ES2589640T3 - Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it - Google Patents
Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it Download PDFInfo
- Publication number
- ES2589640T3 ES2589640T3 ES12822363.3T ES12822363T ES2589640T3 ES 2589640 T3 ES2589640 T3 ES 2589640T3 ES 12822363 T ES12822363 T ES 12822363T ES 2589640 T3 ES2589640 T3 ES 2589640T3
- Authority
- ES
- Spain
- Prior art keywords
- less
- energy absorption
- low temperature
- bainite
- impact energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010521 absorption reaction Methods 0.000 title abstract description 19
- 229910000831 Steel Inorganic materials 0.000 title abstract description 11
- 239000010959 steel Substances 0.000 title abstract description 11
- 238000000034 method Methods 0.000 title description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 17
- 239000000956 alloy Substances 0.000 abstract description 17
- 229910001563 bainite Inorganic materials 0.000 abstract description 17
- 229910052758 niobium Inorganic materials 0.000 abstract description 13
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 12
- 229910001566 austenite Inorganic materials 0.000 abstract description 9
- 235000019362 perlite Nutrition 0.000 abstract description 6
- 239000010451 perlite Substances 0.000 abstract description 6
- 229910000734 martensite Inorganic materials 0.000 abstract description 5
- 230000000717 retained effect Effects 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract 2
- 229910052684 Cerium Inorganic materials 0.000 abstract 1
- 229910052791 calcium Inorganic materials 0.000 abstract 1
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 239000012535 impurity Substances 0.000 abstract 1
- 229910052746 lanthanum Inorganic materials 0.000 abstract 1
- 229910052749 magnesium Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- XXPDBLUZJRXNNZ-UHFFFAOYSA-N promethazine hydrochloride Chemical compound Cl.C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 XXPDBLUZJRXNNZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000003475 lamination Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 101001020552 Rattus norvegicus LIM/homeobox protein Lhx1 Proteins 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
- C21D8/0484—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Lámina de acero laminada en caliente de alto límite de elasticidad que presenta una excelente absorción de energía del impacto a baja temperatura y resistencia al ablandamiento de la ZAC caracterizada por que comprende, % en masa, C: 0,04 a 0,09%, Si: 0,4% o menor, Mn: 1,2 a 2,0%, P: 0,1% o menor, S: 0,02% o menor, Al: 1,0% o menor, Nb: 0,02 a 0,09%, Ti: 0,02 a 0,07%, N: 0,005% o menor y que comprende opcionalmente además V: 0,01 a 0,12%, uno o más de Cr, Cu, Ni y Mo en un total de 0,02 a 2,0%, B: 0,0003 a 0,005% y uno o más de Ca, Mg, La y Ce en un total de 0,0003 a 0,01% y un equilibrio de Fe e impurezas inevitables, donde 2,0<=[%Mn]+8[%Ti]+12[%Nb]<=2,6 y con una estructura de metal que comprende un porcentaje del área de perlita de 5% o menor, un porcentaje de área total de martensita y austenita retenida de 0,5% o menor y un equilibrio de una o ambas de ferrita y bainita, con un tamaño de grano promedio de ferrita y bainita de 10 μm o menor, con un tamaño de grano promedio de carbonitruros de aleaciones con interfases incoherentes que contienen Ti y Nb de 20 nm o menor, con un límite de elasticidad de 0,85 o más y con una máxima resistencia a la tracción de 600 MPa o más.Hot rolled steel sheet with a high elasticity limit that presents excellent impact energy absorption at low temperature and resistance to softening of the ZAC characterized by comprising,% by mass, C: 0.04 to 0.09%, If: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0% or less, Nb: 0 , 02 to 0.09%, Ti: 0.02 to 0.07%, N: 0.005% or less and optionally further comprising V: 0.01 to 0.12%, one or more of Cr, Cu, Ni and Mo in a total of 0.02 to 2.0%, B: 0.0003 to 0.005% and one or more of Ca, Mg, La and Ce in a total of 0.0003 to 0.01% and a balance of Fe and unavoidable impurities, where 2.0 <= [% Mn] +8 [% Ti] +12 [% Nb] <= 2.6 and with a metal structure comprising a percentage of the perlite area of 5% or less, a percentage of total martensite and retained austenite area of 0.5% or less and a balance of one or both of ferrite and bainite, with an average grain size of ferrite and bainite of 10 μm or less, with a grain size prome gave carbonitrides of alloys with incoherent interfaces containing Ti and Nb of 20 nm or less, with an elasticity limit of 0.85 or more and with a maximum tensile strength of 600 MPa or more.
Description
5 5
10 10
15 fifteen
20 twenty
25 25
30 30
35 35
40 40
45 Four. Five
50 fifty
impacto, así se hizo el límite superior 5%. Desde el punto de vista de asegurar la plegabilidad, 3% o menor es el intervalo preferible. Obsérvese que, el límite inferior no está fijado en particular, pero es más preferible tener un porcentaje de área de perlita próximo a cero con respecto a la absorción de energía del impacto. impact, thus the upper limit 5% was made. From the point of view of ensuring folding, 3% or less is the preferable range. Note that the lower limit is not set in particular, but it is more preferable to have a percentage of perlite area close to zero with respect to the energy absorption of the impact.
