EP4303409A1 - Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant - Google Patents
Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant Download PDFInfo
- Publication number
- EP4303409A1 EP4303409A1 EP23184055.4A EP23184055A EP4303409A1 EP 4303409 A1 EP4303409 A1 EP 4303409A1 EP 23184055 A EP23184055 A EP 23184055A EP 4303409 A1 EP4303409 A1 EP 4303409A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- concentration
- nitrogen oxides
- engine
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 127
- 238000010438 heat treatment Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000000446 fuel Substances 0.000 title description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 195
- 238000002485 combustion reaction Methods 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 13
- 238000005457 optimization Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000005485 electric heating Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 claims description 3
- 238000006731 degradation reaction Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 description 7
- 230000037452 priming Effects 0.000 description 7
- 230000032683 aging Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 235000021183 entrée Nutrition 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2013—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/005—Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/16—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0416—Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1402—Exhaust gas composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1411—Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1621—Catalyst conversion efficiency
Definitions
- the present invention relates to a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine, to limit the fuel consumption of the engine.
- a method according to the invention relates in particular to vehicles equipped with spark-ignition engines (running on gasoline) which must comply with future polluting emissions standards in Europe.
- the catalytic post-treatment system of a motor vehicle internal combustion engine must be able to post-treat as quickly as possible. polluting emissions leaving the engine after a cold start of the engine.
- the main lever used is to significantly reduce the ignition advance, typically with 35° less crankshaft angle.
- EP-B1-0639708 discloses a process for heating a catalyst, in which the air flow rate is increased, the mass of fuel injected is adapted and the ignition advance is shifted as far as possible in the direction of the delay.
- a disadvantage of such a process is that it causes a significant increase of approximately 30% in fuel consumption throughout the catalyst heating phase.
- an additional nitrogen oxide concentration sensor also known as an “NOx probe” will be fitted to vehicle engines, downstream of the engine exhaust gas post-treatment system. , to make it possible to monitor exhaust NOx emissions in real time, and thus report a fault if the system exceeds a threshold defined by regulations.
- the publication FR-A1-3075260 discloses a method for controlling the temperature of a catalyst in the case of a hybrid vehicle. Heating of the catalyst is triggered and maintained for a predetermined duration when the exhaust temperature reaches a threshold Ts greater than the initiation temperature Ta of the catalyst, while keeping it active, and, when the instantaneous temperature, whose subsequent evolution depends on the operation of the hybrid powertrain (respective operating points of the thermal engine and the electric machine) is lower than the threshold Ts, then the heating is controlled until reaching the temperature threshold Ts.
- the publication FR-A1-3081918 discloses an improved method for managing the priming of a catalyst in which the enthalpy of the exhaust gases is calculated making it possible to determine the quantity of heat supplied to the catalyst.
- a threshold enthalpy is determined which characterizes the initiation, and heating is stopped when the calculated value of the enthalpy reaches the threshold.
- the threshold is a function of the value of the water temperature at start-up and the aging of the catalyst. For example, it is the product of a first factor which is a decreasing function of the water temperature, and a second factor between 0 and 1 which corresponds to aging, 0 corresponding to a new catalyst and 1 to a aged catalyst.
- the aging is determined from the damping of a richness signal downstream of the catalyst relative to a richness signal upstream of the catalyst.
- the process described in this document does provide for an adaptation of the heating duration of the catalyst, but the link with the real capacity of the catalyst to clean up NOx is very indirect, and as a result, this method lacks precision. It is not easy to establish the correct values of the first and second factors.
- a method according to the invention makes it possible to adapt the heating of a catalyst as necessary after a cold start of a vehicle, in particular by preventing said catalyst from continuing to be heated when it has already reached its temperature. priming.
- the subject of the invention is a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine after a cold start of a vehicle comprising said engine, said vehicle comprising a line d exhaust equipped with said catalyst and a nitrogen oxide concentration sensor at the outlet of said catalyst.
- a method according to the invention has the particularity of relying on an element already present in the vehicle, namely the nitrogen oxide concentration sensor at the catalyst outlet, to adjust the heating of said catalyst following a cold start of the vehicle, so that said catalyst is no longer heated once it has reached its priming temperature.
- an element already present in the vehicle namely the nitrogen oxide concentration sensor at the catalyst outlet
- This sensor makes it possible to determine with certainty and reliability the moment when the catalyst has actually reached its initiation temperature, by means of the determination of a parameter which is representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst.
