[go: up one dir, main page]

EP4323468A1 - Scintillator material comprising a doped halide perovskite - Google Patents

Scintillator material comprising a doped halide perovskite

Info

Publication number
EP4323468A1
EP4323468A1 EP21786251.5A EP21786251A EP4323468A1 EP 4323468 A1 EP4323468 A1 EP 4323468A1 EP 21786251 A EP21786251 A EP 21786251A EP 4323468 A1 EP4323468 A1 EP 4323468A1
Authority
EP
European Patent Office
Prior art keywords
material according
chosen
perovskite
scintillation
positive integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21786251.5A
Other languages
German (de)
French (fr)
Inventor
Vladimir Ouspenski
Thierry Pauporte
Bruno Viana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Nationale Superieure de Chimie de Paris ENSCP
Luxium Solutions SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Saint Gobain Cristaux and Detecteurs SAS
Ecole Nationale Superieure de Chimie de Paris ENSCP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Saint Gobain Cristaux and Detecteurs SAS, Ecole Nationale Superieure de Chimie de Paris ENSCP filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4323468A1 publication Critical patent/EP4323468A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7428Halogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials

Definitions

  • Scintillator material comprising a doped halide perovskite
  • the invention relates to the field of scintillators which can be fitted to detectors of ionizing radiation such as X and gamma radiation and ionizing particles.
  • Ionizing radiation (which includes ionizing particles such as protons, neutrons, electrons, muons, alpha particles, ions, and X or gamma radiation) is usually detected using single crystal scintillators converting incident radiation into light, which is then transformed into an electrical signal using a photo-detector such as a photomultiplier.
  • An essential parameter for choosing the scintillator material is the scintillation efficiency, which corresponds to the number of photons per unit of energy of the ionizing radiation absorbed. The most common unit used to measure efficiency is the number of photons emitted per MeV of incident energy.
  • Amorphous materials possess defects in the structures which are responsible for trapping charge carriers during scattering such as electrons, holes and excitons responsible for energy transfer in the scintillation mechanism.
  • the inorganic scintillators usually used are for this reason crystalline, and very often monocrystalline.
  • they are preferably of relatively large size, that is to say of volume greater than 1 cm 3 in order to increase the probability of collision between high-energy particles and the scintillator material.
  • the scintillators used may in particular be single crystals of sodium iodide doped with thallium, cesium iodides doped with thallium or sodium, lanthanum halides doped with cerium or praseodymium. Crystals based on lanthanum halide have been the subject of work published in particular under US7067815, US7067816, US2005/188914, US2006/104880, US2007/241284.
  • lead halide perovskites As a detector, lead halide perovskites have shown interest in detecting ionizing radiation, due to their high stopping power, fault tolerance, high mobility and short lifetime, of their tunable bandwidth. In addition, it is possible to obtain them by simple growth of monocrystals resulting from conventional and inexpensive solution processes.
  • halogen-based perovskites can be of different types: a distinction is thus made between three-dimensional (or 3D) perovskites, two-dimensional (or 2D) perovskites and intermediate-dimensional (2D/3D) perovskites.
  • the halogen anions form octahedra linked by their vertices to form said three-dimensional structure, the cation B of an element such as lead being present in the middle of the octahedron and the cation A of largest size, typically an organic cation, is present between the octahedra.
  • Such materials having a 3D perovskite structure are for example the compounds of general formula MAPbXs where MA is methylammonium, Pb is lead and X is a halogen such as I, Br or Cl.
  • the object of the present invention is to provide new scintillating materials, in particular of so-called 2D or homologous structures, useful in particular in the fields of the detection of ionizing radiation such as X-rays, gamma rays, neutrons and whose synthesis is simple and inexpensive.
  • the invention relates to a scintillator material for an ionizing radiation detector comprising and preferably consisting of a halide perovskite, said perovskite corresponding to one of the following formulations:
  • n is a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and very preferably between 1 and 4, terminals included or
  • M is a metal preferably chosen from Pb, Bi, Ge or Sn
  • X is a halogen or a mixture of halogens chosen from Cl, Br, I, and in which said perovskite further comprises at least one scintillation activating element N (different from M).
  • halide perovskite corresponds to the formulation (A')2(A) n -i[M n X3n+i], n being preferably still equal to 1 or 2, or even equal to 1.
  • halide perovskite corresponds to the formulation (A')(A) P -i[M P X3p+i], (so-called Dion-Jacobson perovskite), A' preferably being 3-(aminomethyl) piperidinium ( or 3AMP) or 4-(aminomethyl)piperidinium (or 4AMP) and A preferably being methylammonium (MA), p still preferably being equal to 1 or 2, or even equal to 1.
  • halide perovskite corresponds to the formulation (A')2(A) q -i[M q X3q+3], q being preferably still equal to 1 or 2, or even equal to 1.
  • halide perovskite corresponds to the formulation (A′)2(A) m [MmXsm+2], m being preferably still equal to 1 or 2, or even equal to 1.
  • - Said activator element N is chosen from Sb, Bi, Pb, In and rare earth elements.
  • - Said activator element N is chosen from Bi, Eu, Sm, Tb, Yb.
  • activator element N is chosen from organic molecules exhibiting fluorescence properties in scintillators, in particular 1, 4-bis- (5-Phenyl oxazolyl-2) benzene (POPOP).
  • - Said material further comprises a neutron absorber selected from isotopes enriched with lithium-6, or boron-10.
  • - Said perovskite has the formulation (A')2(A) n -i[M n X3n+i] n is a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and in such a way very preferred between 1 and 4, terminals included.
  • Said perovskite has the formulation A2[MX4], in which M is preferably chosen from Pb, Ge or Sn.
  • the proportion of the activating element is such that, on an atomic basis, 1.0.10'4 ⁇ N/M ⁇ 0.1, preferably 1.0.10' 3 ⁇ N/M ⁇ 0.05 and preferably another 1.0.10'2 ⁇ N/M ⁇ 1.0.10' 1 .
  • the organic cation(s) A and/or A' are chosen from alkyl-ammonium R-NHs, in particular methylammonium, formamidinium, butylammonium, phenylammonium, phenylethylammonium, 5-Aminovaleric acid, benzylammonium, 3-(aminomethyl)piperidinium or 4-(aminomethyl)piperidinium.
  • the element M comprises Pb and more preferably is Pb.
  • the scintillation activating element comprises Bi and more preferably is Bi.
  • the M element comprises Bi and more preferably is Bi and the scintillation activating element comprises Pb and more preferably is Pb.
  • the element X comprises Cl and more preferably is Cl.
  • the element X is a mixture of at least two halogens chosen from Cl, Br and I.
  • the material comprises two activating elements, one of which has a +1 valence and the other a +III valence, in particular by an element chosen from K, Na, Li, Cs, Rb, Ag, Au or Cu and an element chosen from Bi, In, Sb, and the rare earths, in particular chosen from Eu, Sm, Tb, Yb.
  • - Said material is monocrystalline.
  • the invention also relates to a scintillator detector for ionizing radiation comprising the material as described above.
  • the scintillator detector notably comprises a photo-detector sensitive to a wavelength ranging from 300 nm to 800 nm.
  • the scintillator material according to the invention can be polycrystalline but is preferably monocrystalline.
  • a monocrystal according to the invention can be obtained very simply and inexpensively by a monocrystalline growth process well known to those skilled in the art under the name STL (Slow Temperature Lowering) as described for example in the publication cited above or even in the publication "Modulation in hybrid metal halide perovskites", Adv Mater. 2018; 30 (51).
  • STL Small Temperature Lowering
  • This method is based on the solubility properties of the solution of a precursor of the material in an aqueous solution (typically a halide of element A).
  • the growth of the crystal is obtained by cooling, the solvency of the precursor decreasing with the temperature.
  • the crystals were grown in a flask immersed in a thermostatic oil bath.
  • the initial chemical reagents are PbCl2 from Alfa Aesar 99.999%, benzylammonium chloride (BACI) (>98%) from TCI and Bih 99.999% from Alfa Aesar.
  • BACI benzylammonium chloride
  • the compounds are weighed to prepare 10 ml of a 0.1 M PbCl2 precursor solution.
  • the BACI:PbCl2 ratio was 2:1.
  • the precursors were dissolved in 10 ml of 37% hydrochloric acid (HCl).
  • 3 mol% Bih is added.
  • the flask containing 5 ml of solution is placed in a silicone oil bath heated by a heating plate so that the solution is 100% immersed in the oil and kept under stirring overnight at 50°C ( Figure 1). .
  • the temperature is then increased to 100°C. After a stabilization time of 30 minutes, the temperature is reduced very slowly (5° C./30 min). Each drop of 5°C (10 min) is followed by a stabilization of 20 min. The temperature is thus reduced until it reaches room temperature.
  • the crystals are then dried with paper at 50°C on the hot plate.
  • the crystals obtained are in the form of platelets with a length of 1.5 mm for a thickness of 0.2 to 0.3 mm.
  • Example 3 (comparative):
  • the reagents used are PbCl2 99.999%, from Alfa Aesar and MACI (methyl ammonium chloride) 99.999% from Alfa Aesar as well.
  • a solution of 1 mL precursors of 1 M concentration of PbCl2 is prepared.
  • the solvent used has a 1:1 ratio of DMF and dimethyl sulfoxide (DMSO).
  • 0.5mL of each of the reagents is added using a micropipette to a bottle containing the solvent.
  • the flask is placed in a silicone oil bath heated by a hot plate, the solution being 100% immersed in the oil, and kept stirred overnight at 50°C.
  • the solution is filtered with a 0.45 ⁇ m filter, the stoppered flask is placed in the oil bath so that the liquid/gas interface corresponds to the oil level.
  • the temperature is increased to 70°C for crystallization to occur. After an hour, a dozen transparent crystals appeared at the bottom of the solution. Three crystals are left in the solution and the others are removed. After an additional 6 hours the three crystals had reached a size of approximately 2mm in length by 1mm in thickness.
  • the crystals were placed in a vacuum chamber cooled to 14K and subjected to UV excitation by an LED device emitting 365 nm radiation. Emission spectra were recorded at 14K and ambient. The position of the maximum of the emission peak is reported in Table 1 below, as well as the emission color observed.
  • scintillation is the ability of a compound to become excited under incident excitation (such as X-rays) and release energy as photons in the visible range. Indeed, a central electron first enters an excited state in reaction to a high energy photon (of the order of keV or GeV) and, after several steps, several electrons can become de-excited in the valence band, thus releasing several visible photons.
  • an X-ray generator was used to irradiate them. Voltage and current were set for each experiment at 40keV and 25mA. The samples are placed in a cryostat under vacuum, at temperatures of 14K and at room temperature.
  • the radioluminescence spectra are recorded using a photodetector placed in the cryostat and the presence of a scintillation peak (photopeak) is observed.
  • a pulse height analyzer was used to measure the scintillation performance of the crystals under gamma radiation. Such an instrument records electronic pulses of different pitches from particle and event detectors, digitizes the pulse pitches, and records the number of pulses of each pitch in registers or channels, thus recording a "pitch spectrum impulse".
  • the crystal Exposed to a high energy source, the crystal produces photons which are detected by a photomultiplier regardless of the wavelength of the photon.
  • the detector used is sensitive from UV to IR and allows each photon to be counted. In this way, a scintillation histogram is obtained, with on the abscissa values proportional to the quantity of emitted light detected by the optical device (measured with a 137 Cs isotopic source with an Advanced Photonix APD 630-70-72-510 detector, said detector being at temperature of 270K), and on the ordinate the numbers of gamma photon interaction events with the scintillator.
  • the more the scintillation peak is observed with a high number of channels the higher the number of photons emitted per pulse. Furthermore, the presence of such a photo-peak makes it possible in particular to determine in particular whether the observed scintillation effect can be associated with sufficient energy resolution to allow possible discrimination of the energies of different isotopes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed is a scintillator material for an ionising radiation detector comprising a halide perovskite, the perovskite being of one of the following formulations: - (A')2(A)n-1[MnX3n+1], n being a positive whole number between 1 and 100, inclusive, or - (A')(A)p-1[MpX3p+1], p being a positive whole number between 1 and 100, inclusive, or - (A')2(A)m[MmX3m+2], m being a positive whole number between 1 and 100, inclusive, or - (A')2(A)q-1[MqX3q+3], q being a positive whole number between 1 and 100, inclusive; in which A and A' are organic cations, M is a metal chosen from Pb, Bi, Ge or Sn, X is a halogen or a mixture of halogen(s) chosen from Cl, Br, I, and in which the perovskite further comprises at least one scintillation activating element N.