"Porcentaje de área total de martensita y austenita retenida" "Percentage of total martensite and retained austenite area"
En acero endurecido por precipitación que contiene Nb y Ti, si el porcentaje de área total de martensita y austenita retenida excede de 0,5%, tiene lugar fácilmente rotura por fragilidad a una temperatura baja y, además, disminuye la absorción de energía del impacto. Por esta razón, el límite superior del porcentaje de área total se hizo 0,5%. Obsérvese que, el límite inferior no está fijado en particular, pero es más preferible que presente un porcentaje de área total de martensita y austenita retenida próximo a cero con respecto a la absorción de energía del impacto. In precipitation hardened steel containing Nb and Ti, if the percentage of total area of martensite and retained austenite exceeds 0.5%, fragility breakage at a low temperature easily occurs and, in addition, the impact energy absorption decreases . For this reason, the upper limit of the percentage of total area was 0.5%. Note that the lower limit is not set in particular, but it is more preferable that it has a percentage of total area of martensite and austenite retained close to zero with respect to the energy absorption of the impact.
"Estructura de metal que presenta equilibrio de una o ambas de ferrita y bainita" "Metal structure that presents balance of one or both of ferrite and bainite"
Los porcentajes de área de éstas no están limitados en particular, pero desde el punto de vista de asegurar la plegabilidad, el porcentaje de área de bainita se hace preferiblemente 10% o más. The area percentages of these are not limited in particular, but from the point of view of ensuring folding, the percentage of bainite area is preferably made 10% or more.
"Tamaño de grano promedio de ferrita y bainita" "Average grain size of ferrite and bainite"
El tamaño de grano promedio de ferrita y bainita es un factor correlativo. Si el tamaño de partícula promedio es más de 10 µm, incluso si se controla el tamaño de partícula promedio de los carbonitruros de aleaciones que contienen Nb y Ti, a veces no se puede asegurar la absorción de energía del impacto a baja temperatura, así se hizo el límite superior 10 µm. 8 µm o menor es una condición preferible que permite que la absorción de energía del impacto se asegure de manera más estable. El límite inferior no está fijado en particular, pero si el tamaño es menor que 2 µm, el coste de producción aumenta notablemente, así 2 µm es el límite inferior sustantivo. The average grain size of ferrite and bainite is a correlative factor. If the average particle size is more than 10 µm, even if the average particle size of the carbonitrides of alloys containing Nb and Ti is controlled, sometimes the energy absorption of the low temperature impact cannot be ensured, thus made the upper limit 10 µm. 8 µm or less is a preferable condition that allows impact energy absorption to be more stable. The lower limit is not set in particular, but if the size is less than 2 µm, the production cost increases markedly, so 2 µm is the substantive lower limit.
En la presente invención, la estructura de metal de la lámina de acero se puede observar basándose en JIS G 0551 por un microscopio óptico. La superficie observada se obtiene puliendo la lámina de acero, atacándola después mediante una disolución corrosiva de Nital. In the present invention, the metal structure of the steel sheet can be observed based on JIS G 0551 by an optical microscope. The observed surface is obtained by polishing the steel sheet, then attacking it by means of a corrosive solution of Nital.
Los porcentajes de área de ferrita, bainita, perlita y martensita se pueden medir por el método de recuento de puntos The percentages of ferrite, bainite, perlite and martensite area can be measured by the point counting method
o análisis de la imagen usando fotografías estructurales obtenidas mediante un microscopio óptico o microscopio electrónico de tipo barrido (SEM, por sus siglas en inglés). El porcentaje de área de austenita retenida se mide mediante difracción de rayos X. or image analysis using structural photographs obtained by an optical microscope or scanning electron microscope (SEM). The percentage of retained austenite area is measured by X-ray diffraction.
En la presente invención, "bainita" incluye bainita superior, bainita inferior y bainita granular. Además, "perlita" incluye perlita y pseudo perlita. In the present invention, "bainite" includes upper bainite, lower bainite and granular bainite. In addition, "perlite" includes perlite and pseudo perlite.
El tamaño de grano se puede medir por observación mediante un microscopio óptico o por análisis de orientación del cristal por el método EBSD. Aquí, “el tamaño de grano” es el tamaño de grano promedio "d" que se describe en JIS G 0551. The grain size can be measured by observation by means of an optical microscope or by orientation analysis of the crystal by the EBSD method. Here, "grain size" is the average grain size "d" described in JIS G 0551.
