ES2690162B2 - THERMOPOTOVOLTAIC CONVERTER - Google Patents
THERMOPOTOVOLTAIC CONVERTER Download PDFInfo
- Publication number
- ES2690162B2 ES2690162B2 ES201730704A ES201730704A ES2690162B2 ES 2690162 B2 ES2690162 B2 ES 2690162B2 ES 201730704 A ES201730704 A ES 201730704A ES 201730704 A ES201730704 A ES 201730704A ES 2690162 B2 ES2690162 B2 ES 2690162B2
- Authority
- ES
- Spain
- Prior art keywords
- layer
- photo
- sheet
- converter according
- thermophotovoltaic converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 17
- 239000002019 doping agent Substances 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 230000003595 spectral effect Effects 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- 239000012809 cooling fluid Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 239000011819 refractory material Substances 0.000 claims description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- 229910005542 GaSb Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 claims 2
- 239000012780 transparent material Substances 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/30—Thermophotovoltaic systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
DESCRIPCIONDESCRIPTION
CONVERTIDOR TERMOFOTOVOLTAICOTHERMOPOTOVOLTAIC CONVERTER
SECTOR DE LA TECNICATECHNICAL SECTOR
La invencion pertenece al sector de la transformation directa de calor en electricidad mediante dispositivos fotovoltaicos.The invention belongs to the sector of the direct transformation of heat into electricity through photovoltaic devices.
ANTECEDENTES DE LA INVENCIONBACKGROUND OF THE INVENTION
Los convertidores termofotovoltaicos son dispositivos que se utilizan para la conversion del calor de muy a alta temperatura (superior a 1000°C) en electricidad. El mecanismo subyacente consiste en la conversion directa de la radiation termica (fotones) en electricidad mediante el efecto fotovoltaico. Para ello, tipicamente se utilizan semiconductors que son capaces de absorber fotones de baja energia y convertirlos en electrones que se mueven libremente dentro del semiconductor. Ejemplos de estos materiales son el antimoniuro de galio, el arseniuro de galio-indio o el germanio. Los elementos fundamentales de un convertidor termofotovoltaico son dos: el emisor termico y la celula fotovoltaica. La disposition geometrica de un elemento respecto al otro es clave a la hora de adaptarse a la aplicacion concreta en la que vamos a emplear el convertidor.Thermo-photovoltaic converters are devices that are used for the conversion of heat from very high temperature (above 1000 ° C) into electricity. The underlying mechanism consists in the direct conversion of the thermal radiation (photons) into electricity through the photovoltaic effect. For this, semiconductors are typically used that are capable of absorbing low-energy photons and converting them into electrons that move freely within the semiconductor. Examples of these materials are gallium antimonide, gallium-indium arsenide or germanium. The fundamental elements of a thermophotovoltaic converter are two: the thermal emitter and the photovoltaic cell. The geometric disposition of one element with respect to the other is key when it comes to adapting to the specific application in which we are going to use the converter.
En una posible configuration de convertidor termofotovoltaico (TPV Tube Generators for Apartment Building and Industrial Furnace Applications,” AIP Conf. Proc., vol. 653, no. 1, pp.In a possible configuration of thermo-photovoltaic converter (TPV Tube Generators for Apartment Building and Industrial Furnace Applications, " AIP Conf. Proc., Vol 653, no.1, p.
38-48, Jan. 2003 [1], US4419532 A, US20150256119 A1), el emisor termico son las paredes internas de una cavidad que es calentada a traves de su superficie externa mediante una fuente de calor (combustion, energia solar, etc.). Las paredes internas de dicha cavidad, o emisor, son visibles por al menos una celula fotovoltaica, colocada en el interior de dicha cavidad. El emisor emite radiacion termica que es captada por la celula fotovoltaica, que consecuentemente produce electricidad. Esta configuracion permite captar el calor del entorno en el cual se encuentra el convertidor, por lo que esta indicada para su aplicacion en la recuperation de calor en hornos industriales (tal como se describe en [1]) o en sistemas de almacenamiento de energia termica (tal como se describe en US4419532 A o en US20150256119 A1). 38-48, Jan. 2003 [1], US4419532 A, US20150256119 A1), the thermal emitter are the internal walls of a cavity that is heated through its external surface by a heat source (combustion, solar energy, etc.). ). The internal walls of said cavity, or emitter, are visible by at least one photovoltaic cell, placed inside said cavity. The emitter emits thermal radiation that is captured by the photovoltaic cell, which consequently produces electricity. This configuration allows capturing the heat of the environment in which the converter is located, which is why it is indicated for its application in the heat recovery in industrial furnaces (as described in [1]) or in thermal energy storage systems. (as described in US4419532 A or in US20150256119 A1).