Description

DESCRIPTION DESCRIPTION

Matériau scintillateur comprenant une pérovskite d’halogénure dopéeScintillator material comprising a doped halide perovskite

L’invention concerne le domaine des scintillateurs pouvant équiper les détecteurs de radiations ionisantes comme les rayonnements X et gamma et les particules ionisantes. The invention relates to the field of scintillators which can be fitted to detectors of ionizing radiation such as X and gamma radiation and ionizing particles.

Les radiations ionisantes (ce qui inclut les particules ionisantes comme notamment les protons, neutrons, électrons, muons, particules alpha, ions, et les rayonnements X ou gamma) sont habituellement détectées à l’aide de monocristaux scintillateurs convertissant les radiations incidentes en lumière, laquelle est alors transformée en un signal électrique à l’aide d’un photo-détecteur comme un photomultiplicateur. Un paramètre essentiel du choix du matériau scintillateur est le rendement de scintillation qui correspond au nombre de photons par unité d’énergie du rayonnement ionisant absorbé. L’unité la plus courante utilisée pour mesurer le rendement est le nombre de photons émis par MeV d’énergie incidente. Ionizing radiation (which includes ionizing particles such as protons, neutrons, electrons, muons, alpha particles, ions, and X or gamma radiation) is usually detected using single crystal scintillators converting incident radiation into light, which is then transformed into an electrical signal using a photo-detector such as a photomultiplier. An essential parameter for choosing the scintillator material is the scintillation efficiency, which corresponds to the number of photons per unit of energy of the ionizing radiation absorbed. The most common unit used to measure efficiency is the number of photons emitted per MeV of incident energy.

Les matériaux amorphes possèdent des défauts dans les structures qui sont responsables de piégeages de porteurs de charges pendant la diffusion comme électrons, trous et des excitons responsables de transfert d’énergie dans le mécanisme de scintillation. Les scintillateurs inorganiques utilisés habituellement sont pour cette raison cristallins, et très souvent monocristallins. Pour détecter efficacement les rayonnements ionisants, ils sont de préférence de taille relativement importante, c’est-à-dire de volume supérieur à 1 cm3 afin d’augmenter la probabilité de collision entre des particules de haute énergie et le matériau scintillateur. Amorphous materials possess defects in the structures which are responsible for trapping charge carriers during scattering such as electrons, holes and excitons responsible for energy transfer in the scintillation mechanism. The inorganic scintillators usually used are for this reason crystalline, and very often monocrystalline. To effectively detect ionizing radiation, they are preferably of relatively large size, that is to say of volume greater than 1 cm 3 in order to increase the probability of collision between high-energy particles and the scintillator material.