- a method according to the invention is controlled by an on-board computer having software whose input data The main one is the nitrogen oxide concentration measured by the nitrogen oxide concentration sensor at the catalyst outlet. From this concentration of nitrogen oxides measured by the sensor, the software calculates a specific parameter, representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst, which is compared to a predetermined threshold value.
- the threshold value being a function of the specific parameter considered.
- the computer orders an immediate stop of heating of the catalyst.
- the catalyst can, for example in the case of a spark ignition engine, be a three-way catalyst.
- a particle filter is added to the catalyst to further limit the emission into the atmosphere of fine particles produced by the vehicle engine.
- the specific parameter is a concentration of nitrogen oxides directly determined by the sensor.
- the specific parameter is a mass flow rate of nitrogen oxides at the outlet of the catalyst corresponding to the product of the concentration of nitrogen oxides and the flow rate of the exhaust gases at the outlet of the catalyst.
- the specific parameter is a level of post-treatment efficiency of the nitrogen oxides by the catalyst, calculated as the ratio between the concentration of nitrogen oxides at the catalyst outlet and the concentration of nitrogen oxides at the catalyst inlet. In other words, this is the proportion of nitrogen oxides emitted by the engine which are not treated by the catalyst.
- the concentration of nitrogen oxides at the inlet of the catalyst is measured by an upstream sensor for the concentration of nitrogen oxides, said upstream sensor being placed on the exhaust line between the engine and the catalyst.
- the concentration of nitrogen oxides at the inlet of the catalyst corresponding to the concentration of nitrogen oxides at the outlet of the engine is determined from a model giving this concentration as a function of the operating point of the engine, said model being calibrated in advance by means of bench tests.
- the operating point of the engine depends on a set of parameters comprising at least the engine speed, the engine torque, and the water temperature (i.e. coolant).
- the heating of the catalyst is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust.
- These heating techniques are similar to those already existing.
- the catalyst is a three-way catalyst.
- An optimization method makes it possible to heat a depollution catalyst as accurately as possible after a cold start of a vehicle, by relying on an element already present in said vehicle, namely the concentration sensor. nitrogen oxide at the outlet of the catalyst. It therefore does not require the insertion of added equipment, which is a source of cost, bulk and additional weight. It also has the advantage of offering a realistic and reliable method making it possible to know from what precise moment the catalyst has reached its initiation temperature, to avoid continuing to unnecessarily heat said catalyst.
- a method for optimizing the heating of a catalyst according to the invention is particularly suitable for a vehicle equipped with a spark ignition engine.
- an example of a powertrain 1 of such a vehicle schematically comprises an internal combustion engine, for example a gasoline engine 2, an air intake line 3 intended to supply air to said engine 2, and an exhaust line 4 intended to evacuate exhaust gases coming from this engine 2.
- the air intake line 3 is materialized by a conduit 5 comprising an air inlet 6, followed by a filter air 7 and opening into a turbocharger compressor 8.
- the conduit 5 extends to connect said compressor 8 to an intake manifold 9 passing through a throttle body 10, said intake manifold 9 distributing air into combustion chambers 11 of said engine 2.
- An exhaust manifold 12 makes it possible to evacuate the exhaust gases coming from the combustion chambers 11 of the engine 2, towards the exhaust line 4.
- the exhaust manifold 12 opens into a turbine 13 of the turbocharger which is coupled to the compressor 8 by a common shaft, and the exhaust line 4 extends beyond said turbine 13 to an outlet 14, passing through a depollution device 15 comprising a three-way catalyst 16 followed by a particle filter 17.
- the three-way catalyst 16 is inserted between the turbine 13 and the particle filter 17.
- a nitrogen oxide concentration sensor 18 is placed downstream of the particle filter 17 and upstream of the outlet 14 of the exhaust line 4. The sensor 18 makes it possible to measure the concentration of nitrogen oxides NOx at the outlet of the pollution control device 15 after the catalyst 16 has.
- the catalyst 16 is effective when it is at its starting temperature, which it reaches several tens of seconds after a cold start. Indeed, following a cold start of the engine corresponding to time Os on the diagrams, for approximately the following 50 seconds, the quantity of nitrogen oxides emitted by engine 2 and materialized by curve 19, is equivalent to the quantity of nitrogen oxides determined at the outlet of catalyst 16 and materialized by curve 20.
- quantitative we mean in the example of the figure 2a a mass flow.
- An optimization method according to the invention makes it possible to know precisely the moment when a catalyst 16 in the heating phase after a cold start of the vehicle has reached its priming temperature, meaning that this heating must be interrupted instantly.
