EP4381110A1 - Alloy with complex composition - Google Patents
Alloy with complex compositionInfo
- Publication number
- EP4381110A1 EP4381110A1 EP22757274.0A EP22757274A EP4381110A1 EP 4381110 A1 EP4381110 A1 EP 4381110A1 EP 22757274 A EP22757274 A EP 22757274A EP 4381110 A1 EP4381110 A1 EP 4381110A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inclusive
- alloy
- equal
- alloy according
- vanadium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 112
- 239000000956 alloy Substances 0.000 title claims abstract description 112
- 239000000203 mixture Substances 0.000 title description 5
- 239000010936 titanium Substances 0.000 claims abstract description 38
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 24
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 24
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 24
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 12
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 150000004678 hydrides Chemical class 0.000 claims abstract description 10
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 150000004767 nitrides Chemical class 0.000 claims abstract description 6
- -1 borides Chemical class 0.000 claims abstract description 5
- 239000011777 magnesium Substances 0.000 claims description 18
- 239000011572 manganese Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052727 yttrium Inorganic materials 0.000 claims description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 238000002490 spark plasma sintering Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 8
- 229910001092 metal group alloy Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B37/00—Cases
- G04B37/22—Materials or processes of manufacturing pocket watch or wrist watch cases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the invention relates to an alloy, for example for a watch component, and a watch component as such, in particular intended for dressing a watch such as a watch case, comprising such an alloy. It also covers any other component of a transport vehicle or any device comprising such an alloy. It also relates to a timepiece, such as a watch, or jewelry, comprising such an alloy. Finally, it also relates to a process for manufacturing such an alloy.
- a watch case must be very hard, to offer good resistance to shocks and resist scratches which degrade its aesthetic appearance.
- a watch case is thus generally made of a metallic material or a metallic alloy.
- These two properties of hardness and lightness are generally incompatible, hard metals being naturally heavy and light metals naturally soft.
- a hard and light material would be beneficial for many other watch components.
- the existing solutions are thus unsatisfactory in that they do not make it possible to achieve a good hardness/density compromise.
- an object of the present invention is to find a solution for forming a hard and light timepiece component.
- the invention relates to an alloy, characterized in that it comprises scandium (Sc) according to a fraction greater than or equal to 30% at, titanium (Ti), zirconium (Zr) and/or vanadium (V) and/or their oxides, hydrides, borides, carbides and/or nitrides, at least two of the elements among titanium, zirconium and vanadium and/or their oxides, hydrides, borides and/or carbides having a fraction greater than or equal to 15% at.
- the alloy does not include aluminum (Al) and/or does not include lithium (Li).
- the alloy can be chosen from:
- the alloy may comprise magnesium (Mg) and/or manganese (Mn) and/or yttrium (Y), and/or rare earths.
- any element of the alloy excluding scandium (Sc), titanium (Ti), zirconium (Zr) and vanadium (V) has an atomic proportion less than or equal to 5% at, or even less than or equal to 3.5% at, or even less than or equal to 2% at; and or
- the total proportion of the elements scandium (Sc), titanium (Ti), zirconium (Zr) and vanadium (V) is greater than or equal to 70% at, or even greater than or equal to 80% at, greater than or equal to 90% at ; and or
- CORRECTED SHEET (RULE 91) ISA/EP zirconium (Zr), vanadium (V), magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths is greater than or equal to 90% at, or even greater than or equal to 95% at.
- the alloy can consist of an alloy of 4 to 13 elements inclusive.
- the alloy may comprise: scandium between 30 and 70% at inclusive, even between 40 and 70% at inclusive, even between 50 and 65% at inclusive, even between 30 and 60% at inclusive, even between 30 and 47% at included, or even between 30 and 45% at included; and titanium between 5 and 35% at inclusive, even between 5 and 30% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive; and zirconium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included; and vanadium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included.
- Scandium may be the element of the alloy that has the largest atomic percentage.
- the alloy may have a density less than or equal to 4.5 g cm 3 , or even less than or equal to 4.2 g cm 3 , or even less than or equal to 4 g cm 3 , measured after it has been shaped and before any other treatment.
- the alloy may have a hardness greater than or equal to 400 Hv, or even greater than or equal to 500 Hv, or even greater than or equal to 600 Hv, measured after it has been shaped and before any other treatment.
- the alloy can consist of scandium (Sc), titanium (Ti), zirconium
- CORRECTED SHEET (RULE 91) ISA/EP (Zr) and/or vanadium (V), and/or their oxides, hydrides, borides, carbides and/or nitrides, and optionally magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths
- the invention also relates to a timepiece component, characterized in that it comprises an alloy as described above, or in that it is entirely formed of an alloy as described above.
- the watch component can be a watch case, a bezel, a dial, a bracelet link, a bracelet, or a bracelet clasp.
- the invention also relates to a timepiece, in particular a watch, piece of jewelry or jewelry, characterized in that it comprises a timepiece component as described previously or in that it comprises an alloy as described above.
- the invention also relates to a component dedicated to aeronautics, automobiles, a transport vehicle, a measuring device, an exploration robot, a weapon or a production or storage device. energy, characterized in that it comprises an alloy as described above.
- the component may be formed entirely of alloy as described above or may be a solid part comprising an alloy as described above extending substantially over its entire thickness.
- the invention also relates to a method for manufacturing an alloy as described above or a component as described above, characterized in that it comprises the following steps:
- the shaping step may include a flash plasma sintering step.
- the invention is based on the manufacture and use of a metal alloy having both low density and high hardness.
- the invention is based on the definition of a multiphase alloy with a complex composition.
- the concept of complex concentrated alloys derives in particular from high entropy alloys (HEA).
- HAA high entropy alloys
- the latter can be made up of at least five elements in proportions close to equimolar and forming a single solid solution.
- the combination of at least four elements, or even at least five elements forms a set which makes it possible to achieve remarkable properties, far removed from the usual natural properties of simple metallic alloys.
- the definition of complex concentrated alloys extends that of high entropy alloys by including alloys composed of three or four elements, multiphase alloys, and the concentration of one of the elements advantageously exceeding 35%-at.
- the alloy according to the invention comprises the following four main elements: scandium (Sc), titanium (Ti), zirconium (Zn) and vanadium (V) and/or their oxides, hydrides, borides and/or carbides .