Les scintillateurs utilisés peuvent notamment être des monocristaux d’iodure de sodium dopés au thallium, des iodures de césium dopés au thallium ou au sodium, des halogénures de lanthane dopés au cérium ou au praséodyme. Les cristaux à base d’halogénure de lanthane ont fait l’objet de travaux publiés notamment sous US7067815, US7067816, US2005/188914, US2006/104880, US2007/241284.The scintillators used may in particular be single crystals of sodium iodide doped with thallium, cesium iodides doped with thallium or sodium, lanthanum halides doped with cerium or praseodymium. Crystals based on lanthanum halide have been the subject of work published in particular under US7067815, US7067816, US2005/188914, US2006/104880, US2007/241284.

Plus récemment, dans la publication scientifique « Scintillation Properties of a Crystal of (C6Hs(CH2)(2)NH3)(2)PbBr4 », IEEE, New York (2009), il a été proposé un cristal de scintillateur organique-inorganique à base d’halogénure de plomb et présentant la structure pérovskite. La scintillation, mesurée sous une énergie gamma de 662 keV, et les propriétés de luminescence ont été étudiées sur des monocristaux de dimensions 5 x 6 x 1 mm3. Le rendement lumineux de scintillation a été mesuré à des valeurs de l'ordre de 10 000 photons par MeV dans les conditions de basses températures (azote liquide). More recently, in the scientific publication "Scintillation Properties of a Crystal of (C6Hs(CH2)(2)NH3)(2)PbBr4", IEEE, New York (2009), an organic-inorganic scintillator crystal with based on lead halide and exhibiting the perovskite structure. The scintillation, measured under a gamma energy of 662 keV, and the luminescence properties were studied on monocrystals of dimensions 5 x 6 x 1 mm 3 . The scintillation light yield was measured at values of the order of 10,000 photons per MeV under low temperature conditions (liquid nitrogen).

En tant que détecteur, les pérovskites aux halogénures de plomb ont montré un intérêt pour la détection des rayonnements ionisants, en raison de leur fort pouvoir d'arrêt, de leur tolérance aux défauts, de leur grande mobilité et de leur durée de vie courte, de leur bande passante accordable. En outre il est possible de les obtenir par croissance simple de monocristaux issus de procédés en solution classiques et peu coûteux. As a detector, lead halide perovskites have shown interest in detecting ionizing radiation, due to their high stopping power, fault tolerance, high mobility and short lifetime, of their tunable bandwidth. In addition, it is possible to obtain them by simple growth of monocrystals resulting from conventional and inexpensive solution processes.

Dans la publication “Halide lead perovskites for ionizing radiation detection,” Nature Communications, 10, 12 (2019), il est indiqué que le rendement lumineux potentiel de ces monocristaux de pérovskite pourrait être estimé entre 120 000 et 270 000 photons/MeV en raison de la largeur de la bande interdite relativement faible de ces matériaux (qui peut être inférieure à 2 eV). In the publication “Halide lead perovskites for ionizing radiation detection,” Nature Communications, 10, 12 (2019), it is stated that the potential light yield of these perovskite single crystals could be estimated between 120,000 and 270,000 photons/MeV due to the relatively small band gap width of these materials (which may be less than 2 eV).

Plus généralement, les pérovskites à base d’halogène peuvent être de différents types : on distingue ainsi les pérovskites tridimensionnelles (ou 3D), les pérovskites bidimensionnelles (ou 2D) et les pérovskites de dimension intermédiaire (2D/3D).More generally, halogen-based perovskites can be of different types: a distinction is thus made between three-dimensional (or 3D) perovskites, two-dimensional (or 2D) perovskites and intermediate-dimensional (2D/3D) perovskites.

Dans une structure tridimensionnelle classique de formule générale ABXs, les anions halogènes forment des octaèdres liés par leurs sommets pour former ladite structure tridimensionnelle, le cation B d’un élément tel que le plomb étant présent au milieu de l’octaèdre et le cation A de plus grande taille, typiquement un cation organique, est présent entre les octaèdres. In a classical three-dimensional structure of general formula ABXs, the halogen anions form octahedra linked by their vertices to form said three-dimensional structure, the cation B of an element such as lead being present in the middle of the octahedron and the cation A of largest size, typically an organic cation, is present between the octahedra.

De tels matériaux présentant une structure pérovskite 3D sont par exemple les composés de formule générale MAPbXs où MA est le méthylammonium, Pb est le plomb et X est un halogène comme I, Br ou Cl. Such materials having a 3D perovskite structure are for example the compounds of general formula MAPbXs where MA is methylammonium, Pb is lead and X is a halogen such as I, Br or Cl.

Alternativement, le matériau peut présenter une structure cristalline cette fois 2D ou homologue (apparentée), dite bidimensionnelle, c'est-à-dire que la structure cristalline se caractérise par une alternance de n couches d’octaèdres de type pérovskite liés par les sommets et séparées par une couche du cation organique A formant un plan séparant les octaèdres. Plus précisément, on parle de structure 2D lorsque n=1 et de structure 2D homologue ou apparentée pour n>1. La présente invention concerne de telles structures 2D ou homologues. Une représentation schématique de ces deux arrangements possibles est notamment décrite dans la publication « Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors » Chem Mater. 2016 ou encore dans la publication “X-ray Scintillation in Lead Halide Perovskite Crystals,” Scientific Reports, 6, 10 (2016). Cette dernière publication traite également des caractéristiques des scintillateurs à rayons X des cristaux tridimensionnels (3D) de MAPbh et MAPbBrs (MA étant le méthylammonium) et des cristaux bidimensionnels (2D) de pérovskite (EDBE)PbCI4 (EDBE est le 2,2’- ethylènedioxy)bis(ethylammonium). Il est rapporté dans cette dernière publication que la grande énergie de liaison des excitons dans le matériau 2D réduit considérablement les effets thermiques par rapport aux pérovskites 3D, et qu’un rendement lumineux limité de 9 000 photons/MeV pouvait être cependant obtenu, même à température ambiante. Alternatively, the material can present a crystalline structure this time 2D or homologous (related), called two-dimensional, that is to say that the crystalline structure is characterized by an alternation of n layers of octahedrons of the perovskite type linked by the vertices and separated by a layer of the organic cation A forming a plane separating the octahedra. More precisely, we speak of a 2D structure when n=1 and of a homologous or related 2D structure for n>1. The present invention relates to such 2D structures or counterparts. A schematic representation of these two possible arrangements is notably described in the publication “Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors” Chem Mater. 2016 or in the publication “X-ray Scintillation in Lead Halide Perovskite Crystals,” Scientific Reports, 6, 10 (2016). This latest publication also discusses the X-ray scintillator characteristics of three-dimensional (3D) crystals of MAPbh and MAPbBrs (MA being methylammonium) and two-dimensional (2D) crystals of perovskite (EDBE)PbCI 4 (EDBE is the 2,2' - ethylenedioxy)bis(ethylammonium). It is reported in the latter publication that the large binding energy of excitons in the 2D material significantly reduces thermal effects compared to 3D perovskites, and that a limited light yield of 9000 photons/MeV could be however obtained, even at ambient temperature.

L’objet de la présente invention est de fournir de nouveaux matériaux scintillateurs, en particulier de structures dites 2D ou homologues, utiles notamment dans les domaines de la détection des rayonnements ionisants tels que les rayons X, les rayons gamma, les neutrons et dont la synthèse est simple et peu coûteuse. The object of the present invention is to provide new scintillating materials, in particular of so-called 2D or homologous structures, useful in particular in the fields of the detection of ionizing radiation such as X-rays, gamma rays, neutrons and whose synthesis is simple and inexpensive.

Plus précisément l’invention concerne un matériau scintillateur pour détecteur de radiations ionisantes comprenant et de préférence constitué par une pérovskite d’halogénure, ladite pérovskite répondant à l’une des formulations suivantes : More specifically, the invention relates to a scintillator material for an ionizing radiation detector comprising and preferably consisting of a halide perovskite, said perovskite corresponding to one of the following formulations:

- (A')2(A)n-i [MnXsn+i], où n est un nombre entier positif compris entre 1 et 100 bornes incluses, de préférence compris entre 1 et 10 bornes incluses et de manière très préférée compris entre 1 et 4, bornes incluses ou - (A')2(A) n -i [MnXsn+i], where n is a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and very preferably between 1 and 4, terminals included or

- (A')(A)p-i[MPX3p+i], où p est un nombre entier positif compris entre 1 et 100 bornes incluses, de préférence compris entre 1 et 10 bornes incluses et de manière très préférée compris entre 1 et 4, bornes incluses ou - (A')(A)pi[M P X3p+i], where p is a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and very preferably between 1 and 4, terminals included or

- (A')2(A)m [MmXsm+2], avec m un nombre entier positif compris entre 1 et 100 bornes incluses, de préférence compris entre 1 et 10 bornes incluses et de manière très préférée compris entre 1 et 4, bornes incluses ou - (A')2(A)m [MmXsm+2], with m a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and very preferably between 1 and 4, terminals included or

- (A')2(A)q-i [MqXsq+s], avec q un nombre entier positif compris entre 1 et 100 bornes incluses, de préférence compris entre 1 et 10 bornes incluses et de manière très préférée compris entre 1 et 4, bornes incluses ; où A et A' sont des cations organiques, M est un métal de préférence choisi parmi Pb, Bi, Ge ou Sn, X est un halogène ou un mélange d’halogènes choisi(s) parmi Cl, Br, I, et dans lequel ladite pérovskite comprend en outre au moins un élément activateur N (différent de M) de la scintillation. - (A')2(A) q -i [MqXsq+s], with q a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and very preferably between 1 and 4, terminals included; where A and A' are organic cations, M is a metal preferably chosen from Pb, Bi, Ge or Sn, X is a halogen or a mixture of halogens chosen from Cl, Br, I, and in which said perovskite further comprises at least one scintillation activating element N (different from M).

Selon des modes préférés de l’invention, qui peuvent bien évidemment être combinés entre eux le cas échéant : According to preferred embodiments of the invention, which can of course be combined with each other if necessary:

- Ladite pérovskite d’halogénure répond à la formulation (A')2(A)n-i[MnX3n+i], n étant de préférence encore égal à 1 ou 2, ou même égal à 1 . - Said halide perovskite corresponds to the formulation (A')2(A) n -i[M n X3n+i], n being preferably still equal to 1 or 2, or even equal to 1.

- Ladite pérovskite d’halogénure répond à la formulation (A')(A)P-i[MPX3p+i], (perovkskite dite de Dion-Jacobson), A’ étant de préférence le 3-(aminomethyl) piperidinium (ou 3AMP) ou le 4-(aminomethyl)piperidinium (ou 4AMP) et A étant de préférence le méthylammonium (MA), p étant de préférence encore égal à 1 ou 2, ou même égal à 1 . - Said halide perovskite corresponds to the formulation (A')(A) P -i[M P X3p+i], (so-called Dion-Jacobson perovskite), A' preferably being 3-(aminomethyl) piperidinium ( or 3AMP) or 4-(aminomethyl)piperidinium (or 4AMP) and A preferably being methylammonium (MA), p still preferably being equal to 1 or 2, or even equal to 1.

- Ladite pérovskite d’halogénure répond à la formulation (A')2(A)q-i[MqX3q+3], q étant de préférence encore égal à 1 ou 2, ou même égal à 1 . - Said halide perovskite corresponds to the formulation (A')2(A) q -i[M q X3q+3], q being preferably still equal to 1 or 2, or even equal to 1.

- Ladite pérovskite d’halogénure répond à la formulation (A')2(A)m [MmXsm+2], m étant de préférence encore égal à 1 ou 2, ou même égal à 1 . - Said halide perovskite corresponds to the formulation (A′)2(A) m [MmXsm+2], m being preferably still equal to 1 or 2, or even equal to 1.

- Ledit élément activateur N est choisi parmi Sb, Bi, Pb, In et les éléments terres rares. - Said activator element N is chosen from Sb, Bi, Pb, In and rare earth elements.

- Ledit élément activateur N est choisi parmi Bi, Eu, Sm, Tb, Yb. - Said activator element N is chosen from Bi, Eu, Sm, Tb, Yb.

- Ledit élément activateur N est choisi parmi les molécules organiques présentant des propriétés de fluorescence dans les scintillateurs, en particulier le 1 , 4-bis- (5-Phenyl oxazolyl-2)- benzene (POPOP). - Said activator element N is chosen from organic molecules exhibiting fluorescence properties in scintillators, in particular 1, 4-bis- (5-Phenyl oxazolyl-2) benzene (POPOP).

- Ledit matériau comprend en outre un absorbeur neutronique choisi parmi des isotopes enrichis du lithium-6, ou du bore-10. - Said material further comprises a neutron absorber selected from isotopes enriched with lithium-6, or boron-10.

- Ladite pérovskite présente la formulation (A')2(A)n-i[MnX3n+i] n est un nombre entier positif compris entre 1 et 100 bornes incluses, de préférence compris entre 1 et 10 bornes incluses et de manière très préférée compris entre 1 et 4, bornes incluses. - Said perovskite has the formulation (A')2(A) n -i[M n X3n+i] n is a positive integer between 1 and 100 limits inclusive, preferably between 1 and 10 limits inclusive and in such a way very preferred between 1 and 4, terminals included.

- Ladite pérovskite présente la formulation A2[MX4], dans lequel M est de préférence choisi parmi Pb, Ge ou Sn. - La proportion de l’élément activateur est telle que, sur une base atomique, 1 ,0.10’ 4<N/M<0,1 , de préférence 1 ,0.10’3<N/M<0,05 et de de préférence encore 1 ,0.10’ 2<N/M<1 ,0.10’1. - Said perovskite has the formulation A2[MX4], in which M is preferably chosen from Pb, Ge or Sn. - The proportion of the activating element is such that, on an atomic basis, 1.0.10'4<N/M<0.1, preferably 1.0.10' 3 <N/M<0.05 and preferably another 1.0.10'2<N/M<1.0.10' 1 .

- Le ou les cations organiques A et/ou A’ sont choisis parmi les alkyls-ammoniums R-NHs, en particulier le méthylammonium, le formamidinium, le butylammonium, le phénylammonium, le phenylethylammonium, l’acide 5-Aminovalérique, le benzylammonium, le 3-(aminomethyl)piperidinium ou te 4- (aminomethyl)piperidinium. - The organic cation(s) A and/or A' are chosen from alkyl-ammonium R-NHs, in particular methylammonium, formamidinium, butylammonium, phenylammonium, phenylethylammonium, 5-Aminovaleric acid, benzylammonium, 3-(aminomethyl)piperidinium or 4-(aminomethyl)piperidinium.

- L’élément M comprend Pb et de préférence encore est Pb. - The element M comprises Pb and more preferably is Pb.