- the catalyst heating step 16 begins just after a cold start of the vehicle. This step is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust. These heating techniques are similar to those already existing.
- the step of measuring the concentration of nitrogen oxides by the sensor 18 at the outlet of the catalyst 16 as soon as said vehicle is started, is carried out without making the slightest adjustment to said sensor 18 and said catalyst 16.
- a method according to invention relies on the presence of the nitrogen oxide concentration sensor 18 already present in the vehicle, to know the priming state of the catalyst 16.
- a threshold value is predetermined, from which it can be estimated that the catalyst 16 has been initiated. As soon as said specific parameter has reached this threshold value, the heating of the catalyst stops instantly so as to no longer unnecessarily heat said catalyst 16.
- a method according to the invention is managed by an on-board computer having software whose input data is the concentration of nitrogen oxides measured by the sensor 18. From this concentration of nitrogen oxides measured by the sensor 18, the software calculates the specific parameter considered, which is compared to a predetermined threshold value which has been previously entered into said software, and which corresponds to the specific parameter considered. As soon as this threshold value is reached, the computer orders an immediate stopping of the heating of the catalyst 16.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Exhaust Gas After Treatment (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
- La présente invention concerne un procédé d'optimisation du chauffage d'un catalyseur de dépollution des gaz d'échappement d'un moteur à combustion interne, pour limiter la consommation de carburant du moteur.
- Un procédé selon l'invention, concerne notamment les véhicules équipés de moteurs à allumage commandé (fonctionnant à l'essence) devant respecter les futures normes d'émissions polluantes en Europe.
- Les seuils d'émissions règlementaires étant de plus en plus faibles, en particulier sur les oxydes d'azote NOx, il faut que le système de post-traitement catalytique d'un moteur à combustion interne de véhicule automobile puisse post-traiter au plus vite les émissions polluantes en sortie de moteur après un démarrage à froid du moteur.
- Actuellement, pour parvenir à un tel résultat, on peut procéder à une phase de chauffage du catalyseur en dégradant le rendement du moteur, afin d'avoir des gaz très chauds à la sortie de la culasse dudit moteur. Le principal levier utilisé est de fortement réduire l'avance à l'allumage, typiquement avec 35° d'angle de vilebrequin en moins.
- La publication
EP-B1-0639708 divulgue un procédé de chauffage d'un catalyseur, dans lequel on augmente le débit d'air, on adapte la masse de carburant injectée et on décale l'avance à l'allumage le plus possible dans le sens du retard. Un inconvénient d'un tel procédé est qu'il provoque une augmentation significative d'environ 30%, de la consommation de carburant pendant toute la phase de chauffage du catalyseur. - Il existe d'autres types de chauffage du catalyseur, notamment par chauffage électrique, et/ou par injection d'air à l'échappement. Or, de tels moyens vont également entraîner de manière indirecte une surconsommation de carburant pour pouvoir produire l'énergie électrique puisée dans la batterie du véhicule et consommée par les moyens de chauffage électrique et/ou par les moyens d'injection d'air comme une pompe électrique.
- Les émissions de dioxyde de carbone CO2 étant elles aussi de plus en plus contraintes, il faut pouvoir chauffer le catalyseur « au juste nécessaire », donc optimiser la durée de chauffage dudit catalyseur. Or, la durée de chauffage optimale du catalyseur dépend de nombreux paramètres tels que :
- La température de l'échappement lors du démarrage à froid du moteur : plus la température ambiante est faible, et plus il faudra du temps pour amener le catalyseur à la bonne température. Sur un arrêt du véhicule qui s'accompagne d'un arrêt du moteur pendant la phase de chauffage du catalyseur, il est aussi difficile d'estimer la baisse de température,
- Le profil du roulage : si après un démarrage à froid, le client roule à des faibles vitesses / charges, il faudra plus de temps pour chauffer le catalyseur car il y a moins de débit à l'échappement,
- L'état de vieillissement du catalyseur : plus le catalyseur a vieilli, moins il est efficace, et il faut donc augmenter sa durée de chauffage.
- Tous ces paramètres ne sont pas appréhendables précisément par le système de contrôle-moteur, afin d'optimiser la durée de chauffage du catalyseur. On pourrait utiliser un critère de température du catalyseur au-delà de laquelle on peut considérer qu'il est complètement amorcé, c'est-à-dire qu'il présente un taux d'efficacité de post-traitement des émissions de 100%, mais l'estimation de cette température reste difficile du fait des réactions exothermiques internes. Pour traiter cette variabilité, on calibre en général la durée de chauffage du catalyseur sur le pire cas, qui de ce fait n'est plus optimal en consommation sur les cas moins sévères.
