ES2261469T5 - Process to produce micro and / or nanoparticles - Google Patents
Process to produce micro and / or nanoparticles Download PDFInfo
- Publication number
- ES2261469T5 ES2261469T5 ES01970064.0T ES01970064T ES2261469T5 ES 2261469 T5 ES2261469 T5 ES 2261469T5 ES 01970064 T ES01970064 T ES 01970064T ES 2261469 T5 ES2261469 T5 ES 2261469T5
- Authority
- ES
- Spain
- Prior art keywords
- carbon dioxide
- liquid
- solid
- process according
- sat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1688—Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/02—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
- B01J2/04—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
Landscapes
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Medicinal Preparation (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
5555
6060
6565
DESCRIPCIONDESCRIPTION
Proceso para producir micro y/o nanoparticulas Campo de la invencionProcess for producing micro and / or nanoparticles Field of the invention
[0001] Esta invencion es particularmente adecuada para procesar solidos que son solubles en solventes liquidos con temperaturas de ebullicion inferiores a aproximadamente 120 °C y no termolabiles a temperaturas en el proceso de hasta aproximadamente 80 °C, para producir dichos solidos en forma de micro y nanoparticulas con dimensiones que varian entre 0,01 y 100 micras. Una lista no exhaustiva de los diferentes campos de aplicacion industriales de solidos en forma de polvos micronicos es: catalizadores, oxidos metalicos, revestimientos y peliculas, cosmeticos, componentes electromagneticos, dispositivos electronicos, pigmentos, compuestos ceramicos, toneres, productos para pulir, materiales retardantes de llamas, biopolimeros, compuestos polimericos y farmacos.[0001] This invention is particularly suitable for processing solids that are soluble in liquid solvents with boiling temperatures below about 120 ° C and not thermolabile at process temperatures of up to about 80 ° C, to produce such solids in the form of micro and nanoparticles with dimensions ranging between 0.01 and 100 microns. A non-exhaustive list of the different industrial application fields of solids in the form of micronic powders is: catalysts, metal oxides, coatings and films, cosmetics, electromagnetic components, electronic devices, pigments, ceramic compounds, toners, polishing products, retarding materials of llamas, biopolymers, polymeric compounds and drugs.
Estado de la tecnica en el campo de la invencion descritaState of the art in the field of the described invention
[0002] Durante los ultimos quince anos varias tecnicas y aparatos han sido propuestos para producir polvos, basados en el uso de gases comprimidos y/o en condiciones supercriticas. En muchos casos el dioxido de carbono ha sido propuesto como el fluido del proceso. Las distintas tecnicas descritas en la bibliografia tecnica y de patentes pueden ser organizadas en tres areas principales y esquematizadas de la siguiente manera:[0002] During the last fifteen years several techniques and devices have been proposed to produce powders, based on the use of compressed gases and / or in supercritical conditions. In many cases carbon dioxide has been proposed as the process fluid. The different techniques described in the technical and patent literature can be organized into three main areas and schematized as follows:
Expansion Rapida de Soluciones Supercriticas (RESS). Este proceso se basa en la solubilizacion del solido que se debe micronizar en un solvente supercritico y la despresurizacion subsiguiente hasta que la presion atmosferica se aproxima a la de la solucion formada y de la precipitacion del soluto. Muchas variaciones de este proceso y aparatos relacionados han sido propuestas: DE 2943267, US 4582831, US 4734451, US 4970093.Rapid Expansion of Supercritical Solutions (RESS). This process is based on the solubilization of the solid that must be micronized in a supercritical solvent and subsequent depressurization until the atmospheric pressure approximates that of the solution formed and the precipitation of the solute. Many variations of this process and related devices have been proposed: DE 2943267, US 4582831, US 4734451, US 4970093.
Su limitacion mas importante consiste en la solubilidad limitada de muchos solidos en el solvente supercritico. El control de la morfologia y del tamano de la particula es tambien muy complejo.Its most important limitation is the limited solubility of many solids in the supercritical solvent. The morphology and particle size control is also very complex.
[0003] La precipitacion de una solucion liquida inducida por un antisolvente supercritico (se han usado varios acronimos ASES, SEDS, GAS y SAS) nosotros haremos alusion a esta tecnica como SAS (precipitacion antisolvente supercritica) en lo sucesivo. Se hara alusion a esta tecnica como SAS (precipitacion antisolvente supercritica) en lo sucesivo Esta tecnica ha sido detalladamente descrita en "Supercritical antisolvent precipitation of micro and nano particles, Reverchon, 1999, J. Supercrit. Fluids, 15;1-21. Las precondiciones para la aplicacion de este proceso son que el solvente Kquido es completamente soluble en el antisolvente supercritico, mientras que el solido es completamente insoluble en este. No obstante, la procesabilidad de SAS de muchos solidos es problematica. Pero, en los casos en los que la micronizacion ha sido realizada con exito, se ha obtenido un control justo de la morfologia y de los tamanos de las particulas (variando desde submicronicas a particulas de cientos de micras). Tambien en este caso la bibliografia de patentes contiene muchos procesos y variaciones de aplicacion. Por ejemplo, es interesante la variacion propuesta por Hanna y York que usaba algunos dispositivos diferentes de inyectores coaxiales para la mezcla simultanea y la atomizacion del antisolvente supercritico y la solucion liquida (actuando de esta manera es posible obtener una aportacion mecanica a la formacion de particulas debido a la velocidad de los dos flujos en la salida del inyector). Las patentes presentadas en la bibliografia difieren por la aplicacion o por los fluidos usados (como ejemplos, se propone el uso de un solvente organico y un antisolvente supercritico, o de solvente y antisolvente ambos en las condiciones supercriticas, o una solucion liquida un segundo solvente y un antisolvente supercritico - US 6063138) o pequenas variaciones del aparato estan propuestas para optimizar su uso en la micronizacion de diferentes sustancias.[0003] The precipitation of a liquid solution induced by a supercritical antisolvent (several acronyms ASES, SEDS, GAS and SAS have been used) we will refer to this technique as SAS (supercritical antisolvent precipitation) hereinafter. This technique will be referred to as SAS (supercritical antisolvent precipitation) hereafter This technique has been described in detail in "Supercritical antisolvent precipitation of micro and nano particles, Reverchon, 1999, J. Supercrit. Fluids, 15; 1-21. Preconditions for the application of this process are that the solvent Kqido is completely soluble in the supercritical antisolvent, while the solid is completely insoluble in this, however, the SAS processability of many solids is problematic, but in cases where that the micronization has been carried out successfully, a fair control of the morphology and the sizes of the particles has been obtained (varying from submicron to particles of hundreds of microns). Also in this case the patent bibliography contains many processes and variations It is interesting, for example, the variation proposed by Hanna and York that used some different devices of coaxial injectors for to the simultaneous mixing and atomization of the supercritical antisolvent and the liquid solution (acting in this way it is possible to obtain a mechanical contribution to the formation of particles due to the speed of the two flows at the outlet of the injector). The patents presented in the literature differ by the application or by the fluids used (as examples, the use of an organic solvent and a supercritical solvent, or solvent and antisolvent both under supercritical conditions, or a liquid solution a second solvent is proposed and a supercritical antisolvent - US 6063138) or small variations of the apparatus are proposed to optimize its use in the micronization of different substances.