- scandium (Sc) titanium (Ti), zirconium (Zn) and vanadium (V) and/or their oxides, hydrides, borides and/or carbides .
- principal elements we mean that these elements are the four elements of greatest proportion present in the alloy.
- these elements are the four elements of greatest proportion present in the alloy.
- these elements are the four elements of greatest proportion present in the alloy.
- these elements are the four elements of greatest proportion present in the alloy.
- the alloy according to the invention comprises scandium according to a fraction greater than or equal to 30% at.
- at least two of the elements among titanium, zirconium and vanadium have a fraction greater than or equal to 15% at.
- Each main element helps to bring an interesting property to the alloy. For example, scandium brings its lightness, its color, its mechanical properties. Titanium brings its hardness. Zirconium provides resistance to oxidation. Vanadium brings hardness.
- the alloy consists of these four main elements.
- the alloys of this first embodiment we can identify the following alloys (the indices representing the atomic percentages of each element): -SC30Ti25 20Zr25 -Sc4oTi2oV2o Zr2o
- the embodiment could not include zirconium or not include vanadium.
- the following alloys can be used in the context of the invention: -SC60Ti20 20 -SC33Ti33V33 -SC33Zr33Ti33 -Sc6oZr2oTi2o.
- the alloy contains neither aluminum (Al) nor lithium (Li).
- Al aluminum
- Li lithium
- the alloy may comprise one of the oxides and/or nitrides and/or hydrides and/or borides and/or carbides of the following elements: scandium, titanium, zirconium and vanadium.
- the alloy comprises at least one other so-called secondary element, the at least one secondary element possibly being magnesium (Mg) and/or manganese (Mn) and/or yttrium (Y), and/or rare earths.
- the at least one secondary element possibly being magnesium (Mg) and/or manganese (Mn) and/or yttrium (Y), and/or rare earths.
- any secondary element will be present in an atomic proportion less than or equal to 5% at, or even less than or equal to 3.5% at, or even less than or equal to 2% at.
- the total proportion of the elements scandium (Sc), titanium (Ti), zirconium (Zr), vanadium (V), magnesium (Mg),
- CORRECTED SHEET (RULE 91) ISA/EP manganese (Mn), yttrium (Y), and/or rare earths is greater than or equal to 90% at, or even greater than or equal to 95% at.
- the alloy according to the invention can thus comprise 3, 4 or 5 elements. As a variant, it can comprise more than 5 elements, in particular between 6 and 13 elements.
- the alloy can consist of scandium (Sc), titanium (Ti), zirconium (Zr) and/or vanadium (V), and optionally magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths
- each of the four main elements will be present in the following atomic proportions:
- scandium will be present with the greatest atomic percentage.
- CORRECTED SHEET (RULE 91) ISA/EP will be chosen so that the resulting alloy has a density less than or equal to 4.5 g cm -3 , or even less than or equal to 4.2 g cnr 3 , even less than or equal to 4 g cm' 3 and a hardness greater than or equal to 400 Hv, or even greater than or equal to 500 Hv, or even greater than or equal to 600 Hv, measured after the shaping step described below and before any other possible treatment. It is also noteworthy that the alloy according to the invention has a high microstructure stability, being able to even resist up to a temperature above 900° C., or even above 1000° C.
- the alloy is a totally metallic alloy. It appears that the invention makes it possible to obtain an alloy that is lighter than aluminum and harder than hardened steel, while being totally stainless and non-magnetic.
- Such an alloy may have a crystalline, in particular nanocrystalline, simple, single-phase or two-phase structure.
- the alloy may have an amorphous structure.
- the invention also relates to a watch component, characterized in that it comprises an alloy as described above.
- the timepiece component may be entirely formed of an alloy according to the invention. Alternatively, only part of said component may be formed from such an alloy.
- the watch component can be a watch case, a bezel, a dial, a bracelet link, a bracelet, a bracelet clasp, etc.
- the invention also relates to a timepiece, piece of jewelry or jewelry, which comprises an alloy as described above or a timepiece component as described above.
- the timepiece according to a
- ISA/EP embodiment of the invention may be a watch, such as a wristwatch.
- the invention was designed for the field of watchmaking, or even jewelry.
- the alloy according to the invention could advantageously be used in other fields due to its many remarkable properties.
- this alloy could for example be used in aerospace, aeronautics, automotive, more generally for any transport industry, as well as for the fields of energy and armament.
- the invention also relates to a component dedicated to aerospace, aeronautics, automobiles, a transport vehicle, a measuring device such as a robot intended to take measurements and/or a robot space exploration, to an energy production or storage device, etc., which is formed in whole or in part from the alloy of the invention.
- a component comprising this alloy may advantageously be entirely composed of the alloy, that is to say that the alloy will form a solid component.
- the alloy will therefore extend over the entire thickness of the component.
- a component can be mainly formed from said alloy, which extends in particular in its core.
- Said alloy may optionally be covered with a surface coating to give it a particular color or a particular appearance or a particular surface protection.
- the invention also relates to a method of manufacturing an alloy as described above. There are already processes for manufacturing high-entropy alloys, and processes for manufacturing alloys comprising many elements.
- the elements have a high reactivity in the liquid state.
- molten scandium is extremely difficult to
- the manufacturing process comprises a mechanical alloying step.
- the pure elements of the alloy to be manufactured in powder form, are placed in a high-energy planetary mill.
- the energy generated by the shocks between the balls of the grinder and the powders of pure elements has two effects:
- a second effect is that the heat generated by the shocks activates the diffusion in the solid state of the elements, and causes the dissolution of the alloy.
- the result is a new alloy powder with a constant composition.
- the grinding is carried out under vacuum or in the presence of an inert gas.
- the alloy powder is shaped in a second step.
- the technique used to shape the alloy is flash plasma sintering.
- the plasma flash sintering technique consists of the simultaneous application of a pulsed current through the powder and pressure. It makes it possible to use lower sintering temperatures as well as shorter holding times under pressure and thus to obtain rapid sintering. This technique makes it possible to obtain a fine microstructure whose grain size can be in a range of nanometric dimensions.
- this second step uses low sintering temperatures, to avoid any risk of evaporation, and a short duration, to avoid any risk of demixing of the alloy.