- Avec les nouvelles normes en matière de dépollution, un capteur de concentration d'oxydes d'azote (dit aussi « sonde NOx ») supplémentaire va équiper les moteurs de véhicule, en aval du système de post-traitement des gaz d'échappement du moteur, pour permettre de suivre en temps réel les émissions de NOx à l'échappement, et de remonter ainsi un défaut si le système dépasse un seuil défini par la réglementation.
- La publication
FR-A1-3075260 - Ce document ne permet pas d'optimiser la durée de chauffage du catalyseur.
- La publication
FR-A1-3081918 (RENAULT/NISSAN) - Un procédé selon l'invention permet d'adapter au juste nécessaire le chauffage d'un catalyseur après un démarrage à froid d'un véhicule, en empêchant notamment que ledit catalyseur continue d'être chauffé alors qu'il a déjà atteint sa température d'amorçage.
- L'invention a pour objet un procédé d'optimisation du chauffage d'un catalyseur de dépollution des gaz d'échappement d'un moteur à combustion interne après un démarrage à froid d'un véhicule comprenant ledit moteur, ledit véhicule comportant une ligne d'échappement doté dudit catalyseur et d'un capteur de concentration d'oxydes d'azote à la sortie dudit catalyseur.
- Selon l'invention, ledit procédé comprend les étapes suivantes :
- une étape de chauffage du catalyseur,
- une étape de mesure de la concentration d'oxydes d'azote par le capteur à la sortie du catalyseur dès le démarrage dudit véhicule,
- une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur,
- une étape d'arrêt du chauffage du catalyseur dès que ledit paramètre spécifique a atteint une valeur seuil prédéterminée.
- Un procédé selon l'invention présente la particularité de s'appuyer sur un élément déjà présent dans le véhicule, à savoir le capteur de concentration d'oxydes d'azote en sortie de catalyseur, pour ajuster le chauffage dudit catalyseur à la suite d'un démarrage à froid du véhicule, de sorte que ledit catalyseur ne soit plus chauffé une fois qu'il a atteint sa température d'amorçage. En effet, dans la plupart des procédé actuels, il n'existe aucune information tangible signalant que le catalyseur a atteint sa température d'amorçage et qu'il n'est donc plus utile de le chauffer. Ce capteur permet de déterminer avec certitude et fiabilité, le moment où le catalyseur a réellement atteint sa température d'amorçage, par le biais de la détermination d'un paramètre qui est représentatif de la quantité de particules d'oxyde d'azote subsistant à la sortie du catalyseur. En effet, dès que ce paramètre, qui évolue dans le sens de la diminution à partir du démarrage du moteur, diminue suffisamment jusqu'à atteindre une valeur seuil prédéterminée, on peut alors conclure que le catalyseur vient d'être amorcé. La sonde, bien que servant d'élément de base à un procédé selon l'invention dont le but est de chauffer au plus juste le catalyseur afin qu'il soit opérationnel, conserve toutefois sa fonction originale de mesure du niveau de pollution engendré par le véhicule. Un procédé selon l'invention est piloté par un ordinateur embarqué possédant un logiciel dont la donnée d'entrée principale est la concentration d'oxyde d'azote mesurée par le capteur de concentration d'oxydes d'azote à la sortie du catalyseur. A partir de cette concentration d'oxydes d'azote mesurée par le capteur, le logiciel calcule un paramètre spécifique, représentatif de la quantité de particules d'oxydes d'azote subsistant à la sortie du catalyseur, qui est comparé à une valeur seuil prédéterminée qui a été préalablement entrée dans ledit logiciel, ladite valeur seuil étant fonction du paramètre spécifique considéré. Dès que cette valeur seuil est atteinte, l'ordinateur ordonne un arrêt immédiat du chauffage du catalyseur. Le catalyseur peut, par exemple dans le cas d'un moteur à allumage commandé, être un catalyseur trois voies. Préférentiellement, un filtre à particules est adjoint au catalyseur pour limiter encore plus l'émission dans l'atmosphère de particules fines produites par le moteur du véhicule.
- Selon une caractéristique possible de l'invention, en variante, le paramètre spécifique est une concentration d'oxydes d'azote directement déterminée par le capteur.
- Selon une caractéristique possible de l'invention, le paramètre spécifique est un débit massique d'oxydes d'azote à la sortie du catalyseur correspondant au produit de la concentration d'oxydes d'azote et du débit des gaz d'échappement à la sortie du catalyseur.
- Selon une caractéristique possible de l'invention, dans une autre variante, le paramètre spécifique est un niveau d'efficacité de post-traitement des oxydes d'azote par le catalyseur, calculé comme le rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur et la concentration d'oxydes d'azote à l'entrée du catalyseur. Il s'agit ici en d'autres termes de la proportion des oxydes d'azote émis par le moteur qui ne sont pas traités par le catalyseur.
- Selon une caractéristique possible de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur est mesurée par un capteur amont de concentration d'oxydes d'azote, ledit capteur amont étant placé sur la ligne d'échappement entre le moteur et le catalyseur.
- Selon une caractéristique possible de l'invention, en variante, la concentration d'oxydes d'azote à l'entrée du catalyseur correspondant à la concentration d'oxydes d'azote à la sortie du moteur est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur, ledit modèle étant calibré à l'avance au moyen d'essais au banc.
- Selon une caractéristique possible de l'invention, le point de fonctionnement du moteur dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur, et la température d'eau (i.e. liquide de refroidissement).
- Selon une caractéristique possible de l'invention, le chauffage du catalyseur est réalisé à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement. Ces techniques de chauffage sont analogues à celles déjà existantes.
- Selon une caractéristique possible de l'invention, le catalyseur est un catalyseur trois voies.
- Un procédé d'optimisation selon l'invention permet de chauffer au plus juste un catalyseur de dépollution après un démarrage à froid d'un véhicule, en s'appuyant sur un élément déjà présent dans ledit véhicule, à savoir le capteur de concentration d'oxyde d'azote à la sortie du catalyseur. Il ne nécessite donc pas l'insertion d'un matériel rapporté, qui est une source de coût, d'encombrement et de poids supplémentaires. Il a de plus l'avantage de proposer une méthode réaliste et fiable permettant de savoir à partir de quel instant précis le catalyseur a atteint sa température d'amorçage, pour éviter de continuer de chauffer inutilement ledit catalyseur.
- On donne ci-après une description détaillée d'un mode de réalisation préféré d'un procédé d'optimisation selon l'invention, en se référant aux figures suivantes :
- [
Fig. 1 ] Lafigure 1 est une vue schématique d'un groupe motopropulseur d'un véhicule dans lequel est apte à se dérouler un procédé d'optimisation selon l'invention. - [
Fig. 2a ] Lafigure 2a est un diagramme montrant un exemple de variation de la quantité de particules d'oxyde d'azote en fonction du temps après un démarrage à froid, avant et après l'amorçage du catalyseur, - [
Fig. 2b ] Lafigure 2b est un diagramme montrant un exemple de variation de la vitesse du véhicule en fonction du temps permettant d'obtenir le diagramme de lafigure 2a . - Un procédé d'optimisation du chauffage d'un catalyseur selon l'invention est particulièrement adapté à un véhicule équipé d'un moteur à allumage commandé.