[0004] Generacion de Particulas de Soluciones Saturadas de Gas (PGSS). En este campo se ubica explicitamente la patente depositada por Weidner y Knez (EP 744992, WO 9521688) que proponia el uso de dioxido de carbono supercritico para ser solubilizado en polimeros fundidos en un recipiente calentado. El dioxido de carbono supercritico solubiliza en grandes cantidades en muchos polimeros que inducen tambien su licuefaccion (debido a la reduccion de la temperatura de transicion vitrea). La solucion polimerica obtenida de esta manera es enviada a un inyector y pulverizada en un recipiente accionado a una presion inferior formandose gotitas de polimero que vuelven al estado solido debido al enfriamiento inducido por el dioxido de carbono. El diametro minimo documentado de las particulas producidas por esta tecnica es de 7,8 micras.[0004] Generation of Gas Saturated Solutions Particles (PGSS). In this field the patent deposited by Weidner and Knez (EP 744992, WO 9521688) that proposed the use of supercritical carbon dioxide to be solubilized in molten polymers in a heated vessel is explicitly located. Supercritical carbon dioxide solubilizes in large quantities in many polymers that also induce its liquefaction (due to the reduction of the glass transition temperature). The polymer solution obtained in this way is sent to an injector and sprayed in a container operated at a lower pressure, forming polymer droplets that return to the solid state due to the cooling induced by carbon dioxide. The minimum documented diameter of the particles produced by this technique is 7.8 microns.
Los procesos que tienen muchas similitudes con la PGSS son muchos procesos de revestimiento por pulverizacion propuestos en la bibliografia de patentes (US 5057342, US 5066522, US 5009367, US 5106650, US 5211342, US 5374305, US 5466490), aunque el objetivo de este proceso es diferente del de la presente invencion y es el de producir gotitas muy pequenas de materia colorante para mejorar el rendimiento de los revestimientos. El fluido supercritico en este caso es usado para reducir la viscosidad de la solucion por pulverizar. Otra caracteristica que esta reivindicada en estas patentes es la reduccion o la eliminacion de compuestos organicos volatiles (VOC). En algunas de estas patentes se propone el mismo proceso para producir polvos mediante pulverizacion.The processes that have many similarities with the PGSS are many spray coating processes proposed in the patent literature (US 5057342, US 5066522, US 5009367, US 5106650, US 5211342, US 5374305, US 5466490), although the purpose of this The process is different from that of the present invention and is to produce very small droplets of coloring matter to improve the performance of the coatings. The supercritical fluid in this case is used to reduce the viscosity of the solution to be sprayed. Another feature that is claimed in these patents is the reduction or elimination of volatile organic compounds (VOC). In some of these patents the same process is proposed to produce powders by spraying.
Otro proceso que en ciertos aspectos esta relacionado con la PGSS es el propuesto por Sievers y colaboradores (EP 677332, US 5639441, US 6095134). Estos autores proponen un proceso donde una solucion acuosa y un flujo de dioxido de carbono son puestos en contacto en un elemento en T de bajo volumen (con un volumen interno inferior a 1 microlitro). La mezcla inmiscible del Kquido y del fluido supercritico (definido por los autores una suspension, una emulsion, un sistema micelar o una dispersion) es enviada a una boquilla capilar (un tubo fino largoAnother process that in certain aspects is related to the PGSS is that proposed by Sievers et al. (EP 677332, US 5639441, US 6095134). These authors propose a process where an aqueous solution and a flow of carbon dioxide are brought into contact in a low-volume T-element (with an internal volume of less than 1 microliter). The immiscible mixture of the liquid and the supercritical fluid (defined by the authors a suspension, an emulsion, a micellar system or a dispersion) is sent to a capillary nozzle (a long thin tube
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
5555
6060
6565
con un diametro interno de, por ejemplo, 125 micras), se forman unas gotitas muy pequenas que se evaporan y producen un polvo. Los ejemplos propuestos en las patentes y los documentos cientificos publicados por los autores estan restringidos al uso de agua como solvente liquido. Tambien el documento US-B-6 221 153 describe un proceso donde la solucion conteniendo la sustancia meta es puesta en contacto con la corriente de CO2 presurizada dentro del tubo antes de alcanzar la camara de expansion. Ventosa et al. describieron (Crystal Growth or Design, 2001, Vol. 1, No. 4, paginas 299-303) un proceso para preparar nanoparticulas que comprende la solubizacion del solido en un solvente organico, la solubizacion del dioxido de carbono en esta solucion y la inyeccion de la solucion en un recipiente de precipitacion.with an internal diameter of, for example, 125 microns), very small droplets are formed that evaporate and produce a powder. The examples proposed in patents and scientific documents published by the authors are restricted to the use of water as a liquid solvent. Also US-B-6 221 153 describes a process where the solution containing the target substance is brought into contact with the pressurized CO2 stream inside the tube before reaching the expansion chamber. Ventosa et al. described (Crystal Growth or Design, 2001, Vol. 1, No. 4, pages 299-303) a process for preparing nanoparticles comprising the solubility of the solid in an organic solvent, the solubility of carbon dioxide in this solution and the injection of the solution in a precipitation vessel.
