FR2558952A1 - Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres - Google Patents
Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres Download PDFInfo
- Publication number
- FR2558952A1 FR2558952A1 FR8401433A FR8401433A FR2558952A1 FR 2558952 A1 FR2558952 A1 FR 2558952A1 FR 8401433 A FR8401433 A FR 8401433A FR 8401433 A FR8401433 A FR 8401433A FR 2558952 A1 FR2558952 A1 FR 2558952A1
- Authority
- FR
- France
- Prior art keywords
- transmitter
- sensor
- optical fiber
- parameters
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
- G01D5/35367—Sensor working in reflection using reflected light other than backscattered to detect the measured quantity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
L'invention a pour objet un capteur transmetteur de mesures utilisant l'interaction d'une ou de plusieurs ondes évanescentes optiques avec un milieu sensible aux paramètres à mesurer et son procédé d'utilisation,. The subject of the invention is a sensor transmitter of measurements using the interaction of one or more optical evanescent waves with a medium sensitive to the parameters to be measured and its method of use.
lesdits paramètres à mesurer pouvant être : une pression, une température...said parameters to be measured can be: pressure, temperature, etc.
Actuellement, il existe des capteurs non interferométriques qui utilisent les variations de réflexibn, de transmission ou de polarisation de la lumière à l'extrémité d'une fibre optique. Ces capteurs ne permettent pas l'adaptation de la dynamique à chaque situation. Currently, there are non-interferometric sensors that use variations in the reflectivity, transmission or polarization of light at the end of an optical fiber. These sensors do not allow the dynamics to be adapted to each situation.
Le capteur selon l'invention utilise l'interaction d'une onde évanescente optique avec un milieu sensible aux paramètres à mesurer. The sensor according to the invention uses the interaction of an optical evanescent wave with a medium sensitive to the parameters to be measured.
L'onde évanescente est celle qui, associée à l'onde optique, se propage dans la fibre optique monomode ou multimode qui fait office de capteur et de transmetteur (ou de sonde et de porteur d'informations. The evanescent wave is that which, associated with the optical wave, propagates in the single mode or multimode optical fiber which acts as sensor and transmitter (or probe and carrier of information.
A cet effet, le capteur selon l'invention comporte une fibre optique monomode dont une partie de la gaine a été éliminée à un endroit précis situé au niveau du milieu sensible, pour permettre à l'onde évanescente, qui se propage dans ledit milieu sensible, d'être influencée par différents paramètres qui déterminent les propriétés optiques de ce milieu. Ladite fibre optique se termine par un miroir qui renvoie l'onde incidente vers l'émetteur, passant ainsi une fois de plus par la région sensible. L'onde de retour est récupérée par une photodiode combinée avec des moyens de traitement des informations qui permettent la détermination du ou des paramètres à mesurer. To this end, the sensor according to the invention comprises a single-mode optical fiber from which part of the sheath has been eliminated at a precise location situated at the level of the sensitive medium, to allow the evanescent wave, which propagates in said sensitive medium. , to be influenced by different parameters which determine the optical properties of this medium. Said optical fiber ends in a mirror which returns the incident wave to the transmitter, thus passing once more through the sensitive region. The return wave is recovered by a photodiode combined with information processing means which allow the determination of the parameter or parameters to be measured.
Les dessins ci-joints, donnés à titre d'exemple indicatif et non limitatif, permettront aisément de comprendre l'invention. Ils représentent un mode de réalisation préféré selon l'invention ; la fibre optique, dans cette version préférée, est une fibre optique monomode. The attached drawings, given by way of non-limiting example, will easily make it possible to understand the invention. They represent a preferred embodiment according to the invention; the optical fiber, in this preferred version, is a single mode optical fiber.
La figure 1 est un schéma mettant en évidence la répartition d'énergie lumineuse transversale dans une fibre optique classique. Figure 1 is a diagram showing the distribution of transverse light energy in a conventional optical fiber.