- En se référant à la
figure 1 , un exemple d'un groupe motopropulseur 1 d'un tel véhicule, comprend schématiquement un moteur à combustion interne, par exemple un moteur à essence 2, une ligne 3 d'admission 3 d'air destinée à alimenter en air ledit moteur 2, et une ligne d'échappement 4 destinée à évacuer des gaz d'échappement en provenance de ce moteur 2. La ligne d'admission 3 d'air est matérialisé par un conduit 5 comprenant une entrée d'air 6, suivi d'un filtre à air 7 et débouchant dans un compresseur 8 de turbocompresseur. Le conduit 5 se prolonge pour relier ledit compresseur 8 à un collecteur d'admission 9 en passant par un boitier papillon 10, ledit collecteur d'admission 9 distribuant l'air dans des chambres 11 de combustion dudit moteur 2. Un collecteur d'échappement 12 permet d'évacuer les gaz d'échappement en provenance des chambres 11 de combustion du moteur 2, vers la ligne d'échappement 4. Le collecteur d'échappement 12 débouche dans une turbine 13 du turbocompresseur qui est couplée au compresseur 8 par un arbre commun, et la ligne d'échappement 4 se prolonge au-delà de ladite turbine 13 jusqu'à une sortie 14, en passant par un dispositif de dépollution 15 comprenant un catalyseur 16 trois voies suivi d'un filtre à particules 17. Le catalyseur 16 trois voies est inséré entre la turbine 13 et le filtre à particules 17. Un capteur 18 de concentration d'oxydes d'azote est placée en aval du filtre à particules 17 et en amont de la sortie 14 de la ligne d'échappement 4. Le capteur 18 permet de mesurer la concentration d'oxydes d'azote NOx à la sortie du dispositif de dépollution 15 après que le catalyseur 16 a . - En se référant aux
figures 2a et2b , le catalyseur 16 est efficace lorsqu'il est à sa température d'amorçage, qu'il atteint plusieurs dizaines de secondes après un démarrage à froid. En effet, à la suite d'un démarrage à froid du moteur correspondant au temps Os sur les diagrammes, durant environ les 50 secondes suivantes, la quantité d'oxydes d'azote émise par le moteur 2 et matérialisée par la courbe 19, est équivalente à la quantité d'oxydes d'azote déterminée à la sortie du catalyseur 16 et matérialisée par la courbe 20. Par « quantité », on entend sur l'exemple de lafigure 2a un débit massique. Ces résultats tendent à prouver que sur les 50 premières secondes de cette première phase, le catalyseur 16 n'a pas atteint sa température d'amorçage, car il ne traite quasiment pas les oxydes d'azote provenant du moteur. En revanche, dans une deuxième phase prolongeant cette première phase, la quantité d'oxydes d'azote à la sortie du catalyseur 16 tend vers 0 comme l'illustre la courbe 20 correspondante, alors que la courbe 19 matérialisant la quantité d'oxydes d'azote à la sortie de moteur 2 et en amont du catalyseur 16, montre des pics réguliers correspondant à des émissions élevées de particules d'oxyde d'azote quand la vitesse du véhicule augmente (cffigure 2b ). Durant cette deuxième phase, le catalyseur 16 se montre efficace vis-à-vis des particules d'oxyde d'azote puisqu'il n'en laisse passer quasiment aucune, laissant supposer qu'il a atteint sa température d'amorçage au début de cette deuxième phase. - Actuellement, Il arrive bien souvent que l'instant à partir duquel le catalyseur 16 a été amorcé ne soit pas connu avec précision, et que le catalyseur 16 continue d'être chauffé alors qu'il a déjà atteint sa température d'amorçage. Or, une telle situation peut engendrer certains inconvénients tels que par exemple une usure prématurée du catalyseur 16 qui risque de ne plus pouvoir assurer efficacement son rôle de traitement des oxydes d'azote.
- Un procédé d'optimisation selon l'invention permet de connaître avec précision le moment où un catalyseur 16 en phase de chauffage après un démarrage à froid du véhicule, a atteint sa température d'amorçage, signifiant qu'il faut interrompre ce chauffage instantanément.
- Un procédé selon l'invention, permettant d'optimiser le chauffage du catalyseur 16 après un démarrage à froid du véhicule comprend les étapes suivantes :
- une étape de chauffage du catalyseur 16,
- une étape de mesure de la concentration d'oxydes d'azote par le capteur 18 à la sortie du catalyseur 16 dès le démarrage dudit véhicule,
- une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur 18,
- une étape d'arrêt du chauffage du catalyseur 16 dès que ledit paramètre a atteint une valeur seuil prédéterminée.
- L'étape de chauffage du catalyseur 16 débute juste après un démarrage à froid du véhicule. Cette étape est réalisée à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement. Ces techniques de chauffage sont analogues à celles déjà existantes.
- L'étape de mesure de la concentration d'oxydes d'azote par le capteur 18 à la sortie du catalyseur 16 dès le démarrage dudit véhicule, est réalisée sans apporter le moindre aménagement audit capteur 18 et audit catalyseur 16. Un procédé selon l'invention s'appuie sur la présence du capteur 18 de concentration d'oxydes d'azote déjà présent dans le véhicule, pour connaitre l'état d'amorçage du catalyseur 16.
- Le paramètre spécifique peut revêtir différentes formes, et peut par exemple correspondre :
- à un niveau absolu d'émission de particules d'oxyde d'azote en sortie de catalyseur 16, c'est-à-dire, à un débit massique (exprimé par exemple en mg/s), qui est égal au produit du débit des gaz d'échappement et de la concentration d'oxydes d'azote mesurée par le capteur 18.
- à la concentration (mesurée en ppm) d'oxydes d'azote directement déterminée par le capteur 18.