Los disenos descritos anteriormente estan concebidos para emplear celulas fotovoltaicas con dos contactos electricos, uno situado en la superficie frontal y otro situado en la superficie trasera de dicha celula. El contacto frontal es parcialmente transparente para permitir la absorcion de radiacion termica, mientras que el contacto trasero es completamente opaco y esta en contacto directo con un substrato, cuya finalidad principal es la de conferir estabilidad mecanica y facilitar la disipacion del calor generado en la celula. Dicho substrato esta en contacto con un disipador de calor que puede incorporar unos conductos por los que fluye en fluido refrigerante, de forma que mantiene la celula fotovoltaica a temperaturas no superiores a los 100°C.The designs described above are designed to use photovoltaic cells with two electrical contacts, one located on the front surface and another located on the back surface of said cell. The frontal contact is partially transparent to allow the absorption of thermal radiation, while the back contact is completely opaque and is in direct contact with a substrate, whose main purpose is to confer mechanical stability and facilitate the dissipation of the heat generated in the cell . Said substrate is in contact with a heat sink that can incorporate ducts through which it flows in refrigerant fluid, so that it maintains the photovoltaic cell at temperatures no higher than 100 ° C.
Como en estos sistemas la radiacion termica proveniente del emisor llega a la celula con angulo de vision de 360°, es necesario disponer de al menos dos celulas, cada una capaz de captar un angulo de vision de 180° por su superficie frontal. Estas celulas deben situarse en las caras opuestas del disipador de calor, de forma que el receptor formado por ambas celulas sea capaz de captar radiacion proveniente de un angulo de vision de 360°.As in these systems the thermal radiation coming from the emitter reaches the cell with 360 ° viewing angle, it is necessary to have at least two cells, each capable of capturing a viewing angle of 180 ° by its frontal surface. These cells must be located on the opposite sides of the heat sink, so that the receiver formed by both cells is capable of capturing radiation from a viewing angle of 360 °.
El principal problema de esta configuration es el elevado coste que conlleva el emplear dos celulas fotovoltaicas para captar toda la radiacion proveniente del emisor. Por lo tanto, el objeto de esta invention es el de proporcionar un convertidor termofotovoltaico que requiera una unica celula capaz de captar la radiacion proveniente de un angulo de vision de 360°, y que a la vez disponga de un sistema de disipacion de calor que permita mantener a la celula a temperaturas no superiores a los 100°C.The main problem with this configuration is the high cost of using two photovoltaic cells to capture all the radiation coming from the emitter. Therefore, the object of this invention is to provide a thermo-photovoltaic converter that requires a single cell capable of capturing the radiation coming from a viewing angle of 360 °, and which at the same time has a heat dissipation system that allow to maintain the cell at temperatures not higher than 100 ° C.
DESCRIPCION DE LA INVENCIONDESCRIPTION OF THE INVENTION
La presente invencion proporciona un convertidor termofotovoltaico para la conversion directa del calor en electricidad en una configuracion en la cual el emisor son las paredes internas de una cavidad que rodea completamente a la celula fotovoltaica, y en el cual una unica celula fotovoltaica es capaz de captar radiacion proveniente de toda la superficie del emisor, y en el cual se dispone de un metodo de disipacion de calor que permita refrigerar la celula fotovoltaica.The present invention provides a thermophotovoltaic converter for the direct conversion of heat into electricity in a configuration in which the emitter is the internal walls of a cavity that completely surrounds the photovoltaic cell, and in which a single photovoltaic cell is capable of capturing radiation from the entire surface of the emitter, and in which a method of heat dissipation is available that allows to cool the photovoltaic cell.
