EP4452839A1 - Procede de preparation d'hydrate d'hydrazine en presence d'un agent anti-mousse - Google Patents
Procede de preparation d'hydrate d'hydrazine en presence d'un agent anti-mousseInfo
- Publication number
- EP4452839A1 EP4452839A1 EP22847598.4A EP22847598A EP4452839A1 EP 4452839 A1 EP4452839 A1 EP 4452839A1 EP 22847598 A EP22847598 A EP 22847598A EP 4452839 A1 EP4452839 A1 EP 4452839A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- azine
- silicone
- process according
- ketone
- hydrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/16—Hydrazine; Salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
Definitions
- the present invention relates to a process for the preparation of hydrazine hydrate.
- the present invention relates more specifically to a process for preparing hydrazine hydrate from the alkyl ketone azine obtained in the presence of a ketone by oxidation of ammonia with hydrogen peroxide and a activator.
- Hydrazine is used in various applications, mainly in the deoxygenation of boiler water (for example nuclear power stations) and is used in the preparation of pharmaceutical and agrochemical derivatives.
- the industrial production of hydrazine hydrate is done according to the RASCH IG, BAYER or hydrogen peroxide processes.
- the BAYER process is an improvement of the RASCHIG process, which consists in shifting a chemical equilibrium by trapping, using acetone, the hydrazine formed in the form of azine of the following formula:
- the hydrogen peroxide process consists of oxidizing a mixture of ammonia and a ketone with hydrogen peroxide in the presence of a means of activating the hydrogen peroxide to directly produce the azine that it then suffices to hydrolyze to hydrazine hydrate. Yields are high and the process is less polluting.
- This hydrogen peroxide process is described in numerous patents, for example US 3,972,878, US 3,972,876, US 3,948,902 and US 4,093,656.
- ammonia is oxidized by hydrogen peroxide in the presence of a ketone and a hydrogen peroxide activation means according to the following overall reaction, forming an azine:
- the activation means or activator can be a nitrile, an amide, a carboxylic acid or else a derivative of selenium, antimony or arsenic. Then the azine is hydrolyzed into hydrazine and the ketone is regenerated according to the following reaction:
- methyl ethyl ketone is advantageously used because it is poorly soluble in an aqueous medium.
- the azine of methyl ethyl ketone is relatively insoluble in the reaction medium, necessarily aqueous since commercial aqueous solutions of hydrogen peroxide containing between 30 and 70% by weight.
- This azine is therefore easily recoverable and separable by simple decantation. It is very stable especially in alkaline medium, that is to say in the ammoniacal reaction medium.
- this azine is then purified, then hydrolyzed in a reactive distillation column to ultimately release methyl ethyl ketone at the top to be recycled, and above all an aqueous solution of hydrazine hydrate at the bottom. This must contain as few carbonaceous products as possible as impurities and must be colorless.
- the hydrolysis of azines is known.
- EC GILBERT in an article in the Journal of American Chemical Society vol.51, pages 3397-3409 (1929), describes the balanced reactions of formation of azine and the reactions of hydrolysis thereof and provides the thermodynamic parameters of the system in the case of water-soluble azines.
- the hydrolysis of azine from acetone is described in US 4,724,133 (SCHIRMANN et al.). The hydrolysis must be carried out in a reactive column, so that by continuously separating the ketone at the top of the distillation column and the hydrazine hydrate at the bottom of the column, total hydrolysis can be achieved.
- the synthesis process is generally carried out continuously, with, for the hydrolysis step, the use of a distillation column.
- a foam appears in the distillation column during the hydrolysis step. The foam front entrains both vapor flow and the liquid phase, thus preventing effective product separation.
- An object of the present invention is therefore to provide a process for preparing hydrazine hydrate, comprising a hydrolysis step, without the appearance of foam in the distillation column. The desired objective is thus to conduct a stable hydrolysis reaction over time.
- the method according to the invention meets the objectives mentioned above.
- the present inventors have surprisingly discovered that the use of a particular silicone avoided the appearance of foam in the distillation column during the hydrolysis step, thus making it possible to stabilize the production rate.
- these defoamers are resistant to high temperatures. Thus, they are less sensitive to degradation, do not clog or little the distillation column and the production circuit. Indeed, in the event of recycling of all or part of the reagents in the system, the claimed silicones leave fewer impurities in the production system.
- a subject of the invention is therefore a process for the preparation of hydrazine hydrate, comprising a stage of hydrolysis of an azine in a distillation column in the presence of at least one silicone of formula polydialkylsiloxane, polydiarylsiloxane or polyalkyl-arylsiloxane.
- the invention also relates to the use of a silicone of polydialkylsiloxane, polydiarylsiloxane or polyalkyl-arylsiloxane formula as an anti-foaming agent in a process for the preparation of azine hydrate.
- the hydrolysis step is carried out in batch or continuously, in a reactive distillation column, into which water and the organic phase comprising the azine from the previous step are injected. Preferably, the hydrolysis step is carried out continuously.
- the hydrolysis can be carried out in a packed or plate distillation column.
- the distillation is carried out under pressure, and more particularly under a pressure of 2 to 25 bar.
- the distillation is carried out with a bottom temperature of between 150° C. and 200° C., preferably between 175° C. and 190° C.
- the hydrolysis can be carried out in a packed or plate distillation column, preferably operating under a pressure of 2 to 25 bars and with a bottom temperature of between 150° C. and 200°C.
- tray columns are generally used. Depending on the residence time allowed on the plates and the pressure in the column, therefore the temperatures at which one operates, the number of trays may vary. Generally, when operating under a pressure of 8 to 10 bars and between 175°C and 190°C, the number of plates required is of the order of 40 to 70.
- the water/azine molar ratio in the feed for this column is at least greater than the stoichiometry, and advantageously between 5 and 30, preferably between 10 and 20.
- the azine which undergoes the hydrolysis step, is the reaction product of the oxidation of ammonia in the presence of a ketone of formula R1R2CO.
- the groups Ri and R2 denote independently of each other a linear or branched C1-C10 alkyl.
- the groups Ri and R2 designate, independently of one another, a methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl group.
- dimethyl ketone and methyl ethyl ketone are used.
- methyl ethyl ketone is used. Therefore, the preferred azine is the methyl ethyl ketone azine, called MECazine.
- a silicone comprises identical or different units, of formula -(Si(-Rs)(-R4)-O-), the groups R3 and R4 independently designating one of the other an alkyl group or an aryl group.
- At least one polydial kylsiloxane, polydiarylsiloxane or polyalkyl-arylsiloxane silicone is added to the reaction medium. This silicone will prevent the formation of foam within the column.