- L’élément activateur de la scintillation comprend Bi et de préférence encore est Bi. - The scintillation activating element comprises Bi and more preferably is Bi.

- L’élément M comprend Bi et de préférence encore est Bi et l’élément activateur de la scintillation comprend Pb et de préférence encore est Pb. - The M element comprises Bi and more preferably is Bi and the scintillation activating element comprises Pb and more preferably is Pb.

- L’élément X comprend Cl et de préférence encore est Cl. - The element X comprises Cl and more preferably is Cl.

- L’élément X est un mélange d’au moins deux halogènes choisis parmi Cl, Br et I.- The element X is a mixture of at least two halogens chosen from Cl, Br and I.

- Le matériau comprend deux éléments activateurs dont l’un a une valence +l et l’autre une valence +III, en particulier par un élément choisi parmi K, Na, Li, Cs, Rb, Ag, Au ou Cu et un élément choisi parmi Bi, In, Sb, et les terres rares, en particulier choisi parmi Eu, Sm, Tb, Yb. - The material comprises two activating elements, one of which has a +1 valence and the other a +III valence, in particular by an element chosen from K, Na, Li, Cs, Rb, Ag, Au or Cu and an element chosen from Bi, In, Sb, and the rare earths, in particular chosen from Eu, Sm, Tb, Yb.

- Ledit matériau est monocristallin. - Said material is monocrystalline.

L’invention se rapporte également à un détecteur scintillateur de radiations ionisantes comprenant le matériau tel que décrit précédemment. The invention also relates to a scintillator detector for ionizing radiation comprising the material as described above.

Le détecteur scintillateur comprend notamment un photo-détecteur sensible à une longueur d’onde allant de 300 nm à 800 nm. The scintillator detector notably comprises a photo-detector sensitive to a wavelength ranging from 300 nm to 800 nm.

Le matériau scintillateur selon l’invention peut être polycristallin mais est de préférence monocristallin. The scintillator material according to the invention can be polycrystalline but is preferably monocrystalline.

Un monocristal selon l’invention peut être obtenu très simplement de manière peu coûteuse par un procédé de croissance monocristalline bien connu de l’homme du métier sous la dénomination STL (Slow Temperature Lowering) tel que décrit par exemple dans la publication citée précédemment ou encore dans la publication « Modulation in hybrid metal halide perovskites », Adv Mater. 2018 ; 30 (51 ). Cette méthode se base sur les propriétés de solubilité de la solution d’un précurseur du matériau dans une solution aqueuse (typiquement un halogénure de l’élément A). La croissance du cristal est obtenue par refroidissement, la solvabilité du précurseur diminuant avec la température. A monocrystal according to the invention can be obtained very simply and inexpensively by a monocrystalline growth process well known to those skilled in the art under the name STL (Slow Temperature Lowering) as described for example in the publication cited above or even in the publication "Modulation in hybrid metal halide perovskites", Adv Mater. 2018; 30 (51). This method is based on the solubility properties of the solution of a precursor of the material in an aqueous solution (typically a halide of element A). The growth of the crystal is obtained by cooling, the solvency of the precursor decreasing with the temperature.

D’autres méthodes de croissance cristalline sont bien évidemment également envisageables selon l’invention comme les techniques dites « Anti- Solvent Vapor assisted method » ou « Inverse Temperature Crystallization » selon les termes anglais habituellement utilisées. Other crystal growth methods can obviously also be envisaged according to the invention, such as the techniques known as “Anti-Solvent Vapor assisted method” or “Inverse Temperature Crystallization” according to the English terms usually used.

L’invention et ses avantages seront mieux compris à la lecture des exemples selon l’invention et comparatifs qui suivent : The invention and its advantages will be better understood on reading the examples according to the invention and the comparisons which follow:

Exemple 1 (invention): Example 1 (invention):

Dans cet exemple on a synthétisé une pérovskite à base d’halogène bidimensionnelle (ou 2D). Plus précisément on a synthétisé la forme BA2PbCl4 (BA = benzylammonium) comprenant en outre du Bismuth en procédant de la manière suivante : In this example, a two-dimensional (or 2D) halogen-based perovskite was synthesized. More specifically, the BA2PbCl4 (BA = benzylammonium) form was synthesized further comprising Bismuth by proceeding as follows:

Les cristaux ont été cultivés dans un flacon immergé dans un bain d'huile thermostatique. Les réactifs chimiques initiaux sont le PbCl2 d'Alfa Aesar 99,999%, le chlorure de benzylammonium (BACI) (>98%) de la société TCI et Bih 99,999% de Alfa aesar. The crystals were grown in a flask immersed in a thermostatic oil bath. The initial chemical reagents are PbCl2 from Alfa Aesar 99.999%, benzylammonium chloride (BACI) (>98%) from TCI and Bih 99.999% from Alfa Aesar.

Les composés sont pesés pour préparer 10 ml d’une solution de précurseurs à 0,1 M de PbCl2. Le rapport BACI:PbCl2 était de 2:1. Les précurseurs ont été dissous dans 10 ml d'acide chlorhydrique (HCl) à 37 %. Ensuite, 3 % molaire de Bih sont ajoutés. Le flacon contenant 5 ml de solution est placé dans un bain d'huile de silicone chauffé par une plaque chauffante afin que la solution soit immergée à 100% dans l'huile et maintenu sous agitation pendant une nuit à 50°C (Figure 1 ). La température est ensuite augmentée jusqu’à 100°C. Après un temps de stabilisation de 30 minutes, la température est diminuée très lentement (5°C/30min). Chaque baisse de 5°C (10 min) est suivie d'une stabilisation de 20min. La température est ainsi diminuée jusqu'à atteindre la température ambiante. Les cristaux sont ensuite séchés avec du papier à 50°C sur la plaque chauffante. Les cristaux obtenus se présentent sous forme de plaquettes avec une longueur de 1 ,5mm pour une épaisseur de 0,2 à 0,3mm. The compounds are weighed to prepare 10 ml of a 0.1 M PbCl2 precursor solution. The BACI:PbCl2 ratio was 2:1. The precursors were dissolved in 10 ml of 37% hydrochloric acid (HCl). Then 3 mol% Bih is added. The flask containing 5 ml of solution is placed in a silicone oil bath heated by a heating plate so that the solution is 100% immersed in the oil and kept under stirring overnight at 50°C (Figure 1). . The temperature is then increased to 100°C. After a stabilization time of 30 minutes, the temperature is reduced very slowly (5° C./30 min). Each drop of 5°C (10 min) is followed by a stabilization of 20 min. The temperature is thus reduced until it reaches room temperature. The crystals are then dried with paper at 50°C on the hot plate. The crystals obtained are in the form of platelets with a length of 1.5 mm for a thickness of 0.2 to 0.3 mm.