Este dispositivo permite reducir a la mitad la superficie de material semiconductor para generar la misma potencia electrica y, al mismo tiempo, aumentar la eficiencia de conversion de calor en electricidad. El resultado final es un menor coste de la electricidad generada. This device allows halving the surface of semiconductor material to generate the same electrical power and, at the same time, increase the efficiency of heat conversion in electricity. The final result is a lower cost of the electricity generated.
Para ello, el convertidor termofotovoltaico de la invention comprende al menos una celula fotovoltaica (5) que consta de dos caras dispuestas para absorber radiation; un conducto (7) para la circulation de un fluido refrigerante con paredes (6) transparentes, donde el conducto (7) envuelve a la celula fotovoltaica y las paredes (6) estan al menos parcialmente en contacto con ambas caras de la celula fotovoltaica (5); y un emisor termico (1), preferiblemente cilmdrico, que envuelve a los elementos anteriores. En el convertidor de la presente invencion, las paredes (6) son transparentes a la radiacion emitida por el emisor ( I) , permitiendo asi el paso de fotones a su traves sin ser absorbidos.For this, the thermophotovoltaic converter of the invention comprises at least one photovoltaic cell (5) consisting of two faces arranged to absorb radiation; a conduit (7) for the circulation of a cooling fluid with transparent walls (6), where the conduit (7) surrounds the photovoltaic cell and the walls (6) are at least partially in contact with both faces of the photovoltaic cell ( 5); and a thermal emitter (1), preferably cylindrical, which surrounds the above elements. In the converter of the present invention, the walls (6) are transparent to the radiation emitted by the emitter (I), thus allowing the passage of photons through it without being absorbed.
En realizaciones preferidas de la presente invencion, la celula fotovoltaica (5) esta formada por una lamina foto-generadora (2) que genera pares electron-hueco a partir de la absorcion de los fotones emitidos por el emisor (1). Dicha lamina consta de dos caras, en las que se han depositado dos materiales, parcialmente transparentes en el rango espectral de absorcion de la lamina foto-generadora (2), que realizan la funcion de contactos selectivos para electrones (3.1) y huecos (3.2), respectivamente. Sobre estas capas se deposita una capa adicional de material conductor electrico tambien semi-transparente (4), cuya funcion es transportar los electrones salientes del contacto selectivo de electrones (3.1) y los electrones entrantes al contacto selectivo de huecos (3.2). La celula fotovoltaica (5) formada por los elementos (2), (3.1), (3.2) y (4) esta en contacto con al menos parte de las paredes (6) de un conducto (7) para la circulacion de un fluido refrigerante, donde estas paredes (6) son transparentes a la radiacion emitida por el emisor (1), al menos en el rango espectral correspondiente a la respuesta espectral de la lamina foto-generadora (2), permitiendo el paso de fotones a su traves sin ser absorbidos.In preferred embodiments of the present invention, the photovoltaic cell (5) is formed by a photo-generating sheet (2) that generates electron-hollow pairs from the absorption of the photons emitted by the emitter (1). Said sheet consists of two faces, in which two materials have been deposited, partially transparent in the spectral absorption range of the photo-generator sheet (2), which perform the function of selective contacts for electrons (3.1) and holes (3.2). ), respectively. An additional layer of electrically conductive material, also semi-transparent (4), is deposited on these layers, whose function is to transport the electrons outgoing from the selective contact of electrons (3.1) and the incoming electrons to the selective contact of holes (3.2). The photovoltaic cell (5) formed by the elements (2), (3.1), (3.2) and (4) is in contact with at least part of the walls (6) of a conduit (7) for the circulation of a fluid refrigerant, where these walls (6) are transparent to the radiation emitted by the emitter (1), at least in the spectral range corresponding to the spectral response of the photo-generator sheet (2), allowing the passage of photons through it without being absorbed.