[0005] El nuevo proceso que esta propuesto en la presente invencion se refiere, en cambio, a la formation de soluciones formadas por dioxido de carbono y solventes liquidos donde el soluto es solubilizado y para su atomization posterior. La formacion de la solucion liquida conteniendo dioxido de carbono esta regulada por la termodinamica de los fluidos presurizados y por los equilibrios de hquido vapor conectados, y no esta relacionada con el calentamiento y fusion de los solidos. Practicamente, todos solventes liquidos pueden ser usados y se pueden producir particulas mas pequenas que las que se pueden obtener con los procesos patentados anteriores.[0005] The new process that is proposed in the present invention refers, instead, to the formation of solutions formed by carbon dioxide and liquid solvents where the solute is solubilized and for subsequent atomization. The formation of the liquid solution containing carbon dioxide is regulated by the thermodynamics of pressurized fluids and by the connected liquid vapor equilibria, and is not related to the heating and melting of solids. Virtually all liquid solvents can be used and smaller particles can be produced than can be obtained with the previous patented processes.
Descripcion de la invencionDescription of the invention
[0006] La invencion consiste en un proceso nuevo y mas eficaz segun la revindication 1 y en un aparato para ejecutar la atomizacion asistida por dioxido de carbono para producir particulas nanometricas y micrometricas. Usando este proceso y el aparato propuesto es posible controlar el tamano medio de las particulas y la distribution del tamano de las particulas; con la posibilidad inesperada de obtener diametros medios entre aproximadamente 0,01 (10 nanometros) y 100 micras que nunca antes habian sido obtenidos usando procesos basados en el uso de fluidos supercriticos. Debido a la amplia gama de condiciones operativas y la posibilidad de producir particulas con un diametro medio incluido en una amplia gama de dimensiones, usando esta invencion sera posible:[0006] The invention consists of a new and more efficient process according to revindication 1 and an apparatus for executing carbon dioxide assisted atomization to produce nanometric and micrometric particles. Using this process and the proposed apparatus it is possible to control the average size of the particles and the distribution of the size of the particles; with the unexpected possibility of obtaining average diameters between approximately 0.01 (10 nanometers) and 100 microns that had never before been obtained using processes based on the use of supercritical fluids. Due to the wide range of operating conditions and the possibility of producing particles with an average diameter included in a wide range of dimensions, using this invention it will be possible to:
- sustituir muchos de los procesos de micronizacion existentes basados en el uso de solventes organicos;- replace many of the existing micronization processes based on the use of organic solvents;
- funcionar usando el mismo aparato bien usando solventes organicos bien usando agua, ampliando asi la gama de aplicabilidad de tecnicas previamente descritas en la bibliografia.- operate using the same device either using organic solvents or using water, thus expanding the range of applicability of techniques previously described in the literature.
[0007] El dioxido de carbono es solubilizado en una solucion hquida (formada por uno o mas solventes conteniendo un soluto solido) en un lecho fijo (saturador) formado por un recipiente capaz de funcionar bajo presion. El dioxido de carbono podria ser comprimido, Kquido o supercritico. Un requisito preferido es que en las condiciones del proceso el solvente liquido o la mezcla de solventes muestren una solubilidad baja en dioxido de carbono.[0007] Carbon dioxide is solubilized in a liquid solution (formed by one or more solvents containing a solid solute) in a fixed bed (saturator) formed by a vessel capable of operating under pressure. The carbon dioxide could be compressed, liquid or supercritical. A preferred requirement is that under the process conditions the liquid solvent or solvent mixture show a low solubility in carbon dioxide.
[0008] El saturador esta cargado con rellenos metalicos o ceramicos (por ejemplo, anillos Rashig o sillas perforadas) con el objetivo de obtener una gran superficie de contacto entre el Kquido y el gas y, asi, favorecer a la disolucion de gas en el liquido. El objetivo es el de disolver dioxido de carbono en el liquido hasta concentraciones cercanas a las del equilibrio de la solubilidad, en las condiciones operativas de presion y temperatura.[0008] The saturator is loaded with metal or ceramic fillings (for example, Rashig rings or perforated chairs) with the aim of obtaining a large contact area between the liquid and the gas and, thus, favoring the dissolution of gas in the liquid. The objective is to dissolve carbon dioxide in the liquid to concentrations close to the equilibrium of the solubility, under the operating conditions of pressure and temperature.
[0009] La cantidad de dioxido de carbono que puede disolverse en el liquido, en las condiciones operativas, puede estar comprendida entre 0,01 y aproximadamente 0,50, preferiblemente entre 0,02 y 0,2, en cuanto a fracciones molares. No obstante, se puede anadir dioxido de carbono en cantidades ligeramente mas grandes que los valores de equilibrio previstos debido a la incertitud en estos valores y para asegurar que la cantidad maxima de dioxido de carbono esta disuelta en el liquido (maximizando asi el rendimiento del proceso).[0009] The amount of carbon dioxide that can be dissolved in the liquid, under the operating conditions, can be between 0.01 and about 0.50, preferably between 0.02 and 0.2, in terms of molar fractions. However, carbon dioxide can be added in amounts slightly larger than the expected equilibrium values due to the uncertainty in these values and to ensure that the maximum amount of carbon dioxide is dissolved in the liquid (thus maximizing the process performance ).
[0010] Se obtiene una solucion, formada por una fase liquida que contiene el soluto solido y dioxido de carbono.[0010] A solution is obtained, formed by a liquid phase containing the solid solute and carbon dioxide.
[0011] Esta solucion se atomiza a traves de un inyector de pared que tiene uno o mas agujeros y es despresurizada hasta condiciones atmosfericas cercanas. Funcionando asi, se forman gotitas micronicas y/o submicronicas, que rapidamente vaporizan en el precipitador puesto debajo del inyector. Esta operation esta secundada por el calentamiento del precipitador y por el uso de una corriente de gas inerte calentado (nitrogeno, argon, aire) anadida en la camara de precipitacion.[0011] This solution is atomized through a wall injector that has one or more holes and is depressurized to nearby atmospheric conditions. Working this way, micronic and / or submicronic droplets are formed, which quickly vaporize on the precipitator placed under the injector. This operation is supported by the heating of the precipitator and by the use of a stream of heated inert gas (nitrogen, argon, air) added to the precipitation chamber.
[0012] Las particulas solidas producidas por evaporation de las gotitas de Kquido estan forzadas a moverse a traves del precipitador y son recogidas en el fondo; mientras que, gas inerte, vapores liquidos y dioxido de carbono son enviados a un separador para la recuperation del hquido y para ser realizado por enfriamiento y recompresion del CO2 puede ser anadido (operacion de bucle cerrado).[0012] The solid particles produced by evaporation of the Kquido droplets are forced to move through the precipitator and are collected at the bottom; while, inert gas, liquid vapors and carbon dioxide are sent to a separator for the recovery of the liquid and to be carried out by cooling and recompression of the CO2 can be added (closed loop operation).
[0013] Las partes clave del aparato para un tratamiento exitoso y la production de particulas como se reivindica en la presente invencion son las partes en todas las combinaciones del proceso posibles:[0013] The key parts of the apparatus for a successful treatment and the production of particles as claimed in the present invention are the parts in all possible process combinations:
a) saturador que contiene rellenos que aseguran el contacto y el equilibrio entre las fases;a) saturator containing fillers that ensure contact and balance between phases;
b) un inyector de pared fina con diametros de agujero entre 10 y 500 micras, preferiblemente entre 20 y 200 micras.b) a thin wall injector with hole diameters between 10 and 500 microns, preferably between 20 and 200 microns.
c) un transportador de flujo, puesto dentro del precipitador que imprime una direction en espiral al gas + polvo en el precipitador y favorece la deposition de polvo en el fondo de la camara de precipitacion.c) a flow conveyor, placed inside the precipitator that prints a spiral direction to the gas + dust in the precipitator and favors the deposition of dust at the bottom of the precipitation chamber.
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
5555
6060
6565
Los polvos obtenidos usando el metodo descrito pueden ser amorfos o cristalinos dependiendo de las caractensticas del soluto, del solvente usado y de las condiciones del proceso durante la precipitacion.The powders obtained using the described method can be amorphous or crystalline depending on the characteristics of the solute, the solvent used and the process conditions during precipitation.
Descripcion de las figurasDescription of the figures
[0014][0014]
Figura 1: representation esquematica del aparatoFigure 1: schematic representation of the device
Figura 2: imagen del Microscopio electronico de barrido (SEM) de Acetato de itrio micronizado.Figure 2: Image of the scanning electron microscope (SEM) of micronized yttrium acetate.
Figura 3: Curva de distribution del tamano de las particulas relacionada con la Figura 2.Figure 3: Distribution curve of particle size related to Figure 2.
Figura 4: imagen SEM de Prednisolona micronizada.Figure 4: SEM image of micronized Prednisolone.
[0015] En la figura 1 tres conductos paralelos estan dibujados e indicados con los numeros 1, 2 y 3 y relacionados con la entrega de gas inerte, dioxido de carbono y solution liquida, respectivamente.[0015] In Figure 1 three parallel ducts are drawn and indicated with the numbers 1, 2 and 3 and related to the delivery of inert gas, carbon dioxide and liquid solution, respectively.
En el conducto 1:In conduit 1:
St1: Recipiente de almacenamiento de gas inerte; M1: Manometro; S1: intercambios de calor, con sistema de regulation termica, T1;St1: Inert gas storage container; M1: Manometer; S1: heat exchanges, with thermal regulation system, T1;
En el conducto 2:In conduit 2:
St2: Recipiente de almacenamiento de dioxido de carbono; S2: Primer bano termostatizado para dioxido de carbono (refrigerador); P2: Bomba; S2-1: Segundo bano termostatizado para dioxido de carbono (calefactor).St2: Carbon dioxide storage container; S2: First thermostated bath for carbon dioxide (refrigerator); P2: Pump; S2-1: Second thermostated bath for carbon dioxide (heater).
En el conducto 3:In conduit 3:
St3: Recipiente de almacenamiento de solucion liquida; P3: Bomba; S3: bano Termostatizado (calefactor).St3: Liquid solution storage container; P3: Pump; S3: Thermostated bath (heater).
[0016] Otras partes del aparato son: Sat: Saturador, y el sistema de regulacion termica relacionado T; Lp(a): Inyector de tabique; Pr: Precipitador (camara de recogida de polvo), y el sistema de regulacion termica relacionado T; sistema de regulacion de la presion interna (M: Manometro + valvula de retention), cf: Transportador de flujo; Sr: separador enfriado; C: medidor de prueba en seco.[0016] Other parts of the apparatus are: Sat: Saturator, and the related thermal regulation system T; Lp (a): Septum injector; Pr: Precipitator (dust collection chamber), and the related thermal regulation system T; internal pressure regulation system (M: Manometer + check valve), cf: Flow conveyor; Sr: cooled separator; C: dry test meter.
[0017] La imagen SEM de la figura 2 ha sido tomada a una ampliation de 15000x.[0017] The SEM image of Figure 2 has been taken at a magnification of 15000x.
[0018] De la imagen SEM (en la figura 2) es posible obtener la distribucion del tamano de las particulas (Figura 3) usando un software de analisis de imagen. Esta distribucion esta proporcionada como un histograma: % de particulas vs diametro de las particulas. Diametro minimo 0,02 micras; diametro maximo: 0,72 micras.[0018] From the SEM image (in figure 2) it is possible to obtain the particle size distribution (Figure 3) using an image analysis software. This distribution is provided as a histogram:% of particles vs particle diameter. Minimum diameter 0.02 microns; maximum diameter: 0.72 microns.
[0019] La imagen SEM de la figura 4 ha sido tomada a una ampliacion de 10000x.[0019] The SEM image of Figure 4 has been taken at a magnification of 10000x.
Descripcion detallada del aparato y del esquema del procesoDetailed description of the device and the process scheme
[0020] El aparato usado en la presente invention contiene dos conductos de presion usados para entregar: la solucion Kquida Lq y el gas comprimido, Kquido o supercritico Lg. El tercer conducto funciona a presiones cercanas a la atmosferica y entrega un gas calentado para favorecer la evaporation de liquido en el precipitador.[0020] The apparatus used in the present invention contains two pressure lines used to deliver: the Kqida Lq solution and the compressed gas, Kgido or supercritical Lg. The third conduit operates at pressures close to the atmosphere and delivers a heated gas to favor the evaporation of liquid in the precipitator.
El conducto de liquido Lq esta formado por un recipiente de almacenamiento St3 que contiene la solucion (liquido + soluto) conectada a una bomba de dosificacion de alta presion P3 que puede entregar un flujo constante de hquido hasta una presion operativa de 350 bar. El Kquido es enviado a un intercambiador termico S3 en el que es precalentado a temperaturas entre 50 y 90 °C y luego al saturador Sat.The liquid line Lq is formed by a storage container St3 containing the solution (liquid + solute) connected to a high pressure dosing pump P3 that can deliver a constant flow of liquid up to an operating pressure of 350 bar. The liquid is sent to an S3 heat exchanger in which it is preheated to temperatures between 50 and 90 ° C and then to the Sat.