- the sintered shapes obtained by the second stage can undergo any conventional treatment in a third stage. For example, they can be machined conventionally.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Adornments (AREA)
Abstract
Description
Alliage à composition complexe Alloy with complex composition
L’invention concerne un alliage, par exemple pour composant horloger, et un composant horloger en tant que tel, notamment prévu pour l’habillage d’une montre comme une boîte de montre, comprenant un tel alliage. Elle porte aussi sur tout autre composant d’un engin de transport ou de tout appareil comprenant un tel alliage. Elle porte aussi sur une pièce d’horlogerie, comme une montre, ou de joaillerie, comprenant un tel alliage. Enfin, elle porte aussi sur un procédé de fabrication d’un tel alliage. The invention relates to an alloy, for example for a watch component, and a watch component as such, in particular intended for dressing a watch such as a watch case, comprising such an alloy. It also covers any other component of a transport vehicle or any device comprising such an alloy. It also relates to a timepiece, such as a watch, or jewelry, comprising such an alloy. Finally, it also relates to a process for manufacturing such an alloy.
Une boîte de montre doit être très dure, pour offrir une bonne résistance aux chocs et résister aux rayures qui dégradent son aspect esthétique. Dans l’état de la technique, une boîte de montre est ainsi en général dans un matériau métallique ou un alliage métallique. Toutefois, il est aussi très avantageux pour un porté confortable qu’une boite de montre soit légère. Ces deux propriétés de dureté et de légèreté sont en général incompatibles, les métaux durs étant naturellement lourds et les métaux légers naturellement tendres. Outre les boites de montre, un matériau dur et léger serait avantageux pour beaucoup d’autres composants horlogers. Les solutions existantes sont ainsi insatisfaisantes en ce qu’elles ne permettent pas d’atteindre un bon compromis dureté/densité. A watch case must be very hard, to offer good resistance to shocks and resist scratches which degrade its aesthetic appearance. In the state of the art, a watch case is thus generally made of a metallic material or a metallic alloy. However, it is also very advantageous for a comfortable wear that a watch case is light. These two properties of hardness and lightness are generally incompatible, hard metals being naturally heavy and light metals naturally soft. Besides watch cases, a hard and light material would be beneficial for many other watch components. The existing solutions are thus unsatisfactory in that they do not make it possible to achieve a good hardness/density compromise.
Ainsi, un objet de la présente invention est de trouver une solution pour former un composant horloger dur et léger. Thus, an object of the present invention is to find a solution for forming a hard and light timepiece component.
Naturellement, une telle solution devra avantageusement atteindre d’autres propriétés avantageuses recherchées pour un composant horloger, voire indispensables, comme un aspect esthétique attractif, une grande résistance à l’usure, notamment une résistance à l’oxydation et à la corrosion, une propriété amagnétique, etc. Naturally, such a solution should advantageously achieve other advantageous properties sought for a watch component, even essential, such as an attractive aesthetic appearance, high wear resistance, in particular resistance to oxidation and corrosion, a property non-magnetic, etc.
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP A cet effet, l’invention porte sur un alliage, caractérisé en ce qu’il comprend du scandium (Sc) selon une fraction supérieure ou égale à 30% at, du titane (Ti), du zirconium (Zr) et/ou du vanadium (V) et/ou leurs oxydes, hydrures, borures, carbures et/ou nitrures, au moins deux des éléments parmi le titane, le zirconium et le vanadium et/ou leurs oxydes, hydrures, borures et/ou carbures présentant une fraction supérieure ou égale à 15% at. CORRECTED SHEET (RULE 91) ISA/EP To this end, the invention relates to an alloy, characterized in that it comprises scandium (Sc) according to a fraction greater than or equal to 30% at, titanium (Ti), zirconium (Zr) and/or vanadium (V) and/or their oxides, hydrides, borides, carbides and/or nitrides, at least two of the elements among titanium, zirconium and vanadium and/or their oxides, hydrides, borides and/or carbides having a fraction greater than or equal to 15% at.
Avantageusement, l’alliage ne comprend pas d’aluminium (Al) et/ou ne comprend pas de lithium (Li). Advantageously, the alloy does not include aluminum (Al) and/or does not include lithium (Li).
L’alliage peut être choisi parmi : The alloy can be chosen from:
-SC3oTi25\/2oZr25 -SC3oTi25\/2oZr25
-SC60Ti20 20 -SC60Ti20 20
-SC33Ti33 33 -SC33Ti33 33
-Sc4oTi2o 2o Zr2o -Sc4oTi2o 2o Zr2o
-SC33Ti33Zr33 -SC33Ti33Zr 3 3
-Sc6oZr2oTi2o -Sc6oZr2oTi2o
En outre, l’alliage peut comprendre du magnésium (Mg) et/ou du manganèse (Mn) et/ou de l’yttrium (Y), et/ou des terres rares. Furthermore, the alloy may comprise magnesium (Mg) and/or manganese (Mn) and/or yttrium (Y), and/or rare earths.
Selon des modes de réalisation de l’alliage : According to embodiments of the alloy:
- tout élément de l’alliage hors le scandium (Sc), le titane (Ti), le zirconium (Zr) et le vanadium (V) présente une proportion atomique inférieure ou égale à 5% at, voire inférieure ou égale à 3.5% at, voire inférieure ou égale à 2% at ; et/ou - any element of the alloy excluding scandium (Sc), titanium (Ti), zirconium (Zr) and vanadium (V) has an atomic proportion less than or equal to 5% at, or even less than or equal to 3.5% at, or even less than or equal to 2% at; and or
- la proportion totale des éléments scandium (Sc), titane (Ti), zirconium (Zr) et vanadium (V) est supérieure ou égale à 70% at, voire supérieure ou égale à 80% at, supérieure ou égale à 90% at ; et/ou - the total proportion of the elements scandium (Sc), titanium (Ti), zirconium (Zr) and vanadium (V) is greater than or equal to 70% at, or even greater than or equal to 80% at, greater than or equal to 90% at ; and or
- la proportion totale des éléments scandium (Sc), titane (Ti), - the total proportion of the elements scandium (Sc), titanium (Ti),
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP zirconium (Zr), vanadium (V), magnésium (Mg), manganèse (Mn), yttrium (Y), et/ou terres rares est supérieure ou égale à 90% at, voire supérieure ou égale à 95% at. CORRECTED SHEET (RULE 91) ISA/EP zirconium (Zr), vanadium (V), magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths is greater than or equal to 90% at, or even greater than or equal to 95% at.