- the silicone according to the invention is non-volatile, that is to say with a viscosity greater than 5 cSt at 25° C., in particular a silicone oil with a vapor pressure of less than 13.3 Pa at 25°C.
- polydialkylsiloxane is meant within the meaning of the present invention siloxanes comprising alkyl groups, linear, branched or cyclic, C1-C18, preferably, methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl , heptyl, octyl, and possibly bearing fluorine atoms, as a substituent.
- polydiarylsiloxane is meant within the meaning of the present invention siloxanes comprising aryl groups Ce-C, preferably, phenyl and possibly carrying fluorine atoms.
- polyalkyl-arylsiloxane is meant within the meaning of the present invention siloxanes comprising (Ci-Ci8)alkyl groups and (Ce-Cio)aryl groups, preferably -methyl and phenyl, and possibly carrying fluorine atoms.
- the silicone according to the invention which is preferably non-volatile and has a viscosity greater than 5 cSt at 25° C., can be chosen from polydimethylsiloxanes, polydiphenylsiloxanes, polymethylphenylsiloxanes and polyethylphenylsiloxanes.
- the silicone according to the invention is an aliphatic polydialkylsiloxane, preferably a polydimethylsiloxane called PDMS below.
- the viscosity of the silicone used in the process according to the invention is between 5 and 1,000,000 cSt at 25° C., preferably between 50 cSt and 100,000 cSt, and even more preferably between 80 and 10,000 cSt.
- the kinematic viscosity unit of the international system is m 2 /s.
- the silicone can be in the form of an emulsion, preferably aqueous.
- the silicone is present in the aqueous emulsion in a content of between 1 and 45% by weight relative to the total weight of the emulsion, preferably between 4 and 30% by weight.
- the silicone can be mixed with silica.
- the silica is present in a content of between 1 and 45% by weight relative to the total weight of the mixture of silicone and silica, preferably between 4 and 30% by weight.
- the AK range offered by the company Waker ranging from 5 to 60,000 cSt at 25° C., such as AK 100, AK 1000, AK 12500;
- Xiameter PMX range offered by the Dow company, such as Xiameter PMX 200 Silicone Fluid 100 cPs, Xiameter PMX 200 Silicone Fluid 350 cPs, Xiameter PMX 200 Silicone Fluid 1000 cPs;
- Bluesil 47 V 100 the Bluesil range offered by the Elkem company, such as Bluesil 47 V 100, Bluesil 47 V 500 or Bluesil 47 V 1000, the last numbers of the name giving information on the dynamic viscosity in mPas of the oil.
- the Elkem company offers polydimethylsiloxanes formulated in aqueous emulsions, such as the product Silcolapse RG 12, for example.
- the Elkem company also offers suspensions of silica in polydimethylsiloxanes, such as the product Silcolapse 411, for example.
- silicones according to the invention with aryl groups polydiarylsiloxanes, in particular polydiphenylsiloxanes, and polyalkyl-arylsiloxanes can be used.
- polydiarylsiloxanes in particular polydiphenylsiloxanes, and polyalkyl-arylsiloxanes can be used.
- the following commercial products can be mentioned by way of example:
- the range offers silicones with a viscosity ranging from 5 to 10,000 mm 2 /s (centistoke) in terms of kinematic viscosity, - the methylphenylsiloxanes sold by Wacker, under the AS range, in particular AS 100PDMS,
- silicones comprising patterns -(Si(-CH3)(-CH2-CH2-CFs)-O-) are preferred.
- the FS-1265 Fluid, 300 or else 1000 or even 10000 cSt products marketed by the Dow company can also be used.
- the silicone(s) can be added to the reaction medium before the hydrolysis step.
- the silicone can be in dissolved form or dispersed in the medium. It is also possible to add it directly in the column.
- the water is preferably introduced in the upper part (head) of the column, while the organic phase of the azine is preferably introduced between the middle and the top of the column.
- the anti-foaming agent is preferably added to the system at the top of the column, with the aqueous phase.
- the silicone is introduced in a content ranging from 1 ppm to 5000 ppm by weight relative to the azine of the dialkyl ketone, preferably between 5 ppm and 4000 ppm by weight relative to the azine of the dialkyl ketone.
- the silicone When the silicone is in pure form, the silicone is introduced in a content ranging from 10 ppm to 4000 ppm by weight relative to the azine of the dialkyl ketone, preferably between 20 ppm and 1000 ppm by weight relative to the azine of the dialkyl ketone, more particularly between 40 ppm and 500 ppm by weight with respect to the azine of the dialkyl ketone.
- the emulsion is introduced in a content ranging from 1 ppm to 500 ppm by weight relative to the azine of the dialkyl ketone, preferably between 1 ppm and 200 ppm compared to the azine of the dialkyl ketone.
- the ketone is obtained at the top, in particular in the form of an azeotrope with water, and at the bottom, an aqueous solution of hydrazine hydrate. Solutions at 30% or even up to 45% by weight of hydrazine hydrate can be obtained at the bottom of the column.
- the anti-foaming agent can also be used in another column of the azine synthesis process.
- the azine is separated from the aqueous phase, said aqueous phase being the working solution containing water and the activator, obtained after the formation of the azine.
- the separation is carried out for example by decantation.
- the working solution is regenerated.
- the process for regenerating and recycling the working solution is known from document EP399866, the content of which is incorporated by reference in the present description.
- the working solution is brought to at least 130°C while removing the water of reaction and the water supplied by the hydrogen peroxide dilution water in the form of a stream containing water, ammonia, ketone and CO2.
- the stream obtained in the preceding step is introduced into a stripping column, in the presence of at least one silicone as defined above, as anti-foaming agent.
- the ammonia stripping column is known from document EP0518728, the content of which is incorporated by reference in the present description.
- the use of silicone at this stage of the process also makes it possible to stabilize, in a durable manner, the distillation of the column, without generating impurities in the circuit.
- the invention also relates to a use of at least one silicone of formula polydialkylsiloxane, polydiarylsiloxane or polyalkyl-arylsiloxane as defined above, as an anti-foaming agent in a process for the preparation of hydrate of azine.
- the silicone is introduced into the distillation column allowing the hydrolysis of an azine.
- the silicone is introduced into the ammonia stripping column supplied with a stream from the step of regenerating the working solution recovered after the ammonia reaction step. , hydrogen peroxide and ketone to form azine.
- a process as described in example 1 of document WO 2020/229773 was implemented for the synthesis of hydrazine hydrate, from MEC azine.
- the hydrolysis column as described in this document was used, without addition of additives for a flow rate of 6000 kg/h of hydrazine introduced and 12000 kg of water.
- the bottom of the column was at 180° C. and the pressure in the column was 9 bar absolute.