Exemple 2 (comparatif) : Example 2 (comparative):

Dans cet exemple on a procédé comme pour l’exemple 1 selon l’invention on n’a pas introduit l’élément Bismuth dans la composition du cristal. Exemple 3 (comparatif) : In this example, the procedure was as for Example 1 according to the invention, the Bismuth element was not introduced into the composition of the crystal. Example 3 (comparative):

Dans cet exemple on a synthétisé une pérovskite à base d’halogène cette fois tridimensionnelle (ou 3D). Plus précisément on a synthétisé la forme MAPbCIs (MA = méthyl ammonium) en procédant de la manière suivante : In this example, a three-dimensional (or 3D) halogen-based perovskite was synthesized. More specifically, the MAPbCIs form (MA = methyl ammonium) was synthesized by proceeding as follows:

Les réactifs utilisés sont le PbCl2 99,999%, provenant de la société Alfa Aesar et du MACI (chlorure de méthyl ammonium) 99,999% d'Alfa Aesar également. On prépare une solution de précurseurs de 1 mL de concentration 1 M de PbCl2. Le solvant utilisé présente un rapport 1 :1 de DMF et de diméthylsulfoxyde (DMSO). 0,5mL de chacun des réactifs est ajouté grâce à une micropipette dans un flacon contenant le solvant. Le flacon est placé dans un bain d'huile de silicone chauffé par une plaque chauffante, la solution étant immergée à 100% dans l'huile, et maintenu agité pendant une nuit à 50°C. La solution est filtrée avec un filtre de 0,45pm, le flacon bouché est placé dans le bain d'huile afin que l'interface liquide/gaz corresponde au niveau d'huile. La température est augmentée à 70°C pour que la cristallisation se produise. Au bout d'une heure, une douzaine de cristaux transparents sont apparus au fond de la solution. Trois cristaux sont laissés dans la solution et les autres sont retirés. Au bout de 6 heures supplémentaires les trois cristaux ont atteint une taille d’environ 2mm de longueur sur 1 mm d’épaisseur. The reagents used are PbCl2 99.999%, from Alfa Aesar and MACI (methyl ammonium chloride) 99.999% from Alfa Aesar as well. A solution of 1 mL precursors of 1 M concentration of PbCl2 is prepared. The solvent used has a 1:1 ratio of DMF and dimethyl sulfoxide (DMSO). 0.5mL of each of the reagents is added using a micropipette to a bottle containing the solvent. The flask is placed in a silicone oil bath heated by a hot plate, the solution being 100% immersed in the oil, and kept stirred overnight at 50°C. The solution is filtered with a 0.45 µm filter, the stoppered flask is placed in the oil bath so that the liquid/gas interface corresponds to the oil level. The temperature is increased to 70°C for crystallization to occur. After an hour, a dozen transparent crystals appeared at the bottom of the solution. Three crystals are left in the solution and the others are removed. After an additional 6 hours the three crystals had reached a size of approximately 2mm in length by 1mm in thickness.

Analyse et résultats : Analysis and results:

Les cristaux obtenus selon les exemples 1 à 3 sont analysés par les techniques suivantes : The crystals obtained according to Examples 1 to 3 are analyzed by the following techniques:

A. Spectroscopie UV A. UV spectroscopy

Les cristaux ont été placés dans une enceinte sous vide refroidie à 14K et soumis à une excitation UV par un dispositif LED émettant une radiation de 365 nm. Les spectres d’émission ont été enregistrés à 14K et à l’ambiante. La position du maximum du pic d’émission est reportée dans le tableau 1 qui suit, ainsi que la couleur d’émission observée. The crystals were placed in a vacuum chamber cooled to 14K and subjected to UV excitation by an LED device emitting 365 nm radiation. Emission spectra were recorded at 14K and ambient. The position of the maximum of the emission peak is reported in Table 1 below, as well as the emission color observed.

B. Radioluminescence sous excitation X B. Radioluminescence under X-excitation

Comme indiqué précédemment, la scintillation est la capacité d'un composé à s'exciter sous une excitation incidente (telle que des rayons X) et à restituer l'énergie sous la forme de photons dans le domaine du visible. En effet, un électron central entre d'abord dans un état excité en réaction à un photon de haute énergie (de l’ordre du keV ou du GeV) et, après plusieurs étapes, plusieurs électrons peuvent se désexciter dans la bande de valence, libérant ainsi plusieurs photons visibles. Afin de vérifier la scintillation des cristaux selon les exemples 1 à 3 précédents, un générateur de rayons X a été utilisé pour irradier ceux-ci. La tension et l'intensité ont été fixées pour chaque expérience à 40keV et 25mA. Les échantillons sont placés dans un cryostat sous vide, à des températures de 14K et à l’ambiante.As stated earlier, scintillation is the ability of a compound to become excited under incident excitation (such as X-rays) and release energy as photons in the visible range. Indeed, a central electron first enters an excited state in reaction to a high energy photon (of the order of keV or GeV) and, after several steps, several electrons can become de-excited in the valence band, thus releasing several visible photons. In order to verify the scintillation of the crystals according to examples 1 to 3 above, an X-ray generator was used to irradiate them. Voltage and current were set for each experiment at 40keV and 25mA. The samples are placed in a cryostat under vacuum, at temperatures of 14K and at room temperature.

Les spectres de radioluminescence sont enregistrés grâce à un photodétecteur placé dans le cryostat et la présence d’un pic de scintillation (photopic) est observée. The radioluminescence spectra are recorded using a photodetector placed in the cryostat and the presence of a scintillation peak (photopeak) is observed.

Les résultats obtenus à 14K et à l’ambiante sont reportés dans le tableau 1 qui suit. The results obtained at 14K and at room temperature are reported in Table 1 below.

C. Spectre de hauteur d’impulsion (pulse height) C. Pulse height spectrum

On a utilisé un analyseur de hauteur d'impulsion pour mesurer les performances de scintillation des cristaux sous un rayonnement gamma. Un tel instrument enregistre des impulsions électroniques de différentes hauteurs provenant de détecteurs de particules et d'événements, numérise les hauteurs d'impulsion et enregistre le nombre d'impulsions de chaque hauteur dans des registres ou des canaux, enregistrant ainsi un "spectre de hauteur d'impulsion". A pulse height analyzer was used to measure the scintillation performance of the crystals under gamma radiation. Such an instrument records electronic pulses of different pitches from particle and event detectors, digitizes the pulse pitches, and records the number of pulses of each pitch in registers or channels, thus recording a "pitch spectrum impulse".

L’intensité de scintillation a été enregistrée à température ambiante dans une boîte à gants en utilisant une source gamma de 137Cs à 662 keV. On a utilisé comme photo-détecteur une photodiode à avalanche Photonix APD (type 630-70-72-510) sans fenêtre, sous 1600 V de tension et refroidie à 250 K. Le signal de sortie a été amplifié avec des conditions de « shaping time » de 6 ps par un amplificateur spectroscopique ORTEC 672. Afin de maximiser la collecte de lumière, les échantillons ont été enveloppés de poudre de Téflon puis comprimés (selon la technique décrite dans J. T. M. de Haas and P. Dorenbos, IEEE Trans. Nucl. Sci. 55, 1086 (2008)), hormis la face clivée destinée au couplage avec la photodiode. Exposé à une source d'énergie élevée, le cristal produit des photons qui sont détectés par un photomultiplicateur quelle que soit la longueur d'onde du photon. Le détecteur utilisé est sensible depuis l'UV jusqu’à l'IR et permet de compter chaque photon. On obtient de cette manière un histogramme de scintillation, avec en abscisse des valeurs proportionnelles à la quantité de lumière émise détectée par le dispositif optique (mesurées avec une source isotopique 137Cs avec un détecteur Advanced Photonix APD 630-70-72-510, ledit détecteur étant à la température de 270K), et en ordonnée les nombres d’évènements d’interaction photons gamma avec le scintillateur. Selon cette expérimentation, plus le pic de scintillation est observé avec un nombre de canaux élevé, plus le nombre de photons émis par impulsion est élevé. En outre, la présence d’un tel photo-pic permet notamment de déterminer en particulier si l’effet de scintillation observé peut être associé avec une résolution énergétique suffisante pour permettre une discrimination possible des énergies de différents isotopes. Scintillation intensity was recorded at room temperature in a glove box using a 137 Cs gamma source at 662 keV. We used as photo-detector a Photonix APD avalanche photodiode (type 630-70-72-510) without window, under 1600 V voltage and cooled to 250 K. The output signal was amplified with "shaping" conditions. time” of 6 ps by an ORTEC 672 spectroscopic amplifier. In order to maximize light collection, the samples were wrapped in Teflon powder and then compressed (according to the technique described in JTM de Haas and P. Dorenbos, IEEE Trans. Nucl. Sci. 55, 1086 (2008)), except for the cleaved face intended for coupling with the photodiode. Exposed to a high energy source, the crystal produces photons which are detected by a photomultiplier regardless of the wavelength of the photon. The detector used is sensitive from UV to IR and allows each photon to be counted. In this way, a scintillation histogram is obtained, with on the abscissa values proportional to the quantity of emitted light detected by the optical device (measured with a 137 Cs isotopic source with an Advanced Photonix APD 630-70-72-510 detector, said detector being at temperature of 270K), and on the ordinate the numbers of gamma photon interaction events with the scintillator. According to this experiment, the more the scintillation peak is observed with a high number of channels, the higher the number of photons emitted per pulse. Furthermore, the presence of such a photo-peak makes it possible in particular to determine in particular whether the observed scintillation effect can be associated with sufficient energy resolution to allow possible discrimination of the energies of different isotopes.