“Tamaño de partícula promedio de carbonitruros de aleaciones con interfases incoherentes que contienen Ti y Nb" "Average particle size of alloy carbonitrides with incoherent interfaces containing Ti and Nb"
El tamaño de partícula de los carbonitruros de aleaciones que contienen Ti y Nb y la red correspondiente con la estructura de la matriz ferrita o bainita son factores importantes relativos a la absorción de energía del impacto a baja temperatura. En general, en el acero endurecido por precipitación, es conocido que causan la precipitación de carbonitruros de aleaciones finos con buena correspondencia de red con la estructura de la matriz como partículas finas, pero para mejora de la tenacidad a baja temperatura y mejora de la absorción de energía del impacto, es importante controlar las partículas de carbonitruros de aleaciones con deficiente correspondencia de red con la estructura de la matriz. Si el tamaño de partícula promedio de los carbonitruros de aleaciones con interfases incoherentes que degradan la correspondencia de red es más de 20 nm, la absorción de energía del impacto a baja temperatura disminuye, así el intervalo adecuado se limitó a 20 nm o menor. Desde el punto de vista de obtener una absorción de energía del impacto mejor, 10 nm o menor es el intervalo más preferible. El límite inferior no está fijado en particular, pero como un tamaño que permite el análisis de la orientación del cristal del precipitado, 2 nm es el límite inferior sustantivo. The particle size of the carbonitrides of alloys containing Ti and Nb and the corresponding network with the structure of the ferrite or bainite matrix are important factors related to the energy absorption of low temperature impact energy. In general, in precipitation hardened steel, it is known that they cause precipitation of fine alloy carbonitrides with good network correspondence with the matrix structure as fine particles, but for improved low temperature toughness and improved absorption of impact energy, it is important to control the carbonitride particles of alloys with poor network correspondence with the matrix structure. If the average particle size of the carbonitrides of alloys with incoherent interfaces that degrade the network correspondence is more than 20 nm, the energy absorption of the low temperature impact decreases, thus the appropriate range was limited to 20 nm or less. From the point of view of obtaining a better impact energy absorption, 10 nm or less is the most preferable range. The lower limit is not set in particular, but as a size that allows the analysis of the crystal orientation of the precipitate, 2 nm is the substantive lower limit.
Aquí, "carbonitruros de aleaciones con interfases incoherentes" significa el estado no coherente precipitado en la estructura de la matriz de ferrita o bainita y uniendo ferrita y bainita no teniendo las siguientes relaciones de orientación del cristal (relaciones de orientación Baker-Nutting): Here, "carbonitrides of alloys with incoherent interfaces" means the non-coherent state precipitated in the structure of the ferrite or bainite matrix and joining ferrite and bainite not having the following crystal orientation relationships (Baker-Nutting orientation relationships):
(100)MX//(100)Fe (100) MX // (100) Faith
(010)MX//(011)Fe (010) MX // (011) Faith
(001)MX//(0-11)Fe (Nota: -1 es notación alternativa para 1 con barra encima). (001) MX // (0-11) Fe (Note: -1 is an alternative notation for 1 with a bar above).
Aquí, M indica Ti y Nb. Los porcentajes ocupados por Ti y Nb no son un problema. Además, X indica C y N. Los porcentajes ocupados por C y N no son un problema. Cuando se añade V o Mo, a veces M contiene V o Mo. Here, M indicates Ti and Nb. The percentages occupied by Ti and Nb are not a problem. In addition, X indicates C and N. The percentages occupied by C and N are not a problem. When V or Mo is added, sometimes M contains V or Mo.
8 5 8 5
10 10
15 fifteen
20 twenty
25 25
30 30
35 35
40 40
45 Four. Five
50 fifty
55 55
Obsérvese que, se analizó la orientación del cristal de los carbonitruros de aleaciones con interfases incoherentes y se midió el tamaño de partícula promedio usando un microscopio electrónico de tipo transmisión (TEM, por sus siglas en inglés). Primero, se preparó una muestra de plancha de acero en una película delgada de una extensión por la cual se hicieron pasar haces de electrones, se usó TEM para analizar la orientación del cristal entre el precipitado y el Fe de la fase de la matriz circundante, después se midió el tamaño de partícula promedio de 20 precipitados en orden desde los precipitados de diámetro mayor en los precipitados que se juzgaron que eran precipitados incoherentes. Aquí, el “tamaño de partícula de un precipitado” se mide como el diámetro del círculo equivalente cuando se asume un círculo equivalente al área transversal de una partícula. Note that the orientation of the carbonitride crystal of alloys with incoherent interfaces was analyzed and the average particle size was measured using a transmission type electron microscope (TEM). First, a sample of a steel plate was prepared on a thin film of an extension through which electron beams were passed, TEM was used to analyze the orientation of the crystal between the precipitate and the Fe of the surrounding matrix phase, the average particle size of 20 precipitates was then measured in order from the precipitates of larger diameter in the precipitates that were judged to be incoherent precipitates. Here, the "particle size of a precipitate" is measured as the diameter of the equivalent circle when a circle equivalent to the cross-sectional area of a particle is assumed.
“Límite de elasticidad de 0,85 o más" "Elastic limit of 0.85 or more"
Si el límite de elasticidad es menor que 0,85, a veces la absorción de energía del impacto a baja temperatura disminuye y la plegabilidad disminuye. Por esta razón, el límite inferior del límite de elasticidad se hizo 0,85. If the elasticity limit is less than 0.85, sometimes the energy absorption of the impact at low temperature decreases and the folding decreases. For this reason, the lower limit of the elasticity limit was 0.85.