El emisor (1) se calienta directamente mediante una fuente termica externa (luz solar, combustion, reaction nuclear, etc.) y emite fotones por su cara interior. Los fotones emitidos (10) que tienen energia suficiente para ser absorbidos en la lamina foto-generadora (2) generan un par electron/hueco en su interior. Los electrones son colectados por el contacto selectivo de electrones (3.1) y los huecos por el contacto selectivo de huecos (3.2). Los huecos que llegan al contacto selectivo de huecos (3.2) recombinan con los electrones entrantes a dicho contacto a traves de la capa conductora (4), permitiendo el flujo de corriente a traves de las terminales positiva (8) y negativa (9) del convertidor. Los fotones ( I I ) que no tienen energia suficiente para ser absorbidos en la lamina foto-generadora (2) pueden reabsorberse en la pared opuesta del emisor (1). De esta forma, dichos fotones pueden ser reciclados y contribuir a mantener caliente el emisor (1). Sin embargo, parte de los fotones emitidos por el emisor (1) pueden ser absorbidos en alguno de los elementos intermedios (2), (3.1), (3.2), (4) o (6), contribuyendo a aumentar la temperatura de dichos elementos, y con ellos la de la lamina foto-generadora (2). Para evitar que dicha lamina alcance temperaturas excesivamente altas, preferentemente no superior a superior a 100 °C, ya que estas temperaturas terminarian danando el dispositivo y reduciendo la eficiencia de conversion, se hace circular un fluido refrigerante por el conducto (7), que se encarga de transferir el calor generado por la absorcion de estos fotones al exterior. Este fluido es transparente a la radiacion emitida por el emisor (1) al menos en el rango espectral correspondiente a la respuesta espectral de la lamina foto-generadora (2), permitiendo el paso de fotones a su traves sin ser absorbidos.The emitter (1) is heated directly by an external thermal source (sunlight, combustion, nuclear reaction, etc.) and emits photons on its inner side. The emitted photons (10) that have enough energy to be absorbed in the photo-generator sheet (2) generate an electron / hollow pair inside it. The electrons are collected by the selective contact of electrons (3.1) and the holes by the selective contact of holes (3.2). The holes that arrive at the selective contact of holes (3.2) recombine with the incoming electrons to said contact through the conductive layer (4), allowing the flow of current through the terminals positive (8) and negative (9) of the converter. The photons (II) that do not have enough energy to be absorbed in the photo-generator sheet (2) can be reabsorbed in the opposite wall of the emitter (1). In this way, said photons they can be recycled and help keep the emitter warm (1). However, part of the photons emitted by the emitter (1) can be absorbed in one of the intermediate elements (2), (3.1), (3.2), (4) or (6), contributing to increase the temperature of said elements, and with them the photo-generator sheet (2). To prevent said sheet from reaching excessively high temperatures, preferably not higher than above 100 ° C, since these temperatures would end up damaging the device and reducing the conversion efficiency, a cooling fluid is circulated through the conduit (7), which It is responsible for transferring the heat generated by the absorption of these photons to the outside. This fluid is transparent to the radiation emitted by the emitter (1) at least in the spectral range corresponding to the spectral response of the photo-generating sheet (2), allowing the passage of photons through it without being absorbed.
Esta invention puede emplearse en dos tipos de aplicaciones principales: sistemas de recuperation de energia en procesos industriales y sistemas de almacenamiento de energia a muy altas temperaturas, preferiblemente superiores a los 1000°C, por ejemplo, en sistemas de generation termosolar de concentration. Tambien puede tener aplicacion en la generation de electricidad en aplicaciones espaciales, especialmente en aquellas misiones que se realizan cerca del Sol y donde la radiacion solar es demasiado intensa como para utilizar celulas solares convencionales. En todas ellas, esta invencion permitiria reducir el coste y mejorar la funcionalidad de estos sistemas de generacion de energia.This invention can be used in two main types of applications: energy recovery systems in industrial processes and energy storage systems at very high temperatures, preferably higher than 1000 ° C, for example, in concentrating thermosolar generation systems. It can also have application in the generation of electricity in space applications, especially in those missions that are carried out close to the Sun and where the solar radiation is too intense to use conventional solar cells. In all of them, this invention would reduce the cost and improve the functionality of these power generation systems.