La figure 2 est un schéma mettant en évidence la répartition d'énergie lumineuse transversale dans une fibre optique modifiée par exemple , dans le cas où une partie de la gaine a été éliminée. FIG. 2 is a diagram showing the distribution of transverse light energy in a modified optical fiber for example, in the case where part of the sheath has been eliminated.
La figure 3 est une vue schématique du capteur transmetteur de mesure selon l'invention utilisant une fibre optique. Figure 3 is a schematic view of the measurement transmitter sensor according to the invention using an optical fiber.
Le capteur selon l'invention utilise l'interaction d'une onde évanescente optique avec un milieu sensible aux paramètres que l'on cherche à mesurer. The sensor according to the invention uses the interaction of an optical evanescent wave with a medium sensitive to the parameters that one seeks to measure.
L'onde évanescente est celle associée à l'onde optique se propageant dans une fibre optique préalablement préparée, comme cela est décrit cidessous. Cette onde optique fait office en combinaison de sonde (ou capteur) et de porteur d'informations (ou transmetteur). The evanescent wave is that associated with the optical wave propagating in a previously prepared optical fiber, as described below. This optical wave acts as a combination of probe (or sensor) and information carrier (or transmitter).
Le capteur transmetteur selon l'invention est composé de trois éléments dont les fonctions sont les suivantes
- l'élément 14 qui permet le traitement des informations 10 envoyées et reçues.The transmitter sensor according to the invention is composed of three elements whose functions are as follows
the element 14 which allows the processing of the information 10 sent and received.
- l'élément 15 qui permet la transmission des informations, il s'agit de la ou des fibres optiques 5. the element 15 which allows the transmission of the information, this is the optical fiber or fibers 5.
- le capteur 6 qui fait office de sonde par la fibre optique 5 dont une partie de la gaine 3 est dénudée au niveau du milieu sensible 11 aux paramètres que l'on cherche à mesurer. - The sensor 6 which acts as a probe by the optical fiber 5, part of the sheath 3 is stripped at the level of the sensitive medium 11 to the parameters that one seeks to measure.
La figure 1 montre la répartition d'énergie lumineuse transversale dans une fibre optique classique 2. On note que, bien que la plupart de l'énergie soit concentrée dans la région de plus haut indice de réfraction
NA, appelée coeur 1 de la fibre 2, une partie non négligeable de l'énergie (région noircie) se trouve dans la région de plus faible indice de réfraction NB, appelée gaine 3. Cette deuxième partie de l'onde s'appelle "onde évanescente" : c'est elle qui interagit avec le milieu qui entoure le coeur 1.FIG. 1 shows the distribution of transverse light energy in a conventional optical fiber 2. It is noted that, although most of the energy is concentrated in the region with the highest refractive index
NA, called core 1 of fiber 2, a non-negligible part of the energy (darkened region) is in the region of lower refractive index NB, called cladding 3. This second part of the wave is called " evanescent wave ": it is it which interacts with the medium which surrounds the heart 1.
Dans la figure 2, on examine le cas où l'on a éliminé (par exemple par polissage) une partie de la gaine 3 pour permettre au milieu extérieur 11 d'indice de réfraction NC, d'entrer en contact avec le coeur 1 ; dans ce cas, l'onde évanescente se propage dans le milieu NC, le pénétrant plus ou moins selon la valeur relative des indices NA et NC. La propagation de l'onde se trouve donc influencée par l'état du milieu NC , et donc sensible aux paramètres qui déterminent les propriétés optiques de ce milieu. In FIG. 2, we examine the case where part of the sheath 3 has been eliminated (for example by polishing) to allow the external medium 11 of refractive index NC, to come into contact with the core 1; in this case, the evanescent wave propagates in the medium NC, penetrating it more or less according to the relative value of the indices NA and NC. The propagation of the wave is therefore influenced by the state of the medium NC, and therefore sensitive to the parameters which determine the optical properties of this medium.