Obsérvese que, en la presente invención, se usó rlim/t como el criterio para evaluación de la plegabilidad. Aquí, "t" es el espesor de la pieza de ensayo y rlim es el radio límite de curvatura al que no tienen lugar grietas en un ensayo de flexión de 90° V. Un rlim/t de 1,0 o menor se consideró buena plegabilidad. 0,5 o menor es el intervalo más preferible. El límite superior no está fijado en particular, pero si el valor está por encima de 1,1, la plegabilidad puede disminuir, así 1,1 o menor es el intervalo más preferible. Note that, in the present invention, rlim / t was used as the criterion for the evaluation of folding. Here, "t" is the thickness of the test piece and rlim is the radius of curvature limit at which no cracks occur in a 90 ° V bending test. A rlim / t of 1.0 or less was considered good folding. 0.5 or less is the most preferable range. The upper limit is not set in particular, but if the value is above 1.1, the folding may decrease, thus 1.1 or less is the most preferable range.
"Máxima resistencia a la tracción de 600 MPa o más" "Maximum tensile strength of 600 MPa or more"
Si la máxima resistencia a la tracción es menor que 600 MPa, la lámina de acero no contribuye a una reducción del peso de las piezas de coches, camiones, maquinaria de construcción, etc., así en la presente invención, se asume lámina de acero de una máxima resistencia a la tracción de 600 MPa o más. If the maximum tensile strength is less than 600 MPa, the steel sheet does not contribute to a reduction in the weight of the parts of cars, trucks, construction machinery, etc., thus in the present invention, steel sheet is assumed of maximum tensile strength of 600 MPa or more.
A continuación, se explicará con detalle el método de producción. Next, the production method will be explained in detail.
Antes de la laminación en caliente, es necesario calentar la plancha de acero de los ingredientes que se prescriben en la presente invención a 1.150°C o más para hacer los carbonitruros de aleaciones que están presentes en la plancha de acero un estado de disolución sólido. Si la temperatura de calentamiento es menor que 1.150°C, llega a ser difícil obtener una concentración de una resistencia a la tracción máxima 600 MPa o más. Además, los carbonitruros de aleaciones gruesos no se disuelven lo suficiente y como resultado quedan carbonitruros de aleaciones gruesos, así que disminuye la absorción de energía del impacto a baja temperatura. Por esta razón, la temperatura de calentamiento de la plancha de acero se limitó a 1.150°C o más. El límite superior no está fijado en particular, pero si está por encima de 1.300°C, el efecto llega a estar saturado, así este es el límite superior sustantivo. Prior to hot rolling, it is necessary to heat the steel plate of the ingredients that are prescribed in the present invention to 1,150 ° C or more to make the carbonitrides of alloys that are present in the steel plate a solid dissolution state. If the heating temperature is less than 1,150 ° C, it becomes difficult to obtain a concentration of a maximum tensile strength 600 MPa or more. In addition, coarse alloy carbonitrides do not dissolve sufficiently and as a result coarse alloy carbonitrides remain, so energy absorption from low temperature impact decreases. For this reason, the heating temperature of the steel plate was limited to 1,150 ° C or more. The upper limit is not set in particular, but if it is above 1,300 ° C, the effect becomes saturated, so this is the substantive upper limit.
La plancha de acero calentada anterior se lamina en bruto a una barra en bruto. Esta laminación en bruto se tiene que completar entre 1.000°C y 1.080°C. Si la temperatura de acabado es menor que 1.000°C, los carbonitruros de aleaciones brutos precipitan en la austenita y disminuye la absorción de energía del impacto a baja temperatura, mientras que si es 1.080°C o más, los granos de austenita llegan a ser más gruesos, no es posible obtener un tamaño de grano promedio de ferrita y bainita de 10 µm o menor en la estructura transformada después de laminado acabado, enfriamiento y enrollado, la tenacidad a baja temperatura empeora y disminuye la absorción de energía del impacto. Además, en laminado en bruto realizado a 1.150°C o menor, el tiempo de retención entre pases de reducción de laminación es un parámetro importante que afecta al tamaño promedio de partícula de los carbonitruros de aleaciones incoherentes. En el método de la presente invención, la laminación en bruto se realiza normalmente por laminación 3 a 10 veces o así, más preferiblemente laminación 5 a 10 veces, pero si el tiempo t0 de retención máximo entre pases de laminación realizados a 1.150°C o menor es 45 s o más, los carbonitruros de aleaciones llegan a ser más gruesos en una extensión que afecta a la absorción de energía del impacto. Por esta razón, el tiempo de retención entre los pases de reducción de laminación se limitó a 45 segundos. En 30 segundos es más preferible. The previous heated steel plate is rolled raw to a raw bar. This raw lamination must be completed between 1,000 ° C and 1,080 ° C. If the finishing temperature is less than 1,000 ° C, the raw alloy carbonitrides precipitate in the austenite and decrease the energy absorption of the impact at low temperature, while if it is 1,080 ° C or more, the austenite grains become thicker, it is not possible to obtain an average grain size of ferrite and bainite of 10 µm or less in the transformed structure after finished rolling, cooling and rolling, the low temperature toughness worsens and the impact energy absorption decreases. In addition, in raw rolling performed at 1,150 ° C or less, the retention time between rolling reduction passes is an important parameter that affects the average particle size of the incoherent alloy carbonitrides. In the method of the present invention, the raw lamination is normally performed by lamination 3 to 10 times or so, more preferably lamination 5 to 10 times, but if the maximum retention time t0 between lamination passes made at 1,150 ° C or smaller is 45 s or more, the carbonitrides of alloys become thicker in an extension that affects the energy absorption of the impact. For this reason, the retention time between the rolling reduction passes was limited to 45 seconds. In 30 seconds it is more preferable.
A continuación, la barra en bruto se enrolla para acabado para obtener un material enrollado. Next, the raw bar is rolled to finish to obtain a rolled material.
El tiempo (t1) después de laminado en bruto acaba al comienzo del laminado de acabado es un parámetro importante que afecta al tamaño de partícula promedio de los carbonitruros de aleaciones y el tamaño de grano de la ferrita y bainita después de la transformación. Como se muestra en la FIG. 2, cuanto mayor la cantidad total de Ti y Nb, mayor el tiempo t1 de retención (marca de flecha en la figura) donde la absorción de energía al impacto (vE-40) se desplaza de buena (OK) a no buena (NB). El tiempo t1 (s) de retención donde la absorción se desplaza de buena (OK) a no buena (NB) se corresponde sustancialmente con 1.000x([%Ti]+[%Nb]). De esta manera, si el tiempo t1 (s) de retención desde después de que acaba el laminado en bruto a cuando empieza el laminado acabado es 1.000x([%Ti]+[%Nb])s o más, los carbonitruros de aleaciones gruesos precipitan en la austenita, los granos de cristal de austenita llegan a ser más gruesos, no es posible obtener un tamaño de grano promedio de ferrita y bainita de 10 µm o menor en la estructura transformada después de laminado acabado, enfriamiento y enrollado, la tenacidad a baja temperatura empeora y disminuye la absorción de energía del impacto. 700x([%Ti]+[%Nb])>tls es el intervalo más preferible. De acuerdo con esto, el tiempo t1 (s) de retención se definió por la siguiente fórmula (1): The time (t1) after raw rolling ends at the beginning of the finishing rolling is an important parameter that affects the average particle size of the alloy carbonitrides and the grain size of the ferrite and bainite after the transformation. As shown in FIG. 2, the greater the total amount of Ti and Nb, the greater the retention time t1 (arrow mark in the figure) where the absorption of impact energy (vE-40) moves from good (OK) to not good (NB ). The retention time t1 (s) where the absorption shifts from good (OK) to not good (NB) substantially corresponds to 1,000x ([% Ti] + [% Nb]). Thus, if the retention time t1 (s) from after the raw rolling is finished to when the finished rolling begins is 1,000x ([% Ti] + [% Nb]) or more, the coarse alloy carbides precipitate in austenite, the austenite crystal grains become thicker, it is not possible to obtain an average grain size of ferrite and bainite of 10 µm or less in the transformed structure after finished rolling, cooling and rolling, toughness at low temperature it worsens and decreases the absorption of impact energy. 700x ([% Ti] + [% Nb])> tls is the most preferable range. Accordingly, the retention time t1 (s) was defined by the following formula (1):
9 9
13 13
14 14
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173760 | 2011-08-09 | ||
JP2011173760 | 2011-08-09 | ||
PCT/JP2012/070259 WO2013022043A1 (en) | 2011-08-09 | 2012-08-08 | Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2589640T3 true ES2589640T3 (en) | 2016-11-15 |
Family
ID=47668548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES12822363.3T Active ES2589640T3 (en) | 2011-08-09 | 2012-08-08 | Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it |
Country Status (14)
Country | Link |
---|---|
US (1) | US20140178712A1 (en) |
EP (1) | EP2743364B1 (en) |
JP (1) | JP5354130B2 (en) |
KR (1) | KR101575832B1 (en) |
CN (2) | CN103732776B (en) |
BR (1) | BR112014002875B1 (en) |
CA (1) | CA2843588C (en) |
ES (1) | ES2589640T3 (en) |
MX (1) | MX349893B (en) |
PL (1) | PL2743364T3 (en) |
RU (1) | RU2562582C1 (en) |
TW (1) | TWI453287B (en) |
WO (1) | WO2013022043A1 (en) |
ZA (1) | ZA201400954B (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010087512A1 (en) | 2009-01-30 | 2010-08-05 | Jfeスチール株式会社 | Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor |
KR102095071B1 (en) | 2012-05-08 | 2020-03-31 | 타타 스틸 이즈무이덴 베.뷔. | Automotive chassis part made from high strength formable hot rolled steel sheet |
KR101499939B1 (en) * | 2013-04-10 | 2015-03-06 | 동국제강주식회사 | Thick plate having high strength and toughness and method of manufacturing the same |
KR101518551B1 (en) | 2013-05-06 | 2015-05-07 | 주식회사 포스코 | Ultrahigh strength hot rolled steel sheet having excellent impact resistant property and mehtod for production thereof |
KR101543836B1 (en) | 2013-07-11 | 2015-08-11 | 주식회사 포스코 | High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same |
KR101543837B1 (en) | 2013-07-11 | 2015-08-11 | 주식회사 포스코 | High yield ratio high-strength hot rolled steel sheet having excellent impact resistance and method for manufacturing the same |