BREVE DESCRIPCION DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Con objeto de ayudar a una mejor comprension de las caracteristicas de la invencion y para complementar esta description, se acompanan como parte integrante de la misma las siguientes figuras, cuyo caracter es ilustrativo y no limitativo:In order to help a better understanding of the characteristics of the invention and to complement this description, the following figures, whose character is illustrative and not limiting, are accompanied as an integral part thereof:
La Fig. 1 muestra un corte transversal de un convertidor termofotovoltaico de acuerdo a la invencion.Fig. 1 shows a cross section of a thermophotovoltaic converter according to the invention.
La Fig. 2 muestra un corte transversal de un convertidor termofotovoltaico de acuerdo a otra realization en la que el convertidor consta de tres celulas fotovoltaicas conectadas en serie, de forma que la terminal positiva de una de las celulas se conecta con la terminal negativa de la siguiente, para lo cual se alterna la position de los contactos selectivos para electrones (3.1) y huecos (3.2) en las celulas adyacentes del convertidor. Fig. 2 shows a cross section of a thermophotovoltaic converter according to another embodiment in which the converter consists of three photovoltaic cells connected in series, so that the positive terminal of one of the cells is connected to the negative terminal of the next, for which the position of the selective contacts for electrons (3.1) and holes (3.2) is alternated in the adjacent cells of the converter.
La Fig. 3 muestra una vista superior del convertidor termofotovoltaico.Fig. 3 shows a top view of the thermophotovoltaic converter.
DESCRIPCION DETALLADA DE LA INVENCIONDETAILED DESCRIPTION OF THE INVENTION
El emisor (1) comprende un material refractario. En una posible realization, el emisor puede fabricarse mediante metales refractarios de alto punto de fusion (superior a 1000°C) y una presion de vapor relativamente baja (<10-9 atm a 1000°C), como por ejemplo tungsteno, molibdeno, tantalo o platino. En otra posible realizacion, el emisor (1) se fabrica utilizando un material ceramico refractario como el carburo de silicio, el grafito o la alumina.The emitter (1) comprises a refractory material. In a possible realization, the emitter can be manufactured by refractory metals of high melting point (higher than 1000 ° C) and a relatively low vapor pressure (<10-9 atm at 1000 ° C), such as tungsten, molybdenum, tantalum or platinum. In another possible embodiment, the emitter (1) is manufactured using a refractory ceramic material such as silicon carbide, graphite or alumina.
En una posible realizacion, la superficie de la cavidad interna del emisor (1) se recubre con una capa de un material refractario que confiere a la superficie propiedades de emision termica selectiva, de forma que la mayor parte de los fotones emitidos por el emisor tienen energias suficientemente altas como para producir la generation de un par electron-hueco en el la lamina foto-generadora (2). Esta capa puede consistir en un oxido de Yterbio (Yb2O3) u oxido de Erbio (Er2O3) de entre 1 y 10 micras de espesor.In a possible embodiment, the surface of the internal cavity of the emitter (1) is covered with a layer of a refractory material that gives the surface properties of selective thermal emission, so that most of the photons emitted by the emitter have energies high enough to produce the generation of an electron-hole pair in the photo-generator sheet (2). This layer may consist of a Yterbio (Yb2O3) oxide or Erbium oxide (Er2O3) of between 1 and 10 microns in thickness.
