FI64997C - FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN - Google Patents
FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN Download PDFInfo
- Publication number
- FI64997C FI64997C FI813717A FI813717A FI64997C FI 64997 C FI64997 C FI 64997C FI 813717 A FI813717 A FI 813717A FI 813717 A FI813717 A FI 813717A FI 64997 C FI64997 C FI 64997C
- Authority
- FI
- Finland
- Prior art keywords
- gas
- heat
- temperature
- vaermeytor
- nedsmutsande
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 19
- 230000005496 eutectics Effects 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 26
- 239000000428 dust Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000003628 erosive effect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- JXAZAUKOWVKTLO-UHFFFAOYSA-L sodium pyrosulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OS([O-])(=O)=O JXAZAUKOWVKTLO-UHFFFAOYSA-L 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D25/00—Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1869—Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861
- F22B1/1876—Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861 the hot gas being loaded with particles, e.g. dust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/06—Arrangements of devices for treating smoke or fumes of coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/30—Arrangements for extraction or collection of waste gases; Hoods therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/001—Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G1/00—Non-rotary, e.g. reciprocated, appliances
- F28G1/12—Fluid-propelled scrapers, bullets, or like solid bodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/30—Technologies for a more efficient combustion or heat usage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Description
Menetelmä lämmön talteenottamiseksi lämpöpintoja likaavia aineita sisältävistä kaasuista - Förfarande för tillvara-tagande av värme ur gaser innehällande värmeytor nedsmutsan-de ämnenMethod for the recovery of heat from gases containing pollutants on the heating surface - Method for the recovery of heat from gases containing pollutants in the heat exchanger
Esillä oleva keksintö kohdistuu menetelmään lämmön talteenottamiseksi höyrystyneitä, sulia ja eutektisia komponentteja sisältävästä kaasusta saattamalla se kosketukseen lämmönsiir-timen lämpöpintoihin.The present invention relates to a method for recovering heat from a gas containing vaporized, molten and eutectic components by contacting it with the heat surfaces of a heat exchanger.
Prosessiteollisuus tuottaa suuria määriä kuumia kaasuja, joiden lämmön talteenottoon olennaisesti vaikeuttavat kaasujen sisältämät, lämpöpintoja pahoin likaavat höyrystyneet tai sulat komponentit. Tyypillisenä esimerkkinä voidaan mainita pyrometallurgisen teollisuuden jätekaasut. Lämpöpintojen puhtaanapito on nykyisin käytetyillä menetelmillä useissa tapauksissa ylivoimaisen vaikeata, mistä seuraa laitoksen käytettävyyden pieneneminen ja tätä kautta suuria kustannuksia.The process industry produces large quantities of hot gases, the heat recovery of which is substantially hampered by the vaporized or molten components contained in the gases, which badly contaminate the heating surfaces. A typical example is waste gases from the pyrometallurgical industry. The cleaning of heating surfaces is in many cases extremely difficult with the methods currently used, which results in a reduction in the availability of the plant and thus in high costs.
Kokemuksen mukaan puhdistusongelmat ovat suurimmat sellaisessa kullekin prosessille ominaisessa lämpötila-alueessa, jossa osa kiintoyhdisteistä on eutektisessa tilassa. Esim. ei-rau-tametallurgisissa (non-ferrous) sulattoprosesseissa riittävät usein pienet Zn-, As- ja Pb-pitoisuudet aikaansaamaan koko pölyn eutektisen käyttäytymisen. Eutektisessa tilassa oleva pöly tarttuu lämpöpinnoille ja erityisesti kiteytyessään muodostaa likakerroksen, jonka poistaminen tunnetuin puhdistusmenetelmin (puhaltavat tai mekaaniset nuohoimet) on eräissä tapauksissa mahdoton tehtävä. Kenttätutkimukset ovat osoittaneet, että parhaisiin käytettävyysarvoihin on päästy sellaisissa höyrykattiloissa, joissa prosessin luonteesta johtuen on esiintynyt luonnollista kerrostumien eroosiota. Myöskin on selvästi voitu havaita likakerroksen muodosta, ettei tehokkaillakaan puhaltavilla tai mekaanisilla nuohoi-milla ole voitu merkittävästi vaikuttaa likakerroksiin. Sen 2 sijaan eroosio on pitänyt virtaussuunnassa olevat lämpöpinnat kohtuullisen puhtaina.Experience has shown that purification problems are greatest in a process-specific temperature range where some of the solids are in the eutectic state. For example, in non-ferrous smelting processes, low concentrations of Zn, As and Pb are often sufficient to produce the eutectic behavior of all dust. Dust in the eutectic state adheres to thermal surfaces and, especially when crystallized, forms a layer of dirt, the removal of which by known cleaning methods (blowing or mechanical soot removal) is in some cases an impossible task. Field studies have shown that the best usability values have been achieved in steam boilers where, due to the nature of the process, natural erosion of the deposits has occurred. It has also been clear from the shape of the dirt layer that even effective blowing or mechanical sootstocks have not been able to significantly affect the dirt layers. Instead, erosion has kept the heat surfaces in the flow direction reasonably clean.