- a process as described in example 1 of document WO 2020/229773 was implemented for the synthesis of hydrazine hydrate, from MEC azine.
- the hydrolysis column as described in this document was used, with the addition of a PDMS 100 cps silicone under the trade name Xiameter PMX 200 Silicone Fluid 100 cps at a flow rate of 1 to 2 kg/h for 6000 kg/h of introduced hydrazine and 12000 kg of water.
- the column remained in stable operation at this regime for a period greater than 2 months.
- An anti-foam agent was added to the reaction medium by means of a peristaltic pump, at a flow rate of 0.1 g/min (previously calibrated with each anti-foam compound evaluated) via a thin tube which allows the introduction of the Defoamer at approximately 1 drop every 10-15 seconds at this rate.
- the variation in the reduction in the foam height (H) was recorded during the introduction of the anti-foam agent (Hinitial - H(t))/Hinitial.
- the anti-foaming agent used is a 100 cps PDMS silicone. It is marketed by the Dow company under the trade name Xiameter PMX 200 Silicone Fluid 100 cps.
- the anti-foaming agent used is a 500 cps PDMS silicone comprising 10% by weight of silica. It is marketed by the company Elkem under the trade name Silcolapse 411.
- the anti-foaming agent used is a 1000 cps PDMS silicone. It is marketed by the Sigma-Aldrich company under the trade name “Silicon oil” with a viscosity of 1000 cps.
- the anti-foaming agent used is a 10,000 cps PDMS silicone. It is marketed by the company Sigma-Aldrich under the trade name “Silicon oil” with a viscosity of 10,000 cps.
- the anti-foaming agent used is an aqueous emulsion containing 10% by weight of a silicone and 10% by weight of silica. It is marketed by the company Elkem under the trade name Silcolapse RG12.
- the anti-foaming agent used is an EO/PO polyether with a mass of 2000 g/mole with 10% EO unit and a viscosity of 350 cps. It is marketed by BASF under the trade name Pluronic PE 6100.
- the anti-foaming agent used is an EO/PO polyether with a mass of 3500 g/mole at 10% EO unit and viscosity 800 cps. It is marketed by BASF under the trade name Pluronic PE 10100.
- Comparative Examples 8 and 9 Furthermore, it is observed in Comparative Examples 8 and 9 that the level of foam is not stabilized. It decreases, then increases.
- the silicones according to the invention avoid the formation of foam as soon as they are introduced into the distillation column.
- the effect can be described as immediate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Silicon Polymers (AREA)
Abstract
L'invention porte sur un procédé de préparation d'hydrate d'hydrazine, comprenant une étape d'hydrolyse d'une azine dans une colonne de distillation en présence d'au moins une silicone de formule polydialkylsiloxane, polydiarylsiloxane ou polyalkyl-arylsiloxane. L'invention porte également sur l'utilisation d'au moins une silicone de formule polydialkylsiloxane en tant qu'agent anti-mousse dans un procédé de préparation d'hydrate d'azine.
Description
PROCEDE DE PREPARATION D'HYDRATE D'HYDRAZINE EN PRESENCE D’UN AGENT ANTI-MOUSSE
[0001] La présente invention concerne un procédé de préparation d'hydrate d'hy- drazine.
[0002] La présente invention concerne plus précisément un procédé de préparation d'hydrate d'hydrazine à partir de l’azine d’alkylcétone obtenue en présence d’une cétone par oxydation de l'ammoniac par l'eau oxygénée et d'un activateur. [0003] L’hydrazine est utilisée dans diverses applications, principalement dans la désoxygénation des eaux de chaudières (par exemple des centrales nucléaires) et sert à la préparation de dérivés pharmaceutiques et agrochimiques.
[0004] Il existe donc un besoin industriel pour la préparation d’hydrate d’hydra- zine.
[0005] La production industrielle d'hydrate d'hydrazine se fait selon les procédés RASCH IG, BAYER ou à l'eau oxygénée.
[0006] Dans le procédé RASCH IG, on oxyde l'ammoniac par un hypochlorite pour obtenir une solution diluée d'hydrate d'hydrazine qu'il faut ensuite concentrer par distillation. Ce procédé peu sélectif, peu productif et très polluant, n'est presque plus utilisé.
[0007] Le procédé BAYER est une amélioration du procédé RASCHIG, qui consiste à déplacer un équilibre chimique en piégeant, à l'aide d'acétone, l’hydrazine formée sous forme d'azine de formule suivante :
(CH3)2C=N-N=C-(CH3)2.
[0008] L'azine est ensuite isolée puis hydrolysée en hydrate d'hydrazine. Les rendements sont améliorés, mais il n'y a pas d'amélioration quant aux rejets dans l'environnement.
[0009] Le procédé à l'eau oxygénée consiste à oxyder un mélange d'ammoniac et d'une cétone par l'eau oxygénée en présence d'un moyen d'activation de l'eau oxygénée pour faire directement l'azine qu'il suffit ensuite d'hydrolyser en hydrate d'hydrazine. Les rendements sont élevés et le procédé est moins polluant. Ce procédé à l'eau oxygénée est décrit dans de nombreux brevets, par exemple US 3 972 878, US 3 972 876, US 3 948 902 et US 4 093 656.
[0010] Ces procédés sont aussi décrits dans ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY (1989), vol A 13, pages 182-183 et les références incluses.
[0011] Dans les procédés à l'eau oxygénée, l'ammoniac est oxydé par le peroxyde d'hydrogène en présence d'une cétone et d'un moyen d'activation du peroxyde d'hydrogène selon la réaction globale suivante, en formant une azine :
[0012] Le moyen d'activation ou activateur peut être un nitrile, un amide, un acide carboxylique ou encore un dérivé du sélénium, de l'antimoine ou de l'arsenic. Puis l'azine est hydrolysée en hydrazine et la cétone est régénérée selon la réaction suivante :
[0013] Cette hydrolyse est effectuée en réalité en deux temps, avec formation d’une hydrazone intermédiaire :
hydraz ne
[0014] Que l'azine soit produite par un procédé à l'eau oxygénée ou un autre procédé, la méthyl éthyl cétone est avantageusement utilisée, car elle est peu soluble dans un milieu aqueux.
[0015] En effet, dans le procédé à l'eau oxygénée, l'azine de la méthyl éthyl cétone est relativement insoluble dans le milieu réactionnel, forcément aqueux puisque l'on utilise des solutions aqueuses commerciales de peroxyde d'hydrogène titrant entre 30 et 70 % en poids. Cette azine est donc facilement récupérable et séparable par simple décantation. Elle est très stable surtout en milieu alcalin, c'est-à-dire dans le milieu réactionnel ammoniacal. Dans les procédés actuels, cette azine est ensuite purifiée, puis hydrolysée dans une colonne de distillation réactive pour libérer in fine de la méthyl éthyl cétone en tête à recycler, et surtout une solution aqueuse d'hydrate d'hydrazine en pied. Celui-ci doit contenir aussi peu de produits carbonés que possible comme impuretés et doit être incolore.