La lamina foto-generadora (2) comprende un material semiconductor cuyo ancho de banda prohibida es suficientemente estrecho como para permitir la absorcion de los fotones emitidos por el emisor en el rango de temperaturas de entre 1000 y 2000°C. En una posible realizacion, esta lamina puede fabricarse mediante semiconductores cristalinos que constan de un unico elemento quimico, como el silicio o el germanio, cuyos umbrales de absorcion son de 1.12 eV y 0.66 eV, respectivamente. En otra posible realizacion, esta lamina puede fabricarse con materiales semiconductores cristalinos binarios, ternarios o cuaternarios como el GaSb, el InGaAs o el InGaAsSb, cuyos umbrales de absorcion son de 0.73 eV, 0.74 eV y 0.5 eV, respectivamente.The photo-generator sheet (2) comprises a semiconductor material whose banned bandwidth is narrow enough to allow absorption of the photons emitted by the emitter in the temperature range between 1000 and 2000 ° C. In a possible embodiment, this sheet can be manufactured by crystalline semiconductors that consist of a single chemical element, such as silicon or germanium, whose absorption thresholds are 1.12 eV and 0.66 eV, respectively. In another possible embodiment, this sheet can be manufactured with binary, ternary or quaternary crystalline semiconductor materials such as GaSb, InGaAs or InGaAsSb, whose absorption thresholds are 0.73 eV, 0.74 eV and 0.5 eV, respectively.
Los contactos selectivos para electrones (3.1) y huecos (3.2) comprenden un material semiconductor. En una realizacion particular de la invencion, los contactos selectivos pueden fabricarse del mismo semiconductor que se ha empleado para fabricar la lamina foto-generadora, pero incorporando dopantes tipo N para fabricar el contacto selectivo de electrones (3.1) o dopantes tipo P para fabricar el contacto selectivo de huecos (3.2). Si la lamina foto-generadora se ha fabricado en silicio o germanio, el dopante tipo N puede ser el Fosforo y el dopante tipo P puede ser el Boro. En otra realizacion particular, los contactos selectivos pueden fabricarse con un material semiconductor con un ancho de banda prohibida mayor que la del semiconductor empleado para fabricar la lamina foto-generadora (2) y con el dopaje necesario (tipo N o P) para que funcione como contacto selectivo de electrones (tipo N) o huecos (tipo P). En el caso de una lamina foto-generadora de silicio o germanio, los contactos selectivos pueden fabricarse con silicio amorfo dopado con fosforo para fabricar el contacto selectivo de electrones (3.1), o dopado con boro para el contacto selectivo de huecos (3.2).The selective contacts for electrons (3.1) and holes (3.2) comprise a semiconductor material. In a particular embodiment of the invention, the selective contacts can be manufactured from the same semiconductor that has been used to manufacture the photo-generating sheet, but incorporating N-type dopants to manufacture the selective contact of electrons (3.1) or P-type dopants to manufacture the selective contact of holes (3.2). If the photo-generator sheet has been manufactured in silicon or germanium, the N-type dopant may be Phosphorus and the P-type dopant may be Boron. In another particular embodiment, the contacts Selective materials can be manufactured with a semiconductor material with a banned bandwidth greater than that of the semiconductor used to manufacture the photo-generator sheet (2) and with the necessary doping (type N or P) to function as selective electron contact (type N) or holes (type P). In the case of a photo-generator plate of silicon or germanium, the selective contacts can be manufactured with amorphous silicon doped with phosphorus to make the selective contact of electrons (3.1), or doped with boron for the selective contact of holes (3.2).
La capa conductora (4) puede tener un espesor variable desde 100 a 2000 nm, y fabricarse mediante un oxido conductor transparente, como por ejemplo el oxido de zinc dopado con aluminio (ZnO:Al) o el oxido de indio dopado con estano (ITO). En otra realization particular, la capa conductora (4) puede comprender una malla metalica colocada sobre el oxido conductor transparente, con el fin de mejorar las propiedades de conduction electrica de dicha capa. Asi mismo, es posible prescindir del oxido conductor transparente y emplear unicamente la malla metalica, directamente colocada sobre los contactos selectivos de electrones (3.1) o huecos (3.2). En cualquiera de las realizaciones anteriores, dicha malla metalica puede fabricarse mediante metales de alta conductividad electrica como la plata, el aluminio, el cobre o el oro.The conductive layer (4) can have a variable thickness from 100 to 2000 nm, and be manufactured by a transparent conductive oxide, such as zinc oxide doped with aluminum (ZnO: Al) or the indium oxide doped with tin (ITO) ). In another particular embodiment, the conductive layer 4 can comprise a metal mesh placed on the transparent conductive oxide, in order to improve the electrical conduction properties of said layer. Likewise, it is possible to dispense with the transparent conductive oxide and to use only the metallic mesh, directly placed on the selective contacts of electrons (3.1) or holes (3.2). In any of the above embodiments, said metal mesh can be manufactured by metals of high electrical conductivity such as silver, aluminum, copper or gold.
Las paredes (6) del conducto (7) pueden fabricarse en cuarzo o vidrio, y la union con la celula fotovoltaica (5) se puede realizar mediante un epoxi optico transparente, de forma que se realice un buen contacto termico y optico entre ambas caras de la celula fotovoltaica (5) y las paredes (6) de dicho conducto (7).The walls (6) of the conduit (7) can be manufactured in quartz or glass, and the union with the photovoltaic cell (5) can be realized by means of a transparent optical epoxy, so that a good thermal and optical contact is made between both faces of the photovoltaic cell (5) and the walls (6) of said conduit (7).
El fluido refrigerante que se introduce por el conducto (7) puede ser un liquido con punto de ebullition comprendido entre los 50°C y los 400°C, y es al menos parcialmente transparente a la radiation en el rango espectral correspondiente a la absorcion en la lamina fotogeneradora (2). En una realizacion particular de la invention se emplea agua destilada como fluido refrigerante, ya que es transparente a la radiacion con longitudes de onda comprendidas entre las 200 y 1000 nm, y su punto de ebullicion a presion atmosferica es de 100°C. El empleo de agua como liquido refrigerante podria combinarse con una lamina fotogeneradora (2) de silicio, cuya respuesta espectral comprende el rango de 400 a 1100 nm. En otra realizacion particular, el fluido puede consistir en liquidos de mayor punto de ebullicion como el glicerol (290°C), etilenglicol (197°C) o el therminol (359°C). Estos fluidos, junto con otros fluidos de menor punto de fusion como el metanol (65°C), el etanol (78°C), el alcohol isopropflico (83°C), o el etanoato de etilo (77°C), tienen la ventaja de tener una mayor transmitancia en la ventana de 800 a 1400 nm, donde la respuesta espectral de una lamina foto-generadora de silicio es mayor.The cooling fluid that is introduced through the conduit (7) can be a liquid with an ebullition point comprised between 50 ° C and 400 ° C, and is at least partially transparent to the radiation in the spectral range corresponding to the absorption in the photogenerator sheet (2). In a particular embodiment of the invention, distilled water is used as a cooling fluid, since it is transparent to radiation with wavelengths between 200 and 1000 nm, and its boiling point at atmospheric pressure is 100 ° C. The use of water as a cooling liquid could be combined with a photogenerator sheet (2) of silicon, whose spectral response ranges from 400 to 1100 nm. In another particular embodiment, the fluid may consist of liquids of higher boiling point such as glycerol (290 ° C), ethylene glycol (197 ° C) or therminol (359 ° C). These fluids, together with other lower melting point fluids such as methanol (65 ° C), ethanol (78 ° C), Isopropyl alcohol (83 ° C), or ethyl ethanoate (77 ° C), have the advantage of having a greater transmittance in the window from 800 to 1400 nm, where the spectral response of a silicon photo-generating sheet is greater .
En realizaciones particulares de la presente invencion, el convertidor termofotovoltaico que se describe en esta solicitud de patente comprende dos o mas celulas fotovoltaicas (5) conectadas en serie. En particular, las celulas fotovoltaicas se conectan de forma que la terminal positiva (8) de una de las celulas se conecta con la terminal negativa (9) de la siguiente, para lo cual se alterna la posicion de los contactos selectivos para electrones (3.1) y huecos (3.2) en las celulas adyacentes del convertidor. En particular, la figura 2 se muestra el convertidor de la invencion con tres celulas fotovoltaicas (5) en serie.In particular embodiments of the present invention, the thermophotovoltaic converter described in this patent application comprises two or more photovoltaic cells (5) connected in series. In particular, the photovoltaic cells are connected in such a way that the positive terminal (8) of one of the cells is connected to the negative terminal (9) of the next one, for which the position of the electron-selective contacts is alternated (3.1 ) and gaps (3.2) in the adjacent cells of the converter. In particular, Figure 2 shows the converter of the invention with three photovoltaic cells (5) in series.
Las realizaciones que incluyen dos celulas o mas conectadas en serie permiten aumentar la tension de salida del convertidor y al mismo tiempo aumentar el area de captacion de energia del convertidor. De esta forma, es posible aumentar el tamano del convertidor y con ello la potencia generada, sin necesidad de aumentar la corriente de salida, lo cual conllevaria unas perdidas ohmicas muy elevadas. The embodiments that include two or more cells connected in series allow to increase the output voltage of the converter and at the same time increase the area of energy capture of the converter. In this way, it is possible to increase the size of the converter and thus the power generated, without the need to increase the output current, which would lead to very high ohmic losses.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201730704A ES2690162B2 (en) | 2017-05-18 | 2017-05-18 | THERMOPOTOVOLTAIC CONVERTER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201730704A ES2690162B2 (en) | 2017-05-18 | 2017-05-18 | THERMOPOTOVOLTAIC CONVERTER |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2690162A1 ES2690162A1 (en) | 2018-11-19 |
ES2690162B2 true ES2690162B2 (en) | 2019-04-09 |
Family
ID=64189931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201730704A Active ES2690162B2 (en) | 2017-05-18 | 2017-05-18 | THERMOPOTOVOLTAIC CONVERTER |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2690162B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4419532A (en) * | 1982-07-30 | 1983-12-06 | The United States Of America As Represented By The Secretary Of The Navy | Thermophotovoltaic power source |
US20150256119A1 (en) * | 2014-03-05 | 2015-09-10 | Universidad Politécnica de Madrid | Electric energy storage system |
-
2017
- 2017-05-18 ES ES201730704A patent/ES2690162B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2690162A1 (en) | 2018-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107210368B (en) | Perovskite Solar Cell Module | |
ES2391533T3 (en) | Increased thermionic emission of photons | |
ES2617189T3 (en) | Solar device | |
CN203813716U (en) | Microchannel Cooling High Concentration Solar Photovoltaic Photothermal System Based on Nanofluid | |
TW201236167A (en) | Photovoltaic module and method for improved reverse bias, reverse current and hotspot protection | |
US9127859B2 (en) | Multi-point cooling system for a solar concentrator | |
US20130306125A1 (en) | Seebeck Solar Cell | |
JP5646586B2 (en) | Solar cell | |
US20080251111A1 (en) | Thermoelectric energy conversion | |
ES2752731T3 (en) | Electric generator system | |
KR101666748B1 (en) | Perovskite photovoltaic cell module | |
US9331258B2 (en) | Solar thermoelectric generator | |
ES2690162B2 (en) | THERMOPOTOVOLTAIC CONVERTER | |
US20150162473A1 (en) | Devices for thermal management of photovoltaic devices and methods of their manufacture | |
CN109390420A (en) | A kind of all solid state photon enhancing thermionic emission device | |
CN109326661A (en) | An all-solid-state photon-enhanced thermionic emission device | |
Saidov | Solar thermocell with low-bandgap photoheated layers | |
ES2584105B2 (en) | Hybrid thermionic-photovoltaic converter | |
Raut et al. | Recent developments in photovoltaic-thermoelectric combined system | |
RU2399118C1 (en) | Photoelectric converter based on nonplanar semiconductor structure | |
Gong et al. | A theoretical study on third generation photovoltaic technology: dye-sensitized solar cells | |
KR101111198B1 (en) | Solar cell module using metal gas ionization and thermoelectric element | |
Saidov | Photothermoelectric cell for thermophotovoltaic systems and solar power plants with concentrators | |
Gopinath et al. | Cost effective methods to improve the power output of a solar panel: An experimental investigation | |
WO2012110758A2 (en) | Solar energy device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BA2A | Patent application published |
Ref document number: 2690162 Country of ref document: ES Kind code of ref document: A1 Effective date: 20181119 |
|
FG2A | Definitive protection |
Ref document number: 2690162 Country of ref document: ES Kind code of ref document: B2 Effective date: 20190409 |