WO2015099222A1 (en) * | 2013-12-26 | 2015-07-02 | 주식회사 포스코 | Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same |
PL3305935T3 (en) * | 2014-03-25 | 2019-11-29 | Thyssenkrupp Steel Europe Ag | High strength flat steel product and use of a high strength flat steel product |
CN103898407B (en) * | 2014-04-09 | 2016-07-06 | 武汉钢铁(集团)公司 | 600MPa hot rolled ribbed bars and preparation method thereof |
CN105506494B (en) | 2014-09-26 | 2017-08-25 | 宝山钢铁股份有限公司 | A kind of yield strength 800MPa grade high ductilities hot-rolling high-strength steel and its manufacture method |
CN104818436B (en) * | 2015-04-21 | 2016-09-28 | 舞阳钢铁有限责任公司 | Surrender 620MPa level hydroelectric project hot rolled steel plate and production method thereof |
JP6756088B2 (en) * | 2015-06-11 | 2020-09-16 | 日本製鉄株式会社 | Hot-rolled steel sheet with excellent cold workability and its manufacturing method |
JP6103160B1 (en) | 2015-07-06 | 2017-03-29 | Jfeスチール株式会社 | High strength thin steel sheet and method for producing the same |
WO2017125773A1 (en) | 2016-01-18 | 2017-07-27 | Arcelormittal | High strength steel sheet having excellent formability and a method of manufacturing the same |
KR101767839B1 (en) * | 2016-06-23 | 2017-08-14 | 주식회사 포스코 | Precipitation-hardening hot-rolled steel sheet having excellent uniformity and hole expansion and method for manufacturing the same |
KR101889174B1 (en) * | 2016-12-13 | 2018-08-16 | 주식회사 포스코 | High yield ratio high strength steel having excellent burring property at low temperature and method for manufacturing same |
KR101917453B1 (en) | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Steel plate having excellent ultra low-temperature toughness and method for manufacturing same |
KR101899681B1 (en) * | 2016-12-22 | 2018-09-17 | 주식회사 포스코 | Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same |
CN110139941B (en) * | 2017-01-30 | 2021-11-12 | 日本制铁株式会社 | Steel plate |
TWI629363B (en) * | 2017-02-02 | 2018-07-11 | 新日鐵住金股份有限公司 | Steel plate |
CN109161793B (en) * | 2018-08-29 | 2020-08-04 | 河钢股份有限公司 | Low-yield-ratio high-strength weathering steel and production method thereof |
CN109594012A (en) * | 2018-11-05 | 2019-04-09 | 包头钢铁(集团)有限责任公司 | A kind of corrosion-resistant automobile-used steel band of 700MPa grades of rare earth and preparation method thereof |
KR102119975B1 (en) * | 2018-11-29 | 2020-06-08 | 주식회사 포스코 | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio |
WO2020158823A1 (en) * | 2019-01-31 | 2020-08-06 | Jfeスチール株式会社 | H-shaped steel having protrusions, and manufacturing method for same |
CN110669914B (en) * | 2019-09-30 | 2021-07-06 | 鞍钢股份有限公司 | High-strength steel for automobile axle housing for cold stamping and production method thereof |
KR102236851B1 (en) | 2019-11-04 | 2021-04-06 | 주식회사 포스코 | High strength steel having high yield ratio and excellent durability, and method for producing same |
CN111041378B (en) * | 2019-11-18 | 2021-06-15 | 武汉钢铁有限公司 | Steel for easily-formed commercial vehicle beam and production method thereof |
CN113122769B (en) * | 2019-12-31 | 2022-06-28 | 宝山钢铁股份有限公司 | Low-silicon low-carbon equivalent Gepa-grade complex phase steel plate/steel strip and manufacturing method thereof |
KR102580265B1 (en) * | 2021-12-22 | 2023-09-20 | 현대제철 주식회사 | Method of estimating low temperature impact absorption energy of steel |
CN115011873A (en) * | 2022-05-26 | 2022-09-06 | 包头钢铁(集团)有限责任公司 | Hot-galvanized high-strength structural steel with yield strength of 550MPa and production method thereof |
WO2025040929A1 (en) * | 2023-08-21 | 2025-02-27 | Arcelormittal | A hot rolled steel sheet and a method of manufacturing thereof |
WO2025040931A1 (en) | 2023-08-21 | 2025-02-27 | Arcelormittal | A hot rolled steel sheet and a method of manufacturing thereof |
WO2025040930A1 (en) * | 2023-08-21 | 2025-02-27 | Arcelormittal | A hot rolled steel sheet and a method of manufacturing thereof |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1002387B (en) * | 1972-12-31 | 1976-05-20 | Nippon Steel Corp | PROCEDURE FOR MANUFACTURING STEEL SHEETS FOR CONSTRUCTION WITH HIGH BREAKING LOAD |
CA2004548C (en) * | 1988-12-05 | 1996-12-31 | Kenji Aihara | Metallic material having ultra-fine grain structure and method for its manufacture |
US5545270A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method of producing high strength dual phase steel plate with superior toughness and weldability |
US5545269A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability |
JP3582257B2 (en) | 1996-01-11 | 2004-10-27 | Jfeスチール株式会社 | Manufacturing method of thin steel sheet with high impact energy absorption capacity |