La figure 3 met en évidence comment une fibre 5, modifiée en éliminant une partie de la gaine 3, peut servir comme élément de base d'un capteur 6. Un émetteur 7, tel qu'une diode émettrice, excite la fibre optique 5. Un moyen faisant office de coupleur 16, pointe le rayon sur le coeur 1 de la fibre optique 5, qui transmet sa lumière jusqu'à la région où le coeur 1 de la fibre 5 se trouve en contact avec le milieu 11 dont les propriétés optiques sont sensibles aux-paramètres que l'on cherche à mesurer (typiquement des liquides ou cristaux liquides), c'est-à-dire au niveau où la fibre optique 5 a été dénudée de sa gaine 3. La fibre optique 5 se termine par un miroir 8 qui renvoie l'onde incidente vers l'émetteur 7 passant ainsi une fois de plus par la région sensible.Cette onde de retour est récupérée sur une photodiode 9 associée avec une électronique de traitement 10 qui permet la détermination du paramètre que l'on cherche à mesurer. FIG. 3 shows how a fiber 5, modified by eliminating part of the sheath 3, can serve as the basic element of a sensor 6. A transmitter 7, such as a transmitter diode, excites the optical fiber 5. A means acting as a coupler 16, points the ray on the core 1 of the optical fiber 5, which transmits its light to the region where the core 1 of the fiber 5 is in contact with the medium 11 whose optical properties are sensitive to the parameters that one seeks to measure (typically liquids or liquid crystals), that is to say at the level where the optical fiber 5 has been stripped of its sheath 3. The optical fiber 5 ends in a mirror 8 which returns the incident wave to the emitter 7 thus passing once more through the sensitive region. This return wave is recovered on a photodiode 9 associated with processing electronics 10 which allows the determination of the parameter that l 'we are trying to measure.
La fibre optique 5 se termine au niveau du connecteur 13. Ce connecteur 13, qui fait office de capteur ou de sonde 6, comprend par exemple dans un tube 17, le milieu sensible 11, le fluide de mesure 4 qui atteint le niveau de fluide 12. A l'extrémité de la fibre optique 5 est disposé le miroir 8 qui renvoie l'onde incidente vers l'émetteur 7 telle qu'une diode émettrice. The optical fiber 5 ends at the connector 13. This connector 13, which acts as a sensor or probe 6, comprises for example in a tube 17, the sensitive medium 11, the measurement fluid 4 which reaches the fluid level 12. At the end of the optical fiber 5 is arranged the mirror 8 which returns the incident wave to the transmitter 7 such as a transmitter diode.
La fibre optique modifiée 5, en contact avec des milieus 11, permet son fonctionnement comme un capteur de déplacement, de pression et de température 6. L'utilisation de la fibre 5 dans cette configuration permet la réalisation de capteurs sensibles 6, miniaturisés, très maniables et bon marché. Le fait qu'a part l'électronique de traitement 10 placée à une extrémité, le dispositif est entièrement optique, rend ledit dispositif particulièrement insensible aux parasites électriques, ce qui est particulièrement intéressant pour des capteurs de toutes sortes. The modified optical fiber 5, in contact with media 11, allows it to function as a displacement, pressure and temperature sensor 6. The use of fiber 5 in this configuration allows the production of sensitive sensors 6, miniaturized, very handy and inexpensive. The fact that apart from the processing electronics 10 placed at one end, the device is entirely optical, makes said device particularly insensitive to electrical noise, which is particularly advantageous for sensors of all kinds.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8401433A FR2558952A1 (en) | 1984-01-27 | 1984-01-27 | Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8401433A FR2558952A1 (en) | 1984-01-27 | 1984-01-27 | Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2558952A1 true FR2558952A1 (en) | 1985-08-02 |
Family
ID=9300605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8401433A Pending FR2558952A1 (en) | 1984-01-27 | 1984-01-27 | Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2558952A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106323419A (en) * | 2016-09-30 | 2017-01-11 | 天津市誉航润铭科技发展有限公司 | Novel liquid level sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2439393A1 (en) * | 1978-10-20 | 1980-05-16 | Honeywell Inc | OPTICAL TEMPERATURE DETECTOR |
DE3012328A1 (en) * | 1979-04-10 | 1980-10-30 | Asea Ab | FIBER OPTICAL MEASURING DEVICE |
FR2499244A1 (en) * | 1981-02-04 | 1982-08-06 | Morand Christian | Electro-optical room pollutant analysis process - using phase variation in EM radiation propagating simultaneously in media having different refractive indices |
JPS57194324A (en) * | 1981-05-25 | 1982-11-29 | Omron Tateisi Electronics Co | Optical temperature measuring device |
-
1984
- 1984-01-27 FR FR8401433A patent/FR2558952A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2439393A1 (en) * | 1978-10-20 | 1980-05-16 | Honeywell Inc | OPTICAL TEMPERATURE DETECTOR |
DE3012328A1 (en) * | 1979-04-10 | 1980-10-30 | Asea Ab | FIBER OPTICAL MEASURING DEVICE |
FR2499244A1 (en) * | 1981-02-04 | 1982-08-06 | Morand Christian | Electro-optical room pollutant analysis process - using phase variation in EM radiation propagating simultaneously in media having different refractive indices |
JPS57194324A (en) * | 1981-05-25 | 1982-11-29 | Omron Tateisi Electronics Co | Optical temperature measuring device |
Non-Patent Citations (1)
Title |
---|
PATENTS ABSTRACTS OF JAPAN, vol. 7, no. 42 (P-177)[1187], 19 février 1983; & JP - A - 57 194 324 (TATEISHI DENKI K.K.) 29-11-1982 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106323419A (en) * | 2016-09-30 | 2017-01-11 | 天津市誉航润铭科技发展有限公司 | Novel liquid level sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5004913A (en) | Remote measurement of physical variables with fiber optic systems - methods, materials and devices | |
US4699511A (en) | Refraction sensor | |
US4443700A (en) | Optical sensing apparatus and method | |
CN105044030B (en) | Evanscent field coupling coefficient meter and its detection method between optical fiber is fine | |
EP0075653B1 (en) | Optical fluid analysing apparatus | |
CN108844919A (en) | The reflection type inclined fiber grating index sensor of covering and production, measurement method | |
CN101545851B (en) | Reflective optical fiber biochemical sensor based on long-period fiber grating and manufacturing method | |
US20030142977A1 (en) | Apparatus for interrogating an optical signal | |
KR101109093B1 (en) | Optical fiber sensor and measuring device using the same | |
CN108680275A (en) | Optical-fiber probe type temperature and strain gauge based on single dislocation welding | |
FR2473708A1 (en) | METHOD AND DEVICE FOR OPTICALLY MEASURING THE TEMPERATURE AND METHOD FOR PRODUCING AN APPROPRIATE PROBE | |
US7453572B1 (en) | Method and apparatus for continuous measurement of the refractive index of fluid | |
EP2038640A1 (en) | Sensor with a microstructured fiber optic base and bragg network | |
Kumar et al. | Study of fiber optic sugar sensor | |
FR2558952A1 (en) | Sensor and transmitter of measurements and its operation using the interaction of evanescent optical waves with a medium sensitive to the parameters to be measured, using one or more single-mode or multimode optical fibres | |
US6480638B1 (en) | Single mode fiber optic evanescent wave refractometer | |
Chetia et al. | Low-cost refractive index sensor with optical fibers attached to a U-shaped glass tube | |
TAKAHASHI et al. | Pressure and temperature dependence of fiber Bragg grating for acoustic sensing | |
US7087887B1 (en) | Optical multiphase flow sensor | |
SU1755123A1 (en) | Fiber-optics refractometer | |
Srinivasulu et al. | Multimode optical fiber extrinsic sensor–determination of adulteration of certain edible oils | |
JPH0756041A (en) | Dual core optical fiber and temperature measuring device using the same | |
Russo et al. | Liquid refractometry: an approach for a continuous measurement | |
Oliveira et al. | In-series fiber Bragg gratings and multimode interferometers for sensing applications | |
RU1796916C (en) | Light-guide level detector |