El flujo de dioxido de carbono, comprimido, liquido o supercritico, es obtenido entregando dioxido de carbono desde un tanque de almacenamiento hasta una bomba de dosificacion de alta presion que ha sido modificada para permitir el uso de fluidos comprimibles y que pueden entregar flujos constantes de dioxido de carbono hasta una presion operativa de 350 bar. El dioxido de carbono pasa a traves de un intercambiador termico S2-1 para ser calentado a temperaturas entre 40 y 90 °C, luego, es enviado al saturador Sat.The flow of carbon dioxide, compressed, liquid or supercritical, is obtained by delivering carbon dioxide from a storage tank to a high pressure dosing pump that has been modified to allow the use of compressible fluids and that can deliver constant flows of carbon dioxide up to an operating pressure of 350 bar. Carbon dioxide passes through an S2-1 heat exchanger to be heated to temperatures between 40 and 90 ° C, then it is sent to the Sat.
Los dos flujos (solucion liquida y dioxido de carbono) se mezclan en el saturador Sat, que esta formado por un tanque termostatizado que puede funcionar hasta a 350 bar y se carga con los elementos de relleno adecuados, por ejemplo, anillos Rashig, sillas perforadas o rellenos organizados, cuyo objetivo es el de asegurar un contacto prolongado entre las dos fases (liquido y gas denso).The two flows (liquid solution and carbon dioxide) are mixed in the Sat saturator, which is formed by a thermostated tank that can operate up to 350 bar and is loaded with the appropriate filling elements, for example, Rashig rings, perforated chairs or organized fillings, whose objective is to ensure prolonged contact between the two phases (liquid and dense gas).
El saturador garantiza una superficie grande y un tiempo de contacto suficiente para permitir la solubilization del dioxido de carbono en el hquido hasta que las condiciones de equilibrio se aproximen a la temperatura y presion de funcionamiento. No obstante, un ligero exceso de dioxido de carbono puede ser usado respecto del valor de equilibrio previsto para asegurar la obtencion de condiciones de saturation.The saturator guarantees a large surface area and sufficient contact time to allow solubilization of carbon dioxide in the liquid until equilibrium conditions are close to operating temperature and pressure. However, a slight excess of carbon dioxide can be used with respect to the expected equilibrium value to ensure obtaining saturation conditions.
La solucion formada en el saturador es enviada al inyector de pared fina que conecta el saturador y el precipitador (camara de recogida de polvo) que funciona a presiones proximas a la atmosferica bajo presion reducida.The solution formed in the saturator is sent to the thin-wall injector that connects the saturator and the precipitator (dust collection chamber) that operates at pressures close to the atmosphere under reduced pressure.
[0021] El inyector de pared fina Ip esta formado por uno o mas agujeros que tienen diametros que varian entre 20 y 200 micras realizados en una pared de acero inoxidable fina. Esta especie de inyector concentra toda la caida de presion (diferencia de presion) entre el saturador y el precipitador en el punto de inyeccion para obtener una pulverization eficaz. La pulverization estara formada por gotitas muy pequenas. El diametro medio de las gotitas[0021] The Ip thin wall injector is formed by one or more holes having diameters ranging between 20 and 200 microns made in a thin stainless steel wall. This kind of injector concentrates all the pressure drop (pressure difference) between the saturator and the precipitator at the point of injection to obtain an effective pulverization. The pulverization will be formed by very small droplets. The average diameter of the droplets
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
5555
6060
6565
formadas sera particularmente pequeno puesto que, pensamos que el dioxido de carbono durante la atomizacion elimina la fase Kquida en la que fue disuelto (atomizacion descomprimible).formed will be particularly small since, we think that carbon dioxide during atomization eliminates the liquid phase in which it was dissolved (decompressible atomization).
La camara de precipitacion Pr es un recipiente cilindrico termostatizado donde ademas de dioxido de carbono y la solucion liquida, el gas inerte caliente (nitrogeno, argon, aire) es entregado al mismo tiempo despues del precalentamiento en un intercambiador termico S1 hasta 100 °C; el objetivo es acortar el proceso de evaporacion de las gotitas.The precipitation chamber Pr is a thermostated cylindrical vessel where, in addition to carbon dioxide and the liquid solution, hot inert gas (nitrogen, argon, air) is delivered at the same time after preheating in a S1 heat exchanger up to 100 ° C; The objective is to shorten the evaporation process of the droplets.
Las particulas solidas que se forman como consecuencia de la evaporacion liquida se desplazan junto con el gas en el precipitador y forman un flujo bifasico (por ejemplo: Polvo, dioxido de carbono, nitrogeno y vapores del solvente liquido) dirigiendose al fondo del precipitador por el transportador de flujo helicoidal Cf insertado en la camara.The solid particles that are formed as a result of the liquid evaporation move together with the gas in the precipitator and form a two-phase flow (for example: Dust, carbon dioxide, nitrogen and vapors of the liquid solvent) going to the bottom of the precipitator by the Cf helical flow conveyor inserted in the chamber.
El transportador de flujo Cf esta formado, por ejemplo, por un propulsor metalico que imprime un movimiento ordenado a los gases de la mezcla + solido. Esto permite la salida de los gases del fondo del precipitador y la recogida del polvo en un material sinterizado de acero inoxidable, dispuesto en el fondo del precipitador. De forma alternativa, es posible la recogida electroestatica de polvos.The flow conveyor Cf is formed, for example, by a metal propeller that prints an orderly movement to the gases of the solid + mixture. This allows the exit of the gases from the bottom of the precipitator and the collection of the powder in a sintered stainless steel material, arranged at the bottom of the precipitator. Alternatively, electrostatic dust collection is possible.
Los gases en la salida del precipitador son enviados a un separador enfriado Sr puesto debajo del precipitador, donde el solvente Kquido es condensado y recuperado mientras que; la mezcla gaseosa restante: es descargada en la salida del aparato.The gases at the outlet of the precipitator are sent to a cooled separator Sr placed below the precipitator, where the liquid solvent K is condensed and recovered while; the remaining gaseous mixture: it is discharged at the outlet of the device.
Los caudalimetros, indicadores de temperatura y de presion y controladores de la temperatura completan el aparato.Flow meters, temperature and pressure indicators and temperature controllers complete the device.
EjemplosExamples
Ejemplo 1Example 1
[0022] Produccion de nanoparticulas de acetato de itrio (un precursor superconductor - Acy) por precipitacion de una solucion con Metanol con una concentracion entre 2 y 50 mg de AcY/ml de Metanol (preferiblemente, que varia entre 15 y 25 mg de AcY/mg de Metanol) usando el proceso de atomizacion asistido por dioxido de carbono descrito en la presente invencion; a presiones entre 80 y 140 bar (preferiblemente, entre 85 y 100 bar) y a temperaturas que varian entre 60 y 95 °C (preferiblemente, entre 65 y 80 °C). Usamos un inyector de pared fina con un diametro entre 60 y 100 micras (preferiblemente, 80 micras) con un unico agujero. El caudal de la solucion Kquida puede variar entre 1 y 7 g/min (preferiblemente, 3 g/min);el caudal de dioxido de carbono puede variar entre 3 y 12 g/min (preferiblemente, 6.5 g/min). Un ejemplo de las nanoparticulas producidas esta proporcionado en la figura 2, donde se propone una imagen SEM de particulas de AcY. Las particulas obtenidas son esfericas, amorfas y su diametro medio y distribution del tamano de las particulas estan proporcionadas en la figura 3.[0022] Production of yttrium acetate nanoparticles (a superconducting precursor - Acy) by precipitation of a solution with Methanol with a concentration between 2 and 50 mg of AcY / ml of Methanol (preferably, varying between 15 and 25 mg of AcY / mg Methanol) using the carbon dioxide-assisted atomization process described in the present invention; at pressures between 80 and 140 bar (preferably, between 85 and 100 bar) and at temperatures ranging between 60 and 95 ° C (preferably, between 65 and 80 ° C). We use a thin-wall injector with a diameter between 60 and 100 microns (preferably 80 microns) with a single hole. The flow rate of the liquid solution can vary between 1 and 7 g / min (preferably, 3 g / min); the flow rate of carbon dioxide can vary between 3 and 12 g / min (preferably, 6.5 g / min). An example of the produced nanoparticles is provided in Figure 2, where an SEM image of AcY particles is proposed. The particles obtained are spherical, amorphous and their average diameter and particle size distribution are provided in Figure 3.
Ejemplo 2Example 2
[0023] Produccion de particulas micronicas de Difenilhidantoina por precipitacion de una solucion de Metanol para concentraciones entre 2 y 15 mg de Difenilhidantoina /ml de Metanol, usando el proceso de atomizacion asistido por dioxido de carbono descrito en la presente invencion; a presiones entre 75 y 120 bar (preferiblemente entre 90 y 100 bar) y a temperaturas entre 60 y 95 °C (preferiblemente, entre 65 y 75 °C). Usamos un inyector de pared fina con un diametro entre 60 y 100 micras (preferiblemente, 80 micras) con un unico agujero. El caudal de la solucion liquida puede variar entre 2 y 10 g/min (preferiblemente, 4 g/min); el caudal de dioxido de carbono puede variar entre[0023] Production of micronic diphenylhydantoin particles by precipitation of a methanol solution for concentrations between 2 and 15 mg of diphenylhydantoin / ml of methanol, using the carbon dioxide assisted atomization process described in the present invention; at pressures between 75 and 120 bar (preferably between 90 and 100 bar) and at temperatures between 60 and 95 ° C (preferably, between 65 and 75 ° C). We use a thin-wall injector with a diameter between 60 and 100 microns (preferably 80 microns) with a single hole. The flow rate of the liquid solution may vary between 2 and 10 g / min (preferably, 4 g / min); The carbon dioxide flow rate can vary between
3 y 10 g/min (preferiblemente, 7 g/min). Las particulas resultantes son esfericas y su diametro medio varia entre 0,8 y 2,5 micras.3 and 10 g / min (preferably, 7 g / min). The resulting particles are spherical and their average diameter varies between 0.8 and 2.5 microns.
Ejemplo 3Example 3
[0024] Produccion de microcristales de Nifedipina por precipitacion de una solucion con Acetona para concentraciones entre 2 y 150 mg de Nifedipina/ml de Acetona, usando el proceso de atomizacion asistido por dioxido de carbono descrito en la presente invencion; a presiones entre 60 y 80 bar (preferiblemente entre 60 y 70 bar) y a temperaturas entre 70 y 100 °C (preferiblemente, entre 70 y 80 °C). Usamos un inyector de pared fina con un diametro entre 60 y 100 micras (preferiblemente, 80 micras) con un unico agujero. El caudal de la solucion liquida puede variar entre 2 y 9 g/min (preferiblemente, 5 g/min); el caudal de dioxido de carbono puede variar entre[0024] Production of microcrystals of Nifedipine by precipitation of a solution with Acetone for concentrations between 2 and 150 mg of Nifedipine / ml of Acetone, using the carbon dioxide-assisted atomization process described in the present invention; at pressures between 60 and 80 bar (preferably between 60 and 70 bar) and at temperatures between 70 and 100 ° C (preferably, between 70 and 80 ° C). We use a thin-wall injector with a diameter between 60 and 100 microns (preferably 80 microns) with a single hole. The flow rate of the liquid solution may vary between 2 and 9 g / min (preferably, 5 g / min); The carbon dioxide flow rate can vary between
4 y 14 g/min (preferiblemente, 9 g/min). Su diametro medio varia entre 1 y 5 micras.4 and 14 g / min (preferably, 9 g / min). Its average diameter varies between 1 and 5 microns.
Ejemplo 4Example 4
[0025] Produccion de microparticulas de rifampicina por precipitacion de una solucion con Alcohol para concentraciones entre 2 y 30 mg de Rifampicina/ml de Alcohol, usando el proceso de atomizacion asistido por dioxido de carbono descrito en la presente invencion; a presiones entre 80 y 130 bar (preferiblemente entre 90 y 105bar) y a temperaturas entre 50 y 80 °C (preferiblemente, entre 50 y 60 °C). Usamos un inyector de pared fina con un diametro entre 60 y 100 micras (preferiblemente, 80 micras) con un unico agujero. El caudal de la solucion liquida puede variar entre 2 y 9 g/min (preferiblemente, 5 g/min); el caudal de dioxido de carbono puede variar entre 4 y 14 g/min (preferiblemente, 8 g/min). Las particulas resultantes son amorfas, esfericas y su diametro medio varia entre 0,5 y 2,0 micras.[0025] Production of rifampicin microparticles by precipitation of a solution with Alcohol for concentrations between 2 and 30 mg of Rifampicin / ml of Alcohol, using the carbon dioxide-assisted atomization process described in the present invention; at pressures between 80 and 130 bar (preferably between 90 and 105bar) and at temperatures between 50 and 80 ° C (preferably, between 50 and 60 ° C). We use a thin-wall injector with a diameter between 60 and 100 microns (preferably 80 microns) with a single hole. The flow rate of the liquid solution may vary between 2 and 9 g / min (preferably, 5 g / min); The carbon dioxide flow rate can vary between 4 and 14 g / min (preferably, 8 g / min). The resulting particles are amorphous, spherical and their average diameter varies between 0.5 and 2.0 microns.
Ejemplo 5Example 5
[0026] Produccion de microparticulas de Prednisolona por precipitacion de una solucion con Metanol para concentraciones entre 1 y 65 mg de Prednisolona/ml de Metanol, (preferiblemente, entre 3 y 50 mg/ml de Metanol) usando el proceso de atomizacion asistido por dioxido de carbono descrito en la presente invencion; a presiones 5 entre 80 y 120 y a temperaturas entre 60 y 85 °C. Usamos un inyector de pared fina con un diametro entre 60 y 100 micras (preferiblemente, 80 micras) con un unico agujero. El caudal de la solucion Kquida puede variar entre 5 y 15 g/min (preferiblemente, 8 g/min); el caudal de dioxido de carbono puede variar entre 2 y 8 g/min (preferiblemente, 3 g/min). Un ejemplo de microparticulas obtenido usando el proceso descrito esta proporcionado en la figura 4, donde una imagen SEM de particulas de prednisolona esta mostrada. Estas particulas han sido obtenidas funcionando a 10 98 bar, 71 °C y 45 mg/ml de Metanol; estas son esfericas, amorfas y su diametro medio es 1,1 micras.[0026] Production of Prednisolone microparticles by precipitation of a solution with Methanol for concentrations between 1 and 65 mg of Prednisolone / ml of Methanol, (preferably, between 3 and 50 mg / ml of Methanol) using the dioxide-assisted atomization process carbon described in the present invention; at pressures 5 between 80 and 120 and at temperatures between 60 and 85 ° C. We use a thin-wall injector with a diameter between 60 and 100 microns (preferably 80 microns) with a single hole. The flow rate of the liquid solution may vary between 5 and 15 g / min (preferably, 8 g / min); The carbon dioxide flow rate can vary between 2 and 8 g / min (preferably, 3 g / min). An example of microparticles obtained using the described process is provided in Figure 4, where an SEM image of prednisolone particles is shown. These particles have been obtained operating at 10 98 bar, 71 ° C and 45 mg / ml Methanol; These are spherical, amorphous and their average diameter is 1.1 microns.
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH12092001 | 2001-07-02 | ||
CH120901 | 2001-07-02 | ||
CH1209/01 | 2001-07-02 | ||
PCT/IB2001/001780 WO2003004142A1 (en) | 2001-07-02 | 2001-09-27 | Process for the production of micro and/or nano particles |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2261469T3 ES2261469T3 (en) | 2006-11-16 |
ES2261469T5 true ES2261469T5 (en) | 2015-12-22 |
Family
ID=4563123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES01970064.0T Expired - Lifetime ES2261469T5 (en) | 2001-07-02 | 2001-09-27 | Process to produce micro and / or nanoparticles |
Country Status (8)
Country | Link |
---|---|
US (1) | US7276190B2 (en) |
EP (1) | EP1401563B2 (en) |
AT (1) | ATE323549T2 (en) |
DE (1) | DE60118983T3 (en) |
DK (1) | DK1401563T4 (en) |
ES (1) | ES2261469T5 (en) |
PT (1) | PT1401563E (en) |
WO (1) | WO2003004142A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7767249B2 (en) * | 2001-06-07 | 2010-08-03 | Hewlett-Packard Development Company, L.P. | Preparation of nanoparticles |
WO2006035425A2 (en) * | 2004-09-27 | 2006-04-06 | Technion Research & Development Foundation Ltd. | Spray method for producing semiconductor nanoparticles |
WO2006062980A2 (en) * | 2004-12-07 | 2006-06-15 | Nektar Therapeutics | Stable non-crystalline formulation comprising tiagabine |
EP1904219A4 (en) | 2005-07-15 | 2011-07-27 | Map Pharmaceuticals Inc | Method of particle formation |
US20070023035A1 (en) * | 2005-07-29 | 2007-02-01 | Kane Kevin M | Method for processing drugs |
US20080223136A1 (en) * | 2005-08-04 | 2008-09-18 | Tokyo Electron Limited | Minute structure inspection device, inspection method, and inspection program |
WO2007028421A1 (en) * | 2005-09-09 | 2007-03-15 | Universita' Degli Studi Di Padova | Process for the production of nano-particles |
US20070128291A1 (en) * | 2005-12-07 | 2007-06-07 | Tokie Jeffrey H | Method and Apparatus for Forming Chromonic Nanoparticles |
WO2008058054A2 (en) * | 2006-11-06 | 2008-05-15 | Novartis Ag | Method for making parenteral pharmaceutical compositions in a unit dose container |
CN100444943C (en) * | 2007-02-14 | 2008-12-24 | 浙江大学 | System and method for preparing microparticles by hydrodynamic cavitation enhanced supercritical assisted atomization |
RU2356609C1 (en) * | 2008-02-07 | 2009-05-27 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт органической химии и технологии", ФГУП "ГосНИИОХТ" | Method of obtaining nano- and microparticles of water soluble substances using supercritical carbon dioxide |
US9291139B2 (en) | 2008-08-27 | 2016-03-22 | Woodward, Inc. | Dual action fuel injection nozzle |
EP2181604A1 (en) * | 2008-11-04 | 2010-05-05 | Feyecon Development & Implementation B.V. | Dispersion structuring agent |
ES2342140B1 (en) * | 2008-12-30 | 2011-05-17 | Consejo Superior Investigacion | PROCEDURE FOR OBTAINING SOLID MICRO- OR NANOPARTICLES |
WO2011159218A1 (en) * | 2010-06-14 | 2011-12-22 | Xspray Microparticles Ab | Apparatus and method for the production of particles |
US9814685B2 (en) | 2015-06-04 | 2017-11-14 | Crititech, Inc. | Taxane particles and their use |
DK3439635T3 (en) | 2016-04-04 | 2021-03-08 | Crititech Inc | FORMULATIONS FOR THE TREATMENT OF FIXED TUMOR |
ES2980123T3 (en) | 2017-06-09 | 2024-09-30 | Crititech Inc | Compositions for use in the treatment of epithelial cysts by intracystic injection of antineoplastic particles |
CA3063436A1 (en) | 2017-06-14 | 2018-12-20 | Crititech, Inc. | Methods for treating lung disorders |
KR20250057947A (en) | 2017-10-03 | 2025-04-29 | 크리티테크, 인크. | Local delivery of antineoplastic particles in combination with systemic delivery of immunotherapeutic agents for the treatment of cancer |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4348422A (en) | 1978-02-13 | 1982-09-07 | Studiengesellschaft Kohle M.B.H. | Process for the direct decaffeination of aqueous coffee extract solutions |
DE3937287A1 (en) * | 1989-11-09 | 1991-05-16 | Henkel Kgaa | Continuous sepn. of fatty acid mono:glyceride from mixed glyceride(s) - by countercurrent extn. with supercritical carbon di:oxide in 2 packed columns in series, with higher gas pressure in second column |
US20020018815A1 (en) * | 1992-03-06 | 2002-02-14 | Sievers Robert E. | Methods and apparatus for fine particle formation |
GB9313642D0 (en) * | 1993-07-01 | 1993-08-18 | Glaxo Group Ltd | Method and apparatus for the formation of particles |
SI9400079B (en) | 1994-02-15 | 2003-02-28 | Dr. Weidner Eckhard, Dipl. Ing. | Method and device for extraction and fractionation of small particles from solutions saturated with gas |
JP3986086B2 (en) | 1996-03-01 | 2007-10-03 | ザ ユニバーシティ オブ カンザス | Particle precipitation method and coating method using near-critical and supercritical anti-solvents |
US5874029A (en) * | 1996-10-09 | 1999-02-23 | The University Of Kansas | Methods for particle micronization and nanonization by recrystallization from organic solutions sprayed into a compressed antisolvent |
US6221153B1 (en) * | 1998-06-09 | 2001-04-24 | Trevor Percival Castor | Method for producing large crystals of complex molecules |
SE9804000D0 (en) * | 1998-11-23 | 1998-11-23 | Astra Ab | New composition of matter |
GB9828204D0 (en) | 1998-12-21 | 1999-02-17 | Smithkline Beecham Plc | Process |
ES2170008B1 (en) | 2000-08-25 | 2003-05-01 | Soc Es Carburos Metalicos Sa | PROCEDURE FOR THE PRECIPITATION OF SOLID PARTICLES FINALLY DIVIDED. |
-
2001
- 2001-09-27 DK DK01970064.0T patent/DK1401563T4/en active
- 2001-09-27 PT PT01970064T patent/PT1401563E/en unknown
- 2001-09-27 EP EP01970064.0A patent/EP1401563B2/en not_active Expired - Lifetime
- 2001-09-27 ES ES01970064.0T patent/ES2261469T5/en not_active Expired - Lifetime
- 2001-09-27 DE DE60118983.3T patent/DE60118983T3/en not_active Expired - Lifetime
- 2001-09-27 US US10/482,640 patent/US7276190B2/en not_active Expired - Fee Related
- 2001-09-27 AT AT01970064T patent/ATE323549T2/en active
- 2001-09-27 WO PCT/IB2001/001780 patent/WO2003004142A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP1401563B2 (en) | 2015-09-16 |
DK1401563T3 (en) | 2006-08-14 |
US7276190B2 (en) | 2007-10-02 |
EP1401563B1 (en) | 2006-04-19 |
DE60118983D1 (en) | 2006-05-24 |
EP1401563A1 (en) | 2004-03-31 |
ATE323549T2 (en) | 2006-05-15 |
DE60118983T2 (en) | 2007-01-11 |
ES2261469T3 (en) | 2006-11-16 |
US20040178529A1 (en) | 2004-09-16 |
PT1401563E (en) | 2006-08-31 |
WO2003004142A1 (en) | 2003-01-16 |
DK1401563T4 (en) | 2016-01-11 |
DE60118983T3 (en) | 2016-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2261469T5 (en) | Process to produce micro and / or nanoparticles | |
Reverchon et al. | Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation | |
Reverchon et al. | Micronization of antibiotics by supercritical assisted atomization | |
JP3839042B2 (en) | Salmeterol xinafoate with sized particles | |
US5833891A (en) | Methods for a particle precipitation and coating using near-critical and supercritical antisolvents | |
ES2216889T5 (en) | DRYING APPARATUS FOR SPRAYING AND ITS USE PROCEDURES. | |
EP0885038B1 (en) | Methods and apparatus for particle precipitation and coating using near-critical and supercritical antisolvents | |
Tu et al. | Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent | |
Palakodaty et al. | Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance | |
CN102316853A (en) | The particulate apparatus and method of the preparation high fineness of medicine, and be used for applying so particulate apparatus and method at microreactor | |
US20060279011A1 (en) | Particle formation | |
Li et al. | Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation | |
CA2454331C (en) | Method and apparatus for preparing particles | |
Subra et al. | Powders elaboration in supercritical media: comparison with conventional routes | |
US20100239507A1 (en) | Surface modified aerosol particles, a method and apparatus for production thereof and powders and dispersions containing said particles | |
Gao et al. | Crystallization methods for preparation of nanocrystals for drug delivery system | |
AU2002314390A1 (en) | Method and apparatus for preparing particles | |
US7279181B2 (en) | Method for preparation of particles from solution-in-supercritical fluid or compressed gas emulsions | |
WO2005042219A1 (en) | Method of forming particles | |
Foster et al. | Application of dense gas techniques for the production of fine particles | |
WO2008040094A1 (en) | Particle formation | |
Adami et al. | Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale | |
Charbit et al. | Methods of particle production | |
Zhiyi et al. | Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology | |
Palmer et al. | Printing particles: A high-throughput technique for the production of uniform, bioresorbable polymer microparticles and encapsulation of therapeutic peptides |