- un niveau d'efficacité de post-traitement des oxydes d'azote correspondant au calcul du rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur 16, divisée par la concentration d'oxydes d'azote à l'entrée du catalyseur 16. Selon une variante de réalisation de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur 16 correspond à la concentration d'oxydes d'azote à la sortie du moteur 2, et elle est mesurée par un capteur de concentration d'oxydes d'azote amont, ledit capteur amont étant placé sur la ligne d'échappement entre le moteur 2 et le catalyseur 16. Selon une autre variante de réalisation de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur, correspondant à la concentration d'oxydes d'azote à la sortie du moteur 2 est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur 2, ledit modèle étant calibré à l'avance au moyen d'essais au banc. Le point de fonctionnement du moteur 2 dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur et la température d'eau.
- En fonction du paramètre spécifique considéré, une valeur seuil est prédéterminée, à partir de laquelle il peut être estimé que le catalyseur 16 a été amorcé. Dès que ledit paramètre spécifique a atteint cette valeur seuil, le chauffage du catalyseur cesse instantanément pour ne plus chauffer inutilement ledit catalyseur 16.
- Un procédé selon l'invention est géré par un ordinateur embarqué possédant un logiciel dont la donnée d'entrée est la concentration d'oxydes d'azote mesurée par le capteur 18. A partir de cette concentration d'oxydes d'azote mesurée par le capteur 18, le logiciel calcule le paramètre spécifique considéré, qui est comparé à une valeur seuil prédéterminée qui a été préalablement entrée dans ledit logiciel, et qui correspond au paramètre spécifique considéré. Dès que cette valeur seuil est atteinte, l'ordinateur ordonne un arrêt immédiat du chauffage du catalyseur 16.
Claims (9)
- Procédé d'optimisation du chauffage d'un catalyseur (16) de dépollution des gaz d'échappement d'un moteur à combustion interne (2) après un démarrage à froid d'un véhicule comprenant ledit moteur (2), ledit véhicule comportant une ligne d'échappement (4) doté dudit catalyseur (16) et d'un capteur (18) de concentration d'oxydes d'azote à la sortie dudit catalyseur (16), caractérisé en ce que ledit procédé comprend les étapes suivantes :- une étape de chauffage du catalyseur (16),- une étape de mesure de la concentration d'oxydes d'azote par le capteur (18) à la sortie du catalyseur (16) dès le démarrage dudit véhicule,- une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur (18),- une étape d'arrêt du chauffage du catalyseur (16) dès que ledit paramètre spécifique a atteint une valeur seuil prédéterminée.
- Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est une concentration d'oxydes d'azote directement déterminée par le capteur (18).
- Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est un débit massique d'oxydes d'azote à la sortie du catalyseur (16), correspondant au produit de la concentration d'oxydes d'azote et du débit des gaz d'échappement à la sortie du catalyseur (16).
- Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est un niveau d'efficacité de post-traitement des oxydes d'azote par le catalyseur (16), calculé comme le rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur et la concentration d'oxydes d'azote à l'entrée du catalyseur.
- Procédé d'optimisation selon la revendication 4, caractérisé en ce que la concentration d'oxydes d'azote à l'entrée du catalyseur (16) est mesurée par un capteur amont de concentration d'oxydes d'azote, ledit capteur amont étant placé sur la ligne d'échappement (4) entre le moteur (2) et le catalyseur (16).
- Procédé d'optimisation selon la revendication 4, caractérisé en ce que la concentration d'oxydes d'azote à l'entrée du catalyseur (16), correspondant à la concentration d'oxydes d'azote à la sortie de moteur (2) est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur (2), ledit modèle étant calibré à l'avance au moyen d'essais au banc.
- Procédé d'optimisation selon la revendication 6, caractérisé en ce que le point de fonctionnement du moteur (2) dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur, et la température d'eau.
- Procédé d'optimisation selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le chauffage du catalyseur (16) est réalisé à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement.
- Procédé d'optimisation selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le catalyseur (16) est un catalyseur trois voies.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2207021A FR3137718A1 (fr) | 2022-07-08 | 2022-07-08 | procédé d’optimisation du chauffage d’un catalyseur pour limiter la consommation de carburant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4303409A1 true EP4303409A1 (fr) | 2024-01-10 |
Family
ID=83439111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23184055.4A Pending EP4303409A1 (fr) | 2022-07-08 | 2023-07-07 | Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4303409A1 (fr) |
FR (1) | FR3137718A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0639708B1 (fr) | 1993-08-19 | 1998-03-25 | Ekkardt Czub | Procédé pour actionner un moteur à combustion interne véhiculaire |
CN108590827A (zh) * | 2018-07-03 | 2018-09-28 | 广西玉柴机器股份有限公司 | 根据obd监测效率控制三元催化器入口温度的装置及方法 |
FR3075260A1 (fr) | 2017-12-14 | 2019-06-21 | Psa Automobiles Sa | Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant |
FR3081918A1 (fr) | 2018-05-29 | 2019-12-06 | Renault S.A.S | Procede de gestion de l’amorcage d’un catalyseur de depollution |
-
2022
- 2022-07-08 FR FR2207021A patent/FR3137718A1/fr active Pending
-
2023
- 2023-07-07 EP EP23184055.4A patent/EP4303409A1/fr active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0639708B1 (fr) | 1993-08-19 | 1998-03-25 | Ekkardt Czub | Procédé pour actionner un moteur à combustion interne véhiculaire |
FR3075260A1 (fr) | 2017-12-14 | 2019-06-21 | Psa Automobiles Sa | Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant |
FR3081918A1 (fr) | 2018-05-29 | 2019-12-06 | Renault S.A.S | Procede de gestion de l’amorcage d’un catalyseur de depollution |
CN108590827A (zh) * | 2018-07-03 | 2018-09-28 | 广西玉柴机器股份有限公司 | 根据obd监测效率控制三元催化器入口温度的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
FR3137718A1 (fr) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2860034A1 (fr) | Procede de restriction de l'elevation excessive de la temperature du filtre dans un moteur a combustion interne | |
EP1323905B1 (fr) | Procédé et dispositif de contrôle de l'état de fonctionnement d'un convertisseur catalytique d'une ligne d'échappement d'un moteur à combustion interne | |
EP3574194B1 (fr) | Procede de controle des emissions d'oxydes d'azote a l'echappement d'un moteur a combustion interne | |
WO2019229027A1 (fr) | Procede de gestion de l'amorcage d'un catalyseur de depollution | |
EP2545261B1 (fr) | Procede de regulation de la temperature de regeneration d'un filtre a particules | |
EP4303409A1 (fr) | Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant | |
EP1834074B1 (fr) | Protection d'un catalyseur d'oxydation place en amont de filtre à particules pour moteur diesel par limitation de carburant injecte | |
EP2992193B1 (fr) | Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne | |
WO2006048572A1 (fr) | Dispositif de controle de l'etat de fonctionnement d'un convertisseur catalytique d'une ligne d'echappement d'un moteur a combustion interne et moteur comprenant un tel dispositif | |
FR3118647A1 (fr) | Procédé de détection d’une fuite de gaz dans un circuit d’admission d’un dispositif de motorisation | |
EP2299094A1 (fr) | Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression | |
EP2078840B1 (fr) | Strategie de mise en oeuvre d'un processus de chauffage rapide d'un catalyseur | |
FR2916229A1 (fr) | Procede de controle des emissions polluantes d'un moteur diesel | |
EP3995685B1 (fr) | Procédé de diagnostic d'un débitmètre d'air pour moteur à combustion interne | |
EP4045783B1 (fr) | Procédé de gestion du couple d'un vehicule automobile comportant un moteur à combustion interne | |
EP4041998B1 (fr) | Procédé de diagnostic d'un système de post-traitement d'un moteur à allumage commandé | |
FR2981690A3 (fr) | Procede de depollution d'un moteur a combustion interne et moteur a combustion interne fonctionnant a richesse 1 | |
FR2943095A1 (fr) | Procede de regeneration d'un filtre a particules | |
FR3104210A1 (fr) | Procede pour limiter la quantite de polluants rejetes par un moteur thermique de vehicule hybride | |
FR3028558A1 (fr) | Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe | |
FR3120921A1 (fr) | Procédé de diagnostic d’un fonctionnement erroné d’un moteur de véhicule | |
WO2021139970A1 (fr) | Procede de regeneration d'un filtre a particules de moteur a combustion interne a allumage commande, et dispositif associe | |
EP3816416A1 (fr) | Procédé de régénération d'un piège à oxydes d'azote de moteur à combustion interne équipé d'un catalyseur de réduction sélective des oxydes d'azote | |
FR2879655A1 (fr) | Dispositif de regeneration d'un filtre a particules pour vehicule automobile et procede correspondant | |
FR3045102A1 (fr) | Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240618 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20241025 |