Tous les résultats obtenus pour les analyses A à C effectués sur les cristaux des exemples 1 à 3 sont rassemblées dans le tableau 1 qui suit. All the results obtained for the analyzes A to C carried out on the crystals of Examples 1 to 3 are collated in Table 1 below.

[Tableau 1] [Table 1]

Les propriétés améliorées de scintillation du cristal selon l’exemple 1 selon l’invention sont visibles dans les données reportées dans le tableau 1 . Les données représentatives de la scintillation sous excitation X ou sous excitation y apparaissent ainsi significativement améliorées par rapport aux matériaux comparatifs. The improved scintillation properties of the crystal according to Example 1 according to the invention are visible in the data given in Table 1. Data representative of scintillation under X-excitation or under excitation thus appear significantly improved therein compared to the comparative materials.

Claims

REVENDICATIONS 1. Matériau scintillateur pour détecteur de radiations ionisantes comprenant une pérovskite d’halogénure, ladite pérovskite répondant à l’une des formulations suivantes : 1. Scintillator material for an ionizing radiation detector comprising a halide perovskite, said perovskite having one of the following formulations: - (A')2(A)n-i [MnXsn+i] avec n un nombre entier positif compris entre 1 et 100, bornes incluses, ou - (A')2(A) n -i [MnXsn+i] with n a positive integer between 1 and 100, limits included, or - (A')(A)p-i[MPX3p+i] avec p un nombre entier positif compris entre 1 et 100, bornes incluses, ou - (A')(A)pi[M P X3p+i] with p a positive integer between 1 and 100, limits included, or - (A')2(A)m [MmXsm+2], avec m un nombre entier positif compris entre 1 et 100, bornes incluses ou - (A')2(A)m [MmXsm+2], with m a positive integer between 1 and 100, limits included or - (A')2(A)q-i [MqXsq+s], avec q un nombre entier positif compris entre 1 et 100, bornes incluses ; où A et A' sont des cations organiques, M est un métal choisi parmi Pb, Bi, Ge ou Sn, X est un halogène ou un mélange d’halogènes choisi(s) parmi Cl, Br, I, et dans lequel ladite pérovskite comprend en outre au moins un élément activateur N de la scintillation. - (A')2(A) q -i [MqXsq+s], with q a positive integer between 1 and 100, limits included; where A and A' are organic cations, M is a metal chosen from Pb, Bi, Ge or Sn, X is a halogen or a mixture of halogens chosen from Cl, Br, I, and in which said perovskite further comprises at least one N scintillation activating element. 2. Matériau selon la revendication précédente, dans lequel ledit élément activateur N est choisi parmi Sb, Bi, Pb, In et les éléments terres rares. 2. Material according to the preceding claim, in which said activator element N is chosen from Sb, Bi, Pb, In and rare earth elements. 3. Matériau selon la revendication précédente, dans lequel ledit élément activateur N est choisi parmi Bi, Eu, Sm, Tb, Yb. 3. Material according to the preceding claim, in which said activator element N is chosen from Bi, Eu, Sm, Tb, Yb. 4. Matériau selon la revendication 1 , dans lequel ledit élément activateur N est choisi parmi les molécules organiques présentant des propriétés de fluorescence dans les scintil lateurs, en particulier le 1 , 4-bis- (5-Phenyl oxazolyl- 2)- benzene (POPOP). 4. Material according to claim 1, in which said activator element N is chosen from organic molecules exhibiting fluorescence properties in scintillators, in particular 1, 4-bis-(5-Phenyl oxazolyl-2)-benzene ( POPOP). 5. Matériau selon l’une des revendications précédentes, comprenant en outre un absorbeur neutronique choisi parmi des isotopes enrichis du lithium-6, ou du bore-10. 5. Material according to one of the preceding claims, further comprising a neutron absorber chosen from isotopes enriched with lithium-6, or boron-10. 6. Matériau selon l’une des revendications précédentes, dans lequel ladite pérovskite présente la formulation A2[MX4], dans lequel M est de préférence choisi parmi Pb, Ge ou Sn. 6. Material according to one of the preceding claims, in which the said perovskite has the formulation A2[MX4], in which M is preferably chosen from Pb, Ge or Sn. 7. Matériau selon l’une des revendications précédentes, dans lequel la proportion de l’élément activateur est telle que, sur une base atomique, 1 ,0.10’4<N/M<0,1 . Matériau selon l’une des revendications précédentes, dans lequel le ou les cations organiques A et/ou A’ sont choisis parmi les alkyls-ammoniums R-NHs, en particulier le méthylammonium, le formamidinium, le butylammonium, le phénylammonium, le phenylethylammonium, l’acide 5-Aminovalérique, le benzylammonium, le 3~(aminomethyl)piperidinium ou le 4- (a m inomethyl )piperid in iu m . Matériau selon l’une des revendications précédentes, dans lequel l’élément M comprend Pb et de préférence est Pb. Matériau selon l’une des revendications précédentes, dans lequel l’élément activateur de la scintillation comprend Bi et de préférence est Bi. Matériau selon l’une des revendications précédentes, dans lequel l’élément M comprend Bi et de préférence est Bi et dans lequel l’élément activateur de la scintillation comprend Pb et de préférence est Pb. Matériau selon l’une des revendications précédentes, dans lequel l’élément X comprend Cl et de préférence est Cl. Matériau selon l’une des revendications 1 à 13, dans lequel l’élément X est un mélange d’au moins deux halogènes choisis parmi Cl, Br et I. Matériau selon l’une des revendications précédentes, comprenant deux éléments activateurs dont l’un a une valence +l et l’autre une valence +III, en particulier par un élément choisi parmi K, Na, Li, Cs, Rb, Ag, Au ou Cu et un élément choisi parmi Bi, In, Sb, et les terres rares, en particulier choisi parmi Eu, Sm, Tb, Yb. Matériau selon l’une des revendications précédentes, caractérisé en ce qu’il est monocristallin. Utilisation d’un matériau selon l’une des revendications précédentes pour la détection de radiations ionisantes. Détecteur scintillateur de radiations ionisantes comprenant le matériau de l’une des revendications 1 à 15. Détecteur scintillateur selon la revendication précédente, caractérisé en ce qu’il comprend un photo-détecteur sensible à une longueur d’onde allant de 300 nm à 800 nm. 7. Material according to one of the preceding claims, in which the proportion of the activator element is such that, on an atomic basis, 1.0.10′ 4 <N/M<0.1. Material according to one of the preceding claims, in which the organic cation(s) A and/or A' are chosen from alkyl-ammonium R-NHs, in particular methylammonium, formamidinium, butylammonium, phenylammonium, phenylethylammonium, 5-Aminovaleric acid, benzylammonium, 3~(aminomethyl)piperidinium or 4-(aminomethyl)piperid in iu m. Material according to one of the preceding claims, in which the element M comprises Pb and preferably is Pb. Material according to one of the preceding claims, in which the scintillation-activating element comprises Bi and preferably is Bi. Material according to one of the preceding claims, in which the element M comprises Bi and preferably is Bi and in which the scintillation-activating element comprises Pb and preferably is Pb. Material according to one of the preceding claims, in in which the element X comprises Cl and preferably is Cl. Material according to one of Claims 1 to 13, in which the element X is a mixture of at least two halogens chosen from Cl, Br and I. Material according to one of the preceding claims, comprising two activating elements, one of which has a valence +1 and the other a valence +III, in particular by an element chosen from K, Na, Li, Cs, Rb, Ag, Au or Cu and an element chosen from Bi, In, Sb, and the rare earths, in particular chosen from Eu, Sm, Tb, Yb. Material according to one of the preceding claims, characterized in that it is monocrystalline. Use of a material according to one of the preceding claims for the detection of ionizing radiation. Ionizing radiation scintillator detector comprising the material of one of Claims 1 to 15. Scintillator detector according to the preceding claim, characterized in that it comprises a photo-detector sensitive to a wavelength ranging from 300 nm to 800 nm .
EP21786251.5A 2020-09-15 2021-09-14 Scintillator material comprising a doped halide perovskite Pending EP4323468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009338A FR3114104A1 (en) 2020-09-15 2020-09-15 Scintillator material comprising a doped halide perovskite
PCT/FR2021/051575 WO2022058677A1 (en) 2020-09-15 2021-09-14 Scintillator material comprising a doped halide perovskite