L’alliage peut consister en un alliage de 4 à 13 éléments inclus. The alloy can consist of an alloy of 4 to 13 elements inclusive.
L’alliage peut comprendre : du scandium entre 30 et 70 % at inclus, voire entre 40 et 70 % at inclus, voire entre 50 et 65 % at inclus, voire entre 30 et 60 % at inclus, voire entre 30 et 47 % at inclus, voire entre 30 et 45 % at inclus ; et du titane entre 5 et 35 % at inclus, voire entre 5 et 30 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus ; et du zirconium entre 0 et 30 % at inclus, voire entre 5 et 30 % at inclus, voire entre 5 et 25 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus, voire entre 10 et 20 % at inclus ; et du vanadium entre 0 et 30 % at inclus, voire entre 5 et 30 % at inclus, voire entre 5 et 25 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus, voire entre 10 et 20 % at inclus. The alloy may comprise: scandium between 30 and 70% at inclusive, even between 40 and 70% at inclusive, even between 50 and 65% at inclusive, even between 30 and 60% at inclusive, even between 30 and 47% at included, or even between 30 and 45% at included; and titanium between 5 and 35% at inclusive, even between 5 and 30% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive; and zirconium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included; and vanadium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included.
Le scandium peut être l’élément de l’alliage qui présente le plus grand pourcentage atomique. Scandium may be the element of the alloy that has the largest atomic percentage.
L’alliage peut présenter une densité inférieure ou égale à 4.5 g cm’3, voire inférieure ou égale à 4.2 g cm’3, voire inférieure ou égale à 4 g cm 3, mesurée après sa mise en forme et avant tout autre traitement. The alloy may have a density less than or equal to 4.5 g cm 3 , or even less than or equal to 4.2 g cm 3 , or even less than or equal to 4 g cm 3 , measured after it has been shaped and before any other treatment.
L’alliage peut présenter une dureté supérieure ou égale à 400 Hv, voire supérieure ou égale à 500 Hv, voire supérieure ou égale à 600 Hv, mesurée après sa mise en forme et avant tout autre traitement. The alloy may have a hardness greater than or equal to 400 Hv, or even greater than or equal to 500 Hv, or even greater than or equal to 600 Hv, measured after it has been shaped and before any other treatment.
L’alliage peut consister en du scandium (Sc), du titane (Ti), du zirconium The alloy can consist of scandium (Sc), titanium (Ti), zirconium
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP (Zr) et/ou du vanadium (V), et/ou leurs oxydes, hydrures, borures, carbures et/ou nitrures, et optionnellement du magnésium (Mg), du manganèse (Mn), de l’yttrium (Y), et/ou des terres rares CORRECTED SHEET (RULE 91) ISA/EP (Zr) and/or vanadium (V), and/or their oxides, hydrides, borides, carbides and/or nitrides, and optionally magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths
L’invention porte aussi sur un composant horloger, caractérisé en ce qu’il comprend un alliage tel que décrit précédemment, ou en ce qu’il est intégralement formé d’un alliage tel que décrit précédemment. The invention also relates to a timepiece component, characterized in that it comprises an alloy as described above, or in that it is entirely formed of an alloy as described above.
Le composant horloger peut être une boite de montre, une lunette, un cadran, une maille de bracelet, un bracelet, ou un fermoir pour bracelet. The watch component can be a watch case, a bezel, a dial, a bracelet link, a bracelet, or a bracelet clasp.
L’invention porte aussi sur une pièce d’horlogerie, notamment une montre, de bijouterie ou de joaillerie, caractérisée en ce qu’elle comprend un composant horloger tel que décrit précédemment ou en ce qu’elle comprend un alliage tel que décrit précédemment. The invention also relates to a timepiece, in particular a watch, piece of jewelry or jewelry, characterized in that it comprises a timepiece component as described previously or in that it comprises an alloy as described above.
L’invention porte aussi sur un composant dédié à l’aéronautique, à l’automobile, à un engin de transport, à un appareil de mesure, à un robot d’exploration, à une arme ou à un dispositif de production ou de stockage d’énergie, caractérisé en ce qu’il comprend un alliage tel que décrit précédemment. The invention also relates to a component dedicated to aeronautics, automobiles, a transport vehicle, a measuring device, an exploration robot, a weapon or a production or storage device. energy, characterized in that it comprises an alloy as described above.
Le composant peut être intégralement formé d’alliage tel que décrit précédemment ou peut être une pièce massive comprenant un alliage tel que décrit précédemment s’étendant sensiblement sur toute son épaisseur. The component may be formed entirely of alloy as described above or may be a solid part comprising an alloy as described above extending substantially over its entire thickness.
L’invention porte aussi sur un procédé de fabrication d’un alliage tel que décrit précédemment ou d’un composant tel que décrit précédemment, caractérisé en ce qu’il comprend les étapes suivantes : The invention also relates to a method for manufacturing an alloy as described above or a component as described above, characterized in that it comprises the following steps:
- broyage de poudres d’éléments purs pour former une poudre d’alliage ; - grinding of powders of pure elements to form an alloy powder;
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP - mise en forme à froid de la poudre d’alliage. CORRECTED SHEET (RULE 91) ISA/EP - cold shaping of the alloy powder.
L’étape de mise en forme peut comprendre une étape de frittage flash par plasma (Spark Plasma Sintering). The shaping step may include a flash plasma sintering step.
Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faits à titre non-limitatif. These objects, characteristics and advantages of the present invention will be explained in detail in the following description of particular embodiments given on a non-limiting basis.
L’invention est basée sur la fabrication et l’utilisation d’un alliage métallique ayant à la fois une faible densité et une grande dureté. The invention is based on the manufacture and use of a metal alloy having both low density and high hardness.
Pour cela, l’invention repose sur la définition d’un alliage multiphasé à composition complexe. Le concept d’alliages concentrés complexes dérive notamment des alliages à haute entropie (HEA). Ces derniers peuvent être constitués d’au moins cinq éléments en proportions proches d’équimolaires et formant une unique solution solide. For this, the invention is based on the definition of a multiphase alloy with a complex composition. The concept of complex concentrated alloys derives in particular from high entropy alloys (HEA). The latter can be made up of at least five elements in proportions close to equimolar and forming a single solid solution.