JP3301348B2 (en) * | 1997-04-24 | 2002-07-15 | 住友金属工業株式会社 | Manufacturing method of hot-rolled high-tensile steel sheet |
EP0924312B1 (en) * | 1997-06-26 | 2005-12-07 | JFE Steel Corporation | Method for manufacturing super fine granular steel pipe |
ES2264572T3 (en) * | 1997-07-28 | 2007-01-01 | Exxonmobil Upstream Research Company | ULTRA-RESISTANT SOLDABLE STEELS WITH EXCELLENT TENACITY TO ULTRA WORK TEMPERATURES. |
CA2271639C (en) * | 1997-09-11 | 2006-11-14 | Kawasaki Steel Corporation | Hot rolled steel sheet having ultra fine grains with improved formability, and production of hot rolled or cold rolled steel sheet |
US5900077A (en) * | 1997-12-15 | 1999-05-04 | Caterpillar Inc. | Hardness, strength, and fracture toughness steel |
US6254698B1 (en) * | 1997-12-19 | 2001-07-03 | Exxonmobile Upstream Research Company | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof |
JP4507364B2 (en) | 1999-07-19 | 2010-07-21 | Jfeスチール株式会社 | Manufacturing method of high strength hot-rolled steel sheet |
JP4277405B2 (en) | 2000-01-26 | 2009-06-10 | Jfeスチール株式会社 | Manufacturing method of hot-rolled steel sheet for high-strength ERW steel pipe excellent in low temperature toughness and weldability |
JP2003096534A (en) * | 2001-07-19 | 2003-04-03 | Mitsubishi Heavy Ind Ltd | High strength heat resistant steel, method of producing high strength heat resistant steel, and method of producing high strength heat resistant tube member |
JP4661002B2 (en) * | 2001-08-07 | 2011-03-30 | Jfeスチール株式会社 | High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same |
JP3881559B2 (en) | 2002-02-08 | 2007-02-14 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet, high-strength cold-rolled steel sheet, and high-strength surface-treated steel sheet that have excellent formability after welding and have a tensile strength of 780 MPa or more that is difficult to soften the heat affected zone. |
JP4205922B2 (en) * | 2002-10-10 | 2009-01-07 | 新日本製鐵株式会社 | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same |
JP4304421B2 (en) * | 2002-10-23 | 2009-07-29 | 住友金属工業株式会社 | Hot rolled steel sheet |
JP4288146B2 (en) * | 2002-12-24 | 2009-07-01 | 新日本製鐵株式会社 | Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone |
DE60311680T3 (en) * | 2002-12-24 | 2015-03-26 | Nippon Steel & Sumitomo Metal Corporation | High strength steel sheet with good collar pullability and excellent softening resistance in a heat affected zone and manufacturing process therefor |
JP4214840B2 (en) * | 2003-06-06 | 2009-01-28 | 住友金属工業株式会社 | High-strength steel sheet and manufacturing method thereof |
JP4232545B2 (en) * | 2003-06-11 | 2009-03-04 | 住友金属工業株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
JP4576859B2 (en) | 2004-03-18 | 2010-11-10 | Jfeスチール株式会社 | Method for producing thick high-strength hot-rolled steel sheet with excellent workability |
JP4333444B2 (en) | 2004-03-31 | 2009-09-16 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same |
JP5070732B2 (en) | 2005-05-30 | 2012-11-14 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same |
CN102242307B (en) * | 2005-08-03 | 2013-03-27 | 住友金属工业株式会社 | Hot-rolled steel sheet and cold-rolled steel sheet and manufacturing method thereof |
JP4964488B2 (en) | 2006-04-20 | 2012-06-27 | 新日本製鐵株式会社 | High strength high Young's modulus steel plate having good press formability, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof |
CA2652821C (en) * | 2006-05-16 | 2015-11-24 | Jfe Steel Corporation | Hot-rollled high strength steel sheet having excellent ductility, stretch-flangeability, and tensile fatigue properties and method for producing the same |
JP4466619B2 (en) * | 2006-07-05 | 2010-05-26 | Jfeスチール株式会社 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
JP2007016319A (en) * | 2006-08-11 | 2007-01-25 | Sumitomo Metal Ind Ltd | High tensile hot dip galvanized steel sheet and its manufacturing method |
WO2008110670A1 (en) * | 2007-03-14 | 2008-09-18 | Arcelormittal France | Steel for hot working or quenching with a tool having an improved ductility |
WO2008123366A1 (en) * | 2007-03-27 | 2008-10-16 | Nippon Steel Corporation | High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same |
JP4972451B2 (en) * | 2007-04-20 | 2012-07-11 | 株式会社神戸製鋼所 | Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same |
JP5157240B2 (en) | 2007-05-08 | 2013-03-06 | 新日鐵住金株式会社 | High-strength steel plates and welded structures |
JP5194858B2 (en) | 2008-02-08 | 2013-05-08 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
JP5195469B2 (en) * | 2009-01-30 | 2013-05-08 | Jfeスチール株式会社 | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness |
KR101386042B1 (en) * | 2009-05-22 | 2014-04-16 | 제이에프이 스틸 가부시키가이샤 | Steel material for high heat input welding |
JP5533024B2 (en) * | 2010-02-26 | 2014-06-25 | Jfeスチール株式会社 | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness |
-
2012
- 2012-08-08 CN CN201280038678.8A patent/CN103732776B/en active Active
- 2012-08-08 CA CA2843588A patent/CA2843588C/en not_active Expired - Fee Related
- 2012-08-08 US US14/236,371 patent/US20140178712A1/en not_active Abandoned
- 2012-08-08 WO PCT/JP2012/070259 patent/WO2013022043A1/en active Application Filing
- 2012-08-08 BR BR112014002875-3A patent/BR112014002875B1/en not_active IP Right Cessation
- 2012-08-08 ES ES12822363.3T patent/ES2589640T3/en active Active
- 2012-08-08 RU RU2014108831/02A patent/RU2562582C1/en not_active IP Right Cessation
- 2012-08-08 CN CN201610008939.1A patent/CN105648311B/en active Active
- 2012-08-08 EP EP12822363.3A patent/EP2743364B1/en not_active Not-in-force
- 2012-08-08 KR KR1020137034781A patent/KR101575832B1/en active Active
- 2012-08-08 MX MX2014001501A patent/MX349893B/en active IP Right Grant
- 2012-08-08 JP JP2013502930A patent/JP5354130B2/en active Active
- 2012-08-08 PL PL12822363T patent/PL2743364T3/en unknown
- 2012-08-09 TW TW101128765A patent/TWI453287B/en not_active IP Right Cessation
-
2014
- 2014-02-07 ZA ZA2014/00954A patent/ZA201400954B/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR101575832B1 (en) | 2015-12-08 |
PL2743364T3 (en) | 2017-01-31 |
JPWO2013022043A1 (en) | 2015-03-05 |
MX2014001501A (en) | 2014-05-12 |
CA2843588A1 (en) | 2013-02-14 |
MX349893B (en) | 2017-08-18 |
BR112014002875B1 (en) | 2018-10-23 |
EP2743364B1 (en) | 2016-07-27 |
CA2843588C (en) | 2018-02-20 |
US20140178712A1 (en) | 2014-06-26 |
EP2743364A1 (en) | 2014-06-18 |
CN103732776B (en) | 2016-06-08 |
ZA201400954B (en) | 2016-07-27 |
RU2562582C1 (en) | 2015-09-10 |
TW201313920A (en) | 2013-04-01 |
TWI453287B (en) | 2014-09-21 |
BR112014002875A2 (en) | 2017-02-21 |
WO2013022043A1 (en) | 2013-02-14 |
EP2743364A4 (en) | 2015-11-04 |
CN105648311B (en) | 2018-03-30 |
CN105648311A (en) | 2016-06-08 |
CN103732776A (en) | 2014-04-16 |
JP5354130B2 (en) | 2013-11-27 |
KR20140026574A (en) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2589640T3 (en) | Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it | |
ES2759051T3 (en) | Hot rolled steel sheet and manufacturing method thereof | |
ES2686567T3 (en) | Method for producing a cold rolled steel sheet | |
ES2769224T3 (en) | Hot rolled steel sheet | |
ES2728328T3 (en) | Hot rolled steel sheet and its manufacturing method | |
Mahato et al. | An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel | |
ES2729056T3 (en) | Steel sheet and method for manufacturing a steel sheet | |
ES2662381T3 (en) | Hot stamped part and its manufacturing method | |
ES2656564T3 (en) | Hot-pressed molded article and its manufacturing method | |
ES2663747T3 (en) | Hot rolled steel sheet and its manufacturing method | |
ES2684144T3 (en) | High strength hot rolled steel sheet that has excellent local deformability and manufacturing method | |
ES2690121T3 (en) | Steel for oil well tube, oil well tube, and method to produce the same | |
CN105917015B (en) | Martensitic Li-adding Al alloy and Oil Well Pipe | |
ES2663995T3 (en) | High strength hot rolled steel sheet and process to produce it | |
CN104185691B (en) | The non-stainless steel of the new type with high intensity and high ductibility | |
TWI661055B (en) | Carburizing steel sheet and manufacturing method of carburizing steel sheet | |
ES2734993T3 (en) | High strength steel material for use in oil wells, and oil well pipes | |
Pozuelo et al. | Enhanced mechanical properties of a novel high-nitrogen Cr-Mn-Ni-Si austenitic stainless steel via TWIP/TRIP effects | |
ES2719981T3 (en) | High strength steel material for oil wells and tubular oilfield products | |
WO2007083808A1 (en) | High-strength spring steel excellent in brittle fracture resistance and method for producing same | |
ES2744934T3 (en) | Thick wall oil well steel pipe and method of production | |
JP6292022B2 (en) | High strength hot-rolled steel sheet and manufacturing method thereof | |
CN102428201A (en) | Stainless steel for oil well, stainless steel pipe for oil well, and manufacturing method of stainless steel for oil well | |
JP6394835B1 (en) | Low temperature nickel-containing steel sheet and low temperature tank using the same | |
BR112014015779B1 (en) | METHOD FOR PRODUCING A HIGH RESISTANCE THICK STEEL PLATE FOR STRUCTURAL USE |