Näistä havainnoista on syntynyt ajatus käyttää hyväksi hallittua eroosiota muutoin vaikeasti puhtaana pidettävien lämpöpintojen puhdistamiseksi. Seuraavassa selostetulle keksinnön mukaiselle menetelmälle hallittuun eroosioon perustuvaksi lämmöntalteenottamiseksi on tunnusomaista se, että kaasun lämpötila pudotetaan ennen lämmönsiirrintä sulapisaroiden eutektilämpötila-alueen alapuolelle sekoittamalla kaasuun lämmönsiirtimessä jäähtyneitä, kaasusta erotettuja, kierrätettyjä kiintopartikkeleita ja mahdollisesti myös muita partikkeleita.From these observations, the idea has emerged to take advantage of controlled erosion to clean heating surfaces that are otherwise difficult to keep clean. The process according to the invention for heat recovery based on controlled erosion described below is characterized in that the gas temperature is dropped below the eutectic temperature range of the melt droplets before the heat transfer by mixing cooled, gas-separated, recycled solids and possibly other particles in the heat exchanger.
Kuvio esittää erästä keksinnön mukaista lämmön talteenotto-menetelmän toteutusta.The figure shows an implementation of the heat recovery method according to the invention.
Kuviossa esitetyssä laitteessa kuuma, höyrystyneitä ja sulia komponentteja sisältävä kaasu virtaa säteilypinnoilla varustetun kanavan 1 läpi. Kaasun lämpötila lämmönsiirrintä 2 lähestyttäessä on lähellä eutekti-alueen ylärajaa. Lämmön-siirtimen jälkeinen lämpötila valitaan riittävästi eutektilämpötila-alueen alapuolelta siten, että kaasun sisältämä pöly on luonteeltaan jauhemaista, eikä tartu lämpöpintoihin. Lämpöpintojen puhtaanapitoon tarvittava nuohousefekti saavutetaan, kun nuohoavaa pölyä rikastetaan lämmönsiirtimeen niin paljon, että se sekoittuessaan kohdassa 3 lämmönsiirtimeen tulevan pölyisen kaasun kanssa pudottaa seoksen lämpötilan lähelle eutektialueen rajaa.In the device shown in the figure, a hot gas containing vaporized and molten components flows through a channel 1 provided with radiating surfaces. The gas temperature as the heat exchanger 2 approaches is close to the upper limit of the eutectic region. The temperature after the heat exchanger is chosen sufficiently below the eutectic temperature range so that the dust contained in the gas is powdery in nature and does not adhere to the heating surfaces. The soot effect required to clean the heating surfaces is achieved when the soot dust is enriched in the heat exchanger to such an extent that, when mixed with the dusty gas entering the heat exchanger at point 3, it drops the temperature of the mixture close to the eutectic range.
Kohdassa 3 tapahtuneen sekoituksen ja lämpötilan pudotuksen jälkeen riittävästi hiovia hiukkasia sisältävä suspensio virtaa lämmönsiirtimen 2 läpi estäen eroosiollaan lämpöpintojen likakerrosten kasvamisen.After stirring in step 3 and dropping the temperature, the suspension containing sufficient abrasive particles flows through the heat exchanger 2, preventing the growth of dirt layers on the heating surfaces by erosion.
Lämmönsiirtimen 2 jälkeen suspensio on jäähtynyt eutektialueen alapuolelle ja johdetaan tangentiaalisesti kanavan 4After the heat exchanger 2, the suspension has cooled below the eutectic region and is passed tangentially to the channel 4.
IIII
3 kautta läpivirtaussykloniin 5, josta lähes pölyttömät kaasut poistuvat keskusputken 6 kautta ja erottunut kiintoaine palautetaan putken 7 kautta kaasuvirtaan kanavaan 1 kohtaan 3 ennen lämmönsiirrintä. Palautusputkeen 7 järjestetään kiertävän kiintoaineen ulosotto 8, joten kiertävää kiinto-ainevirtaa ja eroosiovaikutusta voidaan säätää. Kiertomate-riaalina voidaan sopivinvmin käyttää prosessin omaa kiinto-materiaalia tai muuta hinnaltaan halpaa materiaalia, kuten esim. hiekkaa, joka syötetään laitteeseen putken 9 kautta. Keksinnön mukaisella menetelmällä saavutetaan seuraavat edut: 1. Hallitulla eroosiovaikutuksella aikaansaadaan lämpöpinto-jen puhtaanapysyminen.3 to the flow-through cyclone 5, from which the almost dust-free gases exit through the central pipe 6 and the separated solid is returned through the pipe 7 to the gas flow in the channel 1 at point 3 before the heat exchanger. A return solids outlet 8 is provided in the return pipe 7, so that the circulating solids flow and the erosion effect can be adjusted. As the circulating material, the process's own solid material or other inexpensive material, such as, for example, sand, which is fed to the device via the pipe 9, can preferably be used. The method according to the invention achieves the following advantages: 1. The controlled erosion effect ensures that the heating surfaces remain clean.
2. Sekoittamalla saadaan lämpötila nopeasti putoamaan.2. Stirring causes the temperature to drop rapidly.
3. Aikaansaadaan ns. kuivapesuvaikutus, koska kiertävät kiintopartikkelit lauhduttavat pinnalleen höyryfaasissa tulleita yhdisteitä.3. A so-called dry cleaning effect because circulating solid particles condense compounds that have entered the surface in the vapor phase.
4. Rikkiemissioita voidaan vähentää järjestämällä esim. Ca-pohjäinen kiertomateriaali.4. Sulfur emissions can be reduced by arranging, for example, Ca-based circulating material.
5. Säteily- ja konvektiolämmönsiirto tehostuvat.5. Radiation and convection heat transfer become more efficient.
Keksinnön mukaisen menetelmän toiminta-alueet ovat seuraavat:The operating ranges of the method according to the invention are as follows:
Kaasun nopeus 3 - 20 m/sGas velocity 3 - 20 m / s
Kaasun partikkelipitoisuus 10 - 500 g/molGas particle content 10 - 500 g / mol
Kaasun tulolämpötila 300 - 1500 °CGas inlet temperature 300 - 1500 ° C
Kaasun lähtölämpötila 500 - 1200 °CGas outlet temperature 500 - 1200 ° C
Partikkelien keskihalkaisija 100 - 2000 umThe average particle diameter is 100 to 2000 μm
Esimerkki 1:Example 1:
Cu-sulaton poistokaasujen arvot sulatusuunin jälkeen kaasuvirta mol/s 1740 pölypitoisuus g/mol 2.7 lämpötila °C 1400 .: i’ 4 Säteilyjäähdytyksellä poistokaasut jäähdytetään kanavassa 1 n. 900 °C:een, jolloin tullaan läropöpintojen likaantumisen kannalta vaikeaan alueeseen. Pölyisen poistokaasun lämpökapasiteetti on n. 1.7 kJ/(Nm3 °C) = 38 J/(mol°C)r eli lämpökapa-siteettivirta on 66.1 kW/°C.Sopiva lämpötila ennen lämmön-siirtimen 2 lämpöpintoja on 700 °C ja lämpöpintojen jälkeen 550 °C. Kiertävä lämpökapasiteettivirta on täten 88.1 kW/°C. Kiertomateriaalin ominaislämpökapasiteetin voidaan arvioida olevan n. 0.8 kJ/(kg°C), josta seuraa kiertävälle massavir-ralle arvo 110 kg/s, eli päädytään sekoituksen jälkeen kaasun 3 kiintoainepitoisuuteen 63 g/mol (= 2,81 kg/(Nm ). Käytännössä on ns. kiertomassareaktorissa käytetty kiintoainepitoisuuksia 900 - 1400 g/mol. Kiertävänä materiaalina voidaan sulatoilla käyttää rikastetta, hiekkaa tai näiden seosta. Lisäksi jäähdytyskiertoon rikastuu poistokaasujen sisältämiä hiukkasia.Exhaust gas values of the Cu smelter after the melting furnace gas flow mol / s 1740 dust content g / mol 2.7 temperature ° C 1400.: I ’4 The heat capacity of the dusty exhaust gas is approx. 1.7 kJ / (Nm3 ° C) = 38 J / (mol ° C) r, ie the heat capacity flow is 66.1 kW / ° C. The suitable temperature before the heat surfaces of the heat exchanger 2 is 700 ° C and after the heat surfaces 550 ° C. The circulating heat capacity flow is thus 88.1 kW / ° C. The specific heat capacity of the circulating material can be estimated to be about 0.8 kJ / (kg ° C), which results in a value of 110 kg / s for the circulating mass flow, i.e. after mixing the solids content of the gas 3 is 63 g / mol (= 2.81 kg / (Nm)). In practice, solids concentrations of 900 to 1400 g / mol have been used in the so-called circulating mass reactor, and concentrate, sand or a mixture of these can be used as a circulating material in the smelters, and particles in the exhaust gas are enriched in the cooling circuit.
Esimerkki 2:Example 2:
Soodakattilan mustalipeävirta on 5.6 kg/s ja sen kuiva-ainepitoisuus 60 %. Tyypillinen kuiva-aineiden analyysi on seu-raava: C 35.5 % (massasta)The black liquor flow of the soda boiler is 5.6 kg / s and its dry matter content is 60%. A typical analysis of dry matter is as follows: C 35.5% (by mass)
Na 20.8 % S 5.2% 0 35.1 % H 3,4%Na 20.8% S 5.2% 0 35.1% H 3.4%
Mikäli poltto suoritetaan normaalissa soodakattilassa, seuraa savukaasuja tulipesästä n. 30 % sisäänsyötetystä rikistä ja 10 % sisäänsyötetystä natriumista osittain kaasumaisina yhdisteinä ja osittain pieninä sulapisaroina. Mikäli poltto suoritetaan erillisessä polttokammiossa, saattavat savukaasut sisältää palamisvyöhykkeen jälkeen jopa 50 % rikistä ja 30 % natriumista. Savukaasujen jäähtyessä epäorgaaniset kemikaalit muodostavat pääasiassa natriumsulfaattia ja natriumkarbonaattia sekä rikkidioksidia. Lipeän koostumuksesta ja ajo-olosuh- ' > 5 teista riippuen tämä saattaa johtaa erissä tapauksissa vaikean natriumpyrosulfaattikerrostuman muodostumiseen lämpö-pinnoille.If the combustion is carried out in a normal recovery boiler, flue gases from the furnace follow about 30% of the introduced sulfur and 10% of the introduced sodium, partly as gaseous compounds and partly as small melt droplets. If combustion is carried out in a separate combustion chamber, the flue gases may contain up to 50% sulfur and 30% sodium after the combustion zone. As the flue gases cool, the inorganic chemicals mainly form sodium sulfate and sodium carbonate, as well as sulfur dioxide. Depending on the composition of the liquor and the driving conditions, this may in some cases lead to the formation of a difficult layer of sodium pyrosulphate on the thermal surfaces.
Em. polttokammion tapauksessa ovat poistokaasujen arvot kaasuvirta mol/s 840Em. in the case of a combustion chamber, the values of the exhaust gases are gas flow mol / s 840
Na-virta mol/s 4.56 S-virta mol/s 2.75 lämpötila °C 900 pöly (kond) g/mol 0.23 (10,3 g/Nm^)Na current mol / s 4.56 S current mol / s 2.75 temperature ° C 900 dust (cond) g / mol 0.23 (10.3 g / Nm ^)
Kaasun lämpökapasiteettivirta 29.4 kW/°CGas heat capacity flow 29.4 kW / ° C
Kaasun lämpötilat:Gas temperatures:
ennen siirrintä 870 °Cbefore the transfer 870 ° C
sekoituksen jälkeen 700 ocafter stirring 700 oc
siirtimen jälkeen 550 °Cafter the transfer 550 ° C
Kiertävä lämpökapasiteettivirta 33.0 kW/°CCirculating heat capacity current 33.0 kW / ° C
Kiertävä massavirta (0.8 kJ/kg°C) 41.7 kg/sCirculating mass flow (0.8 kJ / kg ° C) 41.7 kg / s
Kaasun pölypitoisuus siirtimessä 50 g/molDust content of the gas in the converter 50 g / mol
Kiertovirta koostuu savukaasujen Na^O^-pohjaisesta pölystä sekä kohtaan 3 lisätystä ^2(30^ :sta tai Na2SO^:sta.The circulating stream consists of Na 2 O 2 -based dust from the flue gases and ^ 2 (30 ^ or Na 2 SO 4) added to point 3.
- · I- · I
Claims (5)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI813717A FI64997C (en) | 1981-11-23 | 1981-11-23 | FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN |
DE3240863A DE3240863C2 (en) | 1981-11-23 | 1982-11-05 | Process for the recovery of heat from a gas containing molten droplets |
CA000415762A CA1265784A (en) | 1981-11-23 | 1982-11-17 | Method and apparatus for recovering heat from gases containing substances which contaminate heat transfer surfaces |
SE8206655A SE454297B (en) | 1981-11-23 | 1982-11-22 | PROCEDURE FOR THE PROCESSING OF HEAT FROM A GAS CONTAINING MELTY COMPONENTS |
JP57203816A JPS6018000B2 (en) | 1981-11-23 | 1982-11-22 | Heat recovery method from gas containing substances that contaminate heat transfer surfaces |
GB08313711A GB2140144B (en) | 1981-11-23 | 1983-05-18 | Method for recovering heat from gases containing substances which contaminate heat transfer surfaces |
BE0/210815A BE896801A (en) | 1981-11-23 | 1983-05-20 | METHOD FOR RECOVERING HEAT FROM GAS. |
FR8308368A FR2546288B1 (en) | 1981-11-23 | 1983-05-20 | METHOD FOR RECOVERING HEAT FROM GASES CONTAINING SUBSTANCES CONTAMINATING HEAT TRANSFER SURFACES |
AU14893/83A AU553033B2 (en) | 1981-11-23 | 1983-05-23 | Recovering heat from gases containing molten components |
IN643/CAL/83A IN158648B (en) | 1981-11-23 | 1983-05-23 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI813717 | 1981-11-23 | ||
FI813717A FI64997C (en) | 1981-11-23 | 1981-11-23 | FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN |
Publications (3)
Publication Number | Publication Date |
---|---|
FI813717L FI813717L (en) | 1983-05-24 |
FI64997B FI64997B (en) | 1983-10-31 |
FI64997C true FI64997C (en) | 1986-01-08 |
Family
ID=8514888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI813717A FI64997C (en) | 1981-11-23 | 1981-11-23 | FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS6018000B2 (en) |
AU (1) | AU553033B2 (en) |
BE (1) | BE896801A (en) |
CA (1) | CA1265784A (en) |
DE (1) | DE3240863C2 (en) |
FI (1) | FI64997C (en) |
FR (1) | FR2546288B1 (en) |
GB (1) | GB2140144B (en) |
IN (1) | IN158648B (en) |