Plus généralement, la réunion d’au moins quatre éléments, voire au moins cinq éléments, forme un ensemble qui permet d’atteindre des propriétés remarquables, éloignées des propriétés naturelles habituelles des alliages métalliques simples. La définition des alliages concentrés complexes étend celle des alliages à haute entropie en incluant les alliages composés de trois ou quatre éléments, les alliages multiphasés, et la concentration de l’un des éléments dépassant avantageusement 35 %-at. More generally, the combination of at least four elements, or even at least five elements, forms a set which makes it possible to achieve remarkable properties, far removed from the usual natural properties of simple metallic alloys. The definition of complex concentrated alloys extends that of high entropy alloys by including alloys composed of three or four elements, multiphase alloys, and the concentration of one of the elements advantageously exceeding 35%-at.
L’alliage selon l’invention comprend les quatre éléments principaux suivants : le scandium (Sc), le titane (Ti), le zirconium (Zn) et le vanadium (V) et/ou leurs oxydes, hydrures, borures et/ou carbures. Nous entendons par éléments principaux le fait que ces éléments sont les quatre éléments de plus grande proportion présents dans l’alliage. De préférence, ces The alloy according to the invention comprises the following four main elements: scandium (Sc), titanium (Ti), zirconium (Zn) and vanadium (V) and/or their oxides, hydrides, borides and/or carbides . By principal elements we mean that these elements are the four elements of greatest proportion present in the alloy. Preferably, these
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP quatre éléments principaux représentent au moins 70 % at inclus, voire au moins 80 % at inclus, voire au moins 90% at inclus de l’alliage (les pourcentages mentionnés sont donc des pourcentages atomiques). CORRECTED SHEET (RULE 91) ISA/EP four main elements represent at least 70% at inclusive, even at least 80% at inclusive, even at least 90% at inclusive of the alloy (the percentages mentioned are therefore atomic percentages).
L’alliage selon l’invention comprend du scandium selon une fraction supérieure ou égale à 30% at. De plus, au moins deux des éléments parmi le titane, le zirconium et le vanadium présentent une fraction supérieure ou égale à 15% at. The alloy according to the invention comprises scandium according to a fraction greater than or equal to 30% at. In addition, at least two of the elements among titanium, zirconium and vanadium have a fraction greater than or equal to 15% at.
Chaque élément principal participe à apporter une propriété intéressante à l’alliage. Par exemple, le scandium apporte sa légèreté, sa couleur, ses propriétés mécaniques. Le titane apporte sa dureté. Le zirconium apporte de la résistance à l’oxydation. Le vanadium apporte de la dureté. Each main element helps to bring an interesting property to the alloy. For example, scandium brings its lightness, its color, its mechanical properties. Titanium brings its hardness. Zirconium provides resistance to oxidation. Vanadium brings hardness.
De plus, la combinaison de ces quatre éléments principaux permet de former un alliage multiphasé à composition complexe. Elle permet de former un alliage dont les propriétés, remarquables, vont bien au-delà de la simple addition des propriétés de chaque élément, comme cela sera précisé ultérieurement. Pour aboutir à cet alliage, il a aussi fallu réaliser une sélection d’éléments dont la compatibilité chimique entre eux a été découverte particulièrement bonne. Moreover, the combination of these four main elements makes it possible to form a multiphase alloy with a complex composition. It makes it possible to form an alloy whose remarkable properties go well beyond the simple addition of the properties of each element, as will be specified later. To achieve this alloy, it was also necessary to make a selection of elements whose chemical compatibility with each other was discovered to be particularly good.
Selon un premier mode de réalisation de l’invention, l’alliage consiste en ces quatre éléments principaux. Parmi les alliages de ce premier mode de réalisation, nous pouvons identifier les alliages suivants (les indices représentant les pourcentages atomiques de chaque élément) : -SC30Ti25 20Zr25 -Sc4oTi2oV2o Zr2o According to a first embodiment of the invention, the alloy consists of these four main elements. Among the alloys of this first embodiment, we can identify the following alloys (the indices representing the atomic percentages of each element): -SC30Ti25 20Zr25 -Sc4oTi2oV2o Zr2o
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP En variante simplifiée, le mode de réalisation pourrait ne pas comprendre de zirconium ou ne pas comprendre de vanadium. A titre d’exemple, les alliages suivants peuvent être utilisés dans le cadre de l’invention : -SC60Ti20 20 -SC33Ti33V33 -SC33Zr33Ti33 -Sc6oZr2oTi2o. CORRECTED SHEET (RULE 91) ISA/EP In a simplified variant, the embodiment could not include zirconium or not include vanadium. By way of example, the following alloys can be used in the context of the invention: -SC60Ti20 20 -SC33Ti33V33 -SC33Zr33Ti33 -Sc6oZr2oTi2o.
Avantageusement, l’alliage ne contient ni aluminium (Al), ni lithium (Li). Autrement dit, la trace d’aluminium et/ou de Lithium n’est pas détectable dans l’alliage. L’aluminium étant très réactif avec le scandium, il formerait des intermétalliques qui fragiliseraient l’alliage. Le lithium est très volatile, ce qui rendrait la mise en œuvre complexe, et fragiliserait aussi l’alliage par formation d’intermétalliques. Advantageously, the alloy contains neither aluminum (Al) nor lithium (Li). In other words, the trace of aluminum and/or lithium is not detectable in the alloy. Since aluminum is very reactive with scandium, it would form intermetallics which would weaken the alloy. Lithium is very volatile, which would make implementation complex, and would also weaken the alloy by forming intermetallics.
Comme mentionné précédemment, l’alliage peut comprendre un des oxydes et/ou nitrures et/ou hydrures et/ou borures et/ou carbures des éléments suivants : le scandium, le titane, le zirconium et le vanadium. As mentioned previously, the alloy may comprise one of the oxides and/or nitrides and/or hydrides and/or borides and/or carbides of the following elements: scandium, titanium, zirconium and vanadium.
