocks for the precision casting of low melting point alloys | |
CN118143196A (en) | Molding tool and method for producing a molding tool by additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |