FR2483564A1 - Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum - Google Patents
Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum Download PDFInfo
- Publication number
- FR2483564A1 FR2483564A1 FR8012696A FR8012696A FR2483564A1 FR 2483564 A1 FR2483564 A1 FR 2483564A1 FR 8012696 A FR8012696 A FR 8012696A FR 8012696 A FR8012696 A FR 8012696A FR 2483564 A1 FR2483564 A1 FR 2483564A1
- Authority
- FR
- France
- Prior art keywords
- partitions
- radiation
- taken together
- low
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/6612—Evacuated glazing units
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/803—Heat insulating elements slab-shaped with vacuum spaces included in the slab
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/663—Elements for spacing panes
- E06B3/66304—Discrete spacing elements, e.g. for evacuated glazing units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/75—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
- F24S10/755—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being otherwise bent, e.g. zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/50—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
- F24S80/54—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/50—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
- F24S80/58—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by their mountings or fixing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S2025/01—Special support components; Methods of use
- F24S2025/011—Arrangements for mounting elements inside solar collectors; Spacers inside solar collectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/242—Slab shaped vacuum insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/249—Glazing, e.g. vacuum glazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/22—Glazing, e.g. vaccum glazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Dispersion Chemistry (AREA)
- Electromagnetism (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
La présente invention concerne la réalisation de panneaux sous vide
de grande surface ayant de très faibles pertes thermiques : destinés, dans la
variante transparnnte, è- réaliser des "vitrages" isolants de très hautes per
formances à l'usage des serres des habitations et des capteurs solaires
destinés, dans la variante opaque, a réaliser des panneaux d'isolation de très
hautes porformhncee è l'usage des volumes de stockage, ou tout autre anplica-
tion nécessitant d'excellentes isolations ; et, destinés également dans une
autre variante, à la réalisation des capteurs solaires de très hautes perfor mancies. The present invention relates to the production of vacuum panels
large area with very low heat losses: intended, in the
transparent variant, make insulating "glazing" of very high per
training for the use of residential greenhouses and solar collectors
intended, in the opaque variant, to produce insulation panels of very
high porformhncee for the use of storage volumes, or any other anplica-
tion requiring excellent insulation; and, also intended for a
another variant, the production of very high perfor mancies solar collectors.
Dans les oispositifs connus de ce genre, vitrage' ou cateurs so-
laires de grandes surfaces, la séparation entre le milieu intérieur et le mi
lieu extérieur se fait avec une ou plusieurs cloisons transparentes, possédant
ou non un traitement réflecteur pour les infrarouges lointains, avec, entre les
cloisons, soit de l'air, soit un gaz approprié Ces dispositifs pressentent tous l'inconvénient d'avoir encore des pertes thermiques beaucoup trop importantes
pour utiliser rationnellement l'énergie solaire.In known devices of this kind, glazing 'or so-called cators
large areas, the separation between the interior and the mid
outdoor place is done with one or more transparent partitions, having
or not a reflective treatment for far infrared, with, between the
partitions, either air or an appropriate gas These devices all sense the drawback of still having far too great heat losses
to rationally use solar energy.
Les calculs des pertes thermiques par conduction, par convection,
et par rayonnement, relatifs à ces dispositifs connus, nous donnent les estimations suivantes
- pour une vitre seule, les pertes totales sont comprises entre 9 et I5 W/m2/degrés c
- pour une double vitre, entre 4 et 6 W/m2/degrés c
- pour lQne double vitre avec traitement réflecteur de l'infrarouge
lointain, entre 2,5 et 4 W/m2/degrés c
- pour un capteur solaire à une vitre avec absorbeur sélectif
(a IRL P 0,05), entre 3,5 et 4 W/m2/degrés c
- pour un capteur solaire à double vitre avec absorbeur sélectif
(a IRL = 0,05), entre 2 et 2,5 W/m2/degrés c
(calculs effectués pour des température de + 5 à + 30 degrés c)
Le dispositif suivant l'invention permet de réaliser des panneaux sous vide ou sous faible pression, de faible épaisseur, de grande surface,
ayant des pertes thermiques 10 à 50 fois plus faibles que les divers dispositifs
connus.Calculations of thermal losses by conduction, by convection,
and by radiation, relating to these known devices, give us the following estimates
- for a single window, the total losses are between 9 and I5 W / m2 / degrees c
- for a double window, between 4 and 6 W / m2 / degrees c
- for a double window with infrared reflective treatment
far, between 2.5 and 4 W / m2 / degrees c
- for a single pane solar collector with selective absorber
(a IRL P 0.05), between 3.5 and 4 W / m2 / degrees c
- for a double pane solar collector with selective absorber
(a IRL = 0.05), between 2 and 2.5 W / m2 / degrees c
(calculations made for temperatures from + 5 to + 30 degrees c)
The device according to the invention makes it possible to produce panels under vacuum or under low pressure, of small thickness, of large surface area,
having heat losses 10 to 50 times lower than the various devices
known.
Les calculs des pertes thermiques, par conduction, par convection
et par rayonnement, relatifs à ces panneaux, objet de l'invention, nous donnent
pour les diverses variantes les estimations suivantes
- pour les vitrages isolants, les pertes totales sont comprises en
tre 0,25 et 0,75 W/m2/degrés c
- pour les capteurs solaires, entre 0,2 et 0,5 W/m2/degrés c
- pour les panneaux opaques d'isolations, entre 0,02 et 0,08 W/m2/
degrés c (calculs effectués pour des températures de + 5 à + 30 degrés c et pour plusieurs
technologies).Calculations of heat losses, by conduction, by convection
and by radiation, relating to these panels, object of the invention, give us
for the various variants the following estimates
- for insulating glass, the total losses are included in
be 0.25 and 0.75 W / m2 / degrees c
- for solar collectors, between 0.2 and 0.5 W / m2 / degrees c
- for opaque insulation panels, between 0.02 and 0.08 W / m2 /
degrees c (calculations made for temperatures from + 5 to + 30 degrees c and for several
technologies).
Ainsi, avec de tels perneaax, moyennant une capacité de stockage re
lativement faible, on peut garantir le chauffage solaire intégral des serres et
des habitations sur la totalité du territoire français, excepté les altitudes
trop élevées.Thus, with such perneaax, by means of a storage capacity re
laterally low, we can guarantee full solar heating of greenhouses and
dwellings on the entire French territory, except the altitudes
too high.
Le dispositif, objet de l'invention, comporte au moins deux cloisons opaques pu transparentes, suivant les variantes, planes ou de forme quelconque,
rigides ou souples, identiques ou non, placées les unes en face des autres, à
une distance généralement faible devent les dimensions de ces cloisons. Un sys
tème de joint ou de scellement, disposé de préférence sur tout le Périmètre des
cloisons, rend étanche, vis à vis de l'extérieur, le volume intérieur ainsi dé
limité. Une structure résistante, placée à l'intérieur entre les deux cloisons
et répartie sur toute la surface, permet à ces deux cloisons de supporter la
pression a.tmospnérique lorsque 'e volume intérieur est soumis au vide ou à une faible pression.La géométrie et les matériaux de cette structure résistante sont
tels que les pertes athermiques par conduction engendrées par cette structure
restent très faibles entre les deux cloisons. D'autre part, le surface de tous
les éléments constituant cette structure résistante a, vis à vis des rayonnements
ultraviolets visibles et infrarouges, un eoefficient d'absorption le plus faible possible, eeci afin d'évitertoute perte d'énergie inutile et toute montée en tem
pérature intempestive de cette structure.The device which is the subject of the invention comprises at least two transparent or opaque partitions, depending on the variants, flat or of any shape,
rigid or flexible, identical or not, placed one opposite the other, at
a generally small distance becomes the dimensions of these partitions. A sys
joint or sealing plate, preferably placed over the entire perimeter of the
partitions, seals, vis-à-vis the outside, the interior volume thus de
limit. A resistant structure, placed inside between the two partitions
and distributed over the entire surface, allows these two partitions to support the
atmospheric pressure when the interior volume is subjected to vacuum or low pressure. The geometry and materials of this resistant structure are
such as athermal conduction losses caused by this structure
remain very weak between the two partitions. On the other hand, the surface of all
the elements constituting this resistant structure a, with respect to radiation
visible and infrared ultraviolet, the lowest possible absorption eoefficient, this in order to avoid any unnecessary loss of energy and any rise in time
untimely temperature of this structure.
La face intérieure d'au moins une cloison,-et parfois des deux, a un
facteur de réflexion le l'ils grand possible dans l'infrarouge lointain. Ces pro
piétés phys-aues sont, soit inhérentes aux matériaux choisis pour réaliser les
cloisons, soit obtenues par un traitement ae surface approprié de la fane inté
rieure de ces cloisons.The interior face of at least one partition, and sometimes both, has a
factor of reflection the the largest possible in the far infrared. These pro
physical pieties are either inherent in the materials chosen to make the
partitions, either obtained by an appropriate surface treatment of the internal haulm
of these partitions.
A titre d'exemples non limitatifs, ces traitements de surface sont
pour le verre, soit -ane couche d'oxyde d'indium (In2 03) soit une couche d'oxyde
d'étain (Sn 02) sois '1r.e col'.che d'oxyde de titane (Ti 02) (oxydes dopés) ciu au
treks, dtposées par divers procédés , tels que la pyrolyse, l'évaporation sous
vide, la pulvérisation haute fréquence, etc ... Pour les cloisons opaques ou les
absorbeurs, ces traitements de surface sont par eY-^aple : des peiatures spéciales, des dépôts électrolytiques, des oxydations, ies dépits ehimiques, etc ... By way of nonlimiting examples, these surface treatments are
for glass, either an indium oxide layer (In2 03) or an oxide layer
of tin (Sn 02) be '1st column' titanium oxide (Ti 02) (doped oxides) ciu au
treks, deposited by various processes, such as pyrolysis, evaporation under
vacuum, high frequency spraying, etc ... For opaque partitions or
absorbers, these surface treatments are by eY- ^ aple: special peiatures, electrolytic deposits, oxidations, ithemics, etc ...
Les faces extérieures de ces deux cloisons sont, soit lisses, soit
de texture et de géométrie étudiées pour solutionner au moins partiellement
certains problèmes d'optiques, de résistances mécaniques, ou de technologie.The exterior faces of these two partitions are either smooth or
of texture and geometry studied to solve at least partially
certain problems of optics, mechanical resistance, or technology.
Suivant les cas, ces dispositifs sont, soit à vide statique, panneaux scellés, soit. à vide entretenu, panneaux raccordés à un système de pom
page. Les panneaux à vide entretenu sont de technologie moins complexe. D'autre part, on peut réguler la température en "jouant" sur la pression interne des
panneaux, c'est-à-dire sur ses pertes convectives.Depending on the case, these devices are either static vacuum, sealed panels, or. vacuum maintained, panels connected to a pom system
page. The vacuum panels maintained are of less complex technology. On the other hand, the temperature can be regulated by "playing" on the internal pressure of the
panels, that is to say on its convective losses.
En outre, ces panneaux ont de bonnes performances mécaniques au ni
veau des chocs, et notamment de la grêle, ceci gracie b la structure résistante
de soutien répartie sur toute la surface entre les deux cloisons, cet ensemble
fortement serré par la pression atmosphérique se comporte comme une poutre composite de grande inertie.In addition, these panels have good mechanical performance at ni
shock calf, and in particular hail, this thanks to the resistant structure
support distributed over the entire surface between the two partitions, this set
strongly tightened by atmospheric pressure behaves like a composite beam of great inertia.
Pour résumer, il est clair que ces panneaux, suivant l'inventionp ont
d'excellentes performances, par le fait que les trois causes principales de per tes thermiques ont été réduites simultanément par divers moyens appropriés les les pertes par conduction, par un choix judicieux des matériaux et de leur géomé
trie ; les pertes par rayonnement, par le fait qu'au moins une des deux faces
intérieures des cloisons ainsi que les éléments de la structure de soutien, ont un grand coefficient de réflexion dans l'infrarouge lointains ou un faible pouvoir émissif également dans l'infrarouge lointain ; et les pertes par convec- tion, par le fait qu'on maintientle vide ou une très faible pression entre les deux cloisons.Le vide entre les deux cloisons est possible gracie à la présen
ce de la structure résistante de soutien.To summarize, it is clear that these panels, according to the inventionp have
excellent performance, by the fact that the three main causes of thermal losses have been reduced simultaneously by various appropriate means the losses by conduction, by a judicious choice of materials and their geom
sorts; radiation losses, by the fact that at least one of the two faces
interior of the partitions as well as the elements of the support structure, have a large reflection coefficient in far infrared or a low emissivity also in far infrared; and convection losses, by maintaining a vacuum or a very low pressure between the two partitions. The vacuum between the two partitions is possible thanks to the presence
that of the resistant support structure.
Les dessins annexés illustrent, à titre exemple non limitatif, plu
sieurs variantes et plusieurs modes de réalisations du dispositif conformes à la présente invention.The accompanying drawings illustrate, by way of non-limiting example, more
several variants and several embodiments of the device in accordance with the present invention.
- La figure nQ I est une vue en perspective d'un vitrage isolant,
la figure n2 2 est une vue en coupe de ce même vitrage. Les cloisons transpa
rentes (I) sont en verre à vitre, elles reposent sur un cadre en matière plas
tique (2) dont la face intérieure (8) est réflechissante, l'étanchéité étant
assurée par un joint coulé (7) présentant une légère souplesse ; la structure
résistante ()) est constituée d'un réseau de colonnettes en matière plastique
réfléchissantes de 3 à 4 ne de diamètre espacées de 25 à 30 mm ; le traitement
de surface d'au moins une des cloisons (5) > réflecteur dans l'infrarouge loin
tain, est une couche d'oxyde d'étain Sn 2 ou d'oxyde d'indium In2 03 dopé déposé par pyrolyse, l'orifice (4) sert à maintenir le vide (6) entre les deux cloisons1 les dimensions sont par exemple : longueur 2 mètres, largeur I mètre, épaisseur 5 centimères.- Figure nQ I is a perspective view of an insulating glazing,
Figure 2 is a sectional view of the same glazing. The transparent partitions
annuities (I) are made of window glass, they rest on a frame made of plastic
tick (2) whose inner face (8) is reflective, the seal being
provided by a cast joint (7) having a slight flexibility; the structure
resistant ()) consists of a network of plastic balusters
reflective 3 to 4 ne in diameter spaced 25 to 30 mm; the treatment
surface area of at least one of the partitions (5)> far infrared reflector
tin, is a layer of tin oxide Sn 2 or doped indium oxide In2 03 deposited by pyrolysis, the orifice (4) is used to maintain the vacuum (6) between the two partitions1 the dimensions are for example : length 2 meters, width I meter, thickness 5 centimeters.
- La figure ni 3 est une vue en coupe et perspective d'un vitrage isolant constitué de cloisons transparentes souples se présentant sous forme d'un bracelet de grande longueur que l'on enfile comme une gant sur une structure résistante de soutien représentée symboliquement en (2), le vide maintenu à l'intérieur du panneau (3) impose à l'ensemble de la cloison .souple la forme repré sentée par le dessin (I) ; cette forme s'explique par le fait que la cloison transparente souple travaille à la traction, pendant que la structure de soutien (2) travaille à la compression. Cette conception mécanique pour des matériaux donnés nous permet d'obtenir les poids au mètre carré de panneau les plus faibles possible, donc un prix matière réduit. En (4), à l'intérieur du panneau, on retrouve un traitement réflecteur pour l'infrarouge lointain. - Figure ni 3 is a sectional and perspective view of an insulating glazing consisting of flexible transparent partitions in the form of a bracelet of great length which is put on like a glove on a resistant support structure represented symbolically by (2), the vacuum maintained inside the panel (3) imposes on the whole of the partition .souple the shape represented by the drawing (I); this shape is explained by the fact that the flexible transparent partition works under tension, while the support structure (2) works under compression. This mechanical design for given materials allows us to obtain the lowest possible weight per square meter of panel, therefore a reduced material price. In (4), inside the panel, there is a reflective treatment for far infrared.
- La figure n2 4 est une vue en coupe et perspective d'un panneau isolant opaque ou trensparent obtenu par extrusion d'une matière ayant la conductibilité thermique la plus faible possible. Les cloisons (I) ont une forme qui leur permet de travailler le plus possible à la traction, l'espace intérieur le plus rapproché entre ces deux cloisons est relativement faible de façon à avoir la poussée latérale la plus faible possible, la structure résistante de soutien (2) travaille à la compression, la face intérieure (3) d'au moins une cloison a un coefficient de réflexion très grand dans l'infrarouge lointain, le tube (4) permet de maintenir le vide entre les deux cloisons (5). - Figure n2 4 is a sectional and perspective view of an opaque or transparent insulating panel obtained by extruding a material having the lowest possible thermal conductivity. The partitions (I) have a shape which allows them to work as much as possible in traction, the closest internal space between these two partitions is relatively small so as to have the lowest possible lateral thrust, the resistant structure of support (2) works on compression, the inner face (3) of at least one partition has a very high reflection coefficient in the far infrared, the tube (4) maintains the vacuum between the two partitions (5 ).
- La figure n2 5 est une vue en coupe d'un panneau isolant opaque, les cloisons (I) sont en matière plastique par exemple, le cadre (2) est gale- ment en plastique, les formes mile et femelle de ces cadres permettent l'assemblage, l'étanchéité est obtenue par soudllre (3), la structure de soutien est schématisée par (4), les faces intérieures des deux cloisons de préférence (5) ont de grands coefficients de réflexion dans l'infrarouge lointain, le tube (6) permet de maintenir le vide entre les deux cloisons (7). - Figure 2 is a sectional view of an opaque insulating panel, the partitions (I) are made of plastic for example, the frame (2) is also made of plastic, the mile and female shapes of these frames allow assembly, sealing is obtained by welding (3), the support structure is shown diagrammatically by (4), the internal faces of the two partitions preferably (5) have large coefficients of reflection in the far infrared, the tube (6) maintains the vacuum between the two partitions (7).
- La figure n2 6 est une vue en perspective d'un tronçon de réglette moulée, destinée à réaliser des structures résistantes de soutien travaillant à la compression et pouvant couvrir n'importe quelle surface. Les gorges (2) permettent de les encastrer "tête bêche", perpendiculairement les unes par rapport aux autres. Vu de dessus, un tel assemblage forme des carrés sur toute la surface désirée, les deux cloisons opposées à soutenir reposent ainsi sur les pieds (I) de ces réglettes. - Figure n2 6 is a perspective view of a molded strip section, intended to produce resistant support structures working under compression and which can cover any surface. The grooves (2) allow them to be embedded "head to tail", perpendicularly to each other. Seen from above, such an assembly forms squares over the entire desired surface, the two opposing partitions to be supported thus rest on the feet (I) of these strips.
La matière pour réaliser ces réglettes a une grande résistance thermique a' a
conduction. La surface de ces réglettes a un faible coefficient d'absorption
pour les rayonnements ultraviolets visibles et infrarouges. Les formes et les
dimensions de ces réglettes peuvent varier à l'infini.The material for making these strips has a high thermal resistance to
conduction. The surface of these strips has a low absorption coefficient
for visible and infrared ultraviolet radiation. Shapes and
dimensions of these strips can vary infinitely.
La figure no 7 est une vue e perspective et la figue no 8 une vue de dessus d'un même élément de structure résistante de soutien, obtenu par mou
lage par exemple. Les colonnettes (I) travaillent a la compression et soutienne.nt
les cloisons d'un quelconque panneau, les traverses (2) solidarisent les colonnet-
tes entre elles, les oeillets (3) permettent d'assembler plusieurs éléments afin
de couvrir la surface voulue. Les propriétés mécaniques, thermiqueset optiques
de ces éléments sont les mêmes que pour les réglettes de la figure no 6.FIG. 7 is a perspective view and FIG. 8 is a top view of the same element of resistant support structure, obtained by slack
age for example. The balusters (I) work on compression and support.
the partitions of any panel, the crosspieces (2) secure the columns
your between them, the eyelets (3) allow to assemble several elements so
to cover the desired area. Mechanical, thermal and optical properties
of these elements are the same as for the strips in Figure 6.
- La figure n 9 est la vue en coupe d'un capteur solaire selon l'invention. La cloison (I) est transparente, la cloison (2) pst soit transparente,
soit opaque, ces cloisons reposent sur un cadre (3) en matiere plastique par
exemple, l'étanchéité est obtenue par un joint coulé (4), l'absorbeur (5) est
"pincée entre deux structures de soutien (7), les tubes (6) véhiculent le fluide
caloporteur, le tube (8) permet de maintenir le vide à l'intérieur (9).La surface de .l'absorbPur a un très bon coefficint d'absorption vis-à-vis du rayonne
ment solaire et un très faible coefficient d'éaission dans l'infrarouge lointain
si ce coefficient est suffisamment faible, la face intérieure de le cloison (I)
peut ne pas avoir de traitement réflecteur dans l'infrarouge, ides pour la cloi
son (2).Il faut noter que si les deux cloisons (I) et (2) sont transparentes, le panneaux va capter l'énergie solaire par ses deux faces, et cette particularité
peut devenir treks intéressante dans de nombreux cas : capteurs placés à proximi-
té d'une zone réfléchissante ; capteurs placés -rs- ticålement, lne face au sud et
l'autre au nord ; capteurs placés verticalement au dessus d'un sol clair, sable, neige, etc ... I1 faut souligner que si les pertes thermiques du capteur sont
importantes, c1 est le cas des dispositifs connus, cette particularité devient
globalement inintéressante.- Figure n 9 is the sectional view of a solar collector according to the invention. The partition (I) is transparent, the partition (2) pst is transparent,
either opaque, these partitions rest on a frame (3) made of plastic by
example, the seal is obtained by a cast joint (4), the absorber (5) is
"pinched between two support structures (7), the tubes (6) convey the fluid
coolant, the tube (8) allows to maintain the vacuum inside (9) .The surface of .absorbPur has a very good absorption coefficient vis-à-vis the rayon
solar and a very low coefficient of expansion in the far infrared
if this coefficient is sufficiently low, the interior face of the partition (I)
may not have infrared reflective treatment, ideas for the partition
sound (2). Note that if the two partitions (I) and (2) are transparent, the panel will capture solar energy by its two sides, and this feature
can become interesting treks in many cases: sensors placed near
tee of a reflective area; sensors placed -rs- ticålement, lne facing south and
the other to the north; collectors placed vertically above clear ground, sand, snow, etc. It should be noted that if the thermal losses of the collector are
important, c1 is the case with known devices, this peculiarity becomes
overall uninteresting.
- La figure nO 10 est la vue an coupe d'un capteur solaire dont l'une
des cloisons (2) est l'absorbeur lui-même, la cloison (I) est transparente, le
cadre (3) supporte les deux cloisons, l'étanchéité est assurés par un joint dé
formable (4) immobilisé par un étrier (5) possédant un système de serrage schématisé par une croix (6), l'ensemble de ce panneau étant démontable. On retrouve
les tubes (8! pour le fluide caloporteur, le tube (9) pour le vide, et la structure de soutien (7). L'absorbeur aura les mêmes caractéristiques que celles décri-
tes pour la figure (9) et il pourra se présenter sous diverses formes, refrnidi par liquide, par gaz, ou n'être qu'une simple "tôle", ce type de capteur solaire a son intérêt dans certaines applications.- Figure 10 is the sectional view of a solar collector, one of which
partitions (2) is the absorber itself, the partition (I) is transparent, the
frame (3) supports the two partitions, sealing is ensured by a joint
formable (4) immobilized by a stirrup (5) having a clamping system shown diagrammatically by a cross (6), the whole of this panel being removable. We find
the tubes (8! for the heat transfer fluid, the tube (9) for the vacuum, and the support structure (7). The absorber will have the same characteristics as those described
your for figure (9) and it can come in various forms, refrnidi by liquid, by gas, or be only a simple "sheet", this type of solar collector has its interest in certain applications.
- La figure n2 II représente en coupe un panneau composite, comportant un vitrage isolant selon l'invention, identique à celui décrit par les figures
I et 2, en ce qui concerne les repères tI) (5) (6) (7) (II) et (I2) de la figure ng II, le système de joints démontables est identique à celui décrit par la
figure no IO, en ce qui concerne les repères (2) (3) (4) et (13) de la figure nQ II. En outre, ce panneau comporte un volume supplémentaire (9) délimité
par les cloisons (5) et (8) et le cadre (2).Ce volume supplémentaire peut
servir à réguler, soit le flux thermique traversant le vitrage, soit le flux
lumineux, soit les deux, grâce à des mécanismes qui feront l'objet d'une descrip
tion ultérieure.- Figure n2 II shows in section a composite panel, comprising an insulating glazing according to the invention, identical to that described by the figures
I and 2, with regard to the references tI) (5) (6) (7) (II) and (I2) of figure ng II, the system of removable seals is identical to that described by the
figure no IO, with regard to the references (2) (3) (4) and (13) of figure nQ II. In addition, this panel has an additional volume (9) delimited
by the partitions (5) and (8) and the frame (2).
serve to regulate either the heat flow through the glazing or the flow
luminous, or both, thanks to mechanisms which will be the subject of a description
subsequent tion.
Les applications de ces panneaux sont nombreuses et importantes. in
effet, lorsque des vitrages isolants ou des capteurs solaires ont des pertes
thermiques globales d'environ 0,3 W/m2/degré, on peut montrer aisément que le bilan énergétique, entre l'apport solaire et les pertes totales, est très largement positif, même en décembre et sur tout le territoire français. Le chauf
fage solaire intégral toute l'année est donc envisageable pour les serres et pour les habitations ; d'autre part, étant donné le rendement élevé de ces panneaux, la capacité de stockage nécessaire restera faible et non contraignante.En outre, ces panneaux permettent également de collecter l'énergie à température assez élevée tant en ayant de bon rendements ; les avantages sont nombreux : optimisation des capacités de stockages, utilisation industrielle directe d'eau très chaude, meilleur rendement des divers "moteurs solaires",
etc ... in ce qui concerne les vitrages isolants, leurs caractéristiques permettraient la réalisation de serres chaudes dont la température intérieure
serait maintenue toute l'année entre + 25 et + 30 degrés centigrades unique ment par l'énergie solaire; à l'intérieur de telles serres, on pourrait pra
tiquer des cultures de plantes équatoriales à grande vitesse de développement donc de grande rentabilité.Ces vitrages isolants permettront également la réa
lisation de serres d'habitations intégralement "solaire" ; en outre, l'utili
sation de panneaux composites, voir figure II, permettrait la régulation
thermique et lumineuse de ces serres d'habitations, une commande électrique permettrait de faire varier l'opacité de ces panneaux et meme de les occulter
complètement. Un projet d'utilisation de ces vitrages isolants est actuellement en cours d'élaboration. Il s'agit d'associer un digesteur méthanique à une serre équatoriale dans laquelle on pratiquerait une culture de plantes
aquatiques, comme la jacinthe d'eau par exemple. Le digesteur fournira le nécessaire à la photosynthèse et les effluents liquides serviront d'engrais pour ces plantes. L'eau nécessaire à la culture aquatique servira également de stockage d'énergie. A surface égale, de telles cultures pourraient produire entre 50 et I50 fois plus de protéine qu'un champ de mais. The applications of these panels are numerous and important. in
effect, when insulating glass or solar collectors have losses
overall thermal about 0.3 W / m2 / degree, it can easily be shown that the energy balance, between solar gain and total losses, is very largely positive, even in December and throughout France. The heat
full solar fage all year round is therefore possible for greenhouses and homes; on the other hand, given the high efficiency of these panels, the necessary storage capacity will remain low and not restrictive. In addition, these panels also make it possible to collect energy at a fairly high temperature while having good yields; the advantages are numerous: optimization of storage capacities, direct industrial use of very hot water, better efficiency of the various "solar motors",
etc ... in the case of insulating glazing, their characteristics would allow the realization of greenhouses whose interior temperature
would be maintained throughout the year between + 25 and + 30 degrees centigrade only by solar energy; inside such greenhouses one could pra
tick crops of equatorial plants at high speed of development therefore of great profitability. These insulating glazing will also allow the reac
building greenhouses for fully "solar"dwellings; in addition, the utility
sation of composite panels, see figure II, would allow regulation
thermal and light of these greenhouses, an electric control would vary the opacity of these panels and even obscure them
completely. A project to use these insulating glazing is currently being developed. It involves associating a methane digester with an equatorial greenhouse in which we would cultivate plants
aquatic, like water hyacinth for example. The digester will provide the necessary photosynthesis and the liquid effluents will serve as fertilizer for these plants. The water needed for aquatic culture will also serve as energy storage. For an equal area, such crops could produce between 50 and 150 times more protein than a corn field.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8012696A FR2483564A1 (en) | 1980-06-03 | 1980-06-03 | Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8012696A FR2483564A1 (en) | 1980-06-03 | 1980-06-03 | Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2483564A1 true FR2483564A1 (en) | 1981-12-04 |
Family
ID=9242819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8012696A Withdrawn FR2483564A1 (en) | 1980-06-03 | 1980-06-03 | Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2483564A1 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2539784A1 (en) * | 1983-01-21 | 1984-07-27 | Holder Philippe | Panel for thermal and acoustic insulation |
WO1987003327A1 (en) * | 1985-11-29 | 1987-06-04 | Baechli Emil | Heat-insulating construction and/or lighting element |
WO1988002051A1 (en) * | 1986-09-10 | 1988-03-24 | May Michael G | Method and means for combined thermal and acoustic insulation |
WO1991007554A1 (en) * | 1989-11-15 | 1991-05-30 | Ian Ross Mcallister | Vacuum insulated panels and shapes |
GR1000921B (en) * | 1991-12-23 | 1993-03-16 | Nikolaos Karyampas | Insulating element |
WO1996012862A1 (en) * | 1994-10-19 | 1996-05-02 | The University Of Sydney | Design improvements to vacuum glazing |
EP0890699A3 (en) * | 1997-07-07 | 1999-11-10 | Saint-Gobain Vitrage | Glazing element with high insulating properties provided with a plastic section member |
EP1004552A1 (en) * | 1998-05-01 | 2000-05-31 | Nippon Sheet Glass Co., Ltd. | Glass panel, method of manufacturing glass panel, and spacer used for glass panel |
EP1063873A2 (en) * | 1999-06-22 | 2000-12-27 | Dr.-Ing. Jürgen Schulz-Harder | Process for manufacturing substrates with patterned metallizations and holding and fixing element used in the process |
US6326067B1 (en) | 1999-05-03 | 2001-12-04 | Guardian Industries Corporation | Vacuum IG pillar with DLC coating |
US6336984B1 (en) | 1999-09-24 | 2002-01-08 | Guardian Industries Corporation | Vacuum IG window unit with peripheral seal at least partially diffused at temper |
US6365242B1 (en) | 1999-07-07 | 2002-04-02 | Guardian Industries Corp. | Peripheral seal for vacuum IG window unit |
US6420002B1 (en) | 1999-08-18 | 2002-07-16 | Guardian Industries Corp. | Vacuum IG unit with spacer/pillar getter |
US6436492B1 (en) | 1999-11-16 | 2002-08-20 | Guardian Industries Corp. | Vacuum IG window unit with fiber spacers |
US6503583B2 (en) | 1999-11-16 | 2003-01-07 | Guardian Industries Corp. | Vacuum IG window unit with fiber inclusive edge seal |
US6541083B1 (en) | 2000-01-11 | 2003-04-01 | Guardian Industries Corp. | Vacuum IG unit with alkali silicate edge seal and/or spacers |
US6558494B1 (en) | 1999-09-24 | 2003-05-06 | Guardian Industries Corp. | Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same |
US6701749B2 (en) | 2000-09-27 | 2004-03-09 | Guardian Industries Corp. | Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same |
US6946171B1 (en) | 1999-09-22 | 2005-09-20 | Guardian Industries Corp. | Vacuum IG pillar with lubricating and/or reflective coating |
ES2308903A1 (en) * | 2006-10-02 | 2008-12-01 | Juan Francisco Prieto Lopez | Panel for thermal and acoustic insulation (Machine-translation by Google Translate, not legally binding) |
WO2009149753A1 (en) * | 2008-06-11 | 2009-12-17 | R & B Energy Research Sarl | High efficiency evacuated solar panel |
ITMI20081537A1 (en) * | 2008-08-26 | 2010-02-27 | Tvp Solar Sa | SOLAR THERMAL PANEL WITH EMPTY STRUCTURE OF LIGHT |
AT508484B1 (en) * | 2009-06-24 | 2012-02-15 | Karl Ing Kleebinder | VACUUM SOLAR PANEL |
EP2244031A3 (en) * | 2009-04-24 | 2012-09-19 | ZYRUS Beteiligungsgesellschaft mbH & Co. Patente I KG | Solar collector, compound glazing and absorber and use of such an absorber |
EP2578762A3 (en) * | 2011-10-04 | 2013-07-17 | Baumann/Holding/1886 GmbH | Translucent panel body for forming a building element |
US8679598B2 (en) | 2010-10-08 | 2014-03-25 | Guardian Industries Corp. | Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same |
CN105042885A (en) * | 2015-08-27 | 2015-11-11 | 广东五星太阳能股份有限公司 | Concentrating type flat-plate solar collector |
FR3047964A1 (en) * | 2016-02-23 | 2017-08-25 | Jean Chereau Sas | BODY PANEL FOR REFRIGERATING VEHICLES |
IT201700076910A1 (en) * | 2017-07-07 | 2019-01-07 | Carlo Alberto Zenobi | RADIATION HEATING PANEL |
WO2020023233A1 (en) | 2018-07-25 | 2020-01-30 | Kyun Jang Chin | Vacuum insulated glass panel with structured pillar unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR948904A (en) * | 1947-06-27 | 1949-08-16 | lightweight, waterproof and insulating construction elements | |
US3154139A (en) * | 1962-06-11 | 1964-10-27 | Armstrong Cork Co | One-way heat flow panel |
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3266565A (en) * | 1962-06-12 | 1966-08-16 | Philco Corp | Heat transfer means |
DE1901397A1 (en) * | 1968-02-12 | 1969-09-11 | Electro Allumage Soc Civ Ile D | Thermally impermeable plate |
FR2300860A1 (en) * | 1975-02-11 | 1976-09-10 | Sulzer Ag | Boundary wall element - for a room consisting of heat-arresting and heat-storage components opt transparent |
-
1980
- 1980-06-03 FR FR8012696A patent/FR2483564A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR948904A (en) * | 1947-06-27 | 1949-08-16 | lightweight, waterproof and insulating construction elements | |
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3154139A (en) * | 1962-06-11 | 1964-10-27 | Armstrong Cork Co | One-way heat flow panel |
US3266565A (en) * | 1962-06-12 | 1966-08-16 | Philco Corp | Heat transfer means |
DE1901397A1 (en) * | 1968-02-12 | 1969-09-11 | Electro Allumage Soc Civ Ile D | Thermally impermeable plate |
FR2300860A1 (en) * | 1975-02-11 | 1976-09-10 | Sulzer Ag | Boundary wall element - for a room consisting of heat-arresting and heat-storage components opt transparent |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2539784A1 (en) * | 1983-01-21 | 1984-07-27 | Holder Philippe | Panel for thermal and acoustic insulation |
WO1987003327A1 (en) * | 1985-11-29 | 1987-06-04 | Baechli Emil | Heat-insulating construction and/or lighting element |
WO1988002051A1 (en) * | 1986-09-10 | 1988-03-24 | May Michael G | Method and means for combined thermal and acoustic insulation |
WO1991007554A1 (en) * | 1989-11-15 | 1991-05-30 | Ian Ross Mcallister | Vacuum insulated panels and shapes |
GR1000921B (en) * | 1991-12-23 | 1993-03-16 | Nikolaos Karyampas | Insulating element |
US5891536A (en) * | 1994-10-19 | 1999-04-06 | The University Of Sydney | Design improvements to vacuum glazing |
US6054195A (en) * | 1994-10-19 | 2000-04-25 | University Of Sydney | Method of construction of evacuated glazing |
US6071575A (en) * | 1994-10-19 | 2000-06-06 | University Of Sydney | Vacuum glazing |
US6083578A (en) * | 1994-10-19 | 2000-07-04 | University Of Sydney | Design improvements to vacuum glazing |
WO1996012862A1 (en) * | 1994-10-19 | 1996-05-02 | The University Of Sydney | Design improvements to vacuum glazing |
EP0890699A3 (en) * | 1997-07-07 | 1999-11-10 | Saint-Gobain Vitrage | Glazing element with high insulating properties provided with a plastic section member |
US6387460B1 (en) | 1998-05-01 | 2002-05-14 | Nippon Sheet Glass Co., Ltd. | Glass panel |
EP1004552A1 (en) * | 1998-05-01 | 2000-05-31 | Nippon Sheet Glass Co., Ltd. | Glass panel, method of manufacturing glass panel, and spacer used for glass panel |
EP1004552A4 (en) * | 1998-05-01 | 2001-01-03 | Nippon Sheet Glass Co Ltd | Glass panel, method of manufacturing glass panel, and spacer used for glass panel |
US6326067B1 (en) | 1999-05-03 | 2001-12-04 | Guardian Industries Corporation | Vacuum IG pillar with DLC coating |
EP1063873A3 (en) * | 1999-06-22 | 2003-04-23 | Dr.-Ing. Jürgen Schulz-Harder | Process for manufacturing substrates with patterned metallizations and holding and fixing element used in the process |
EP1063873A2 (en) * | 1999-06-22 | 2000-12-27 | Dr.-Ing. Jürgen Schulz-Harder | Process for manufacturing substrates with patterned metallizations and holding and fixing element used in the process |
US6365242B1 (en) | 1999-07-07 | 2002-04-02 | Guardian Industries Corp. | Peripheral seal for vacuum IG window unit |
US6420002B1 (en) | 1999-08-18 | 2002-07-16 | Guardian Industries Corp. | Vacuum IG unit with spacer/pillar getter |
US6946171B1 (en) | 1999-09-22 | 2005-09-20 | Guardian Industries Corp. | Vacuum IG pillar with lubricating and/or reflective coating |
US6558494B1 (en) | 1999-09-24 | 2003-05-06 | Guardian Industries Corp. | Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same |
US6336984B1 (en) | 1999-09-24 | 2002-01-08 | Guardian Industries Corporation | Vacuum IG window unit with peripheral seal at least partially diffused at temper |
US6641689B1 (en) | 1999-09-24 | 2003-11-04 | Guardian Industries Corp. | Vacuum IG window unit with peripheral seal at least partially diffused at temper |
US6436492B1 (en) | 1999-11-16 | 2002-08-20 | Guardian Industries Corp. | Vacuum IG window unit with fiber spacers |
US6503583B2 (en) | 1999-11-16 | 2003-01-07 | Guardian Industries Corp. | Vacuum IG window unit with fiber inclusive edge seal |
US6541083B1 (en) | 2000-01-11 | 2003-04-01 | Guardian Industries Corp. | Vacuum IG unit with alkali silicate edge seal and/or spacers |
US6701749B2 (en) | 2000-09-27 | 2004-03-09 | Guardian Industries Corp. | Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same |
ES2308903A1 (en) * | 2006-10-02 | 2008-12-01 | Juan Francisco Prieto Lopez | Panel for thermal and acoustic insulation (Machine-translation by Google Translate, not legally binding) |
WO2009149753A1 (en) * | 2008-06-11 | 2009-12-17 | R & B Energy Research Sarl | High efficiency evacuated solar panel |
WO2010023074A1 (en) * | 2008-08-26 | 2010-03-04 | Tvp Solar S.A. | Lightweight structure vacuum solar thermal panel |
US8578930B2 (en) | 2008-08-26 | 2013-11-12 | Tvp Solar Sa | Lightweight structure vacuum solar thermal panel |
ITMI20081537A1 (en) * | 2008-08-26 | 2010-02-27 | Tvp Solar Sa | SOLAR THERMAL PANEL WITH EMPTY STRUCTURE OF LIGHT |
EP2244031A3 (en) * | 2009-04-24 | 2012-09-19 | ZYRUS Beteiligungsgesellschaft mbH & Co. Patente I KG | Solar collector, compound glazing and absorber and use of such an absorber |
EP2489959A3 (en) * | 2009-04-24 | 2012-09-26 | ZYRUS Beteiligungsgesellschaft mbH & Co. Patente I KG | Solar collector, compound glazing and absorber and use of such an absorber |
AT508484B1 (en) * | 2009-06-24 | 2012-02-15 | Karl Ing Kleebinder | VACUUM SOLAR PANEL |
US10590695B2 (en) | 2010-10-08 | 2020-03-17 | Guardian Glass, Llc. | Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same |
US8679598B2 (en) | 2010-10-08 | 2014-03-25 | Guardian Industries Corp. | Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same |
US8679271B2 (en) | 2010-10-08 | 2014-03-25 | Guardian Industries Corp. | Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same |
US9670713B2 (en) | 2010-10-08 | 2017-06-06 | Guardian Industries Corp. | Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same |
EP2578762A3 (en) * | 2011-10-04 | 2013-07-17 | Baumann/Holding/1886 GmbH | Translucent panel body for forming a building element |
CN105042885A (en) * | 2015-08-27 | 2015-11-11 | 广东五星太阳能股份有限公司 | Concentrating type flat-plate solar collector |
EP3210864A1 (en) * | 2016-02-23 | 2017-08-30 | Jean Chereau SAS | Refrigerated vehicle body panel |
FR3047964A1 (en) * | 2016-02-23 | 2017-08-25 | Jean Chereau Sas | BODY PANEL FOR REFRIGERATING VEHICLES |
IT201700076910A1 (en) * | 2017-07-07 | 2019-01-07 | Carlo Alberto Zenobi | RADIATION HEATING PANEL |
WO2020023233A1 (en) | 2018-07-25 | 2020-01-30 | Kyun Jang Chin | Vacuum insulated glass panel with structured pillar unit |
EP3749516A4 (en) * | 2018-07-25 | 2021-06-09 | Kyun Jang Chin | Vacuum insulated glass panel with structured pillar unit |
JP2021526119A (en) * | 2018-07-25 | 2021-09-30 | チン、ギュン ジャンCHIN, Kyun Jang | Vacuum insulated glass panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2483564A1 (en) | Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum | |
US4426995A (en) | Solar quilt | |
JP5280457B2 (en) | Dimming method, dimming system and building | |
TW201207223A (en) | Thermally insulating fenestration device and methods | |
US4191169A (en) | Solar energy panel | |
Buchberg et al. | Design considerations for solar collectors with cylindrical glass honeycombs | |
CN105229390B (en) | Solar collector including opaque lid | |
EP0122274B1 (en) | Improvements to solar collectors | |
US4559924A (en) | Thin film absorber for a solar collector | |
EP0012678B1 (en) | Solar energy collector | |
WO2010063944A1 (en) | Solar roofing panel | |
US4222807A (en) | Ridged surface solar heater | |
FR2469674A1 (en) | Solar energy trap with absorbent bodies of corrugated bitumastic board - to smooth variations in the rate of energy capture | |
FR2509844A1 (en) | SOLAR PLANAR SENSOR WITH CONCENTRATION AND GREENHOUSE EFFECT | |
FR2483585A1 (en) | Roof mounted solar panel air heater - has air flow over both-sides of corrugated sheet absorber | |
EP1496320A1 (en) | Flat solar panel with small thickness | |
FR2516217A1 (en) | Solar collection panel - forms interlocking building cladding with integral solar energy collection tubing | |
FR2493484A1 (en) | Modular construction solar panel - has simulated tile exterior for incorporation into roofed areas and has acrylic resin body with corrugated surface | |
FR2461086A1 (en) | WINDOW PANEL ALLOWING OPTIMAL USE OF SOLAR ENERGY | |
FR2537258A1 (en) | Solar collectors using the greenhouse effect and drawing off of air, made from standard elements or modules integrated into the constituents of buildings | |
FR2578312A1 (en) | Element, having a solar and insulating function, for covering the walls of buildings | |
FR2459948A1 (en) | Solar water heater with pyramidal reservoir - has convection currents established under influence of solar radiation causing hottest water to collect at apex (PT 12.12.80) | |
FR2577959A1 (en) | Facade wall with biodynamic hyperinsulation for bioclimatic constructions | |
EP2320155A1 (en) | Energy absorbing pitchroof | |
FR3061376B1 (en) | PHOTOVOLTAIC BUILDING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |