FI126851B - A method for removing sulfate from an aqueous solution - Google Patents
A method for removing sulfate from an aqueous solution Download PDFInfo
- Publication number
- FI126851B FI126851B FI20145319A FI20145319A FI126851B FI 126851 B FI126851 B FI 126851B FI 20145319 A FI20145319 A FI 20145319A FI 20145319 A FI20145319 A FI 20145319A FI 126851 B FI126851 B FI 126851B
- Authority
- FI
- Finland
- Prior art keywords
- suspension
- aqueous solution
- purified
- battery
- precipitate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/463—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2433—Discharge mechanisms for floating particles
- B01D21/2438—Discharge mechanisms for floating particles provided with scrapers on the liquid surface for removing floating particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/245—Discharge mechanisms for the sediments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2488—Feed or discharge mechanisms for settling tanks bringing about a partial recirculation of the liquid, e.g. for introducing chemical aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/14—Flotation machines
- B03D1/1437—Flotation machines using electroflotation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/465—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electroflotation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/101—Sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
Menetelmä sulfaatin poistamiseksi vesiliuoksestaA method for removing sulfate from an aqueous solution
Vesistöjä kuormittavia sulfaattilähteitä ovat mm. kaivokset, selluteollisuus ja jätevesien käsittelylaitokset. Tyypillisiä vesiliukoisia sulfaatteja ovat mm. natriumsulfaatti, kaliumsulfaatti, magnesiumsulfaatti ja ammoniumsulfaatti. Sulfaatit ovat yleensä vesiliukoisia ja muodostavat liuoksen, jota on vaikea puhdistaa. Sulfaattia on perinteisesti poistettu vesiliuoksista saostamalla sitä kalsiumsuolana eli kalsiumsulfaattina. Tämä voidaan tehdä lisäämällä liuokseen kalsiumkloridia, kalsiumhydroksidia tai erityisesti happamiin liuoksiin kalsiumkarbonaattia. Kalsiumkloridin lisääminen lisää liuokseen kloridi-ionin, joka ei ole yleensä toivottavaa puhdistetussa vedessä. Kal-siumhydroksidin lisäys nostaa puhdistetun veden pH-arvoa ja puhdistettu vesi täytyy sen jälkeen yleensä neutraloida. Kalsiumkarbonaatin käyttö saostuksessa rajoittuu happamiin liuoksiin, jolloin karbonaatti-ionista vapautuu hiilidioksidia. Kalsiumkarbonaattia saadaan kalkki kivestä, jossa on huomattavia määriä myös magnesiumia, joka muodostaa liuokoisen magnesiumsulfaatin ja vaikuttaa vähentävästi saostuvan sulfaatin määrään.Sulfate sources that burden water bodies include: mines, pulp industry and wastewater treatment plants. Typical water-soluble sulfates include e.g. sodium sulfate, potassium sulfate, magnesium sulfate and ammonium sulfate. The sulfates are generally water soluble and form a solution which is difficult to purify. Sulphate has traditionally been removed from aqueous solutions by precipitation as a calcium salt or calcium sulphate. This can be done by adding calcium chloride, calcium hydroxide or, in particular, acidic solutions to calcium carbonate. Addition of calcium chloride adds a chloride ion to the solution, which is generally undesirable in purified water. The addition of calcium hydroxide raises the pH of the purified water, and the purified water must then generally be neutralized. The use of calcium carbonate in the precipitation is limited to acidic solutions whereby carbon dioxide is released from the carbonate ion. Calcium carbonate is obtained from limestone, which also contains significant amounts of magnesium, which forms soluble magnesium sulphate and reduces the amount of sulphate precipitated.
Ennestään tunnetaan ns. Etringiittiprosessi, joka on kuitenkin monimutkainen ja kallis eikä siitä syystä sovellu kaivos- tai selluteollisuudessa tai jätevesien puhdistuksessa syntyvien suurien vesiliuosmäärien puhdistamiseen ja sulfaatin poistamiseen. Etringiitti-menetelmässä käytetään kalsiumhydroksidia nostamaan pH-arvo noin arvoon 12, jolloin prosessoitavaan suspensioon lisätty alumiinitrioksidi yhdessä sulfaatin kanssa muodostaa saostuman. Tämä hyvin tunnettu sulfaatin saostamismene-telmä on monimutkainen ja kallis ja sen vuoksi vielä vähän käytetty teollisissa sovellutuksissa.The so-called prior art is known. However, the ethinging process, which is complex and expensive and is therefore not suitable for the purification of large volumes of aqueous solution in the mining or pulp industry or in the treatment of waste water and for the removal of sulphate. In the Etringite process, calcium hydroxide is used to raise the pH to about 12, whereupon the aluminum trioxide added to the suspension to be processed together with the sulfate forms a precipitate. This well-known sulfate precipitation process is complex and expensive and therefore still little used in industrial applications.
Liukoisen sulfaatin joutuminen jätevesilaitoksista luonnonvesiin johtuu etenkin siitä, että kaivosteollisuudesta lähtöisin olevaa hapanta rautasulfaattia lisätään tarkoituksella jäteveteen, koska se saostaa fosforin rautafosfaattina. Käsiteltyyn jäteveteen jää jäljelle liukoinen sulfaatti. Vain osittain puhdistettu jätevesi sisältää orgaanista ainetta, jonka ha pettämisestä vastaavat bakteerit kuluttavat vedestä ensin liukoisen hapen, ja sen puuttuessa ne ottavat hapen sulfaatista. Sulfaatti muuttuu erittäin myrkylliseksi rikkivedyksi. Rikkivety tuhoaa luonnonvesistä elävät organismit tehokkaasti. Tästä syystä on tärkeää, että sulfaattia sisältäviä jätevesiä ei johdeta luontoon.Soluble sulphate from effluent plants into natural waters is due in particular to the deliberate addition of acidic iron sulphate from the mining industry to waste water as it precipitates phosphorus as iron phosphate. Soluble sulphate remains in the treated waste water. Only partially purified wastewater contains organic matter, which is first absorbed by water-soluble oxygen from the bacteria responsible for its decomposition, and in the absence of it take up oxygen from the sulphate. The sulphate becomes highly toxic hydrogen sulphide. Hydrogen sulfide effectively destroys living organisms from natural waters. For this reason, it is important that wastewater containing sulphate is not discharged into nature.
Keksinnön tarkoituksena on saada aikaan helppokäyttöinen ja kustannuksiltaan edullinen prosessi, joka soveltuu suurien vesiliuosmäärien käsittelyyn siten, että lopputuloksena on sulfaateista puhdistettu vesi, joka voidaan laskea haitattomasti luontoon. Tämä tarkoitus saavutetaan keksinnön mukaisella menetelmällä oheisessa patenttivaatimuksessa 1 esitettyjen tunnusmerkkien perusteella. Epäitsenäisissä patenttivaatimuksissa on esitetty keksinnön edullisia suoritusmuotoja.The object of the invention is to provide an easy-to-use and inexpensive process suitable for handling large volumes of aqueous solution so that the result is water purified from sulphates which can be harmlessly released into the environment. This object is achieved by the process according to the invention on the basis of the features set forth in the appended claim 1. Preferred embodiments of the invention are disclosed in the dependent claims.
Seuraavassa keksintöä havainnollistetaan viittaamalla oheiseen piirustukseen, jossa kuvio 1 esittää keksinnön mukaisen menetelmän suorittamiseen käytetyn laitteen yleiskaaviota yhden suoritusesimerkin mukaisena. Säiliössä 1 olevaa vesiliuosta ja/tai -suspensiota lämmitetään alueelle +40°C -+50°C, samalla kun siihen sekoitetaan kalsiumkarbonaattia CaC03. Lämpötilan nosto nopeuttaa prosessia. Kalsiumkarbonaatti on jauhemaisessa muodossapa sitä lisätään ja sekoitetaan vesiliuokseen ja/tai -suspensioon sellainen määrä, että vesi-liuoksen ja/tai -suspension pH nousee arvoon noin 8,4 ja että sen määrä on riittävä suhteessa saostettavan sulfaatin määrään. Kalsiumkarbonaatin pitoisuudesta huolimatta pH saavuttaa vakioarvon, eikä pH-arvoa tarvitse erikseen säätää. Säiliöstä 1 pumpataan vesiliuos ja/tai -suspensio alumiinielektrodilla varustetun elektrolyysi kennon 2 läpi. Kennossa 2 muodostetaan sähkövirran avulla alumiinihydroksidia ja vetykaasua. Kenno voi olla rakenteeltaan esim. patenttijulkaisuissa EP1583719 tai WO2011/018556 kuvattua tyyppiä. Kennot voivat olla yksi- tai use-ampielektrodisia alumiinikennoja.In the following, the invention will be illustrated with reference to the accompanying drawing, in which Figure 1 shows a general diagram of the device used to carry out the method according to the invention in accordance with one embodiment. The aqueous solution and / or suspension in tank 1 is heated to + 40 ° C to + 50 ° C while stirring with calcium carbonate CaCO 3. Raising the temperature speeds up the process. The calcium carbonate in powder form is added and mixed with the aqueous solution and / or suspension in an amount such that the pH of the aqueous solution and / or suspension is raised to about 8.4 and is sufficient in proportion to the amount of sulfate to be precipitated. Despite the concentration of calcium carbonate, the pH reaches a constant value and does not need to be adjusted separately. From the tank 1, the aqueous solution and / or suspension is pumped through an electrolysis cell 2 with an aluminum electrode. In cell 2, aluminum hydroxide and hydrogen gas are formed by electric current. The cell may be of the type described in, for example, EP1583719 or WO2011 / 018556. The cells may be single or multi-ampoule aluminum cells.
Kennosta 2 vesiliuos ja sen sisältämä sulfaattia sisältävä suspensio johdetaan saostusaltaaseen 3, joka on lähellä pohjaa olevan virtauskanavan 4 kautta yhteydessä keräysaltaaseen 5.From the cell 2, the aqueous solution and the sulphate-containing suspension therein are led to a precipitation basin 3 which is connected to the collecting basin 5 via a flow channel 4 near the bottom.
Altaan 3 ja virtauskanavan 4 pohjalla voi olla esim. hihnakuljetin tai useita ruuvikul-jettimia, jolla sakkaa siirretään keräysaltaaseen tai suoraan suodattimeen. Halutta essa voidaan kennon 2 jälkeen lisätä hieman polymeeriä, joka stabiloi muodostuvaa saostumaa ja f lokkia.The bottom of the basin 3 and the flow passage 4 may have e.g. If desired, a little polymer may be added after the cell 2 to stabilize the precipitate formed and the seagull.
Keksinnön edullisessa suoritusmuodossa vesiliuosta ja suspensiota jäähdytetään tai sen annetaan jäähtyä keräysaltaassa 5 lämpötilaan, tyypillisesti alle 30°C, jossa se kiteytyy ja muodostaa veden pintaan nousevan, jäätä muistuttavan, kelluvan, yhtenäisiä lohkareita sisältävän kiinteän aineen, "ilokin" On havaittu, että jäähdytyksen yhteydessä flokki kiteytyy turvarakenteiseksi tai kuohkeaksi vettä kevyemmäksi "sulfaattijääksi", joka nousee pintaan ja voidaan siten helposti poistaa esim. kaapimalla kolakuljettimella 8 ja johtamalla putken tai kourun 6 kautta jatkokäsittelyyn. Muodostunut "sulfaattijää" on metallikompleksiyhdiste, joka sisältää sulfaatin lisäksi alumiinia ja kalsiumia sekä sen lisäksi voi sisältää puhdistettavasta liuoksesta riippuen myös natriumia, kaliumia ja magnesiumia sekä pieniä määriä muita metalleja, kloridia ja muita anioneja. Kompleksiyhdisteessä on tyypillisesti myös kidevettä.In a preferred embodiment of the invention, the aqueous solution and suspension is cooled or allowed to cool in a collecting basin 5 to a temperature, typically below 30 ° C, where it crystallizes and forms a floating solid ice-like solid floating on the surface of the water. the block crystallises into a "sulfate residue" which is lighter than water, which rises to the surface and can thus be easily removed, e.g. The "sulphate ice" formed is a metal complex compound which, in addition to sulphate, contains aluminum and calcium, and may also contain sodium, potassium and magnesium and small amounts of other metals, chloride and other anions depending on the solution to be purified. The complex compound also typically contains crystalline water.
Sulfaatti voidaan poistaa vesiliuoksesta tai suspensiosta myös altaan 3 sakkavai-heessa suodattamalla. Sakka muodostuu alumiinihydroksidin aikaansaaman mole-kyylisiivilän avulla, johon elektrolyysissä muodostuneet sulfaatti-, kalsium-, ja muut ionit tarttuvat.The sulfate can also be removed from the aqueous solution or suspension by filtration in the tank 3 precipitation step. The precipitate is formed by a Mole silica strainer made of aluminum hydroxide, which traps sulphate, calcium, and other ions formed in the electrolysis.
Kennosta 2 poistetusta vesiliuoksesta tai suspensiosta siis erotetaan joko muodostuva sakka tai jäähtymisen jälkeen muodostuva flokki eli "sulfaattijää". Jälkimmäinen vaihtoehto on helpommin toteutettavissa suuressa mittakaavassa, koska luonnon prosessi hoitaa erottelun niin, että tarvitaan vain kiinteän aineen talteen keräys.Thus, either the precipitate formed or the flock formed after cooling, i.e. the "sulphate ice", is separated from the aqueous solution or suspension removed from the cell 2. The latter option is easier to implement on a large scale, because the natural process performs the separation so that only the recovery of the solid is required.
Keksinnön edullisessa suoritusmuodossa sakan tai flokin muodostumisen yhteydessä puhdistuvaa tai puhdistunutta vesiliuosta ja/tai suspensiota vodaan tarvittaessa johtaa takaisin puhdistettavaan vesiliuokseen ja/tai -suspensioon sen konduktanssin pienentämiseksi tyypillisesti arvoon alle 4 mS/cm, (esim. 3,5 mS/cm) elektrolyysi käsittelyä varten. Kuviossa 1 tämä on toteutettu putkella 7, joka alkaa säiliön 5 takaosan pohjalta.In a preferred embodiment of the invention, the aqueous solution and / or suspension to be purified or purified upon formation of a precipitate or flocculant may, if necessary, be returned to the aqueous solution and / or suspension to be purified to reduce its conductance typically to less than 4 mS / cm. for. In Figure 1, this is accomplished by a tube 7 which begins at the bottom of the back of the container 5.
Sakan tai flokin muodostumisen yhteydessä puhdistuvaa tai puhdistunutta vesiliuosta ja/tai -suspensiota voidaan johtaa toiseen elektrolyysi kennoon 12 jatkopuhdistus-ta varten. Tällaisen kaskadikytkennän portaita voi olla haluttu määrä halutusta puh- distusasteesta riippuen. Kussakin kaskadiportaassa voi olla haluttu määrä kennoja 2 rinnakkain, jotta saadaan riittävä käsittelykapasiteetti.During the formation of a precipitate or flock, the aqueous solution and / or suspension to be purified or purified may be introduced into another electrolysis cell 12 for further purification. Depending on the degree of purification desired, the number of steps for such a cascade connection may be as desired. Each cascade stage may have a desired number of cells 2 in parallel to provide sufficient processing capacity.
Alumiinikennot voidaan järjestää myös siten, että ne muodostavat vaakatasossa olevan kanaviston, jonka läpi puhdistettava sulfaattipitoinen vesi johdetaan.The aluminum cells can also be arranged so as to form a horizontal duct through which sulfate-containing water to be purified is passed.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20145319A FI126851B (en) | 2014-04-02 | 2014-04-02 | A method for removing sulfate from an aqueous solution |
PCT/FI2015/050228 WO2015150636A1 (en) | 2014-04-02 | 2015-03-31 | Method for removal of sulphate from aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20145319A FI126851B (en) | 2014-04-02 | 2014-04-02 | A method for removing sulfate from an aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
FI20145319A FI20145319A (en) | 2015-10-03 |
FI126851B true FI126851B (en) | 2017-06-30 |
Family
ID=54239439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI20145319A FI126851B (en) | 2014-04-02 | 2014-04-02 | A method for removing sulfate from an aqueous solution |
Country Status (2)
Country | Link |
---|---|
FI (1) | FI126851B (en) |
WO (1) | WO2015150636A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9695050B2 (en) * | 2012-11-02 | 2017-07-04 | Terra Co2 Technologies Ltd. | Methods and systems using electrochemical cells for processing metal sulfate compounds from mine waste and sequestering CO2 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI123310B (en) * | 2009-08-14 | 2013-02-15 | Hannu Suominen | Method and apparatus for cleaning hydrogen sulphide-containing aqueous solutions |
FI126285B (en) * | 2012-08-27 | 2016-09-15 | Outotec Finland Oy | Method for removing sulfate, calcium and / or other soluble metals from waste water |
AR094158A1 (en) * | 2012-12-20 | 2015-07-15 | Outotec Oyj | METHOD FOR INDUSTRIAL WATER TREATMENT |
US20140246371A1 (en) * | 2013-03-01 | 2014-09-04 | Baker Hughes Incorporated | Process for removing sulfate and system for same |
-
2014
- 2014-04-02 FI FI20145319A patent/FI126851B/en not_active IP Right Cessation
-
2015
- 2015-03-31 WO PCT/FI2015/050228 patent/WO2015150636A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2015150636A1 (en) | 2015-10-08 |
FI20145319A (en) | 2015-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2732034C2 (en) | Method and device for salt extraction | |
Ye et al. | Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes | |
CN106495404B (en) | A kind of processing method of the high salinity cupric organic wastewater of highly acidity | |
ES2552629T3 (en) | Method to remove flue gas condensate impurities | |
CN105439357B (en) | Acid wastewater in mine recycling and deep-purifying method | |
US20150345033A1 (en) | Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions | |
CN105236650B (en) | A kind of wastewater treatment method | |
CN104818387B (en) | A kind of method of sodium salt in separating-purifying arsenic alkaline slag | |
US20160244348A1 (en) | A method for treating alkaline brines | |
Can et al. | Arsenic and boron removal by electrocoagulation with aluminum electrodes | |
US20160016809A1 (en) | Method for manufacturing carbonate | |
FI126851B (en) | A method for removing sulfate from an aqueous solution | |
CN106746108A (en) | A kind of desulfurization wastewater recycling treatment system and method | |
KR20190028936A (en) | Method for treating seawater desalination concentrates using pH control | |
AU2006201116A1 (en) | A cost effective process for the preparation of solar salt having high purity and whiteness | |
KR20190028937A (en) | Method for treating seawater desalination concentrates using pH control | |
CN105712453B (en) | A kind of desalination method of the potassium sulfate containing high concentration and aqueous sodium persulfate solution | |
BR112021016365A2 (en) | WATER MANAGEMENT SYSTEM FOR ORE MINING OPERATION | |
JP2020175344A (en) | Method for fixing carbon dioxide | |
KR20150061877A (en) | Apparatus for Removing Fluoride in Water Using Activated Reaction Nucleus and Method for Removing Fluoride in Water | |
CN108314162A (en) | The method for removing potassium of the aqueous solution containing sylvite under a kind of acidic environment | |
CN104150458B (en) | A kind of method separating and recovering chloride ion from chloride rock phosphate in powder | |
CN102139944B (en) | Method for treating high-concentration ammonia nitrogen waste water by utilizing ferric sulfate | |
US11319224B2 (en) | Treatment of water | |
CN110330166B (en) | An efficient and environmentally friendly industrial wastewater treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC | Transfer of assignment of patent |
Owner name: SUOMINEN |
|
FG | Patent granted |
Ref document number: 126851 Country of ref document: FI Kind code of ref document: B |
|
MM | Patent lapsed |