[0016] L'hydrolyse des azines est connue. Par exemple, E.C. GILBERT, dans un article dans le Journal of American Chemical Society vol.51 , pages 3397-3409 (1929), décrit les réactions équilibrées de formation d'azine et les réactions d'hydrolyse de celle-ci et fournit les paramètres thermodynamiques du système dans
le cas d'azines solubles dans l'eau. Par exemple, l'hydrolyse de l'azine de l'acétone est décrite dans le document US 4 724 133 (SCHIRMANN et al.). L'hydrolyse doit être réalisée dans une colonne réactive, de telle sorte qu'en séparant continuellement la cétone en tête de colonne de distillation et l'hydrate d'hydra- zine en pied de colonne, on peut parvenir à une hydrolyse totale. Bien entendu, ce système est au meilleur de son fonctionnement lorsqu'on travaille en continu comme décrit dans les brevets FR 1 315 348, GB 1 211 54 7, GB 1 164 460, US 4 725 421 (SCHIRMANN et al.) ou encore WO 00/37357.
[0017] Un procédé de préparation efficace d’hydrate d’hydrazine est connu du document WO 2020/229773.
[0018] Le procédé de synthèse est généralement réalisé en continu, avec, pour l’étape d’hydrolyse, l’utilisation d’une colonne de distillation. Or, il a été observé qu’une mousse apparaît dans la colonne de distillation lors de l’étape d’hydrolyse. Le front de mousse entraine à la fois un flux de vapeurs et la phase liquide, empêchant ainsi une séparation efficace des produits.
[0019] La présence de mousse dans la colonne limite ainsi la productivité de celle-ci, et de ce fait la productivité du procédé de préparation. En effet, dès l’apparition de cette mousse, il est nécessaire de réduire l’allure du procédé afin de ne pas perdre en sélectivité.
[0020] Dans un autre contexte, il est connu du document EP0761595 l’utilisation de tensioactifs non-ioniques ayant des groupes polyoxyéthylène et de la silice comme agent contre l’engorgement de la colonne dans l’étape d’hydrolyse.
[0021] Or, il a été observé que ces composés ne sont pas performants contre l’apparition de la mousse et ne sont pas résistants à la chaleur. En effet, ces produits ont tendance à se dégrader. Ils encrassent ainsi le circuit de production et génèrent des impuretés dans le produit fini.
[0022] Dans le procédé de synthèse de l’hydrazine, les conditions de l’hydrolyse de l’azine ou celle de régénération de la phase aqueuse sont très dures, avec des températures allant de 160 à 180°C dans le bouilleur, et des températures au niveau des parois encore plus élevées. De ce fait, il est indispensable que l’agent anti-mousse proposé ne se décompose pas sous l’effet de la température. [0023] Un objectif de la présente invention est donc de fournir un procédé de préparation d’hydrate d’hydrazine, comprenant une étape d’hydrolyse, sans apparition de mousse dans la colonne de distillation. L’objectif recherché est ainsi de conduire une réaction d’hydrolyse stable dans le temps.
[0024] Le procédé selon l’invention répond aux objectifs mentionnés ci-dessus.
[0025] Les présents inventeurs ont découvert de façon surprenante que l’utilisation d’une silicone particulière évitait l’apparition de mousse dans la colonne à distiller lors de l’étape d’hydrolyse, permettant ainsi de stabiliser l’allure de production. De plus, ces agents anti-mousses sont résistants à des températures élevées. Ainsi, ils sont moins sensibles à la dégradation, n’encrassent pas ou peu
la colonne de distillation et le circuit de production. En effet, en cas de recyclage de tout ou partie de réactifs dans le système, les silicones revendiquées laissent moins d’impuretés dans le système de production.
[0026] L’invention a donc pour objet un procédé de préparation d’hydrate d’hy- drazine, comprenant une étape d’hydrolyse d’une azine dans une colonne de distillation en présence d’au moins une silicone de formule polydialkylsiloxane, polydiarylsiloxane ou polyalkyl-arylsiloxane.
[0027] L’invention a également pour objet l’utilisation d’une silicone de formule polydialkylsiloxane, polydiarylsiloxane ou polyalkyl-arylsiloxane en tant qu’agent anti-mousse dans un procédé de préparation d’hydrate d’azine.
Description détaillée de l’invention
[0028] D'autres caractéristiques, aspects, objets et avantages de la présente invention apparaîtront encore plus clairement à la lecture de la description qui suit. [0029] Il est précisé que les expressions « de ...à ... » et « compris entre ... et .... » utilisées dans la présente description doivent s’entendre comme incluant chacune des bornes mentionnées.
[0030] La préparation d’hydrate d’hydrazine est réalisée selon les étapes suivantes :
- on fait réagir l'ammoniac, le peroxyde d'hydrogène et une cétone de formule RIR2C=O, en présence d'une solution comprenant au moins un activateur pour former une azine dans une solution de travail ; puis
- on hydrolyse l’azine de la cétone formée pour obtenir de l’hydrate d’hydrazine. [0031] L’étape d’hydrolyse s’effectue en batch ou en continu, dans une colonne à distiller réactive, dans laquelle sont injectées de l’eau et la phase organique comprenant l’azine provenant de l’étape précédente. De préférence, l’étape d’hydrolyse s’effectue en continu.
[0032] L’hydrolyse peut être effectuée dans une colonne de distillation à garnissage ou à plateaux.
[0033] De préférence, la distillation est réalisée sous pression, et plus particulièrement sous une pression de 2 à 25 bars.
[0034] Avantageusement, la distillation est réalisée avec une température de pied comprise entre 150°C et 200°C, de préférence entre 175°C et 190°C.
[0035] Selon un mode de réalisation préféré, l’hydrolyse peut être effectuée dans une colonne de distillation à garnissage ou à plateaux, de préférence fonctionnant sous une pression de 2 à 25 bars et avec une température de pied comprise entre 150°C et 200°C.
[0036] Bien que des colonnes classiques à garnissage puissent convenir, on utilise en général des colonnes à plateaux. Selon le temps de séjour admis sur les plateaux et la pression dans la colonne, donc les températures auxquelles on
opère, le nombre de plateaux peut varier. Généralement, lorsqu'on opère sous une pression de 8 à 10 bars et entre 175°C et 190°C, le nombre de plateaux nécessaires est de l'ordre de 40 à 70.