Selon un deuxième mode de réalisation de l’invention, l’alliage comprend au moins un autre élément dit secondaire, l’au moins un élément secondaire pouvant être du magnésium (Mg) et/ou du manganèse (Mn) et/ou de l’yttrium (Y), et/ou des terres rares. According to a second embodiment of the invention, the alloy comprises at least one other so-called secondary element, the at least one secondary element possibly being magnesium (Mg) and/or manganese (Mn) and/or yttrium (Y), and/or rare earths.
Avantageusement, tout élément secondaire sera présent selon une proportion atomique inférieure ou égale à 5% at, voire inférieure ou égale à 3.5% at, voire inférieure ou égale à 2% at. Advantageously, any secondary element will be present in an atomic proportion less than or equal to 5% at, or even less than or equal to 3.5% at, or even less than or equal to 2% at.
Avantageusement encore, la proportion totale des éléments scandium (Sc), titane (Ti), zirconium (Zr), vanadium (V), magnésium (Mg), Advantageously again, the total proportion of the elements scandium (Sc), titanium (Ti), zirconium (Zr), vanadium (V), magnesium (Mg),
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP manganèse (Mn), yttrium (Y), et/ou terres rares est supérieure ou égale à 90% at, voire supérieure ou égale à 95% at. CORRECTED SHEET (RULE 91) ISA/EP manganese (Mn), yttrium (Y), and/or rare earths is greater than or equal to 90% at, or even greater than or equal to 95% at.
Finalement, l’alliage selon l’invention peut ainsi comprendre 3, 4 ou 5 éléments. En variante, il peut comprendre plus de 5 éléments, notamment entre 6 et 13 éléments. Finally, the alloy according to the invention can thus comprise 3, 4 or 5 elements. As a variant, it can comprise more than 5 elements, in particular between 6 and 13 elements.
Ainsi, l’alliage peut consister en du scandium (Sc), du titane (Ti), du zirconium (Zr) et/ou du vanadium (V), et optionnellement du magnésium (Mg), du manganèse (Mn), de l’yttrium (Y), et/ou des terres rares Thus, the alloy can consist of scandium (Sc), titanium (Ti), zirconium (Zr) and/or vanadium (V), and optionally magnesium (Mg), manganese (Mn), yttrium (Y), and/or rare earths
Avantageusement, dans tous ces modes de réalisation, chacun des quatre éléments principaux sera présent dans les proportions atomiques suivantes : Advantageously, in all these embodiments, each of the four main elements will be present in the following atomic proportions:
- du scandium entre 30 et 70 % at inclus, voire entre 40 et 70 % at inclus, voire entre 50 et 65 % at inclus, voire entre 30 et 60 % at inclus, voire entre 30 et 47 % at inclus, voire entre 30 et 45 % at inclus ; et du titane entre 5 et 35 % at inclus, voire entre 5 et 30 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus ; et du zirconium entre 0 et 30 % at inclus, voire entre 5 et 30 % at inclus, voire entre 5 et 25 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus, voire entre 10 et 20 % at inclus ; et du vanadium entre 0 et 30 % at inclus, voire entre 5 et 30 % at inclus, voire entre 5 et 25 % at inclus, voire entre 15 et 25 % at inclus, voire entre 15 et 20 % at inclus, voire entre 10 et 20 % at inclus. - scandium between 30 and 70% at inclusive, even between 40 and 70% at inclusive, even between 50 and 65% at inclusive, even between 30 and 60% at inclusive, even between 30 and 47% at inclusive, even between 30 and 45% included; and titanium between 5 and 35% at inclusive, even between 5 and 30% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive; and zirconium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included; and vanadium between 0 and 30% at inclusive, even between 5 and 30% at inclusive, even between 5 and 25% at inclusive, even between 15 and 25% at inclusive, even between 15 and 20% at inclusive, even between 10 and 20% at included.
Avantageusement, dans tous les modes de réalisation de l’invention, le scandium sera présent avec le plus grand pourcentage atomique. Advantageously, in all embodiments of the invention, scandium will be present with the greatest atomic percentage.
Il apparaît qu’un tel alliage selon l’invention permet d’atteindre une faible densité et une grande dureté. Avantageusement, les éléments de l’alliage It appears that such an alloy according to the invention makes it possible to achieve low density and high hardness. Advantageously, the elements of the alloy
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP seront choisis de sorte que l’alliage résultant présente une densité inférieure ou égale à 4.5 g cm-3, voire inférieure ou égale à 4.2 g cnr3, voire inférieure ou égale à 4 g cm’3 et une dureté supérieure ou égale à 400 Hv, voire supérieure ou égale à 500 Hv, voire supérieure ou égale à 600 Hv, mesurées après l’étape de mise en forme décrite ci-après et avant tout autre traitement éventuel. Il est aussi notable que l’alliage selon l’invention présente une grande stabilité de microstructure, pouvant même résister jusqu’à une température supérieure à 900°C, voire supérieure à 1000°C. CORRECTED SHEET (RULE 91) ISA/EP will be chosen so that the resulting alloy has a density less than or equal to 4.5 g cm -3 , or even less than or equal to 4.2 g cnr 3 , even less than or equal to 4 g cm' 3 and a hardness greater than or equal to 400 Hv, or even greater than or equal to 500 Hv, or even greater than or equal to 600 Hv, measured after the shaping step described below and before any other possible treatment. It is also noteworthy that the alloy according to the invention has a high microstructure stability, being able to even resist up to a temperature above 900° C., or even above 1000° C.
Avantageusement, l’alliage est un alliage totalement métallique. Il apparaît que l’invention permet d’obtenir un alliage plus léger que l’aluminium et plus dur que l’acier trempé, tout en étant totalement inoxydable et amagnétique. Advantageously, the alloy is a totally metallic alloy. It appears that the invention makes it possible to obtain an alloy that is lighter than aluminum and harder than hardened steel, while being totally stainless and non-magnetic.
Un tel alliage pourra avoir une structure cristalline, notamment nanocristalline, simple, monophasée ou biphasée. En variante, l’alliage peut présenter une structure amorphe. Such an alloy may have a crystalline, in particular nanocrystalline, simple, single-phase or two-phase structure. Alternatively, the alloy may have an amorphous structure.
L’invention porte aussi sur un composant horloger, caractérisé en ce qu’il comprend un alliage tel que décrit précédemment. Selon un mode de réalisation, le composant horloger peut être intégralement formé d’un alliage selon l’invention. En variante, seule une partie dudit composant peut être formée d’un tel alliage. The invention also relates to a watch component, characterized in that it comprises an alloy as described above. According to one embodiment, the timepiece component may be entirely formed of an alloy according to the invention. Alternatively, only part of said component may be formed from such an alloy.
Selon un mode de réalisation, le composant horloger peut être une boite de montre, une lunette, un cadran, une maille de bracelet, un bracelet, un fermoir pour bracelet, etc. According to one embodiment, the watch component can be a watch case, a bezel, a dial, a bracelet link, a bracelet, a bracelet clasp, etc.
L’invention porte aussi sur une pièce d’horlogerie, de bijouterie ou de joaillerie, qui comprend un alliage tel que décrit précédemment ou un composant horloger tel que décrit ci-dessus. La pièce d’horlogerie selon un The invention also relates to a timepiece, piece of jewelry or jewelry, which comprises an alloy as described above or a timepiece component as described above. The timepiece according to a
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP mode de réalisation de l’invention peut être une montre, comme une montre-bracelet. CORRECTED SHEET (RULE 91) ISA/EP embodiment of the invention may be a watch, such as a wristwatch.
L’invention a été conçue pour le domaine de l’horlogerie, voire de la joaillerie. Toutefois, il apparaît que l’alliage selon l’invention pourrait avantageusement être utilisé dans d’autres domaines du fait de ses nombreuses propriétés remarquables. Ainsi, cet alliage pourrait par exemple être utilisé dans l’aérospatiale, l’aéronautique, l’automobile, plus généralement pour toute industrie de transport, ainsi que pour les domaines de l’énergie et de l’armement. Ainsi, l’invention porte aussi sur un composant dédié à l’aérospatiale, à l’aéronautique, à l’automobile, à un engin de transport, à un appareil de mesure comme un robot destiné à prendre des mesures et/ou un robot d’exploration spatiale, à un dispositif de production ou de stockage d’énergie, etc., qui est formé en tout ou partie de l’alliage de l’invention. Un composant comprenant cet alliage pourra avantageusement être intégralement composé de l’alliage, c’est-à-dire que l’alliage formera un composant massif. L’alliage s’étendra donc sur toute l’épaisseur du composant. En variante, un tel composant peut être majoritairement formé dudit alliage, qui s’étend notamment en son cœur. Ledit alliage peut éventuellement être recouvert d’un revêtement de surface pour lui donner une couleur particulière ou un aspect particulier ou une protection de surface particulière. The invention was designed for the field of watchmaking, or even jewelry. However, it appears that the alloy according to the invention could advantageously be used in other fields due to its many remarkable properties. Thus, this alloy could for example be used in aerospace, aeronautics, automotive, more generally for any transport industry, as well as for the fields of energy and armament. Thus, the invention also relates to a component dedicated to aerospace, aeronautics, automobiles, a transport vehicle, a measuring device such as a robot intended to take measurements and/or a robot space exploration, to an energy production or storage device, etc., which is formed in whole or in part from the alloy of the invention. A component comprising this alloy may advantageously be entirely composed of the alloy, that is to say that the alloy will form a solid component. The alloy will therefore extend over the entire thickness of the component. As a variant, such a component can be mainly formed from said alloy, which extends in particular in its core. Said alloy may optionally be covered with a surface coating to give it a particular color or a particular appearance or a particular surface protection.
Enfin, l’invention porte aussi sur un procédé de fabrication d’un alliage tel que décrit précédemment. Il existe déjà des procédés de fabrication d’alliages à haute entropie, et des procédés de fabrication d’alliages comprenant de nombreux éléments. Finally, the invention also relates to a method of manufacturing an alloy as described above. There are already processes for manufacturing high-entropy alloys, and processes for manufacturing alloys comprising many elements.
Avec l’alliage selon l’invention, les éléments présentent une forte réactivité à l’état liquide. Par exemple, le scandium fondu est extrêmement difficile à With the alloy according to the invention, the elements have a high reactivity in the liquid state. For example, molten scandium is extremely difficult to
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP manipuler à l’état liquide. Le titane liquide est très réactif avec l’oxygène de l’atmosphère, il forme des oxydes fragilisants. CORRECTED SHEET (RULE 91) ISA/EP handle in liquid state. Liquid titanium is very reactive with atmospheric oxygen, it forms embrittling oxides.
Ainsi, selon le mode de réalisation de l’invention, le procédé de fabrication comprend une étape de mise en alliage par voie mécanique. Thus, according to the embodiment of the invention, the manufacturing process comprises a mechanical alloying step.
Plus précisément, dans une première étape du procédé, les éléments purs de l’alliage à fabriquer, sous forme de poudre, sont placés dans un broyeur planétaire à haute énergie. L’énergie générée par les chocs entre les billes du broyeur et les poudres d’éléments purs a deux effets : More specifically, in a first step of the process, the pure elements of the alloy to be manufactured, in powder form, are placed in a high-energy planetary mill. The energy generated by the shocks between the balls of the grinder and the powders of pure elements has two effects:
- un premier effet mécanique d’écrasement permet aux différents éléments de rentrer en contact. Les particules ductiles se déforment pour englober les particules solides ; - a first mechanical crushing effect allows the different elements to come into contact. Ductile particles deform to encompass solid particles;
- un deuxième effet est que la chaleur générée par les chocs permet d’activer la diffusion à l’état solide des éléments, et cause la mise en solution de l’alliage. - a second effect is that the heat generated by the shocks activates the diffusion in the solid state of the elements, and causes the dissolution of the alloy.
Après une certaine durée de broyage, le résultat est une nouvelle poudre d’alliage à composition constante. En remarque, le broyage est effectué sous vide ou en présence d’un gaz inerte. After a certain grinding time, the result is a new alloy powder with a constant composition. As a side note, the grinding is carried out under vacuum or in the presence of an inert gas.
Ensuite, la poudre d’alliage est mise en forme dans une deuxième étape. Then the alloy powder is shaped in a second step.
La technique utilisée pour la mise en forme de l’alliage est le frittage flash par plasma (Spark Plasma Sintering). La technique de frittage flash par plasma consiste en l’application simultanée d’un courant pulsé au travers de la poudre et d’une pression. Elle permet d’utiliser des températures de frittage plus basses ainsi que des temps de maintien en pression plus courts et donc d’obtenir un frittage rapide. Cette technique permet d’obtenir une microstructure fine dont la taille des grains peut être dans une gamme de dimension nanométrique. The technique used to shape the alloy is flash plasma sintering. The plasma flash sintering technique consists of the simultaneous application of a pulsed current through the powder and pressure. It makes it possible to use lower sintering temperatures as well as shorter holding times under pressure and thus to obtain rapid sintering. This technique makes it possible to obtain a fine microstructure whose grain size can be in a range of nanometric dimensions.
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP En remarque, cette deuxième étape utilise des températures de frittage basses, pour éviter tout risque d’évaporation, et une durée courte, pour éviter tout risque de démixtion de l’alliage. Après densification, les formes frittées obtenues par la deuxième étape peuvent subir tout traitement conventionnel dans une troisième étape. Par exemple, elles peuvent être usinées par voie conventionnelle. CORRECTED SHEET (RULE 91) ISA/EP As a side note, this second step uses low sintering temperatures, to avoid any risk of evaporation, and a short duration, to avoid any risk of demixing of the alloy. After densification, the sintered shapes obtained by the second stage can undergo any conventional treatment in a third stage. For example, they can be machined conventionally.
FEUILLE RECTIFIÉE (RÈGLE 91 ) ISA/EP CORRECTED SHEET (RULE 91) ISA/EP
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH70124/21A CH718894A1 (en) | 2021-08-02 | 2021-08-02 | Alloy with a complex composition. |
PCT/EP2022/070897 WO2023011980A1 (en) | 2021-08-02 | 2022-07-26 | Alloy with complex composition |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4381110A1 true EP4381110A1 (en) | 2024-06-12 |
Family
ID=82943074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22757274.0A Pending EP4381110A1 (en) | 2021-08-02 | 2022-07-26 | Alloy with complex composition |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240287656A1 (en) |
EP (1) | EP4381110A1 (en) |
JP (1) | JP2024529528A (en) |
KR (1) | KR20240045251A (en) |
CN (1) | CN117769605A (en) |
CH (1) | CH718894A1 (en) |
WO (1) | WO2023011980A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1449930A1 (en) * | 2003-02-19 | 2004-08-25 | Sulzer Markets and Technology AG | Alloy, process for producing a coating of such an alloy and coated substrate |
JP2005140674A (en) * | 2003-11-07 | 2005-06-02 | Seiko Epson Corp | Clock springs, mainsprings, hairsprings, and watches |
CN102345082B (en) * | 2010-07-29 | 2017-02-22 | 比亚迪股份有限公司 | Amorphous alloy die casting and heat treatment method thereof |
-
2021
- 2021-08-02 CH CH70124/21A patent/CH718894A1/en unknown
-
2022
- 2022-07-26 EP EP22757274.0A patent/EP4381110A1/en active Pending
- 2022-07-26 KR KR1020247007055A patent/KR20240045251A/en unknown
- 2022-07-26 JP JP2024506454A patent/JP2024529528A/en active Pending
- 2022-07-26 US US18/293,506 patent/US20240287656A1/en active Pending
- 2022-07-26 WO PCT/EP2022/070897 patent/WO2023011980A1/en active Application Filing
- 2022-07-26 CN CN202280054151.8A patent/CN117769605A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CH718894A1 (en) | 2023-02-15 |
WO2023011980A1 (en) | 2023-02-09 |
KR20240045251A (en) | 2024-04-05 |
JP2024529528A (en) | 2024-08-06 |
CN117769605A (en) | 2024-03-26 |
US20240287656A1 (en) | 2024-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019073023A1 (en) | High entropy alloy | |
EP3543368B1 (en) | High-entropy alloys for covering components | |
FR3085967A1 (en) | NICKEL-BASED SUPERALLOYS | |
EP3486009B1 (en) | Method for sintering an austenitic stainless steel | |
CH714802A2 (en) | High entropy alloys for dressing components. | |
EP3819046B1 (en) | Method for manufacturing an optimised steel material | |
WO2019145434A1 (en) | Pivoting pin of a regulator | |
EP2655684B1 (en) | Method for reinforcing an alloy by plasma-nitriding | |
EP3819047B1 (en) | Optimised steel material | |
EP4381110A1 (en) | Alloy with complex composition | |
EP4073283A1 (en) | Nickel-based superalloy | |
EP3935200B1 (en) | Austenitic stainless steel nickel-free powder composition and part manufactured by sintering by means of said powder | |
CH715564B1 (en) | Composition of austenitic stainless steel powder without nickel and part produced by sintering of this powder. | |
EP3663273A1 (en) | Ceramic decorative item | |
WO2019058065A1 (en) | Alloy turbine component comprising a max phase | |
EP0947490B1 (en) | The use of a zirconia based article as wear resistant part of a wristwatch and method for its production | |
EP3274480B1 (en) | Single-phase alloy of gold and tungsten | |
EP3819044B1 (en) | Part comprising an optimised steel material and method for manufacturing same | |
EP3819045B1 (en) | Method for treating an optimised steel material | |
FR2952650A1 (en) | PROCESS FOR PRODUCING AN ALLOY REINFORCED BY A DISPERSION OF NANOPARTICLES BASED ON NITRIDE | |
FR3132913A1 (en) | Alloy powder, process for manufacturing a part based on this alloy and part thus obtained. | |
FR2795430A1 (en) | Sintered tungsten particularly for electrical applications is produced in available industrial equipment using, e.g., powdered nickel and cobalt as sintering activator | |
EP4039843A1 (en) | Non ferromagnetic alloy, manufacturing proccess therefore and clock movement component made of that alloy | |
FR3132912A1 (en) | Alloy powder, process for manufacturing a part based on this alloy and part thus obtained. | |
WO2024126739A1 (en) | Use of a triple-structured steel in an acidic environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240226 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_51411/2024 Effective date: 20240911 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 30/00 20060101ALI20241210BHEP Ipc: C22C 1/047 20230101ALI20241210BHEP Ipc: G04B 37/22 20060101ALI20241210BHEP Ipc: B22F 3/105 20060101ALI20241210BHEP Ipc: C22C 28/00 20060101ALI20241210BHEP Ipc: C22C 1/04 20230101AFI20241210BHEP |
|
INTG | Intention to grant announced |
Effective date: 20241220 |