SE (1) | SE454297B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI76707C (en) * | 1984-09-14 | 1988-12-12 | Ahlstroem Oy | Process for the purification of gases containing condensable components |
EP0449891B1 (en) * | 1988-12-20 | 1996-10-30 | Cra Services Limited | Manufacture of iron and steel in a duplex smelter and solid state oxide suspension prereducer |
IE904007A1 (en) * | 1989-11-08 | 1991-05-08 | Mount Isa Mines | Condensation of metal vapours in a fluidized bed |
FI93056C (en) * | 1991-07-23 | 1995-02-10 | Ahlstroem Oy | Method and apparatus for feeding process or flue gases into a gas cooler |
DE4131962C2 (en) * | 1991-09-25 | 1998-03-26 | Hismelt Corp Pty Ltd | Method and device for treating hot gases with solids in a fluidized bed |
FI93274C (en) * | 1993-06-23 | 1995-03-10 | Ahlstroem Oy | Method and apparatus for treating or recovering a hot gas stream |
FI97424C (en) * | 1993-06-23 | 1996-12-10 | Foster Wheeler Energia Oy | Method and apparatus for treating or recovering hot gas |
FI96436C (en) * | 1994-08-10 | 1996-06-25 | Ahlstroem Oy | Process and apparatus for treating waste |
JP2002317915A (en) * | 2001-04-19 | 2002-10-31 | Ebara Corp | Gasifying melting furnace facility, and its operation method |
CA2450688A1 (en) * | 2001-06-19 | 2002-12-27 | Voest-Alpine Industrieanlagenbau Gmbh & Co | Method and device for treating particulate material |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE524996A (en) * | 1952-12-18 | |||
GB868368A (en) * | 1958-10-10 | 1961-05-17 | British Iron Steel Research | Improvements in or relating to heat exchangers |
DE1083058B (en) * | 1959-07-10 | 1960-06-09 | Schmidt Sche Heissdampf | Process for keeping the heating surfaces of waste heat boilers clean and equipment for carrying out the process |
US3080855A (en) * | 1960-04-12 | 1963-03-12 | Exxon Research Engineering Co | Furnace flue gas composition control |
GB1379168A (en) * | 1972-02-18 | 1975-01-02 | Babcock & Wilcox Ltd | Use of heat exchanging furnaces in the recovery of heat in waste gases |
FR2279052A1 (en) * | 1974-03-01 | 1976-02-13 | Commissariat Energie Atomique | THERMAL ACCUMULATION PROCESS AND THERMAL ACCUMULATOR WITH LATENT HEAT OF FUSION AND DIRECT CONTACT |
US4300625A (en) * | 1975-01-21 | 1981-11-17 | Mikhailov Gerold M | Preventing deposition on the inner surfaces of heat exchange apparatus |
SE421145B (en) * | 1978-02-23 | 1981-11-30 | Stal Laval Apparat Ab | DEVICE FOR SUPPLY AND DISTRIBUTION OF DUST-GAS |
DE2841026C2 (en) * | 1978-09-21 | 1983-03-10 | A. Ahlström Oy, 29600 Noormarkku | Combustion device |
DE3205213C2 (en) * | 1982-02-13 | 1985-08-22 | Kronos Titan-Gmbh, 5090 Leverkusen | Device for cooling hot gas-TiO? 2? Suspensions from titanium dioxide production by vapor phase oxidation of titanium tetrachloride |
-
1981
- 1981-11-23 FI FI813717A patent/FI64997C/en not_active IP Right Cessation
-
1982
- 1982-11-05 DE DE3240863A patent/DE3240863C2/en not_active Expired
- 1982-11-17 CA CA000415762A patent/CA1265784A/en not_active Expired - Lifetime
- 1982-11-22 SE SE8206655A patent/SE454297B/en not_active IP Right Cessation
- 1982-11-22 JP JP57203816A patent/JPS6018000B2/en not_active Expired
-
1983
- 1983-05-18 GB GB08313711A patent/GB2140144B/en not_active Expired
- 1983-05-20 FR FR8308368A patent/FR2546288B1/en not_active Expired
- 1983-05-20 BE BE0/210815A patent/BE896801A/en not_active IP Right Cessation
- 1983-05-23 IN IN643/CAL/83A patent/IN158648B/en unknown
- 1983-05-23 AU AU14893/83A patent/AU553033B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6018000B2 (en) | 1985-05-08 |
BE896801A (en) | 1983-09-16 |
GB2140144B (en) | 1986-08-20 |
AU1489383A (en) | 1984-11-29 |
AU553033B2 (en) | 1986-07-03 |
SE8206655D0 (en) | 1982-11-22 |
JPS58104498A (en) | 1983-06-21 |
CA1265784A (en) | 1990-02-13 |
DE3240863C2 (en) | 1985-05-09 |
GB8313711D0 (en) | 1983-06-22 |
FI813717L (en) | 1983-05-24 |
SE8206655L (en) | 1983-05-24 |
SE454297B (en) | 1988-04-18 |
DE3240863A1 (en) | 1983-06-01 |
FR2546288B1 (en) | 1988-12-16 |
IN158648B (en) | 1986-12-27 |
FR2546288A1 (en) | 1984-11-23 |
GB2140144A (en) | 1984-11-21 |
FI64997B (en) | 1983-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI82612B (en) | FOERFARANDE OCH ANORDNING FOER BEHANDLING AV PROCESSGASER. | |
JP5644109B2 (en) | Method for producing boron-containing glass product and method for purifying exhaust gas generated during production of boron-containing glass product | |
FI64997C (en) | FOERFARANDE FOER TILLVARATAGANDE AV VAERME UR GASER INNEHAOLLANDE VAERMEYTOR NEDSMUTSANDE AEMNEN | |
US4547351A (en) | Flue gas desulfurization | |
PL119885B1 (en) | ||
KR100596103B1 (en) | Operation method of rotary hearth type reduction furnace and rotary hearth type reduction furnace equipment | |
FI65632C (en) | METHOD FOER ATT AOTERVINNA VAERME AV DAMMHALTIGA GASER ALSTRADEVID SUSPENSIONSSMAELTNING AV SULFIDISKA KONCENTRAT OCH AN ORNING FOER DENNA | |
JPH02289432A (en) | Purification of exhaust gas from melting furnace | |
TWI267495B (en) | Methods of forming particulate glass batch compositions and reducing volatile components from an exhaust stream | |
US4312919A (en) | Process of producing a non-agglomerating vanadium coated particle | |
EP0261116B1 (en) | Method of recovering alkaline chemicals from flue gases containing alkaline metal vapor | |
US4391632A (en) | Process for the separation of lead from a sulfidic concentrate | |
JP2004076090A (en) | Method and apparatus for recovering valuable materials with low melting point | |
EP0395789A1 (en) | Process for the purification of waste gases emitted from a melting furnace | |
KR880001669B1 (en) | Heat recovery method of gas containing substances polluting heat transfer surface | |
CN108571740A (en) | A kind of device of brine waste waste gas of incineration recycling | |
NO155467B (en) | PROCEDURE FOR RECOVERING HEAT FROM A GAS CONTAINING MELTED INGREDIENTS. | |
FI71072C (en) | FOERFARANDE OCH ANORDNING FOER RENING AV EN GAS | |
FI84561B (en) | FOERFARANDE FOER FOERMINSKNING AV FASTA OCH GASFORMIGA EMISSIONER OCH FOER VAERMEAOTERVINNING VID FOERBRAENNING OCH SMAELTNING AV AEMNEN INNEHAOLLANDE ASKA OCH SVAVEL. | |
FI60134B (en) | FOERFARANDE OCH ANORDNING FOER RENING AV GASER INNEHAOLLANDE SMAELTA OCH FOERAONGADE COMPONENT | |
EP4330439A1 (en) | Process and plant for recycling zinc oxide residues | |
AU580418B2 (en) | Method of recovering alkaline chemicals from flue gases containing alkaline metal vapor | |
Weisenberg | Feasibility of Primary Copper Smelter Weak Sulfur Dioxide Stream Control | |
Im et al. | Flue gas desulfurization | |
JPH05503120A (en) | Condensation of metal vapor in a fluidized bed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM | Patent lapsed | ||
MM | Patent lapsed |
Owner name: A. AHLSTROEM OSAKEYHTIOE |