[0037] Le rapport molaire eau/azine à l'alimentation de cette colonne est au moins supérieur à la stœchiométrie, et avantageusement compris entre 5 et 30, de préférence entre 10 et 20.
[0038] L’azine, qui subit l’étape d’hydrolyse est le produit de réaction de l’oxydation d’ammoniac en présence d’une cétone de formule R1R2CO. Les groupes Ri et R2 désignent indépendamment l’un de l’autre un alkyle linéaire ou ramifié en C1-C10. En particulier, les groupes Ri et R2 désignent indépendamment l’un de l’autre un groupe méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle et oc- tyle. De préférence, la diméthylcétone et la méthyléthylcétone sont utilisées. De manière particulièrement préférée, la méthyléthylcétone est utilisée. De ce fait, l’azine préférée est l’azine de la méthyléthylcétone, dénommée MECazine.
[0039] Au sens de la présente l’invention, une silicone comprend des motifs identiques ou différents, de formule -(Si(-Rs)(-R4)-O-), les groupes R3 et R4 désignant indépendamment l’un de l’autre un groupe alkyle ou un groupe aryle.
[0040] Dans le procédé selon l’invention, au moins une silicone polydial kylsi- loxane, polydiarylsiloxane ou polyalkyl-arylsiloxane est ajoutée au milieu réactionnel. Cette silicone évitera la formation de mousse au sein de la colonne.
[0041] De préférence, la silicone selon l’invention est non volatile, c’est-à-dire de viscosité supérieure à 5 cSt à 25°C, notamment une huile de silicone de pression de vapeur inférieure à 13,3 Pa à 25°C.
[0042] Par polydialkylsiloxane, on entend au sens de la présente invention des siloxanes comportant des groupes alkyles, linéaires, ramifiés ou cycliques, en C1-C18, de préférence, méthyle, éthyle, propyle, butyle, pentyle, hexyle, cy- clohéxyle, heptyle, octyle, et pouvant éventuellement porter des atomes de fluor, en tant que substituant.
[0043] Par polydiarylsiloxane, on entend au sens de la présente invention des siloxanes comportant des groupes aryles en Ce-C , de préférence, phényle et pouvant éventuellement porter des atomes de fluor.
[0044] Par polyalkyl-arylsiloxane, on entend au sens de la présente invention des siloxanes comportant des groupes (Ci-Ci8)alkyles et des groupes (Ce-Cio)aryles, de préférence, -méthyle et phényle, et pouvant éventuellement porter des atomes de fluor.
[0045] La silicone selon l’invention, de préférence non volatile et de viscosité supérieure à 5 cSt à 25°C, peut être choisie parmi les polydiméthylsiloxanes, les polydiphénylsiloxanes, les polyméthylphénylsiloxanes et les polyéthylphénylsi- loxanes. Avantageusement, la silicone selon l’invention est un polydialkylsiloxane aliphatique, de préférence un polydiméthylsiloxane nommée PDMS ci-après.
[0046] Selon un mode de réalisation particulier, la viscosité de la silicone utilisée
dans le procédé selon l’invention est comprise entre 5 et 1 000 000 cSt à 25°C, de préférence entre 50 cSt et 100 000 cSt, et encore plus préférentiellement entre 80 et 10 000 cSt.
[0047] L’unité de viscosité cinématique du système international est le m2/s. Certains fabricants de silicone expriment la viscosité en centistockes noté cSt. Il est à noter : 1 cSt = 0,01 St = 1 mm2/s.
[0048] D’autres fabricants indiquent également la viscosité dynamique exprimée en centiPoise noté cP ou eps ou es. Il est à noter : 1 cP = 0.001 Pa.s.
[0049] Avantageusement, la silicone peut se trouver sous la forme d’une émulsion, de préférence aqueuse. De préférence, la silicone est présente dans l’émulsion aqueuse en une teneur comprise entre 1 et 45% en poids par rapport au poids total de l’émulsion, de préférence entre 4 et 30% en poids.
[0050] De préférence, la silicone peut être en mélange avec de la silice. De préférence, la silice est présente en une teneur comprise entre 1 et 45% en poids par rapport au poids total du mélange de la silicone et de la silice, de préférence entre 4 et 30% en poids.
[0051] A titre d'exemple, on peut citer les polydiméthylsiloxanes suivants: -la gamme AK proposée par la société Waker, allant de 5 à 60 000 cSt à 25°C, comme AK 100, AK 1000, AK 12500 ;
-la gamme Xiameter PMX proposée par la société Dow, comme Xiameter PMX 200 Silicone Fluid 100 cPs, Xiameter PMX 200 Silicone Fluid 350 cPs, Xiameter PMX 200 Silicone Fluid 1000 cPs ;
-la gamme Bluesil proposée par la société Elkem, comme Bluesil 47 V 100, Blue- sil 47 V 500 ou Bluesil 47 V 1000, les derniers nombres de la dénomination donnnant une information sur la viscosité dynamique en mPas de l’huile.
[0052] La société Elkem propose des polydiméthylsiloxanes formulés dans des émulsions aqueuses, comme par exemple le produit Silcolapse RG 12.
[0053] La société Elkem propose également des suspensions de silice dans des polydiméthylsiloxanes, comme par exemple le produit Silcolapse 411 .
[0054] . Parmi les silicones selon l’invention à groupements aryle, les polydiaryl- siloxanes, notamment des polydiphénylsiloxanes, et des polyalkyl-arylsiloxanes peuvent être utilisés. On peut citer à titre d'exemple les produits commerciaux suivants :
-les méthylphénylpolysiloxanes vendus par la société Shin Etsu, sous la dénomination KF 96-100, KF 96-1000, la gamme propose des silicones de viscosité allant de 5 à 10 000 mm2/s (centistoke) en termes de viscosité cinématique, -les méthylphénylsiloxanes vendus par la société Wacker, sous la gamme AS, notamment AS 100PDMS,
- les méthylphénylpolysiloxanes vendus par la société Shin Etsu, sous la dénomination KF 50-100, KF 50-1000 et KF-54.
[0055] Parmi les silicones fluorées, les silicones comportant des motifs
-(Si(-CH3)(-CH2-CH2-CFs)-O-) sont préférées.
[0056] Les produits commerciaux FF160 et FF170 commercialisés par Momen- tive sont adaptés.
[0057] Les produits FS-1265 Fluid, 300 ou bien 1000 ou encore 10000 cSt commercialisés par la société Dow peuvent également être utilisés.
[0058] Selon un mode de réalisation de l’invention, il est possible d’utiliser un mélange de silicones.
