[go: up one dir, main page]

FI3358321T3 - METHOD AND OPTICAL SYSTEM FOR OBTAINING THE TOMOGRAPHIC DISTRIBUTION OF THE WAVE FRONTS OF ELECTROMAGNETIC FIELDS - Google Patents

METHOD AND OPTICAL SYSTEM FOR OBTAINING THE TOMOGRAPHIC DISTRIBUTION OF THE WAVE FRONTS OF ELECTROMAGNETIC FIELDS Download PDF

Info

Publication number
FI3358321T3
FI3358321T3 FIEP17382047.3T FI17382047T FI3358321T3 FI 3358321 T3 FI3358321 T3 FI 3358321T3 FI 17382047 T FI17382047 T FI 17382047T FI 3358321 T3 FI3358321 T3 FI 3358321T3
Authority
FI
Finland
Prior art keywords
dimensional
optical system
perform
wavefront
optical
Prior art date
Application number
FIEP17382047.3T
Other languages
Finnish (fi)
Inventor
Valdivia Juan José Fernández
Sevilla Juan Manuel Trujillo
Cárdenes Óscar Gómez
Original Assignee
Wooptix S L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wooptix S L filed Critical Wooptix S L
Application granted granted Critical
Publication of FI3358321T3 publication Critical patent/FI3358321T3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J2009/002Wavefront phase distribution

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Claims (13)

PATENTTIVAATIMUKSETPATENT CLAIMS 1. Menetelmä valon aaltorintamien (104) kaksi- ulotteisen rekonstruktion suorittamiseksi optisessa järjestelmässä (100), jossa menetelmässä: mitataan valointensiteetin jakaumafunktio vähintään kahdessa kuvassa optisen järjestelmän (100) eri op- tisissa tasoissa (101, 102), optisilla tasoilla ol- lessa ero optisen reitin suhteen, jossa mainitussa mittaamisessa: määritetään useita valointensiteetin yksiulottei- sia kumulatiivisia jakaumafunktioita jokaisessa tasossa (101, 102) käyttämällä jokaisessa tasossa useita eri kulmia, sovitetaan eri optisista tasoista saadut määrite- tyt yksiulotteiset kumulatiiviset jakaumafunktiot yhteen, jotta voidaan johtaa kaksiulotteiset aal- torintamien kaltevuuksien estimaatit mainittujen eri optisten tasojen välissä sijaitsevassa tie- tyssä tasossa (103), esim. keskitasossa, ja integroidaan mainitut aaltorintamien kaltevuuksien estimaatit aaltorintaman (104) kaksiulotteisen muodon rekonstruktion suorittamiseksi mainittujen eri optisten tasojen välissä sijaitsevassa maini- tussa tasossa (103).1. A method for performing a two-dimensional reconstruction of light wavefronts (104) in an optical system (100), in which the method: the light intensity distribution function is measured in at least two images in different optical levels (101, 102) of the optical system (100), if there is a difference in the optical levels with respect to the optical path, in which in said measurement: several one-dimensional cumulative distribution functions of the light intensity are determined in each plane (101, 102) using several different angles in each plane, matching the determined one-dimensional cumulative distribution functions obtained from different optical planes together in order to derive two-dimensional wavefronts estimates of the slopes in a certain plane (103) located between said different optical planes, e.g. the middle plane, and integrating said estimates of the slopes of the wavefronts (104) to perform the reconstruction of the two-dimensional shape of the wavefront (104) in said plane (103) located between said different optical planes. 2. Patenttivaatimuksen 1 mukainen menetelmä, jossa yksi mainituista vähintään kahdesta kuvasta on laskettu kuva, joka on täysin karakterisoitu teoreetti- silla ja/tai empiirisillä malleilla.2. The method according to claim 1, where one of said at least two images is a calculated image that is fully characterized by theoretical and/or empirical models. 3. Jonkin edellisen patenttivaatimuksen mukai- nen menetelmä, jossa yksi mainituista vähintään kahdesta kuvasta otetaan optisen järjestelmän pupillitasossa.3. The method according to one of the preceding claims, in which one of said at least two images is taken in the pupil plane of the optical system. 4. Jonkin edellisen patenttivaatimuksen mukai- nen menetelmä, jossa yksi kuva otetaan intrafokaalisesti ja toinen kuva ekstrafokaalisesti.4. The method according to one of the preceding claims, in which one image is taken intrafocally and the other image extrafocally. 5. Jonkin edellisen patenttivaatimuksen mukai- nen menetelmä, jossa useat kuvat, ts. enemmän kuin kaksi kuvaa, otetaan eri optisissa tasoissa useiden kaksi- ulotteisten aaltorintamamuotojen rekonstruktion suorit- tamiseksi useissa optisissa tasoissa.5. The method according to one of the preceding claims, in which several images, i.e. more than two images, are taken in different optical planes in order to perform the reconstruction of several two-dimensional waveforms in several optical planes. 6. Jonkin edellisen patenttivaatimuksen mukai- nen menetelmä, jossa kuvat jaetaan osiin, ja jossa aal- torintaman kaksiulotteinen muoto rekonstruoidaan jo- kaista osaa varten.6. The method according to one of the preceding claims, in which the images are divided into parts, and in which the two-dimensional shape of the wavefront is reconstructed for each part. 7. Jonkin edellisen patenttivaatimuksen mukai- nen menetelmä, jossa aikaansaatu aaltorintama propagoi- daan Rayleigh-Sommerfeld -diffraktion mukaisesti.7. The method according to one of the preceding claims, in which the generated wavefront is propagated according to Rayleigh-Sommerfeld diffraction. 8. Tietokonejärjestelmä, joka käsittää vähin- tään yhden prosessoriyksikön, joka on konfiguroitu suo- rittamaan jonkin edellisen patenttivaatimuksen mukainen menetelmä aaltorintamien kaksiulotteisen rekonstruktion suorittamiseksi.8. A computer system comprising at least one processor unit configured to perform a method according to one of the preceding claims for performing a two-dimensional reconstruction of wavefronts. 9. Edellisen patenttivaatimuksen mukainen tie- tokonejärjestelmä, jossa mainittu vähintään yksi pro- sessoriyksikkö on graafinen prosessoriyksikkö, GPU.9. A computer system according to the previous claim, wherein said at least one processor unit is a graphic processor unit, GPU. 10. Yksi tai useampi tietokoneella luettavissa oleva tallennusväline, johon on tallennettu käskyt, jotka yhdellä tai useammalla prosessorilla suoritetta- essa ohjaavat mainitun yhden tai useamman prosessorin suorittamaan jonkin patenttivaatimuksista 1 - 7 mukaisen menetelmän.10. One or more computer-readable storage media, in which instructions are stored, which, when executed by one or more processors, direct said one or more processors to perform a method according to one of claims 1 to 7. 11. Optinen järjestelmä, käsittäen vähintään yhden kuvadetektorin, esim. yleisen kaksiulotteisen di- gitaalisen kameran, sekä vähintään yhden prosessorin, jossa mainittu vähintään yksi optisen järjestelmän pro- sessori on konfiguroitu suorittamaan jonkin patentti- vaatimuksista 1 — 7 mukainen aaltorintaman rekonstruktio mainitusta vähintään yhdestä kuvadetektorista saadun datan perusteella ja/tai se on konfiguroitu suorittamaan tomografia aaltorintamien kolmiulotteisesta jakaumasta,11. An optical system, comprising at least one image detector, e.g. a general two-dimensional digital camera, and at least one processor, where said at least one processor of the optical system is configured to perform the wavefront reconstruction of said at least one image detector according to one of claims 1 to 7 based on the data obtained and/or it is configured to perform tomography of the three-dimensional distribution of wavefronts, ts. volumetrisestä jakaumasta, mainitusta vähintään yh- destä kuvadetektorista saadun datan perusteella.i.e. from the volumetric distribution, based on the data obtained from said at least one image detector. 12. Edellisen patenttivaatimuksen mukainen op- tinen järjestelmä, käsittäen lisäksi vähintään yhden aaltorintama-anturin, jossa mainittu vähintään yksi op- tisen järjestelmän prosessori on lisäksi konfiguroitu suorittamaan aaltorintaman rekonstruktio jonkin edelli- sen patenttivaatimuksen mukaisesti mainitusta vähintään yhdestä aaltorintama-anturista saadun datan perusteella ja/tai se on konfiguroitu suorittamaan tomografia aal- torintamien kolmiulotteisesta jakaumasta, ts. volumet- risestä jakaumasta, mainitusta vähintään yhdestä aalto- rintama-anturista saadun datan perusteella.12. An optical system according to the previous claim, further comprising at least one wavefront sensor, where said at least one processor of the optical system is additionally configured to perform wavefront reconstruction based on the data obtained from said at least one wavefront sensor according to one of the previous claims and/ or it is configured to perform tomography of the three-dimensional distribution of wavefronts, i.e. the volumetric distribution, based on data obtained from said at least one wavefront sensor. 13. Edellisen patenttivaatimuksen mukainen op- tinen järjestelmä, jossa aaltorintama-anturi on kaare- vuusanturi ja/tai jossa aaltorintama-anturi käsittää optisen hankintajärjestelmän.13. An optical system according to the previous claim, in which the wavefront sensor is a curvature sensor and/or in which the wavefront sensor comprises an optical acquisition system.
FIEP17382047.3T 2017-02-03 2017-02-03 METHOD AND OPTICAL SYSTEM FOR OBTAINING THE TOMOGRAPHIC DISTRIBUTION OF THE WAVE FRONTS OF ELECTROMAGNETIC FIELDS FI3358321T3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17382047.3A EP3358321B1 (en) 2017-02-03 2017-02-03 Method and optical system for acquiring the tomographical distribution of wave fronts of electromagnetic fields

Publications (1)

Publication Number Publication Date
FI3358321T3 true FI3358321T3 (en) 2024-10-04

Family

ID=58264456

Family Applications (1)

Application Number Title Priority Date Filing Date
FIEP17382047.3T FI3358321T3 (en) 2017-02-03 2017-02-03 METHOD AND OPTICAL SYSTEM FOR OBTAINING THE TOMOGRAPHIC DISTRIBUTION OF THE WAVE FRONTS OF ELECTROMAGNETIC FIELDS

Country Status (14)

Country Link
US (1) US11015981B2 (en)
EP (1) EP3358321B1 (en)
JP (1) JP6968895B2 (en)
KR (1) KR102343320B1 (en)
CN (1) CN110476043B (en)
CA (1) CA3051969C (en)
DK (1) DK3358321T3 (en)
ES (1) ES2987469T3 (en)
FI (1) FI3358321T3 (en)
IL (1) IL268304B2 (en)
PT (1) PT3358321T (en)
RU (1) RU2733822C1 (en)
TW (1) TWI776848B (en)
WO (1) WO2018141853A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736796A1 (en) * 2019-05-07 2020-11-11 Wooptix S.L. Method and optical system for characterizing displays
CN113203485B (en) * 2021-04-27 2022-08-05 浙江大学 A device and method for realizing axial phase difference wavefront reconstruction through single exposure
EP4134644A1 (en) * 2021-08-11 2023-02-15 Wooptix S.L. System and method for extracting information on the spatial distribution of wavefronts

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454004A (en) * 1994-05-06 1995-09-26 Regents Of The University Of Minnesota Phase grating and mode-selecting mirror for a laser
GB9820664D0 (en) * 1998-09-23 1998-11-18 Isis Innovation Wavefront sensing device
US7609388B2 (en) * 2002-01-24 2009-10-27 Icos Vision Systems Nv Spatial wavefront analysis and 3D measurement
EP1751492A4 (en) * 2004-03-11 2016-07-20 Icos Vision Systems Nv Methods and apparatus for wavefront manipulations and improved 3-d measurements
ES2372515B2 (en) * 2008-01-15 2012-10-16 Universidad De La Laguna CHAMBER FOR THE REAL-TIME ACQUISITION OF THE VISUAL INFORMATION OF THREE-DIMENSIONAL SCENES.
GB0813907D0 (en) * 2008-07-30 2008-09-03 Univ Durham Sub-micron 3d holographic lithpgraphy
EP2553531B1 (en) * 2010-04-01 2019-10-16 SeeReal Technologies S.A. Method and device for encoding three-dimensional scenes which include transparent objects in a holographic system
US8907260B2 (en) * 2011-01-14 2014-12-09 The United States Of America, As Represented By The Secretary Of The Navy Extended source wavefront sensor through optical correlation with a change in centroid position of light corresponding to a magnitude of tip/tilt aberration of optical jitter
US9247874B2 (en) * 2013-02-01 2016-02-02 Carl Zeiss Meditec, Inc. Systems and methods for sub-aperture based aberration measurement and correction in interferometric imaging
CN103226059A (en) * 2013-04-09 2013-07-31 中国科学院西安光学精密机械研究所 Wavefront measuring device and method for optical system
WO2014198678A1 (en) * 2013-06-10 2014-12-18 Essilor International (Compagnie Generale D'optique) Method for determining wave-front aberration data of a to-be-tested optical system

Also Published As

Publication number Publication date
CN110476043B (en) 2021-09-07
US20200011738A1 (en) 2020-01-09
KR20190138632A (en) 2019-12-13
CN110476043A (en) 2019-11-19
TWI776848B (en) 2022-09-11
RU2733822C1 (en) 2020-10-07
WO2018141853A1 (en) 2018-08-09
CA3051969C (en) 2021-11-16
JP2020506390A (en) 2020-02-27
PT3358321T (en) 2024-09-25
DK3358321T3 (en) 2024-08-19
US11015981B2 (en) 2021-05-25
IL268304A (en) 2019-09-26
EP3358321B1 (en) 2024-07-03
EP3358321A1 (en) 2018-08-08
JP6968895B2 (en) 2021-11-17
IL268304B2 (en) 2023-05-01
ES2987469T3 (en) 2024-11-14
TW201830338A (en) 2018-08-16
KR102343320B1 (en) 2021-12-23
CA3051969A1 (en) 2018-08-09
IL268304B1 (en) 2023-01-01

Similar Documents

Publication Publication Date Title
JP2019531619A5 (en)
WO2014160701A3 (en) Mri with repeated k-t -sub-sampling and artifact minimization allowing for free breathing abdominal mri
FR2962531B1 (en) METHOD AND DEVICE FOR THREE-DIMENSIONAL IMAGING BY FULL FIELD INTERFERENTIAL MICROSCOPY
JP2018506349A5 (en)
Horstmann et al. Full-field speckle interferometry for non-contact photoacoustic tomography
PH12016500354A1 (en) Integrated oct-refractometer system for ocular biometry
RU2015148542A (en) SENSITIVELY-FORMED ULTRASONIC PROBE
JP2016010658A5 (en)
JP2016522071A5 (en)
JP2016026521A5 (en)
JP2016517322A5 (en)
JP2015033556A5 (en)
RU2017124030A (en) MAGNETIC RESONED PROJECTION VISUALIZATION
JP2015071032A5 (en)
JP6436442B2 (en) Photoacoustic apparatus and image processing method
RU2017104807A (en) ASSESSMENT OF STENOSIS
JP2013132390A5 (en)
JP2018532121A (en) Large area OCT system using tunable laser and three-dimensional image correction method
JP2016129664A5 (en)
FI3358321T3 (en) METHOD AND OPTICAL SYSTEM FOR OBTAINING THE TOMOGRAPHIC DISTRIBUTION OF THE WAVE FRONTS OF ELECTROMAGNETIC FIELDS
JP2016104099A5 (en)
WO2016063235A3 (en) Visualization of imaging uncertainty
WO2014194334A3 (en) Reconstruction of optical coherent tomography (oct) images of morphological features
WO2017004378A8 (en) Systems and methods for detecting and visualizing biofields with nuclear magnetic resonance imaging and qed quantum coherent fluid immersion
RU2018117885A (en) ELECTROMAGNETIC TOMOGRAPHY WITH RECOGNITION OF INTERFERENCE PICTURES