Publications (1)

Publication Number Publication Date
EP4323468A1 true EP4323468A1 (en) 2024-02-21

Family

ID=74347185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21786251.5A Pending EP4323468A1 (en) 2020-09-15 2021-09-14 Scintillator material comprising a doped halide perovskite

Country Status (5)

Country Link
US (1) US20230365858A1 (en)
EP (1) EP4323468A1 (en)
JP (1) JP7602028B2 (en)
FR (1) FR3114104A1 (en)
WO (1) WO2022058677A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594413B (en) * 2022-10-21 2023-12-29 榆林学院 Preparation method of sodium-doped two-dimensional perovskite film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014401C2 (en) 2000-02-17 2001-09-04 Stichting Tech Wetenschapp Cerium-containing inorganic scintillator material.
JP3779604B2 (en) 2001-01-15 2006-05-31 独立行政法人科学技術振興機構 Radiation detector
JP4729203B2 (en) 2001-07-25 2011-07-20 独立行政法人科学技術振興機構 Electroluminescent device using phosphorescence of lead halide layered perovskite compound
FR2840926B1 (en) 2002-06-12 2005-03-04 Saint Gobain Cristaux Detecteu USE OF A CRUSH WITH CARBON FOR CRYSTAL GROWTH COMPRISING A RARE EARTH HALIDE
FR2847594B1 (en) 2002-11-27 2004-12-24 Saint Gobain Cristaux Detecteu PREPARATION OF RARE EARTH HALIDE BLOCKS
FR2869115B1 (en) 2004-04-14 2006-05-26 Saint Gobain Cristaux Detecteu RARE EARTH-BASED SCINTILLATOR MATERIAL WITH REDUCED NUCLEAR BACKGROUND NOISE
DE102014225541A1 (en) 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detection layer comprising perovskite crystals
US10024982B2 (en) 2015-08-06 2018-07-17 Lawrence Livermore National Security, Llc Scintillators having the K2PtCl6 crystal structure
RU2018146949A (en) 2016-06-07 2020-07-09 Конинклейке Филипс Н.В. DIRECT CONVERTER PHOTON DETECTOR
US11733404B2 (en) * 2016-07-28 2023-08-22 Nanyang Technological University Apparatus for radiation detection
US10591617B2 (en) * 2017-05-03 2020-03-17 University Of Tennessee Research Foundation Perovskite-type halides and methods thereof
US11814559B2 (en) * 2019-02-07 2023-11-14 King Abdullah University Of Science And Technology Scintillation materials
US11269090B2 (en) * 2019-04-10 2022-03-08 Deep Science, Llc Low-temperature perovskite scintillators and devices with low-temperature perovskite scintillators
US20230350083A1 (en) * 2020-07-10 2023-11-02 Alliance For Sustainable Energy, Llc Perovskite-containing scintillators and methods of making the same

Also Published As

Publication number Publication date
US20230365858A1 (en) 2023-11-16
FR3114104A1 (en) 2022-03-18
WO2022058677A1 (en) 2022-03-24
JP2023551754A (en) 2023-12-13
JP7602028B2 (en) 2024-12-17

Similar Documents

Publication Publication Date Title
US11733404B2 (en) Apparatus for radiation detection
He et al. Sensitivity and detection limit of spectroscopic‐grade perovskite CsPbBr3 crystal for hard X‐ray detection
US9499738B2 (en) Solid organic scintillator doped by one or more chemical elements
Tisdale et al. Precursor purity effects on solution-based growth of MAPbBr 3 single crystals towards efficient radiation sensing
Yao et al. High‐Quality Cs3Cu2I5 Single‐Crystal is a Fast‐Decaying Scintillator
CA2434091C (en) Radiation detector comprising a hybrid perovskite scintillator
US9151668B1 (en) Quantum dot radiation detection, systems and methods
CN1279367C (en) Radiation detector
US11749771B2 (en) High radiation detection performance from photoactive semiconductor single crystals
US9720105B1 (en) Doped cesium barium halide scintillator films
Han et al. γ radiation induced self-assembly of fluorescent molecules into nanofibers: a stimuli-responsive sensing
WO2022058677A1 (en) Scintillator material comprising a doped halide perovskite
Wang et al. Te 4+-doped Cs 2 SnCl 6 scintillator for flexible and efficient X-ray imaging screens
Hyder Trapping effects in silver‐doped mercuric iodide crystals
Wu Combined Purification and Crystal Growth of CsPbBr3 by Modified Zone Refining
Mahato et al. Improvement of Light Output of MAPbBr3 Single Crystal for Ultrafast and Bright Cryogenic Scintillator
Sellan et al. Preparation of bismuth-doped CsPbBr 3 perovskite single crystals for X-ray and gamma-ray sensing applications
Lai et al. Enhanced Performance in Cesium Tellurium Chlorine by Hafnium Alloying for X‐Ray Computed Tomography Imaging
CN115873035B (en) Use of organic-inorganic hybrid-based antimony halides in X-ray detection and imaging
Tsai et al. Emerging lead-halide perovskite semiconductor for solid-state detectors
Gaysinskiy et al. Luminescence properties and morphology of ZnSe: Te films
WO2017077241A1 (en) Liquid scintillation counting method and associated use, composition and kit
Vardeny et al. Enhanced radiation detectors using luminescent materials
Gazizov The vacancy-cluster mechanism of photocurrent degradation in TlBr detectors under γ-irradiation
BE818375Q (en) X-Ray image conversion and intensifying screens - using lanthanum-oxybromide or oxychloride activated by thulium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)