[0059] Lorsque le procédé est réalisé en batch, la ou les silicones peuvent être ajoutées au milieu réactionnel avant l’étape d’hydrolyse. La silicone peut se trouver sous forme dissoute ou bien dispersée dans le milieu. Il est également possible de l’ajouter directement dans la colonne.
[0060] Typiquement, dans un procédé en continu, l’eau est introduite de préférence en partie supérieure (tête) de colonne, tandis que la phase organique de l’azine est introduite de préférence entre le milieu et le haut de la colonne.
[0061] L’agent anti-mousse est de préférence ajouté au système en tête de colonne, avec la phase aqueuse.
[0062] De préférence, la silicone est introduite en une teneur allant de 1 ppm à 5000 ppm en poids par rapport à l’azine de la dialkylcétone, de préférence entre 5 ppm et 4000 ppm en poids par rapport à l’azine de la dialkylcétone.
[0063] Lorsque la silicone se trouve sous forme pure, la silicone est introduite en une teneur allant de 10 ppm à 4000 ppm en poids par rapport à l’azine de la dialkylcétone, de préférence entre 20 ppm et 1000 ppm en poids par rapport à l’azine de la dialkylcétone, plus particulièrement entre 40 ppm et 500 ppm en poids par rapport à l’azine de la dialkylcétone.
[0064] Lorsque la silicone se trouve sous forme d’émulsion aqueuse, l’émulsion est introduite en une teneur allant de 1 ppm à 500 ppm en poids par rapport à l’azine de la dialkylcétone, de préférence entre 1 ppm et 200 ppm par rapport à l’azine de la dialkylcétone.
[0065] Suite à l’hydrolyse, on obtient en tête, la cétone notamment sous forme d'un azéotrope avec l'eau, et en pied, une solution aqueuse d'hydrate d'hydrazine. [0066] Des solutions à 30 % ou même jusqu'à 45 % en poids d'hydrate d'hydrazine peuvent être obtenues en pied de colonne.
[0067] Par ailleurs, l’agent anti-mousse peut également être utilisé dans une autre colonne du procédé de synthèse d’azine.
[0068] Suite à l’étape de réaction, l’azine est séparée de la phase aqueuse, ladite phase aqueuse étant la solution de travail contenant de l’eau et l’activateur, obtenue après la formation de l’azine. On réalise la séparation par exemple par décantation. Puis, la solution de travail est régénérée. Le procédé de régénération et de recyclage de la solution de travail est connu du document EP399866, dont le contenu est incorporé par référence dans la présente description. La solution de travail est portée à au moins 130°C tout en éliminant l'eau de réaction
et l'eau apportée par l'eau de dilution de l'eau oxygénée sous forme d'un courant contenant de l'eau, de l'ammoniac, de la cétone et du CO2. Le courant obtenu à l’étape précédente est introduit dans une colonne de stripping, en présence d’au moins une silicone telle que définie ci-dessus, en tant qu’agent anti-mousse. La colonne de stripping de l’ammoniac est connue du document EP0518728, dont le contenu est incorporé par référence dans la présente description. L’utilisation de la silicone à cette étape du procédé permet également de stabiliser, de manière durable, la distillation de la colonne, sans générer des impuretés dans le circuit.
[0069] L’invention a également pour objet une utilisation d’au moins une silicone de formule polydialkylsiloxane, polydiarylsiloxane ou polyalkyl-arylsiloxane telle que définie ci-dessus, en tant qu’agent anti-mousse dans un procédé de préparation d’hydrate d’azine.
[0070] Selon un mode de réalisation, la silicone est introduite dans la colonne de distillation permettant l’hydrolyse d’une azine.
[0071] Selon un autre mode de réalisation, la silicone est introduite dans la colonne de stripping à l’ammoniac alimentée par un flux issu de l’étape de régénération de la solution de travail récupérée après l’étape de réaction de l'ammoniac, du peroxyde d'hydrogène et de la cétone pour former l’azine.
[0072] Les exemples, qui suivent permettent d’illustrer la présente invention, mais ne sont en aucun cas limitatifs.
Exemples
[0073] Série d’essais industriels
[0074] Exemple 1 comparatif
[0075] Un procédé tel que décrit dans l’exemple 1 du document WO 2020/229773 a été mis en œuvre pour la synthèse d’hydrate d’hydrazine, à partir de MEC azine. La colonne d’hydrolyse telle que décrite dans ce document a été utilisée, sans adjonction d’additifs pour un débit de 6000 kg/h d’hydrazine introduite et de 12000 kg d’eau.
[0076] Au bout de 5 jours, il a été observé un engorgement de la colonne et une instabilité de la distillation, ce qui oblige alors à réduire l’allure de production afin de récupérer un profil de température correct sur les plateaux.
[0077] Le pied de la colonne était à 180°C et la pression dans la colonne était de 9 bars absolu.
[0078] Exemple 2 comparatif
[0079] Un procédé tel que décrit dans l’exemple 1 du document WO 2020/229773 a été mis en œuvre pour la synthèse d’hydrate d’hydrazine, à partir de MEC azine.
La colonne d’hydrolyse telle que décrite dans ce document a été utilisée, avec ajout d’un dérivé éthoxylé de l’acide palmitique.
[0080] Au bout d’environ quinze jours de fonctionnement, la formation de dépôt sur les parois du bouilleur ainsi que dans d’autres parties du train de concentration de l’hydrate d’hydrazine ont été constatés. Après analyse, ce dépôt a été caractérisé comme de l’hydrazide palmitique.
[0081 ] Exemple 3 selon l’invention
[0082] Un procédé tel que décrit dans l’exemple 1 du document WO 2020/229773 a été mis en œuvre pour la synthèse d’hydrate d’hydrazine, à partir de MEC azine. La colonne d’hydrolyse telle que décrite dans ce document a été utilisée, avec ajout d’une silicone PDMS 100 cps de dénomination commerciale Xiameter PMX 200 Silicone Fluid 100 cps à un débit de 1 à 2 kg/h pour 6000 kg/h d’hydrazine introduite et 12000 kg d’eau. La colonne est restée en fonctionnement stable à ce régime sur une période supérieure à 2 mois.
[0083] Les résultats de ces 3 exemples figurent dans le tableau récapitulatif 1 ci- dessous.
[0084] Ces résultats montrent que les silicones selon l’invention permettent de stabiliser la distillation de façon durable, sans contaminer le circuit du procédé par des produits de détérioration.
[0085] Série d’essais en laboratoire
[0086] L’effet anti-mousse des additifs a été testé en laboratoire.
[0087] 10g d’azine de la méthyléthylcétone issue de l’étape de purification par distillation de l’azine du procédé ont été placés dans 90mL d’eau au reflux à 95°C, sous un débit d’azote de 300mL/min. Le milieu réactionnel a généré une mousse. Quelques minutes ont été attendues le temps de stabiliser la hauteur de la mousse. Celle-ci s’est stabilisée à une hauteur de 4-5 cm au-dessus du niveau du liquide dans le réacteur.
[0088] Un agent anti-mousse a été ajouté au milieu réactionnel au moyen d’une pompe péristaltique, à un débit de 0.1g/min (préalablement étalonnée avec chaque composé antimousse évalué) via un tube fin qui permet l’introduction de l’antimousse à environ 1 goutte toutes les 10-15 secondes à ce débit.
[0089] La variation de la diminution de la hauteur de mousse (H) a été relevée pendant l’introduction de l’agent anti-mousse (Hinitial - H(t))/Hinitial.
[0090] Les résultats de ces exemples figurent dans le tableau récapitulatif 2 ci- dessous. Les exemples 4 à 8 sont selon l’invention et les exemples 9 et 10 sont comparatifs.
[0091] 1 L’agent anti-mousse utilisé est une silicone de PDMS 100 cps. Il est commercialisé par la société Dow sous la dénomination commerciale Xiameter PMX 200 Silicone Fluid 100 cps.
[0092] 2 L’agent anti-mousse utilisé est une silicone de PDMS de 500 cps comportant 10% en poids de silice. Il est commercialisé par la société Elkem sous la dénomination commerciale Silcolapse 411 .
[0093] 3 L’agent anti-mousse utilisé est une silicone de PDMS 1000 cps. Il est commercialisé par la société Sigma-Aldrich sous la dénomination commerciale « Silicon oil » de viscosité 1000 cps.
[0094] 4 L’agent anti-mousse utilisé est une silicone de PDMS 10000 cps. Il est commercialisé par la société Sigma-Aldrich sous la dénomination commerciale « Silicon oil » de viscosité 10 000 cps.
[0095] 5 L’agent anti-mousse utilisé est une émulsion aqueuse à 10% en poids d’une silicone et à 10% en poids de silice. Elle est commercialisée par la société Elkem sous la dénomination commerciale Silcolapse RG12.
[0096] 6 L’agent anti-mousse utilisé est un polyéther EO/PO de masse 2000 g/mole à 10% de motif EO et de viscosité 350 cps. Il est commercialisé par la société BASF sous la dénomination commerciale Pluronic PE 6100.
[0097] 7 L’agent anti-mousse utilisé est un polyéther EO/PO de masse 3500
g/mole à 10% de motif EO et de viscosité 800 cps. Il est commercialisé par la société BASF sous la dénomination commerciale Pluronic PE 10100.
[0098] Concernant les exemples 9 et 10, lors de l’ajout de l’agent anti-mousse, dès les premières gouttes additionnées au milieu, un caractère moussant est observé avec une augmentation de la hauteur de mousse allant jusqu’à 55% dans le cas de l’exemple 9.
[0099] De plus, il est observé dans les exemples comparatifs 8 et 9, que le niveau de mousse n’est pas stabilisé. Il diminue, puis augmente.
[0100] Concernant les exemples selon l’invention, il est observé une forte diminution de la mousse.
[0101] Par conséquent, les silicones selon l’invention évitent la formation de mousse dès leur introduction dans la colonne à distiller. L’effet peut être qualifié d’immédiat.
Claims
[Revendication 1] Procédé de préparation d’hydrate d’hydrazine, comprenant une étape d’hydrolyse d’une azine dans une colonne de distillation en présence d’au moins une silicone de formule polydialkylsiloxane, polydiarylsiloxane ou polyalkyl-arylsiloxane.
[Revendication 2] Procédé selon la revendication 1 , caractérisé en ce que la silicone est choisie parmi les polydiméthylsiloxanes, les polydiphénylsiloxanes, les polyméthylphénylsiloxanes et les polyéthylphénylsiloxanes
[Revendication 3] Procédé selon la revendication 1 ou 2, caractérisé en ce que la silicone présente une viscosité comprise entre 5 et 1 000 000 cSt, de préférence entre 50 et 100 000 cSt, et plus particulièrement entre 80 et 10 000 cSt à 25°C.
[Revendication 4] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la silicone est un polydiméthylsiloxane.
[Revendication 5] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la silicone se présente sous la forme d’une émulsion aqueuse.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la silicone est introduite en tête de la colonne de distillation, avec l’eau introduite dans la colonne pour l’hydrolyse.
[Revendication 7] Procédé l’une quelconque des revendications précédentes, caractérisé en ce que la silicone est introduite en une teneur allant de 1 ppm à 5000 ppm en poids par rapport à l’azine, de préférence entre 5 ppm et 4000 ppm en poids par rapport à l’azine.
[Revendication 8] Procédé l’une quelconque des revendications précédentes, caractérisé en ce que l’azine est l’azine de la méthyléthylcétone ou l’azine de la diméthylcétone, de préférence l’azine est l’azine de la méthyléthylcétone.
[Revendication 9] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce le procédé comprend :
-une étape de réaction de l'ammoniac, du peroxyde d'hydrogène et de la cétone en présence d'une solution comprenant au moins un activateur pour former une azine dans une solution de travail, préalablement à l’étape d’hydrolyse définie dans les revendications précédentes.
[Revendication 10] Procédé selon la revendication 9, caractérisé en ce qu’il comprend les étapes suivantes :
- séparation de l’azine de la solution de travail ;
- régénération de la solution de travail en la portant à au moins 130°C tout en éliminant l'eau de réaction et l'eau apportée par l'eau de dilution de l'eau oxygénée sous forme d'un courant contenant de l'eau, de l'ammoniac, de la cétone et du CO2 ;
-passage du courant obtenu à l’étape précédente dans une colonne de stripping, en présence d’au moins une silicone telle que définie à l’une quelconque des revendications 1 à 5, en tant qu’agent anti-mousse.
[Revendication 11] Utilisation d’au moins une silicone telle que définie à l’une quelconque des revendications 1 à 5 en tant qu’agent anti-mousse dans un procédé de préparation d’hydrate d’azine.
[Revendication 12] Utilisation selon la revendication 11 , caractérisée en ce que la silicone est introduite dans la colonne de distillation permettant l’hydrolyse d’une azine.
[Revendication 13] Utilisation selon la revendication 11 ou 12, caractérisée en ce que la silicone est introduite dans une colonne de stripping de l’ammoniac alimentée par un flux issu de l’étape de régénération de la solution de travail récupérée après l’étape de réaction de l'ammoniac, du peroxyde d'hydrogène et de la cétone pour former l’azine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2114191A FR3130815B1 (fr) | 2021-12-21 | 2021-12-21 | Procede de preparation d'hydrate d'hydrazine en presence d’un agent anti-mousse |
PCT/FR2022/052450 WO2023118739A1 (fr) | 2021-12-21 | 2022-12-20 | Procede de preparation d'hydrate d'hydrazine en presence d'un agent anti-mousse |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4452839A1 true EP4452839A1 (fr) | 2024-10-30 |
Family
ID=81346564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22847598.4A Pending EP4452839A1 (fr) | 2021-12-21 | 2022-12-20 | Procede de preparation d'hydrate d'hydrazine en presence d'un agent anti-mousse |
Country Status (8)
Country | Link |
---|---|
US (1) | US20250051164A1 (fr) |
EP (1) | EP4452839A1 (fr) |
JP (1) | JP2024546300A (fr) |
KR (1) | KR20240122880A (fr) |
CN (1) | CN118434673A (fr) |
CA (1) | CA3240893A1 (fr) |
FR (1) | FR3130815B1 (fr) |
WO (1) | WO2023118739A1 (fr) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1315348A (fr) | 1961-02-08 | 1963-01-18 | Bayer Ag | Procédé de préparation d'hydrate d'hydrazine |
JPS4937715B1 (fr) | 1966-02-10 | 1974-10-11 | ||
GB1211547A (en) | 1967-10-12 | 1970-11-11 | Fisons Ind Chemicals Ltd | Hydrazine |
US3666681A (en) * | 1970-03-16 | 1972-05-30 | Dow Corning | Antifoam preparation for aqueous systems |
BE766845A (fr) | 1970-06-12 | 1971-10-01 | Ugine Kuhlmann | Procede de preparation d'azines |
US3948902A (en) | 1971-07-15 | 1976-04-06 | Produits Chimiques Ugine Kuhlmann | Method for preparing azines |
FR2260569B1 (fr) | 1974-02-08 | 1978-06-16 | Ugine Kuhlmann | |
FR2323634A1 (fr) | 1975-09-10 | 1977-04-08 | Ugine Kuhlmann | Solutions concentrees d'hydrate d'hydrazine |
FR2323635A1 (fr) | 1975-09-10 | 1977-04-08 | Ugine Kuhlmann | Procede de preparation de solutions concentrees d'hydrate d'hydrazine |
FR2324618A1 (fr) | 1975-09-17 | 1977-04-15 | Ugine Kuhlmann | Nouveau procede de preparation d'azines |
FR2647444B1 (fr) | 1989-05-24 | 1991-07-26 | Atochem | |
FR2677648B1 (fr) | 1991-06-12 | 1993-08-27 | Atochem | Procede pour reduire la teneur en co2 dans les reacteurs de synthese d'azines. |
JP3755543B2 (ja) | 1995-08-14 | 2006-03-15 | 三菱瓦斯化学株式会社 | 水加ヒドラジンの製造方法 |
FR2787437B1 (fr) | 1998-12-22 | 2001-02-09 | Atochem Elf Sa | Procede de fabrication d'hydrazine par hydrolyse d'une azine |
KR101774254B1 (ko) * | 2015-12-16 | 2017-09-04 | 주식회사 해림엔지니어링 | 질소산화물 저감용 선택적 무촉매 환원제 |
FR3096048B1 (fr) | 2019-05-16 | 2021-04-30 | Arkema France | Procede ameliore de preparation d'hydrate d'hydrazine avec recyclage oxime |
-
2021
- 2021-12-21 FR FR2114191A patent/FR3130815B1/fr active Active
-
2022
- 2022-12-20 CN CN202280084936.XA patent/CN118434673A/zh active Pending
- 2022-12-20 JP JP2024537414A patent/JP2024546300A/ja active Pending
- 2022-12-20 EP EP22847598.4A patent/EP4452839A1/fr active Pending
- 2022-12-20 WO PCT/FR2022/052450 patent/WO2023118739A1/fr active Application Filing
- 2022-12-20 CA CA3240893A patent/CA3240893A1/fr active Pending
- 2022-12-20 US US18/723,301 patent/US20250051164A1/en active Pending
- 2022-12-20 KR KR1020247024071A patent/KR20240122880A/ko active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024546300A (ja) | 2024-12-19 |
FR3130815A1 (fr) | 2023-06-23 |
US20250051164A1 (en) | 2025-02-13 |
KR20240122880A (ko) | 2024-08-13 |
CA3240893A1 (fr) | 2023-06-29 |
FR3130815B1 (fr) | 2025-02-28 |
CN118434673A (zh) | 2024-08-02 |
WO2023118739A1 (fr) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3969413B1 (fr) | Procede ameliore de preparation d'hydrate d'hydrazine avec recyclage oxime | |
EP3359520B1 (fr) | Procédé amélioré de production d'acide acrylique de grade polymère | |
EP0399866B1 (fr) | Procédé de synthésé d'azines, son application à la production d'hydrazine | |
EP4452839A1 (fr) | Procede de preparation d'hydrate d'hydrazine en presence d'un agent anti-mousse | |
CA2056041C (fr) | Procede de synthese d'azines | |
WO2020136337A1 (fr) | Purification d'hydroperoxyde d'alkyle par distillation extractive | |
WO2002014407A1 (fr) | Procede de preparation d'huiles silicones par hydrosilylation de synthons contenant au moins un cycle hydrocarbone dans lequel est inclus un atome d'oxygene en presence d'un complexe metallique catalytique | |
EP3551603A1 (fr) | Procede pour eviter le depot de polymeres dans un procede de purification d'acide (meth)acrylique | |
EP3969414B1 (fr) | Procede ameliore de preparation d'hydrate d'hydrazine avec recyclage pyrazoline | |
EP1086045B1 (fr) | Procede de preparation d'hydrate d'hydrazine | |
EP1086044B1 (fr) | Procede de preparation d'hydrate d'hydrazine | |
EP4423053A1 (fr) | Procede perfectionne de fabrication d'acrylate de butyle de purete elevee | |
WO2000012430A1 (fr) | Procede de preparation d'hydrate d'hydrazine | |
EP1042390A1 (fr) | Procede de preparation de silicones a fonction ester de haute purete | |
FR3137087A1 (fr) | Procede de preparation d'hydrate d'hydrazine utilisant une colonne d’absorption | |
EP3902782A1 (fr) | Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau | |
EP3774728A1 (fr) | Procede de concentration d'un peroxyde organique hydrosoluble | |
WO2003040033A1 (fr) | Procede ameliore de fabrication d'hydrate d'hydrazine | |
WO2009136073A1 (fr) | Preparation de (meth)acrylates d'alkylimidazolidone dans l'eau | |
BE490554A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240722 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |