[go: up one dir, main page]

EP4284535A1 - Method for removing co2 from a methane-containing gas - Google Patents

Method for removing co2 from a methane-containing gas

Info

Publication number
EP4284535A1
EP4284535A1 EP22702456.9A EP22702456A EP4284535A1 EP 4284535 A1 EP4284535 A1 EP 4284535A1 EP 22702456 A EP22702456 A EP 22702456A EP 4284535 A1 EP4284535 A1 EP 4284535A1
Authority
EP
European Patent Office
Prior art keywords
gas
methane
ptsa
product gas
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22702456.9A
Other languages
German (de)
French (fr)
Inventor
Uwe Jordan
Gamuret HACK
Lukas VÖLLMY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanadevia Inova AG
Original Assignee
Hitachi Zosen Innova AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Innova AG filed Critical Hitachi Zosen Innova AG
Publication of EP4284535A1 publication Critical patent/EP4284535A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/64Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end by pressure-swing adsorption [PSA] at the hot end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a method and a device for removing CO2 from a methane-containing gas.
  • CCh-neutral energy sources are becoming increasingly important for today's society.
  • a popular method of obtaining such an energy carrier is the fermentation of food waste in fermenters to produce biogas. Since foods such as fruit or vegetables bind CO2 from the atmosphere during growth, the biogas produced during the fermentation of these foods and the methane it contains are climate-neutral.
  • biogas In addition to methane, biogas usually also contains various impurities, sometimes significant amounts of CO2. Since CO2 is non-flammable, its presence in the biogas prevents the methane from being burned efficiently and lowers the energy density of the biogas. For this reason, biogas produced by fermentation is usually cleaned to increase the methane content.
  • the methane-enriched product gas obtained after purification - often also called biomethane - can either be used directly for the purpose of generating energy, fed into the gas network or liquefied with a view to intermediate storage or transport.
  • the product gas is usually cooled down considerably.
  • impurities contained in the product gas in particular CO2 have a disadvantageous effect: if the product gas contains a significant CCh concentration, it freezes in the course of the Cooling necessary for liquefaction and can block valves in the liquefaction plant, for example.
  • the lowest possible CCh concentration in the product gas is not only important with regard to its use as an energy source, but also with regard to its liquefaction for storage or. desirable for transportation. It has been shown that in the case of liquefaction, a CCh concentration in the product gas of below 215 ppm is ideal. However, such low CCh concentrations can only be achieved with the known methods - if at all - by using time-consuming and costly purification processes.
  • US 2019/0001263 Al describes a method for producing biomethane in which the gas mixture to be cleaned is compressed in a first step and In a second step, gaseous impurities (volatile organic compounds - VOC) are removed from the gas mixture by means of a PSA. Then, in a third step, part of the CO2 and oxygen are separated from the gas mixture by means of a membrane. Further CCh reduction is achieved in a fourth step using PTSA, while residual oxygen and nitrogen are removed by cryogenic separation in a fifth step. At the end of this complex process, a methane-enriched, cleaned product gas or obtained biomethane.
  • gaseous impurities volatile organic compounds - VOC
  • a methane-containing regeneration gas is passed through the PTSA in a known manner, which is then fed to a downstream recovery plant for methane recovery.
  • the CCh reduction achieved by means of this process is insufficient with regard to efficient liquefaction of the product gas.
  • Another disadvantage is that in the course of the various processing steps, part of the biomethane contained in the gas mixture is lost (methane slip), which reduces the efficiency of the process in terms of the highest possible biomethane yield.
  • WO 2016/126159 A2 discloses a system for processing methane-containing gas with a methane content of at least 50 vol. % and includes a compression unit and a pre-treatment unit with a membrane separator to reduce the CO2 content to below 2 vol. % and increasing the methane content to over 85 vol. % .
  • the system also includes a liquefaction unit and a decanting device with a container in which a flash gas is generated.
  • US 5062270 discloses a process for starting up a distillation column with a controlled freezing zone, in which process a CO2-enriched gas stream is produced - with a preferred CCh content of 60% - 85%.
  • the present invention therefore has the task of eliminating the above-described disadvantages of the prior art and providing an improved method for removing CO2 from a methane-containing gas mixture that efficiently and effectively reduces the CCh content while minimizing the methane slip allowed.
  • a methane-containing gas containing at least CO 2 as an impurity is provided in a first step (step a).
  • step b CO2 is separated from the gas by freezing (step b).
  • the methane-containing gas is cooled, preferably to or under -78 . 5 °C at atmospheric pressure.
  • a third step the CO2 concentration of the methane-containing gas is measured in a pressure and Temperature swing adsorption (English: presure temperature swing adsorption (PTSA)) further reduced, whereby a methane-enriched product gas is obtained (step c).
  • PTSA presure temperature swing adsorption
  • a fourth step at least part of the product gas is used as treatment gas for treatment or Regeneration of the PTSA passed through the PTSA, whereby CO2 is picked up by the treatment gas and removed with the latter from the PTSA (step d).
  • step e the treatment gas loaded with CO2 in the course of the treatment of the PTSA is mixed with the methane-containing gas from the first step a) (step e).
  • a gas containing methane is defined as a methane-containing gas.
  • the methane-containing gas also includes CO2 and usually also other compounds, in particular impurities such as e.g. B. "volatile organic compounds” (VOC) .
  • VOC volatile organic compounds
  • a methane-enriched product gas is defined as a gas which has a higher methane concentration and a lower CCh concentration than the initially provided methane-containing gas.
  • a treatment gas is defined as a gas which is separated from the product gas or from a gas based on the product gas and is passed through the PTSA for treatment of the PTSA.
  • the conditioning gas may be altered in temperature and/or pressure prior to passage through the PTSA are, in particular, it can be previously heated and / or relaxed.
  • freezing off is understood as meaning a process in which the temperature of a gas is cooled below the pressure-dependent sublimation point of CO2. At atmospheric pressure, this is -78. 5oC.
  • the energy consumption of the PTSA can be reduced by using product gas as the treatment gas for the treatment of the PTSA. Specifically, it can be avoided that an external gas has to be used to prepare the PTSA.
  • the efficiency of the process can be increased by recycling the treatment gas and adding it to the initially provided methane-containing gas, since the freezing step allows a large part of the CO2 to be reliably and efficiently separated from the gas .
  • the methane slip when it freezes out is very low.
  • the recirculation of the regeneration gas loaded with CCh into the methane-containing gas provided in step a) before the freezing step b) relieves the PTSA in step c). Overall, the number of separation steps or Separation stages in step c) are reduced and the methane slip of the process is minimized.
  • the method according to the invention thus has the advantage over the prior art that the upstream freezing step in combination with the use and recycling of the treatment gas to or after the preparation of the PTSA, the latter much cheaper, can be operated in a more energy-efficient and environmentally friendly manner.
  • the methane-containing gas initially provided in step a) can sometimes be produced by fermentation, for example in biogas plants, and preferably comprises biogas, landfill gas and/or gas from the pyrolysis of organic material. More preferably, the gas can also be of non-fermentative origin, for example in the form of natural gas, mine gas or coal bed methane.
  • the gas containing methane can also be provided by an upstream gas treatment plant.
  • a methane-enriched product gas is provided by reducing the CCh content and the associated increase in the methane content of the methane-containing gas. At least part of the latter is passed through the PTSA as a treatment gas in order to regenerate the PTSA.
  • the product gas or at least part of it is preferably liquefied before the treatment gas is separated off.
  • the product gas can be liquefied in a known manner by cooling and/or compression. Since increasing the pressure of the cold product gas is very complex, the product gas is preferably liquefied by reducing the temperature.
  • the product gas is preferably cooled to ⁇ 140° C. to ⁇ 100° C., preferably ⁇ 130° C. to ⁇ 110° C. and particularly preferably ⁇ 125° C. to ⁇ 115° C. for liquefaction. These temperatures are preferred in combination with a pressure of 15 bar.
  • the 15 bar corresponds to the preferred pressure of the product gas when it is received after the CCh separation in the PTSA.
  • Liquefied product gas with a high proportion of methane can be produced almost without pressure at approx. - 160 °C can be stored. It is also possible to store the liquefied product gas at elevated pressure and higher temperature.
  • the liquefied methane-enriched product gas can be a simplified storage to be decompressed.
  • the liquefied methane-enriched product gas is decompressed to preferably 1 bar—before part of the product gas is branched off for use as treatment gas. Due to the decompression of the liquefied product gas, the refrigeration requirement of the system is reduced accordingly and the subsequent storage and transport containers are not exposed to high pressures.
  • the decompressed, liquefied product gas preferably passes through a particle filter, which particularly preferably has a pore size of ⁇ 10 ⁇ m and which removes solids from the decompressed, liquefied product gas.
  • a particle filter which particularly preferably has a pore size of ⁇ 10 ⁇ m and which removes solids from the decompressed, liquefied product gas.
  • flash gas During decompression, at least part of the liquefied product gas also becomes gaseous again. This part is referred to as "flash gas" within the meaning of the invention.
  • the flash gas is therefore preferably cooled methane-enriched product gas, which is preferably Atmospheric pressure (usually approx. 1 bar) is present.
  • this flash gas can be passed through the PTSA as a treatment gas or as part of the treatment gas for the treatment of the latter.
  • At least part of the flash gas produced during the decompression of the liquefied product gas is preferably used as treatment gas in order to particularly increase the efficiency of the process.
  • the processing gas is separated from the product gas directly before the liquefaction, ie without prior liquefaction and decompression with the associated receipt of a flash gas.
  • CO 2 is removed from the PTSA by means of the processing gas.
  • the regeneration or processing of the PTSA includes the removal of CO2.
  • the need for processing Regeneration of the PTSA results from the fact that the CO2 removed or separated from the methane-containing gas by means of the PTSA usually accumulates in the PTSA.
  • the methane-containing gas is separated in flow direction by an adsorbent or passed to an adsorber, where the adsorbent adsorbs the CO2 and the methane-enriched product gas accumulates on the other (downstream) side of the adsorbent.
  • the adsorber When the adsorber is saturated with CO2, the adsorbed CO2 has to be released from the adsorber to prepare it for further use, i. H . to regenerate .
  • Several possibilities are known for regeneration. Usually for this purpose, either the pressure in the PTSA can be reduced, the adsorbent can be heated and/or the adsorbent can be flowed through by a treatment gas in or against the flow direction of the gas to be cleaned. Combinations of the regeneration steps mentioned are also possible. Such a regeneration process of a PTSA usually takes place at regular intervals.
  • the PTSA can either have several adsorbers or adsorber tanks, which adsorb alternately and are then regenerated, or that the PTSA is not constantly in operation and the separation process is paused during the regeneration time of the adsorber.
  • the treatment gas is particularly preferably expanded—ie decompressed—and optionally heated before it is passed through the PTSA, since this promotes the release of CO 2 into the treatment gas.
  • a heated treatment gas is defined as a treatment gas which preferably has a temperature of -20° C. to 30° C., more preferably from -10° C. to 20° C. and particularly preferably from -5° C. to 15° C. and quite particularly preferably from 0° C. to 10° C. in order to detach the CO2 from the adsorber as efficiently as possible.
  • the PTSA comprises an adsorber through which the preferably heated processing gas flows in or counter to the flow direction of the methane-containing gas after the pressure in the PTSA has been reduced to the pressure of the processing gas.
  • the heated treatment gas releases the adsorbed CO2 from the adsorber, which is thus regenerated.
  • the treatment gas, which is now loaded with CO2 is then routed out of the PTSA, which means that the latter is again ready for the methane-containing gas to flow through in the direction of flow and to remove CO2 from the methane-containing gas by means of the regenerated adsorber.
  • the treatment gas is recycled according to the invention after regeneration of the PTSA has taken place and is mixed with or combined with the methane-containing gas stream from the first step a) of the method according to the invention.
  • the make-up gas is preferably increased or decreased to the same pressure by using a compressor to allow efficient mixing of the two gas streams.
  • one third of its volume is preferably added to the methane-containing gas in step a) as treatment gas.
  • the removal of CO2 from the methane-containing gas—which contains the recirculated processing gas— is carried out by freezing out CO2.
  • the methane-containing gas is preferably at a pressure of 5 to 25 bar, particularly preferably 10 to 20 bar and very particularly preferably 14 to 17 bar (the "bar" specification here is always bar (a), i.e absolute, given) to -130°C to -80°C, more preferably -120°C to -100°C, most preferably -116°C to -110°C.
  • the methane-containing gas is brought into contact with a surface for cooling, which is cooled down to the temperature ranges mentioned above or has been .
  • the CO2 contained in the methane - containing gas crystallizes out on this surface , so that a layer of solid CO2 -- also known as dry ice -- is formed on the surface .
  • the dry ice is usually removed from the surface at regular intervals, for example by scraping it off with a scraper, so that new CO2 can crystallize out on the cooled surface.
  • the freezing step preferably reduces the CO2 content of the methane-containing gas (including the added processing gas) to below 6000 ppm.
  • a further reduction in the CO2 content of the methane-containing gas is achieved according to the invention in the downstream PTSA.
  • Freezing out CO2 generally has the advantage that a large amount of CO2 can be removed from the gas with relatively little effort. As a rule, the maintenance effort of a corresponding freezing unit (cooling unit) is also lower compared to other separating devices, such as a PTSA.
  • other contaminants can also be removed from the methane-containing gas in the course of freezing.
  • a further advantage is that no methane is lost in the freezing process since methane does not condense on the surface at the preferred temperatures given above.
  • the methane concentration in the methane-containing gas can be increased without methane loss.
  • the frozen CO2 can then be released into the environment or used as dry ice for cooling.
  • the CO 2 concentration of the methane-containing gas is preferably below 5200 ppm, preferably below 830 ppm, more preferably below 215 ppm, particularly preferably below 100 ppm and very particularly preferably below 50 ppm.
  • a low CCk concentration in the product gas is preferred, particularly with regard to liquefaction of the product gas, since this prevents CO 2 from freezing out in valves or pipelines.
  • a maximum CCh concentration of 50 ppm at atmospheric pressure is particularly preferred for the product gas, since CO 2 in these concentrations remains dissolved in the liquefied product gas at temperatures below ⁇ 162° C. and does not crystallize out. If the pressure in the product gas is higher than atmospheric pressure, the CCh concentration can also be higher.
  • a low CCh concentration in the product gas has additional advantages for the further use of the product gas: From a CO2 concentration of more than approx. 215 ppm in the product gas, CO2 may crystallize out during the decompression of the liquefied product gas and this has to be removed - for example by means of sieving.
  • At least part of the product gas from the third step c) or at least part of the CO2-laden treatment gas from the fourth step d) is preferably used to cool the methane-containing gas in the second step b) (freezing step).
  • the product gas or the processing gas and the methane-containing gas are preferably passed through a heat exchanger, preferably using the countercurrent principle.
  • the product gas from the third step c) (and in this respect also the part separated from the product gas, which is used as the treatment gas is used) preferably has a temperature of -162 ° C to - 130 ° C, while the methane-containing gas from the first step a) preferably has a temperature of 0 ° C to 40 ° C. Due to the heat exchange in the heat exchanger, the product gas or the treatment gas is heated and the methane-containing gas is cooled at the same time.
  • the product or processing gas is preferably brought to a temperature below, preferably from -20°C to 30°C, more preferably from -10°C to 20°C, particularly preferably from -5°C to 15°C and very particularly preferably from 0°C to 10°C, while the methane-containing gas is preferably cooled to below 10°C, more preferably to below 0°C and most preferably to below -30°C.
  • the cooled methane-containing gas from the heat exchanger is generally further cooled for the subsequent freezing (in the second step b)).
  • the previous exchange of energy between the treatment or product gas and the methane-containing gas makes it possible to reduce the energy requirement for cooling the methane-containing gas, as a result of which the gas treatment can be operated more efficiently and economically.
  • the heated product gas from the heat exchanger is used as the treatment gas for the removal of CO2 from the PTSA.
  • the heated product gas is preferably decompressed (ie relaxed) to a pressure of 1 bar before it is passed through the PTSA.
  • the CO2 when using a PTSA, the CO2 is adsorbed or bound by an adsorbent or an adsorber (usually zeolites or carbon molecular sieves). After the adsorbent is saturated, it must be regenerated or replaced in order to reduce the PTSA to make it operational again.
  • regeneration of the adsorbent can be achieved, for example, by flowing through the treatment gas in combination with heating and/or expansion of the adsorbent. The regeneration process can be accelerated if the treatment gas flows through the adsorbent against the direction of flow of the methane-containing gas.
  • the combination of heated and expanded treatment gas which heats the adsorbent to dissolve the CO2 and at the same time flows through the adsorbent to transport the dissolved CO2 away, has proven to be very efficient for the regeneration of the PTSA.
  • no external energy is used to heat the processing gas, but rather the heating takes place - as described above - preferably via the heat exchange between the "cold" product gas and the "warm” methane-containing gas in the heat exchanger.
  • the heated product gas exiting the heat exchanger can then be passed into the PTSA as make-up gas for regeneration of the PTSA.
  • heating the adsorbent also contributes to the regeneration of the PTSA.
  • the regenerated adsorbent must be cooled again in order to efficiently adsorb the CO 2 molecules from the methane-containing gas. This cooling can be done using part of the product gas from step c):
  • the product gas preferably has a temperature of -130°C to -80°C, more preferably from -120°C to -100°C and most preferably -116°C to -110°C.
  • step c) While part of the product gas is heated - preferably in the heat exchanger described above - to preferably -20°C to 30°C, more preferably -10°C to 20°C and particularly preferably -5°C to 10°C, and then is passed through the adsorbent as heated treatment gas, another part of the product gas from step c) can be used at its original temperature to cool the adsorbent of the PTSA back to operating temperature after regeneration. Thus, cooling of the PTSA adsorbent by means of an external cold source can be avoided, which saves energy and costs.
  • the methane-containing gas Before being fed to the PTSA, the methane-containing gas is preferably compressed to 5 to 25 bar, particularly preferably to 10 to 20 bar and very particularly preferably to 14 to 17 bar. With the preferred pressure conditions mentioned, separation of CO2 from the methane-containing gas in the PTSA is particularly efficient.
  • the methane-containing gas is used in the PTSA at a temperature of from -130°C to -80°C, more preferably from -120°C to -100°C and most preferably from -116°C to -110° C, fed.
  • the temperatures described are particularly suitable for efficient separation of CO2 from the methane-containing gas in the PTSA.
  • the methane-containing gas in the first step a) preferably has a CCh concentration of at most 60%, preferably at most 6% and particularly preferably at most 2.5%.
  • the CO2 Concentration here refers to the point in time before the admixture of the CO2-laden treatment gas.
  • the method according to the invention it is possible to purify methane-containing gas mixtures with a CCh content of up to 60%, even if this makes little sense from an economic point of view. For this reason, the aim is to keep the CO2 content as low as possible in order to keep the purification effort as low and efficient as possible.
  • the invention relates to a device for carrying out the method described above for removing CO2 from a methane-enriched gas.
  • Said device comprises a gas feed line, a compression unit, at least one cooling unit for freezing out CO2, a PTSA, a line for removing a methane-enriched product gas and a treatment gas line, which connects the PTSA and the gas feed line.
  • the device according to the invention has the advantage over known devices from the prior art that the processing gas line, which connects the PTSA and the gas feed line, can be used to feed the CO2 removed in the PTSA back into the gas feed line, in order to then largely separate by freezing. Because of this, such a device is very efficient in removing CO2 from a methane-containing gas, creating a methane-enriched one
  • Fig. 1 shows a schematic representation of a preferred embodiment of the method according to the invention for removing CO2 from a methane-containing gas using a PTSA.
  • a methane-containing gas 103 containing at least CO 2 as an impurity is provided in a first step a) from a gas feed line 101 .
  • the methane-containing gas 103 is provided at a pressure of 15 bar and, in a second step b) in a first heat exchanger 105, is cooled down to a temperature TG (temperature in gaseous form) of ⁇ 32° C.
  • the compressed and cooled methane-containing gas 103 is further cooled down in a second heat exchanger 107 to a temperature TF (temperature freeze) of -114 ° C, at which the CO2 contained in the methane-containing gas 103 is trapped in a lock 109 of the heat exchanger on a surface that is not shown freezes out and is periodically scraped or otherwise removed from said surface.
  • the gas 103 containing methane (and now with a reduced CCh content) is then fed to a PTSA 111 .
  • the PTSA 111 generally comprises a plurality of adsorber containers 115 (only two are shown here), which are operated in parallel, overlapping or alternating with one another.
  • a third step c) the remaining CO2 is removed from the methane-containing gas 103 by adsorption on an adsorber 115 present in the PTSA 111, resulting in a methane-enriched product gas 117 is obtained.
  • the methane-enriched product gas 117 has a CCh content of preferably a maximum of 215 ppm.
  • the methane-enriched product gas 117 is transported to a third heat exchanger 119 and liquefied by cooling to -120 °C.
  • a flash gas 127 is generally produced, ie part of the product gas 117 remains gaseous or part of the decompressed, liquefied product gas 126 becomes gaseous again.
  • the flash gas 127 is used as the treatment gas 129 (dashed line) in the method illustrated here.
  • the treatment gas 129 from the flash tank 123 has a CO2 content of preferably less than 215 ppm and a temperature of preferably -162.degree. At least a part of the processing gas 129 (corresponds to the product gas 117 in its composition) is first routed back to the first heat exchanger 105 in order to to cool the methane-containing gas 103 .
  • the treatment gas 129 is preferably heated to 0° C. in the process.
  • the now heated make - up gas 131 is then directed to the PTSA 111 where it is heated and passed through the CO 2 - saturated adsorbers 115 to release the CO 2 from the adsorbers 115 .
  • a treatment gas 133 (dotted line), now enriched with CCh, is transported from the PTSA 111 to a compressor 135, where it is compressed to 15 bar, i.e. the outlet pressure of the methane-containing gas 103.
  • the compressed treatment gas 133 enriched with CO 2 is then transported through a treatment gas line 134 to the gas feed line 101 and mixed there with the gas 103 containing methane.
  • a treatment gas line 134 to the gas feed line 101 and mixed there with the gas 103 containing methane.
  • the adsorbers 115 of the PTSA 113 After the adsorbers 115 of the PTSA 113 have been reprocessed, they are cooled back to operating temperature in order to be able to efficiently adsorb CO2 from the methane-containing gas 103.
  • To cool the adsorber 115 either -162° C. cold product gas 117 or Process gas 129 used.
  • the decompressed liquefied product gas 126 passes through a particle filter 138 with a pore size of ⁇ 10 ⁇ m, whereby solids in the product gas are removed.
  • the cleaned product gas is then made available to the consumer with a pump 139 . Since the two adsorbers 115 of the PTSA 111 shown can be operated alternately, one adsorber 115 can be processed while the other adsorber 115 adsorbs CO2 from the methane-containing gas 103 . In this way, a constant purification process can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention relates to a method for removing CO2 from a methane-containing gas, having the steps of providing a methane-containing gas (103) containing at least CO2 as an impurity, cooling the gas (103) in order to separate CO2 from the methane-containing gas (103) by freezing out same, and additionally reducing the CO2 concentration of the gas (103) using a PTSA (111), whereby a methane-enriched product gas (117) is obtained. At least a part (127) of the product gas (117) is then conducted through the PTSA (111) as a preparation gas (129), whereby CO2 is absorbed by the preparation gas (129) and is removed from the PTSA (111) as a CO2-enriched preparation gas (133). The preparation gas (133) conducted through the PTSA (111) is then mixed with the methane-containing gas (103).

Description

Verfahren zum Entfernen von CO2 aus einem methanhaltigen Gas Process for removing CO2 from a methane-containing gas

Die Erfindung betri f ft ein Verfahren und eine Vorrichtung zum Entfernen von CO2 aus einem methanhaltigen Gas . The invention relates to a method and a device for removing CO2 from a methane-containing gas.

Aufgrund der Klimaerwärmung werden CCh-neutrale Energieträger immer wichtiger für die heutige Gesellschaft . Ein beliebtes Verfahren zur Gewinnung eines solchen Energieträgers ist die Vergärung von Lebensmittelabfällen in Fermentern zur Erzeugung von Biogas . Da Lebensmittel wie Früchte oder Gemüse während des Wachstums CO2 aus der Atmosphäre binden, ist das bei der Vergärung dieser Lebensmittel entstehende Biogas und das darin enthaltene Methan Klima neutral . Due to global warming, CCh-neutral energy sources are becoming increasingly important for today's society. A popular method of obtaining such an energy carrier is the fermentation of food waste in fermenters to produce biogas. Since foods such as fruit or vegetables bind CO2 from the atmosphere during growth, the biogas produced during the fermentation of these foods and the methane it contains are climate-neutral.

Biogas enthält für gewöhnlich neben Methan auch verschiedene Verunreinigungen, mitunter nennenswerte Anteile an CO2 . Da CO2 nicht brennbar ist , behindert dessen Anwesenheit im Biogas ein ef fi zientes Verbrennen des Methans und senkt die Energiedichte des Biogases . Aus diesem Grund wird fermentativ erzeugtes Biogas für gewöhnlich auf gereinigt , um den Methan-Gehalt zu erhöhen . Das nach der Aufreinigung erhaltene Methanangereicherte Produktgas - oft auch Biomethan genannt - kann entweder zwecks Energiegewinnung direkt genutzt , ins Gasnetz eingespiesen oder im Hinblick auf eine Zwischenspeicherung oder den Transport verflüssigt werden . In addition to methane, biogas usually also contains various impurities, sometimes significant amounts of CO2. Since CO2 is non-flammable, its presence in the biogas prevents the methane from being burned efficiently and lowers the energy density of the biogas. For this reason, biogas produced by fermentation is usually cleaned to increase the methane content. The methane-enriched product gas obtained after purification - often also called biomethane - can either be used directly for the purpose of generating energy, fed into the gas network or liquefied with a view to intermediate storage or transport.

Zur Verflüssigung wird das Produktgas üblicherweise stark heruntergekühlt . Bei diesem Prozess wirken sich im Produktgas enthaltene Verunreinigungen, insbesondere auch CO2 , nachteilig aus : Wenn im Produktgas eine nennenswerte CCh-Kontentration enthalten ist , so gefriert dieses im Zuge der für die Verflüssigung notwendige Kühlung aus und kann dabei zum Beispiel Ventile der Verflüssigungsanlage blockieren . Insofern ist eine möglichst geringe CCh-Konzentration im Produktgas nicht nur im Hinblick auf dessen Nutzung als Energieträger, sondern auch im Hinblick auf dessen Verflüssigung zur Lagerung bzw . zum Transport wünschenswert . Es hat sich gezeigt , dass im Falle einer Verflüssigung eine CCh-Konzentration im Produktgas von unter 215 ppm ideal ist . Solch tiefe CCh-Konzentrationen können mit den bekannten Methoden allerdings - wenn überhaupt - nur durch Einsatz von zeit- und kostenintensiven Auf reinigungsprozessen erreicht werden . For liquefaction, the product gas is usually cooled down considerably. In this process, impurities contained in the product gas, in particular CO2, have a disadvantageous effect: if the product gas contains a significant CCh concentration, it freezes in the course of the Cooling necessary for liquefaction and can block valves in the liquefaction plant, for example. In this respect, the lowest possible CCh concentration in the product gas is not only important with regard to its use as an energy source, but also with regard to its liquefaction for storage or. desirable for transportation. It has been shown that in the case of liquefaction, a CCh concentration in the product gas of below 215 ppm is ideal. However, such low CCh concentrations can only be achieved with the known methods - if at all - by using time-consuming and costly purification processes.

Für die Entfernung bzw . Reduktion von CO2 aus Biogas sind verschiedene Trennverfahren und Trennvorrichtungen, wie Aminwäschen, Druck-Wechsel-Adsorption ( " Pressure Swing Adsorption - kurz : " PSA" ) , Druck-Temperatur-Wechsel-Adsorption ( " Pressure Thermal Swing Adsorption" - kurz : " PTSA" ) oder Membranen, bekannt . Viele dieser Verfahren haben den Nachteil , dass die involvierten Trennvorrichtungen (Membrane , Adsorber, Filter ) aufwändig wiederaufbereitet bzw . regeneriert oder gewechselt werden müssen, da ihre Trennlei stung ohne Regeneration stetig abnimmt . Zudem sind oftmals mehrstufige Verfahren - d . h . hintereinandergeschaltete Trennvorrichtungen oder Trennschritte - notwendig, um eine signi fikante CO2- Reduktion im Produktgas zu erreichen . Jede Trennstufe geht gewöhnlich mit zusätzlichen Kosten und Verlust an Produktgas ( dem sogenannten "Methanschlupf" ) einher . Diese Probleme sind in den heutigen Verfahren nach wie vor präsent . For the distance or Reduction of CO2 from biogas are various separation processes and separation devices, such as amine scrubbing, pressure swing adsorption ("Pressure Swing Adsorption" - in short: "PSA"), pressure-temperature swing adsorption ("Pressure Thermal Swing Adsorption" - in short: " PTSA" ) or membranes. Many of these processes have the disadvantage that the separating devices involved (membranes, adsorbers, filters) have to be reprocessed or regenerated or replaced at great expense, since their separating performance decreases steadily without regeneration. In addition, there are often multi-stage processes - i.e. cascaded separators or separation steps - are necessary to achieve a significant CO2 reduction in the product gas Each separation stage is usually associated with additional cost and loss of product gas (the so-called "methane slip" ) These problems are common in today's Procedure still present.

Die US 2019/ 0001263 Al beschreibt beispielsweise ein Verfahren zur Herstellung von Biomethan, bei dem das zu reinigende Gasgemisch in einem ersten Schritt komprimiert wird und in einem zweiten Schritt gas förmige Verunreinigungen (volatile organic compounds - VOC ) mittels einer PSA aus dem Gasgemisch entfernt werden . Anschliessend wird in einem dritten Schritt mittels einer Membran ein Teil des CO2 und Sauerstof f aus dem Gasgemisch abgetrennt . Eine weitere CCh-Reduktion wird in einem vierten Schritt mittels einer PTSA erreicht , während restlicher Sauerstof f und Stickstof f durch eine cryogene Separation in einem fünften Schritt entfernt werden . Am Ende dieses aufwändigen Prozesses wird ein Methan-angereichertes , gereinigtes Produktgas , bzw . Biomethan erhalten . Für die Regeneration der PTSA wird in bekannter Manier ein methanhaltiges Regenerationsgas durch die PTSA geleitet , welches anschliessend zur Methanrückgewinnung einer nachgeschalteten Rückgewinnungsanlage zugeführt wird . Trotz der aufwändigen und kostenintensiven Reinigungsschritte ist die mittels dieses Verfahrens erreichte CCh-Reduktion im Hinblick auf eine ef fi ziente Verflüssigung des Produktgases unzureichend . Nachteilig ist zudem, dass im Zuge der diversen Aufbereitungsschritte j eweils ein Teil des im Gasgemisch enthaltenen Biomethans verloren geht (Methanschlupf ) , wodurch die Ef fi zienz des Verfahrens in Bezug auf eine mögl ichst hohe Biomethanausbeute verringert wird . US 2019/0001263 Al, for example, describes a method for producing biomethane in which the gas mixture to be cleaned is compressed in a first step and In a second step, gaseous impurities (volatile organic compounds - VOC) are removed from the gas mixture by means of a PSA. Then, in a third step, part of the CO2 and oxygen are separated from the gas mixture by means of a membrane. Further CCh reduction is achieved in a fourth step using PTSA, while residual oxygen and nitrogen are removed by cryogenic separation in a fifth step. At the end of this complex process, a methane-enriched, cleaned product gas or obtained biomethane. For the regeneration of the PTSA, a methane-containing regeneration gas is passed through the PTSA in a known manner, which is then fed to a downstream recovery plant for methane recovery. Despite the complex and cost-intensive cleaning steps, the CCh reduction achieved by means of this process is insufficient with regard to efficient liquefaction of the product gas. Another disadvantage is that in the course of the various processing steps, part of the biomethane contained in the gas mixture is lost (methane slip), which reduces the efficiency of the process in terms of the highest possible biomethane yield.

Die WO 2016/ 126159 A2 of fenbart ein System zur Verarbeitung von methanhaltigem Gas mit einem Methangehalt von mindestens 50 vol . % und umfasst eine Kompressionseinheit sowie eine Vorbehandlungseinheit mit einem Membranabscheider zur Senkung des CO2 Gehalts auf unter 2 vol . % und Erhöhung des Methangehalts auf über 85 vol . % . Weiter umfasst das System eine Verflüssigungseinheit und eine Dekantiervorrichtung mit einem Behälter, in dem ein Flashgas erzeugt wird . Die US 5062270 o f fenbart ein Verfahren zum Hochfahren einer Destillationskolonne mit einer kontrollierten Gefrierzone , bei welchem Verfahren ein mit CO2 angereicherter Gasstrom produziert wird - mit einem bevorzugten CCh-Gehalt von 60% - 85% . WO 2016/126159 A2 discloses a system for processing methane-containing gas with a methane content of at least 50 vol. % and includes a compression unit and a pre-treatment unit with a membrane separator to reduce the CO2 content to below 2 vol. % and increasing the methane content to over 85 vol. % . The system also includes a liquefaction unit and a decanting device with a container in which a flash gas is generated. US 5062270 discloses a process for starting up a distillation column with a controlled freezing zone, in which process a CO2-enriched gas stream is produced - with a preferred CCh content of 60% - 85%.

Die Verfahren im Stand der Technik haben den Nachteil , dass der C02-Gehalt des methanhaltigen Gases nicht genug gesenkt werden kann, ohne dass ein beträchtlicher Teil des Methans ebenfalls verloren geht . The methods in the prior art have the disadvantage that the CO 2 content of the methane-containing gas cannot be reduced enough without a considerable part of the methane also being lost.

Die vorliegende Erfindung stellt sich daher die Aufgabe , die oben beschriebenen Nachteile des Stands der Technik zu beseitigen und ein verbessertes Verfahren zur Entfernung von CO2 aus einem methanhaltigen Gasgemisch bereitzustellen, das eine ef fi ziente und ef fektive Reduktion des CCh-Gehalts bei gleichzeitiger Minimierung des Methanschlupfes erlaubt . The present invention therefore has the task of eliminating the above-described disadvantages of the prior art and providing an improved method for removing CO2 from a methane-containing gas mixture that efficiently and effectively reduces the CCh content while minimizing the methane slip allowed.

Die Aufgabe wird erfindungsgemäss mit einem Verfahren gemäss Anspruch 1 und einer Vorrichtung gemäss Anspruch 17 gelöst . Bevorzugte Aus führungs formen der Erfindung s ind in den abhängigen Ansprüchen wiedergegeben . The object is achieved according to the invention with a method according to claim 1 and a device according to claim 17 . Preferred embodiments of the invention are set out in the dependent claims.

Im erfindungsgemässen Verfahren wird in einem ersten Schritt ein methanhaltiges Gas enthaltend mindestens CO2 als Verunreinigung bereitgestellt ( Schritt a ) . In the process according to the invention, a methane-containing gas containing at least CO 2 as an impurity is provided in a first step (step a).

In einem zweiten Schritt wird CO2 mittels Aus frierens vom Gas abgetrennt ( Schritt b ) . Hierzu wird das methanhaltige Gas abgekühlt , vorzugsweise auf bzw . unter -78 . 5 ° C bei Atmosphärendruck . In a second step, CO2 is separated from the gas by freezing (step b). For this purpose, the methane-containing gas is cooled, preferably to or under -78 . 5 °C at atmospheric pressure.

Anschliessend wird in einem dritten Schritt die CO2- Konzentration des methanhaltigen Gases in einer Druck-und- Temperaturwechel-Adsorptionsvorrichtung ( englisch : presure temperature swing adsorption ( PTSA) ) weiter reduziert , wodurch ein Methan-angereichertes Produktgas erhalten wird ( Schritt c ) . Then, in a third step, the CO2 concentration of the methane-containing gas is measured in a pressure and Temperature swing adsorption (English: presure temperature swing adsorption (PTSA)) further reduced, whereby a methane-enriched product gas is obtained (step c).

Vom Produktgas wird anschliessend in einem vierten Schritt mindestens ein Teil als Aufbereitungsgas zur Aufbereitung bzw . Regeneration der PTSA durch die PTSA geleitet , wodurch CO2 vom Aufbereitungsgas aufgenommen und mit letzterem aus der PTSA entfernt wird ( Schritt d) . In a fourth step, at least part of the product gas is used as treatment gas for treatment or Regeneration of the PTSA passed through the PTSA, whereby CO2 is picked up by the treatment gas and removed with the latter from the PTSA (step d).

In einem fünften Schritt wird das im Zuge der Aufbereitung der PTSA mit CO2 beladene Aufbereitungsgas dem methanhaltigen Gas aus dem ersten Schritt a ) beigemischt ( Schritt e ) . In a fifth step, the treatment gas loaded with CO2 in the course of the treatment of the PTSA is mixed with the methane-containing gas from the first step a) (step e).

Im Sinne der Erf indung wird als methanhaltiges Gas ein Gas definiert , das Methan als Bestandteil aufweist . Weiter umfasst das methanhaltige Gas neben Methan CO2 und gewöhnlich auch noch andere Verbindungen, insbesondere Verunreinigungen, wie z . B . "volatile organic compounds" (VOC ) . Within the meaning of the invention, a gas containing methane is defined as a methane-containing gas. In addition to methane, the methane-containing gas also includes CO2 and usually also other compounds, in particular impurities such as e.g. B. "volatile organic compounds" (VOC) .

Als Methan-angereichertes Produktgas wird im Sinne der Erfindung ein Gas definiert , welches im Vergleich zu dem initial bereitgestellten methanhaltigen Gas eine höhere Methan-Konzentration und eine tiefere CCh-Konzentration aufweist . Within the meaning of the invention, a methane-enriched product gas is defined as a gas which has a higher methane concentration and a lower CCh concentration than the initially provided methane-containing gas.

Als Aufbereitungsgas wird im Sinne der Erfindung ein Gas definiert , welches vom Produktgas oder von einem auf dem Produktgas basierenden Gas abgetrennt wird und zur Aufbereitung der PTSA durch die PTSA geleitet wird . Das Aufbereitungsgas kann vor dem Durchleiten durch die PTSA in Bezug auf seine Temperatur und/oder sein Druck verändert werden, insbesondere kann es vorher erwärmt und/oder entspannt werden . In the context of the invention, a treatment gas is defined as a gas which is separated from the product gas or from a gas based on the product gas and is passed through the PTSA for treatment of the PTSA. The conditioning gas may be altered in temperature and/or pressure prior to passage through the PTSA are, in particular, it can be previously heated and / or relaxed.

Im Sinne der Erfindung wird unter Aus frieren ein Prozess verstanden, bei welchem die Temperatur eines Gases unter den Druck-abhängigen Sublimationspunkt von CO2 gekühlt wird . Bei Atmosphärendruck liegt dieser bei -78 . 5 ° C . For the purposes of the invention, freezing off is understood as meaning a process in which the temperature of a gas is cooled below the pressure-dependent sublimation point of CO2. At atmospheric pressure, this is -78. 5ºC.

Es wurde überraschenderweise gefunden, dass durch Verwendung von Produktgas als Aufbereitungsgas zur Aufbereitung der PTSA der Energieverbrauch der PTSA reduziert werden kann . Konkret kann vermieden werden, dass zur Aufbereitung der PTSA ein externes Gas verwendet werden muss . Surprisingly, it was found that the energy consumption of the PTSA can be reduced by using product gas as the treatment gas for the treatment of the PTSA. Specifically, it can be avoided that an external gas has to be used to prepare the PTSA.

Weiter wurde überraschenderweise festgestellt , dass durch die Rückführung des Aufbereitungsgases und seine Beimischung in das initial bereitgestellte methanhaltige Gas die Ef fi zienz des Verfahrens gesteigert werden kann, da der Aus f rierungsschritt eine zuverlässige und ef fi ziente Abtrennung eines Grossteils des CO2 aus dem Gas erlaubt . Gleichzeitig ist der Methanschlupf beim Aus frieren sehr gering . Die Rückführung des mit CCh-beladenen Regenerationsgases in das in Schritt a ) bereitgestellte methanhaltig Gas vor dem Aus f rierungsschritt b ) entlastet die PTSA im Schritt c ) . Insgesamt können so die Anzahl Trennschritte bzw . Trennstufen im Schritt c ) reduziert und der Methanschlupf des Verfahrens minimiert werden . It was also surprisingly found that the efficiency of the process can be increased by recycling the treatment gas and adding it to the initially provided methane-containing gas, since the freezing step allows a large part of the CO2 to be reliably and efficiently separated from the gas . At the same time, the methane slip when it freezes out is very low. The recirculation of the regeneration gas loaded with CCh into the methane-containing gas provided in step a) before the freezing step b) relieves the PTSA in step c). Overall, the number of separation steps or Separation stages in step c) are reduced and the methane slip of the process is minimized.

Das erfindungsgemässe Verfahren hat somit gegenüber dem Stand der Technik den Vorteil , dass durch den vorgeschalteten Aus f rierungsschritt in Kombination mit der Verwendung und Rückführung des Aufbereitungsgases zur bzw . nach der Aufbereitung der PTSA, letztere deutlich kostengünstiger, energieef fi zienter und umweltfreundlicher betrieben werden kann . The method according to the invention thus has the advantage over the prior art that the upstream freezing step in combination with the use and recycling of the treatment gas to or after the preparation of the PTSA, the latter much cheaper, can be operated in a more energy-efficient and environmentally friendly manner.

Das initial in Schritt a ) bereitgestellte methanhaltige Gas kann mitunter fermentativ erzeugt werden, beispielsweise in Biogasanlagen, und umfasst bevorzugt Biogas , Deponiegas und/oder Gas aus der Pyrolyse von organischem Material . Weiter bevorzugt kann das Gas auch nicht fermentativen Ursprungs sein, wie beispielsweise in Form von Erdgas , Grubengas oder Flözgas . Das methanhaltige Gas kann auch von einer vorgeschalteten Gasaufbereitungsanlage bereitgestellt werden . The methane-containing gas initially provided in step a) can sometimes be produced by fermentation, for example in biogas plants, and preferably comprises biogas, landfill gas and/or gas from the pyrolysis of organic material. More preferably, the gas can also be of non-fermentative origin, for example in the form of natural gas, mine gas or coal bed methane. The gas containing methane can also be provided by an upstream gas treatment plant.

Wie oben erwähnt, wird durch Verringerung des CCh-Anteils und der damit einhergehenden Erhöhung des Methananteils des methanhaltigen Gases ein methanangereichertes Produktgas bereitgestellt . Von letzterem wird zumindest ein Teil als Aufbereitungsgas durch die PTSA geleitet , um die PTSA zu Regenerieren . As mentioned above, a methane-enriched product gas is provided by reducing the CCh content and the associated increase in the methane content of the methane-containing gas. At least part of the latter is passed through the PTSA as a treatment gas in order to regenerate the PTSA.

Bevorzugt wird das Produktgas oder zumindest ein Teil davon vor dem Abtrennen des Aufbereitungsgases verflüssigt . Eine Verflüssigung des Produktgases kann in bekannter Art und Weise durch Kühlung und/oder Kompression erfolgen . Da eine Druckerhöhung des kalten Produktgases sehr aufwändig ist , wird das Produktgas bevorzugt mittels Temperaturreduktion verflüssigt . Bevorzugt wird das Produktgas zur Verflüssigung auf - 140 ° C bis -100 ° C, bevorzugt - 130 ° C bis - 110 ° C und besonders bevorzugt - 125 ° C bis - 115 ° C gekühlt . Diese Temperaturen sind in Kombination mit einem Druck von 15 bar bevorzugt . Die 15 bar entsprechen dem bevorzugten Druck des Produktgases bei dessen Erhalt nach der CCh-Abtrennung in der PTSA. Verflüssigtes Produktgas mit einem hohen Anteil an Methan kann fast überdrucklos bei ca . - 160 °C gelagert werden . Es ist ebenfalls möglich das verflüssigte Produktgas bei erhöhtem Druck und höherer Temperatur zu lagern . The product gas or at least part of it is preferably liquefied before the treatment gas is separated off. The product gas can be liquefied in a known manner by cooling and/or compression. Since increasing the pressure of the cold product gas is very complex, the product gas is preferably liquefied by reducing the temperature. The product gas is preferably cooled to −140° C. to −100° C., preferably −130° C. to −110° C. and particularly preferably −125° C. to −115° C. for liquefaction. These temperatures are preferred in combination with a pressure of 15 bar. The 15 bar corresponds to the preferred pressure of the product gas when it is received after the CCh separation in the PTSA. Liquefied product gas with a high proportion of methane can be produced almost without pressure at approx. - 160 °C can be stored. It is also possible to store the liquefied product gas at elevated pressure and higher temperature.

Nach der Verflüssigung kann das verflüssigte methanangereicherte Produktgas im Hinblick auf einen erleichterten Transport bzw . eine vereinfachte Lagerung dekomprimiert werden . In einer bevorzugten Aus führungs form wird das verflüssigte methanangereicherte Produktgas - vor dem Abzweigen eines Teils des Produktgases zur Nutzung als Aufbereitungsgas - auf bevorzugt 1 bar dekomprimiert . Durch die Dekomprimierung des verflüssigten Produktgases verringert sich entsprechend der Kältebedarf der Anlage und die nachfolgenden Lager- und Transportbehälter sind keinen hohen Drücken ausgesetzt . After liquefaction, the liquefied methane-enriched product gas can be a simplified storage to be decompressed. In a preferred embodiment, the liquefied methane-enriched product gas is decompressed to preferably 1 bar—before part of the product gas is branched off for use as treatment gas. Due to the decompression of the liquefied product gas, the refrigeration requirement of the system is reduced accordingly and the subsequent storage and transport containers are not exposed to high pressures.

Bevorzugt passiert das dekomprimierte verflüssigte Produktgas einen Partikel filter, welcher besonders bevorzugt eine Porengrösse von <10 pm aufweist und welcher Feststof fe aus dem dekomprimierten verflüssigten Produktgas entfernt . Das Entfernen von Rückständen aus dem vorzugsweise dekomprimierten verflüssigten Produktgas steigert dessen Qualität im Hinblick auf die Verwendung als Energieträger und verhindert , dass sich die Feststof fe in Transportbehältern oder Ventilen festsetzen und dort zu Ablagerungen führen . The decompressed, liquefied product gas preferably passes through a particle filter, which particularly preferably has a pore size of <10 μm and which removes solids from the decompressed, liquefied product gas. The removal of residues from the preferably decompressed liquefied product gas increases its quality with regard to its use as an energy carrier and prevents the solids from settling in transport containers or valves and causing deposits there.

Bei der Dekomprimierung wird zudem mindestens ein Teil des verflüssigten Produktgases wieder gas förmig . Dieser Teil wird im Sinne der Erfindung als " Flashgas" bezeichnet . Bevorzugt handelt es sich bei dem Flashgas also um gekühltes Methanangereichertes Produktgas , welches bevorzugt bei Atmosphärendruck ( i . d . R . ca . 1 bar ) vorliegt . Dieses Flashgas kann im Sinne der Erfindung als Aufbereitungsgas oder als Teil des Aufbereitungsgases zur Aufbereitung der PTSA durch letztere geleitet werden . During decompression, at least part of the liquefied product gas also becomes gaseous again. This part is referred to as "flash gas" within the meaning of the invention. The flash gas is therefore preferably cooled methane-enriched product gas, which is preferably Atmospheric pressure (usually approx. 1 bar) is present. In the context of the invention, this flash gas can be passed through the PTSA as a treatment gas or as part of the treatment gas for the treatment of the latter.

Für das erfindungsgemässe Verfahren wird somit bevorzugt zumindest ein Teil des bei der Dekomprimierung des verflüssigten Produktgases entstehenden Flashgases als Aufbereitungsgas verwendet , um die Ef fi zienz des Verfahren besonders zu erhöhen . Es ist j edoch ebenfalls denkbar, dass das Aufbereitungsgas direkt vor der Verflüssigung vom Produktgas abgetrennt wird, also ohne vorangehende Verflüssigung und Dekomprimierung mit dem damit einhergehenden Erhalt eines Flashgases . For the process according to the invention, at least part of the flash gas produced during the decompression of the liquefied product gas is preferably used as treatment gas in order to particularly increase the efficiency of the process. However, it is also conceivable that the processing gas is separated from the product gas directly before the liquefaction, ie without prior liquefaction and decompression with the associated receipt of a flash gas.

Erfindungsgemäss wird im Zuge der Aufbereitung der PTSA CO2 mittels des Aufbereitungsgases aus der PTSA entfernt . Im Sinne der vorliegenden Anmeldung umfasst die Regeneration oder Aufbereitung der PTSA insofern eine Entfernung von CO2 . Die Notwendigkeit einer Aufbereitung bzw . Regeneration der PTSA ergibt sich dadurch, dass sich das mittels der PTSA aus dem methanhaltigen Gas entfernte oder abgetrennte CO2 üblicherweise in der PTSA akkumuliert . In der PTSA wird das methanhaltige Gas in Flussrichtung durch ein Adsorptionsmittel bzw . einen Adsorber geleitet , wobei das Adsorptionsmittel das CO2 adsorbiert und sich das methanangereicherte Produktgas auf der anderen ( stromabwärts gelegenen) Seite des Adsorptionsmittels akkumuliert . Wenn der Adsorber mit CO2 gesättigt ist , muss das adsorbierte CO2 vom Adsorber gelöst werden, um diesen für den weiteren Gebrauch wiederauf zubereiten, d . h . zu regenerieren . Für die Regeneration sind mehrere Möglichkeiten bekannt . Üblicherweise kann hierzu entweder der Druck in der PTSA reduziert , das Adsorptionsmittel erwärmt , und/oder das Adsorptionsmittel von einem Aufbereitungsgas in oder entgegen der Flussrichtung des zu reinigenden Gases durchströmt werden . Es sind auch Kombinationen der genannten Regenerationsschritte möglich . Solch ein Regenerationsprozess einer PTSA findet normalerweise in regelmässigen Abständen statt . In der Praxis bedeutet dies , dass die PTSA entweder über mehrere Adsorber bzw . Adsorberbehälter verfügt , welche abwechslungsweise adsorbieren und anschliessend regeneriert werden oder dass die PTSA nicht konstant in Betrieb ist und der Trennprozess in der Regenerations zeit des Adsorbers pausiert wird . According to the invention, in the course of the processing of the PTSA, CO 2 is removed from the PTSA by means of the processing gas. In the context of the present application, the regeneration or processing of the PTSA includes the removal of CO2. The need for processing Regeneration of the PTSA results from the fact that the CO2 removed or separated from the methane-containing gas by means of the PTSA usually accumulates in the PTSA. In the PTSA, the methane-containing gas is separated in flow direction by an adsorbent or passed to an adsorber, where the adsorbent adsorbs the CO2 and the methane-enriched product gas accumulates on the other (downstream) side of the adsorbent. When the adsorber is saturated with CO2, the adsorbed CO2 has to be released from the adsorber to prepare it for further use, i. H . to regenerate . Several possibilities are known for regeneration. Usually For this purpose, either the pressure in the PTSA can be reduced, the adsorbent can be heated and/or the adsorbent can be flowed through by a treatment gas in or against the flow direction of the gas to be cleaned. Combinations of the regeneration steps mentioned are also possible. Such a regeneration process of a PTSA usually takes place at regular intervals. In practice, this means that the PTSA can either have several adsorbers or adsorber tanks, which adsorb alternately and are then regenerated, or that the PTSA is not constantly in operation and the separation process is paused during the regeneration time of the adsorber.

Besonders bevorzugt wird das Aufbereitungsgas vor dem Durchleiten durch die PTSA entspannt - also dekomprimiert - und gegebenenfalls erwärmt , da dies die Abgabe von CO2 in das Aufbereitungsgas begünstigt . The treatment gas is particularly preferably expanded—ie decompressed—and optionally heated before it is passed through the PTSA, since this promotes the release of CO 2 into the treatment gas.

Als erwärmtes Aufbereitungsgas wird im Sinne der Erfindung ein Aufbereitungsgas definiert , welches bevorzugt eine Temperatur von -20 ° C bis 30 ° C, bevorzugter von - 10 ° C bis 20 ° C und besonders bevorzugt von -5 ° C bis 15 ° C und ganz besonders bevorzugt von 0 ° C bis 10 ° C aufweist , um das CO2 möglichst ef fi zient vom Adsorber zu lösen . Within the meaning of the invention, a heated treatment gas is defined as a treatment gas which preferably has a temperature of -20° C. to 30° C., more preferably from -10° C. to 20° C. and particularly preferably from -5° C. to 15° C. and quite particularly preferably from 0° C. to 10° C. in order to detach the CO2 from the adsorber as efficiently as possible.

In einer konkreten bevorzugten Aus führungs form des erfindungsgemässen Verfahrens umfasst die PTSA einen Adsorber, welcher in oder entgegen der Flussrichtung des methanhaltigen Gases vom bevorzugt erwärmten Aufbereitungsgas durchströmt wird, nachdem der Druck in der PTSA auf den Druck des Aufbereitungsgases reduziert worden ist . Das erwärmte Aufbereitungsgas löst das adsorbierte CO2 vom Adsorber, welcher so regeneriert wird. Anschliessend wird das nun mit CO2 beladene Aufbereitungsgas aus der PTSA geleitet, womit letztere wieder bereit ist, um vom methanhaltigen Gas in Flussrichtung durchströmt zu werden und mittels des regenerierten Adsorbers CO2 aus dem methanhaltigen Gas zu entfernen . In a specific preferred embodiment of the method according to the invention, the PTSA comprises an adsorber through which the preferably heated processing gas flows in or counter to the flow direction of the methane-containing gas after the pressure in the PTSA has been reduced to the pressure of the processing gas. The heated treatment gas releases the adsorbed CO2 from the adsorber, which is thus regenerated. The treatment gas, which is now loaded with CO2, is then routed out of the PTSA, which means that the latter is again ready for the methane-containing gas to flow through in the direction of flow and to remove CO2 from the methane-containing gas by means of the regenerated adsorber.

Wie oben erwähnt, wird das Aufbereitungsgas erfindungsgemäss nach erfolgter Regeneration der PTSA zurückgeführt und dem methanhaltigen Gasstrom aus dem ersten Schritt a) des erfindungsgemässen Verfahrens beigemischt oder mit diesem zusammengeführt. Je nach Druck des methanhaltigen Gases wird das Aufbereitungsgas durch Einsatz eines Kompressors bevorzugt auf den gleichen Druck erhöht oder gesenkt, um eine effiziente Mischung der beiden Gasströme zu ermöglichen. In der Regel wird dem methanhaltigen Gas in Schritt a) bevorzugt ein Drittel seines Volumens (gemessen als Volumen an zugeführtem methanhaltigen Gas pro Sekunde) als Aufbereitungsgas hinzugefügt. Im Sinne der Erfindung erfolgt dann in einem zweiten Schritt b) die Entfernung von CO2 aus dem methanhaltigen Gas - welches das zurückgeführte Aufbereitungsgas enthält - mittels Ausfrierens von CO2. As mentioned above, the treatment gas is recycled according to the invention after regeneration of the PTSA has taken place and is mixed with or combined with the methane-containing gas stream from the first step a) of the method according to the invention. Depending on the pressure of the methane-containing gas, the make-up gas is preferably increased or decreased to the same pressure by using a compressor to allow efficient mixing of the two gas streams. As a rule, one third of its volume (measured as the volume of methane-containing gas supplied per second) is preferably added to the methane-containing gas in step a) as treatment gas. According to the invention, in a second step b) the removal of CO2 from the methane-containing gas—which contains the recirculated processing gas—is carried out by freezing out CO2.

Im Zuge des Ausfrierens wird das methanhaltige Gas bevorzugt bei einem Druck von 5 bis 25 bar, besonders bevorzugt von 10 bis 20 bar und ganz besonders bevorzugt auf 14 bis 17 bar (die Angabe "bar" ist hierbei stets als bar (a) , also absolut, gegeben) auf -130°C bis -80°C, weiter bevorzugt -120°C bis -100°C, besonders bevorzugt -116°C bis -110°C gekühlt. In einer bevorzugten Aus führungs form wird das methanhaltige Gas zur Kühlung mit einer Oberfläche in Kontakt gebracht, die auf die oben genannten Temperaturbereiche heruntergekühlt wird oder worden ist . Das im methanhaltigen Gas enthaltene CO2 kristallisiert an dieser Oberfläche aus , so dass an der Oberfläche eine Schicht aus solidem CO2 - auch bekannt als Trockeneis - gebildet wird . Das Trockeneis wird üblicherweise in regelmässigen Abständen von der Oberfläche entfernt , beispielsweise durch Abkratzen mittels eines Schabers , sodass neues CO2 an der gekühlten Oberfläche auskristallis ieren kann . In the course of freezing, the methane-containing gas is preferably at a pressure of 5 to 25 bar, particularly preferably 10 to 20 bar and very particularly preferably 14 to 17 bar (the "bar" specification here is always bar (a), i.e absolute, given) to -130°C to -80°C, more preferably -120°C to -100°C, most preferably -116°C to -110°C. In a preferred embodiment, the methane-containing gas is brought into contact with a surface for cooling, which is cooled down to the temperature ranges mentioned above or has been . The CO2 contained in the methane - containing gas crystallizes out on this surface , so that a layer of solid CO2 -- also known as dry ice -- is formed on the surface . The dry ice is usually removed from the surface at regular intervals, for example by scraping it off with a scraper, so that new CO2 can crystallize out on the cooled surface.

Durch den Aus frierungsschritt wird der CO2 Gehalt des methanhaltigen Gases ( inkl . beigemischten Aufbereitungsgas ) bevorzugt auf unter 6000 ppm reduziert . Eine weitere Reduktion des CO2-Gehalts des methanhaltigen Gases wird erfindungsgemäss in der nachgeschalteten PTSA erreicht . Das Aus frieren von CO2 hat generell den Vorteil , dass mit relativ geringem Aufwand eine grosse Menge an CO2 aus dem Gas entfernt werden kann . In der Regel ist auch der Wartungsaufwand einer entsprechenden Aus f rierungseinheit (Kühleinheit ) gegenüber anderen Trennvorrichtungen, etwa einer PTSA, geringer . Neben CO2 können im Zuge des Aus frierens auch andere Verunreinigungen aus dem methanhaltigen Gas entfernt werden . Ein weiterer Vorteil ist , dass durch den Prozess des Aus frierens kein Methan verloren geht , da Methan bei den oben angegebenen bevorzugten Temperaturen nicht an der Oberf läche kondensiert . Mittels Aus frierens von CO2 kann insofern ohne Methanverlust die Methankonzentration im methanhaltigen Gas gesteigert werden . Je nachdem, ob und in welcher Konzentration zusammen mit dem CO2 weitere Verunreinigungen an der Oberfläche kondensieren, kann das ausgefrorene CO2 anschliessend in die Umwelt entlassen oder als Trockeneis zur Kühlung verwendet werden . The freezing step preferably reduces the CO2 content of the methane-containing gas (including the added processing gas) to below 6000 ppm. A further reduction in the CO2 content of the methane-containing gas is achieved according to the invention in the downstream PTSA. Freezing out CO2 generally has the advantage that a large amount of CO2 can be removed from the gas with relatively little effort. As a rule, the maintenance effort of a corresponding freezing unit (cooling unit) is also lower compared to other separating devices, such as a PTSA. In addition to CO2, other contaminants can also be removed from the methane-containing gas in the course of freezing. A further advantage is that no methane is lost in the freezing process since methane does not condense on the surface at the preferred temperatures given above. By freezing out CO2, the methane concentration in the methane-containing gas can be increased without methane loss. Depending on whether and in what concentration other impurities condense on the surface together with the CO2, the frozen CO2 can then be released into the environment or used as dry ice for cooling.

Bevorzugt wird in der PTSA die C02-Konzentration des methanhaltigen Gases auf unter 5200 ppm, bevorzugt auf unter 830 ppm, bevorzugter auf unter 215 ppm, besonders bevorzugt auf unter 100 ppm und ganz besonders bevorzugt auf unter 50 ppm gesenkt . In the PTSA, the CO 2 concentration of the methane-containing gas is preferably below 5200 ppm, preferably below 830 ppm, more preferably below 215 ppm, particularly preferably below 100 ppm and very particularly preferably below 50 ppm.

Eine tiefe CCk-Konzentration im Produktgas ist insbesondere im Hinblick auf eine Verflüssigung des Produktgases bevorzugt , da dies ein Aus frieren von CO2 in Ventilen oder Rohrleitungen verhindert . Für das Produktgas wird bei Atmosphärendruck ganz besonders bevorzugt eine CCh-Konzentration von maximal 50 ppm angestrebt , da CO2 in diesen Konzentrationen bei Temperaturen unter - 162 ° C im verflüssigten Produktgas gelöst bleibt und nicht auskristallisiert . Falls der Druck im Produktgas höher ist als Atmosphärendruck kann die CCh-Konzentration auch höher sein . A low CCk concentration in the product gas is preferred, particularly with regard to liquefaction of the product gas, since this prevents CO 2 from freezing out in valves or pipelines. A maximum CCh concentration of 50 ppm at atmospheric pressure is particularly preferred for the product gas, since CO 2 in these concentrations remains dissolved in the liquefied product gas at temperatures below −162° C. and does not crystallize out. If the pressure in the product gas is higher than atmospheric pressure, the CCh concentration can also be higher.

Eine tiefe CCh-Konzentration im Produktgas hat für die weitere Verwendung des Produktgases zusätzliche Vorteile : Ab einer CO2- Konzentration von über ca . 215 ppm im Produktgas kann es sein, dass bei der Dekomprimierung des verflüssigten Produktgases CO2 auskristallisiert , und dieses entfernt werden muss - beispielsweise mittels Aussiebens . A low CCh concentration in the product gas has additional advantages for the further use of the product gas: From a CO2 concentration of more than approx. 215 ppm in the product gas, CO2 may crystallize out during the decompression of the liquefied product gas and this has to be removed - for example by means of sieving.

Bevorzugt wird zumindest ein Teil des Produktgases aus dem dritten Schritt c ) oder zumindest ein Teil des mit CO2 beladenen Aufbereitungsgases aus dem vierten Schritt d) zur Kühlung des methanhaltigen Gases im zweiten Schritt b ) (Aus frierungsschritt ) verwendet . Bevorzugt wird zu diesem Zweck das Produktgas oder das Aufbereitungsgas und das methanhaltige Gas , vorzugsweise im Gegenstromprinzip, durch einen Wärmetauscher geleitet . At least part of the product gas from the third step c) or at least part of the CO2-laden treatment gas from the fourth step d) is preferably used to cool the methane-containing gas in the second step b) (freezing step). For this purpose, the product gas or the processing gas and the methane-containing gas are preferably passed through a heat exchanger, preferably using the countercurrent principle.

Das Produktgas aus dem dritten Schritt c ) (und insofern auch der vom Produktgas abgetrennte Tei l , der als Aufbereitungsgas genutzt wird) hat bevorzugt eine Temperatur von -162°C bis - 130°C, während das methanhaltige Gas aus dem ersten Schritt a) bevorzugt eine Temperatur von 0°C bis 40°C aufweist. Durch den Wärmeaustausch im Wärmetauscher wird das Produktgas bzw. das Aufbereitungsgas erwärmt und gleichzeitig das methanhaltige Gas gekühlt. Bevorzugt wird dabei das Produkt- oder Aufbereitungsgas auf eine Temperatur von unter bevorzugt von -20°C bis 30°C, bevorzugter von -10°C bis 20°C, besonders bevorzugt von -5°C bis 15°C und ganz besonders bevorzugt von 0°C bis 10°C erwärmt, während das methanhaltige Gas bevorzugt auf unter 10°C, bevorzugter auf unter 0°C und besonders bevorzugt auf unter -30°C gekühlt wird. Das gekühlte methanhaltige Gas aus dem Wärmetauscher wird für das nachfolgende Ausfrieren (im zweiten Schritt b) ) in der Regel weiter gekühlt. Der vorgängige Energieaustausch zwischen dem Aufbereitungs- oder Produktgas und dem methanhaltigen Gas ermöglicht es den Energiebedarf zum Kühlen des methanhaltigen Gases zu verringern, wodurch die Gasaufbereitung effizienter und wirtschaftlicher betrieben werden kann. The product gas from the third step c) (and in this respect also the part separated from the product gas, which is used as the treatment gas is used) preferably has a temperature of -162 ° C to - 130 ° C, while the methane-containing gas from the first step a) preferably has a temperature of 0 ° C to 40 ° C. Due to the heat exchange in the heat exchanger, the product gas or the treatment gas is heated and the methane-containing gas is cooled at the same time. The product or processing gas is preferably brought to a temperature below, preferably from -20°C to 30°C, more preferably from -10°C to 20°C, particularly preferably from -5°C to 15°C and very particularly preferably from 0°C to 10°C, while the methane-containing gas is preferably cooled to below 10°C, more preferably to below 0°C and most preferably to below -30°C. The cooled methane-containing gas from the heat exchanger is generally further cooled for the subsequent freezing (in the second step b)). The previous exchange of energy between the treatment or product gas and the methane-containing gas makes it possible to reduce the energy requirement for cooling the methane-containing gas, as a result of which the gas treatment can be operated more efficiently and economically.

In einer bevorzugten Aus führungs form wird für die Entfernung von CO2 aus der PTSA das erwärmte Produktgas aus dem Wärmetauscher als Aufbereitungsgas genutzt. Gegebenenfalls wird das erwärmte Produktgas vor dem Durchleiten durch die PTSA bevorzugt auf einen Druck von 1 bar dekomprimiert (also entspannt) . In a preferred embodiment, the heated product gas from the heat exchanger is used as the treatment gas for the removal of CO2 from the PTSA. If appropriate, the heated product gas is preferably decompressed (ie relaxed) to a pressure of 1 bar before it is passed through the PTSA.

Wie weiter oben bereits erklärt wird das CO2 bei der Verwendung einer PTSA von einem Adsorptionsmittel bzw. einem Adsorber (meist Zeolithe oder Kohlenstoffmolekularsiebe) adsorbiert bzw. gebunden. Nachdem das Adsorptionsmittel gesättigt ist, muss es regeneriert oder ausgetauscht werden, um die PTSA wieder funktionsbereit zu machen . Eine Regeneration des Adsorptionsmittels kann wie vorstehend beschrieben beispielsweise durch Durchströmen des Aufbereitungsgases in Kombination mit Erwärmen und/oder Entspannung des Adsorptionsmittels erzielt werden . Der Regenerationsprozess kann beschleunigt werden, wenn das Aufbereitungsgas das Adsorptionsmittel entgegen der Flussrichtung des methanhaltigen Gases durchströmt . Die Kombination aus erwärmtem und entspanntem Aufbereitungsgas , welches das Adsorptionsmittel erwärmt , um das CO2 zu lösen und gleichzeitig das Adsorptionsmittel durchströmt , um das gelöste CO2 abzutransportieren, hat sich für die Regeneration der PTSA als sehr ef fi zient erwiesen . Im Hinblick auf eine möglichst energieef fi zientes Verfahren wird keine externe Energie für die Erwärmung des Aufbereitungsgases verwendet , sondern die Erwärmung erfolgt - wie oben beschrieben - bevorzugt über den Wärmeaustausch zwischen dem " kalten" Produktgas und dem "warmen" methanhaltigen Gas im Wärmetauscher . Das aus dem Wärmetauscher austretende erwärmte Produktgas kann dann als Aufbereitungsgas zur Regeneration der PTSA in die PTSA weitergeleitet werden . As explained above, when using a PTSA, the CO2 is adsorbed or bound by an adsorbent or an adsorber (usually zeolites or carbon molecular sieves). After the adsorbent is saturated, it must be regenerated or replaced in order to reduce the PTSA to make it operational again. As described above, regeneration of the adsorbent can be achieved, for example, by flowing through the treatment gas in combination with heating and/or expansion of the adsorbent. The regeneration process can be accelerated if the treatment gas flows through the adsorbent against the direction of flow of the methane-containing gas. The combination of heated and expanded treatment gas, which heats the adsorbent to dissolve the CO2 and at the same time flows through the adsorbent to transport the dissolved CO2 away, has proven to be very efficient for the regeneration of the PTSA. With a view to making the process as energy-efficient as possible, no external energy is used to heat the processing gas, but rather the heating takes place - as described above - preferably via the heat exchange between the "cold" product gas and the "warm" methane-containing gas in the heat exchanger. The heated product gas exiting the heat exchanger can then be passed into the PTSA as make-up gas for regeneration of the PTSA.

Wie vorstehend beschrieben trägt auch eine Erwärmung des Adsorptionsmittels zur Regenerierung der PTSA bei . Nach der Regeneration des Adsorptionsmittels mittels eines erwärmten Aufbereitungsgases muss das regenerierte Adsorptionsmittel allerdings wieder gekühlt werden, um die C02-Moleküle aus dem methanhaltigen Gas ef fi zient zu adsorbieren . Diese Kühlung kann mittels eines Teils des Produktgases aus Schritt c ) erfolgen : Das Produktgas hat bei seiner Bereitstellung nach der CO2-Ent f ernung in der PTSA bevorzugt eine Temperatur von -130°C bis -80°C, besonders bevorzugt von -120°C bis -100°C und ganz besonders bevorzugt -116°C bis -110°C. Während ein Teil des Produktgases - bevorzugt in dem weiter oben beschriebenen Wärmetauscher - auf vorzugsweise -20°C bis 30°C, bevorzugter -10°C bis 20°C und besonders bevorzugt -5°C bis 10°C, aufgewärmt wird und anschliessend als erwärmtes Aufbereitungsgas durch das Adsorptionsmittel geleitet wird, kann ein weiterer Teil des Produktgases aus Schritt c) mit seiner ursprünglichen Temperatur dazu genutzt werden, um das Adsorptionsmittel der PTSA nach der Regeneration wieder auf Betriebstemperatur zu kühlen. Somit kann eine Kühlung des Adsorptionsmittels der PTSA mittels einer externen Kältequelle vermieden werden, was Energie und Kosten spart. As described above, heating the adsorbent also contributes to the regeneration of the PTSA. However, after the regeneration of the adsorbent by means of a heated treatment gas, the regenerated adsorbent must be cooled again in order to efficiently adsorb the CO 2 molecules from the methane-containing gas. This cooling can be done using part of the product gas from step c): When it is made available after the CO 2 has been removed in the PTSA, the product gas preferably has a temperature of -130°C to -80°C, more preferably from -120°C to -100°C and most preferably -116°C to -110°C. While part of the product gas is heated - preferably in the heat exchanger described above - to preferably -20°C to 30°C, more preferably -10°C to 20°C and particularly preferably -5°C to 10°C, and then is passed through the adsorbent as heated treatment gas, another part of the product gas from step c) can be used at its original temperature to cool the adsorbent of the PTSA back to operating temperature after regeneration. Thus, cooling of the PTSA adsorbent by means of an external cold source can be avoided, which saves energy and costs.

Bevorzugt wird das methanhaltige Gas vor dessen Zufuhr zur PTSA bevorzugt auf 5 bis 25 bar, besonders bevorzugt auf 10 bis 20 bar und ganz besonders bevorzugt auf 14 bis 17 bar komprimiert. Bei den genannten bevorzugten Druckbedingungen ist eine Abtrennung von CO2 aus dem methanhaltigen Gas in der PTSA besonders effizient. Before being fed to the PTSA, the methane-containing gas is preferably compressed to 5 to 25 bar, particularly preferably to 10 to 20 bar and very particularly preferably to 14 to 17 bar. With the preferred pressure conditions mentioned, separation of CO2 from the methane-containing gas in the PTSA is particularly efficient.

In einer bevorzugten Aus führungs form wird das methanhaltige Gas der PTSA mit einer Temperatur von -130°C bis -80°C, besonders bevorzugt von -120°C bis -100°C und ganz besonders bevorzugt -116°C bis -110°C, zugeführt. Die beschriebenen Temperaturen sind für eine effiziente Abtrennung von CO2 aus dem methanhaltigen Gas in der PTSA besonders geeignet. In a preferred embodiment, the methane-containing gas is used in the PTSA at a temperature of from -130°C to -80°C, more preferably from -120°C to -100°C and most preferably from -116°C to -110° C, fed. The temperatures described are particularly suitable for efficient separation of CO2 from the methane-containing gas in the PTSA.

Bevorzugt weist das methanhaltige Gas im ersten Schritt a) eine CCh-Konzentration von maximal 60%, bevorzugt von maximal 6% und besonders bevorzugt von maximal 2,5% auf. Die CO2- Konzentration bezieht sich hier auf den Zeitpunkt vor der Beimischung des CO2-beladenen Aufbereitungsgases . The methane-containing gas in the first step a) preferably has a CCh concentration of at most 60%, preferably at most 6% and particularly preferably at most 2.5%. The CO2 Concentration here refers to the point in time before the admixture of the CO2-laden treatment gas.

Mit dem erfindungsgemässen Verfahren ist es möglich methanhaltige Gasmischungen mit einem CCh-Anteil von bis zu 60% auf zureinigen, auch wenn dies aus wirtschaftlicher Sicht wenig sinnvoll ist . Daher wird bevorzugt ein möglichst tiefer CO2-Anteil angestrebt , um den Auf reinigungsaufwand möglichst gering und ef fi zient zu halten . With the method according to the invention it is possible to purify methane-containing gas mixtures with a CCh content of up to 60%, even if this makes little sense from an economic point of view. For this reason, the aim is to keep the CO2 content as low as possible in order to keep the purification effort as low and efficient as possible.

In einem weiteren Aspekt betri f ft die Erfindung eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens zur Entfernung von CO2 aus einem Methan-angereicherten Gas . Besagte Vorrichtung umfasst eine Gaseinspeiseleitung, eine Kompressionseinheit , mindestens eine Kühleinheit zum Aus frieren von CO2 , eine PTSA, eine Leitung zum Abtransport eines Methan-angereichertem Produktgases und eine Aufbereitungsgasleitung, welche die PTSA und die Gaseinspeiseleitung verbindet . In a further aspect, the invention relates to a device for carrying out the method described above for removing CO2 from a methane-enriched gas. Said device comprises a gas feed line, a compression unit, at least one cooling unit for freezing out CO2, a PTSA, a line for removing a methane-enriched product gas and a treatment gas line, which connects the PTSA and the gas feed line.

Die erfindungsgemässe Vorrichtung hat gegenüber bekannten Vorrichtungen aus dem Stand der Technik den Vorteil , dass die Aufbereitungsgasleitung, welche die PTSA und die Gaseinspeiseleitung verbindet , dazu genutzt werden kann, das in der PTSA entfernte CO2 wieder in die Gaseinspeiseleitung einzuspeisen, um es anschliessend zu einem Grossteil durch Aus frieren abzutrennen . Aus diesem Grund ist eine solche Vorrichtung sehr ef fi zient in der Entfernung von CO2 aus einem methanhaltigen Gas , wodurch ein methanangereichertesThe device according to the invention has the advantage over known devices from the prior art that the processing gas line, which connects the PTSA and the gas feed line, can be used to feed the CO2 removed in the PTSA back into the gas feed line, in order to then largely separate by freezing. Because of this, such a device is very efficient in removing CO2 from a methane-containing gas, creating a methane-enriched one

Produktgas erhalten werden kann . Im Folgenden wird die Erfindung anhand eines der beigefügt dargestellten Aus führungsbeispiels näher erläutert . Es zeigt j eweils rein schematisch : Product gas can be obtained. The invention is explained in more detail below using one of the exemplary embodiments illustrated. It shows in each case purely schematically:

Fig . 1 eine schematische Darstellung einer bevorzugten Aus führungs form des erfindungsgemässen Verfahrens zur Entfernung von CO2 aus einem methanhaltigen Gas mit einer PTSA. Fig. 1 shows a schematic representation of a preferred embodiment of the method according to the invention for removing CO2 from a methane-containing gas using a PTSA.

Bei der in Fig . 1 schematisch dargestellten bevorzugten Aus führungs form des erfindungsgemässen Verfahrens wird in einem ersten Schritt a ) aus einer Gaseinspeiseleitung 101 ein methanhaltiges Gas 103 enthaltend mindestens CO2 als Verunreinigung bereitgestellt . In the case of FIG. 1 schematically illustrated preferred embodiment of the method according to the invention, a methane-containing gas 103 containing at least CO 2 as an impurity is provided in a first step a) from a gas feed line 101 .

Das methanhaltige Gas 103 wird mit einem Druck von 15 bar bereitgestellt und in einem zweiten Schritt b ) in einem ersten Wärmetauscher 105 auf eine Temperatur TG ( Temperatur gas förmig) von -32 ° C runtergekühlt . Das komprimierte und gekühlte methanhaltige Gas 103 wird weiter in einem zweiten Wärmetauscher 107 weiter auf eine Temperatur TF ( Temperatur Freeze ) von - 114 ° C runtergekühlt , bei welcher das im methanhaltigen Gas 103 enthaltene CO2 in einer Schleuse 109 des Wärmetauschers an einer nicht dargestellten Oberfläche aus friert und in regelmässigen Abständen von besagter Oberfläche abgekratzt oder auf andere Weise entfernt wird . Das Aus frieren erlaubt eine rasche Entfernung grosser Mengen von CO2 aus dem methanhaltigen Gas 103 , wodurch die CO2- Konzentration im Gas 103 auf unter 2100 ppm gesenkt werden kann . Das methanhaltige (und nun im CCh-Gehalt reduzierte ) Gas 103 wird anschliessend einer PTSA 111 zugeführt . Die PTSA 111 umfasst in der Regel mehrere Adsorberbehälter 115 (hier lediglich zwei dargestellt ) , welche parallel , überlappend oder im Wechsel zueinander betrieben werden . The methane-containing gas 103 is provided at a pressure of 15 bar and, in a second step b) in a first heat exchanger 105, is cooled down to a temperature TG (temperature in gaseous form) of −32° C. The compressed and cooled methane-containing gas 103 is further cooled down in a second heat exchanger 107 to a temperature TF (temperature freeze) of -114 ° C, at which the CO2 contained in the methane-containing gas 103 is trapped in a lock 109 of the heat exchanger on a surface that is not shown freezes out and is periodically scraped or otherwise removed from said surface. Freezing out allows rapid removal of large amounts of CO2 from the methane-containing gas 103, reducing the CO2 concentration in the gas 103 to below 2100 ppm can . The gas 103 containing methane (and now with a reduced CCh content) is then fed to a PTSA 111 . The PTSA 111 generally comprises a plurality of adsorber containers 115 (only two are shown here), which are operated in parallel, overlapping or alternating with one another.

Nach dem Aus frieren des CO2 und der Zuführung des methanhaltigen Gases 103 zur PTSA 111 wird in einem dritten Schritt c ) das restliche CO2 durch Adsorption an einem in der PTSA 111 vorhandenen Adsorber 115 aus dem methanhaltigen Gas 103 entfernt , sodass ein Methan-angereichertes Produktgas 117 erhalten wird . Das Methan-angereicherte Produktgas 117 hat nach der Aufreinigung durch die PTSA 111 einen CCh-Gehalt von bevorzugt maximal 215 ppm . Das Methan-angereicherte Produktgas 117 wird zu einem dritten Wärmetauscher 119 transportiert und durch Abkühlen auf - 120 ° C verflüssigt . Anschliessend wird es über ein Ventil 121 in einen Flashbehälter 123 geleitet und auf 1 bar, bevorzugt Atmosphärendruck, dekomprimiert , wodurch sich das Produktgas auf bevorzugt - 162 ° C abkühlt und gleichzeitig ein Teil wieder gas förmig wird . Neben einem dekomprimierten verflüssigten Produktgas 126 entsteht in der Regel ein Flashgas 127 , also ein Teil des Produktgases 117 bleibt gas förmig oder ein Teil des dekomprimierten verflüssigten Produktgases 126 wird wieder gas förmig . Das Flashgas 127 wird im hier dargestellten Verfahren als Aufbereitungsgas 129 ( gestrichelte Linie ) verwendet . Das Aufbereitungsgas 129 aus dem Flashbehälter 123 hat einen CO2- Gehalt von bevorzugt unter 215 ppm und eine Temperatur von bevorzugt - 162 ° C . Zumindest ein Teil des Aufbereitungsgases 129 ( entspricht in seiner Zusammensetzung dem Produktgas 117 ) wird zunächst zurück zum ersten Wärmetauscher 105 geleitet , um das methanhaltige Gas 103 zu kühlen . Dabei erwärmt sich das Aufbereitungsgas 129 bevorzugt auf 0 ° C . Das nun erwärmte Aufbereitungsgas 131 wird daraufhin zur PTSA 111 geleitet , wo es die mit CO2 gesättigten Adsorber 115 erwärmt und durchströmt , um das CO2 von den Adsorbern 115 zu lösen . Ein nun mit CCh-angereichertes Aufbereitungsgas 133 ( gepunktete Linie ) wird von der PTSA 111 zu einem Kompressor 135 transportiert , wo es auf 15 bar - also den Ausgangsdruck des methanhaltigen Gases 103 , komprimiert wird . After the CO2 has been frozen and the methane-containing gas 103 has been fed to the PTSA 111, in a third step c) the remaining CO2 is removed from the methane-containing gas 103 by adsorption on an adsorber 115 present in the PTSA 111, resulting in a methane-enriched product gas 117 is obtained. After purification by the PTSA 111, the methane-enriched product gas 117 has a CCh content of preferably a maximum of 215 ppm. The methane-enriched product gas 117 is transported to a third heat exchanger 119 and liquefied by cooling to -120 °C. It is then fed via a valve 121 into a flash container 123 and decompressed to 1 bar, preferably atmospheric pressure, as a result of which the product gas cools down to preferably −162° C. and at the same time some of it becomes gaseous again. In addition to a decompressed, liquefied product gas 126, a flash gas 127 is generally produced, ie part of the product gas 117 remains gaseous or part of the decompressed, liquefied product gas 126 becomes gaseous again. The flash gas 127 is used as the treatment gas 129 (dashed line) in the method illustrated here. The treatment gas 129 from the flash tank 123 has a CO2 content of preferably less than 215 ppm and a temperature of preferably -162.degree. At least a part of the processing gas 129 (corresponds to the product gas 117 in its composition) is first routed back to the first heat exchanger 105 in order to to cool the methane-containing gas 103 . The treatment gas 129 is preferably heated to 0° C. in the process. The now heated make - up gas 131 is then directed to the PTSA 111 where it is heated and passed through the CO 2 - saturated adsorbers 115 to release the CO 2 from the adsorbers 115 . A treatment gas 133 (dotted line), now enriched with CCh, is transported from the PTSA 111 to a compressor 135, where it is compressed to 15 bar, i.e. the outlet pressure of the methane-containing gas 103.

Anschliessend wird das komprimierte und mit CO2-angereicherte Aufbereitungsgas 133 durch eine Aufbereitungsgasleitung 134 zur Gaseinspeiseleitung 101 transportiert und dort mit dem methanhaltigen Gas 103 gemischt . Nachdem die Adsorber 115 der PTSA 113 wiederaufbereitet wurden, werden sie wieder auf Betriebstemperatur gekühlt , um ef fi zient CO2 aus dem methanhaltigen Gas 103 zu adsorbieren zu können . Für die Kühlung der Adsorber 115 wird entweder - 162 ° C kaltes Produktgas 117 bwz . Aufbereitungsgas 129 verwendet . The compressed treatment gas 133 enriched with CO 2 is then transported through a treatment gas line 134 to the gas feed line 101 and mixed there with the gas 103 containing methane. After the adsorbers 115 of the PTSA 113 have been reprocessed, they are cooled back to operating temperature in order to be able to efficiently adsorb CO2 from the methane-containing gas 103. To cool the adsorber 115, either -162° C. cold product gas 117 or Process gas 129 used.

Das dekomprimierte verflüssigte Produktgas 126 pass iert einen Partikel filter 138 mit einer Porengrösse von <10 pm, wodurch Feststof fe im Produktgas entfernt werden . Das gereinigte Produktgas wird anschliessend mit einer Pumpe 139 dem Verbraucher zur Verfügung gestellt . Da die beiden gezeigten Adsorber 115 der PTSA 111 im Wechsel zueinander betrieben werden können, kann der eine Adsorber 115 aufbereitet werden, während der andere Adsorber 115 CO2 aus dem methanhaltigen Gas 103 adsorbiert . Somit kann ein konstanter Auf reinigungsprozess gewährleistet werden . The decompressed liquefied product gas 126 passes through a particle filter 138 with a pore size of <10 μm, whereby solids in the product gas are removed. The cleaned product gas is then made available to the consumer with a pump 139 . Since the two adsorbers 115 of the PTSA 111 shown can be operated alternately, one adsorber 115 can be processed while the other adsorber 115 adsorbs CO2 from the methane-containing gas 103 . In this way, a constant purification process can be guaranteed.

Claims

Patentansprüche patent claims 1. Verfahren zur Entfernung von CO2 aus einem methanhaltigen1. Process for removing CO2 from a methane-containing Gas umfassend die Schritte: a) Bereitstellen eines methanhaltigen Gases (103) enthaltend mindestens CO2 als Verunreinigung; b) Kühlen des methanhaltigen Gases (103) zum Abtrennen von CO2 aus dem methanhaltigen Gas (103) aus Schritt a) mittels Ausfrierens; c) Weitere Reduktion der CCh-Konzentration des methanhaltigen Gases (103) aus Schritt b) mittels einer Druck-und- Temperaturwechsel -Adsorptions VorrichtungGas comprising the steps of: a) providing a methane-containing gas (103) containing at least CO2 as an impurity; b) cooling the methane-containing gas (103) to separate CO2 from the methane-containing gas (103) from step a) by freezing; c) Further reduction of the CCh concentration of the methane-containing gas (103) from step b) by means of a pressure and temperature swing adsorption device (PTSA) (111) , wodurch ein Methan-angereichertes Produktgas (117) erhalten wird; d) Verwendung von mindestens eines Teils (127) des Produktgases (117) aus Schritt c) als Aufbereitungsgas (129) , welches zur Aufbereitung der PTSA (111) durch die PTSA (111) geleitet wird, wodurch CO2 vom Aufbereitungsgas (129) aufgenommen und als ein mit CO2 angereichertes(PTSA) (111) , whereby a methane-enriched product gas (117) is obtained; d) Use of at least part (127) of the product gas (117) from step c) as treatment gas (129), which is passed through the PTSA (111) to treat the PTSA (111), whereby CO2 is absorbed by the treatment gas (129). and as a CO2-enriched one Aufbereitungsgas (133) aus der PTSA (111) entfernt wird; und e) Rückführen des durch die PTSA (111) geleiteten, mit CO2 angereicherten Aufbereitungsgases (133) und Beimischen zum methanhaltigen Gas (103) in Schritt a) . removing make-up gas (133) from the PTSA (111); and e) recycling of the processing gas (133) enriched with CO2 that has been routed through the PTSA (111) and admixed to the methane-containing gas (103) in step a). 2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Produktgas (117) vor Schritt d) durch Kühlung ganz oder zumindest teilweise verflüssigt wird, wodurch ein verflüssigtes Produktgas (125) erhalten wird. Verfahren gemäss Anspruch 2, dadurch gekennzeichnet, dass das Produktgas (117) zur zumindest teilweisen Verflüssigung auf -140°C bis -100°C, bevorzugt -130°C bis -110°C und besonders bevorzugt -125°C bis -115°C gekühlt wird . Verfahren gemäss Anspruch 2 oder 3, dadurch gekennzeichnet, dass das verflüssigte Produktgas (125) dekomprimiert wird, bevorzugt auf ca. 1 bar, wodurch ein Flashgas (127) und ein dekomprimiertes verflüssigtes Produktgas (126) erhalten wird, wobei das Flashgas (127) als Aufbereitungsgas (129) durch die PTSA (111) geleitet wird . Verfahren gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Schritt b) die CCh-Konzentration des methanhaltigen Gases (103) auf unter 6000 ppm reduziert wird. Verfahren gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Schritt c) die CCh-Konzentration des Produktgases (117) auf unter 5200 ppm, bevorzugt auf unter 830 ppm, bevorzugter auf unter 215 ppm, besonders bevorzugt auf unter 100 ppm und ganz besonders bevorzugt auf unter 50 ppm gesenkt wird. Verfahren gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Aufbereitungsgas (129) entspannt und vorzugsweise erwärmt wird, bevor es als entspanntes und gegebenenfalls erwärmtes Aufbereitungsgas (131) in Schritt d) durch die PTSA (111) geleitet wird. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass das entspannte und gegebenenfalls erwärmte Aufbereitungsgas (131) nach seiner Durchleitung durch die PTSA (111) in Schritt d) und vor seiner Rückführung in Schritt e) bzw. Beimischung zum methanhaltigen Gas (103) auf den Druck des methanhaltigen Gases (103) komprimiert wird . Verfahren gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens ein Teil des Produktgases (117) aus Schritt c) , bzw. mindestens ein Teil des Aufbereitungsgases (129) vor dessen Zuführung zur PTSA (111) in Schritt d) zur Kühlung des bereitgestellten methanhaltigen Gases (103) verwendet wird, bevorzugt indem das Produktgas (117) bzw. das Aufbereitungsgas (129) und das methanhaltige Gas (103) , vorzugsweise im Gegenstromprinzip, durch einen Wärmetauscher (115) geleitet werden. Verfahren gemäss einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass mindestens ein Teil des Produktgases (117) aus Schritt c) zur Kühlung des bereitgestellten methanhaltigen Gases (103) verwendet wird, indem das Produktgas (117) und das methanhaltige Gas (103) , vorzugsweise im Gegenstromprinzip, durch einen Wärmetauscher (115) geleitet werden, und dass zumindest ein Teil des aus dem Wärmetauscher (115) austretenden erwärmten Produktgases (117) entspannt und als Aufbereitungsgas (131) für die Regeneration der2. The method according to claim 1, characterized in that the product gas (117) before step d) by cooling entirely or at least partially liquefied, whereby a liquefied product gas (125) is obtained. Process according to Claim 2, characterized in that the product gas (117) for at least partial liquefaction is heated to -140°C to -100°C, preferably -130°C to -110°C and particularly preferably -125°C to -115° C is cooled. Method according to claim 2 or 3, characterized in that the liquefied product gas (125) is decompressed, preferably to approx. 1 bar, whereby a flash gas (127) and a decompressed liquefied product gas (126) are obtained, the flash gas (127) is passed as a treatment gas (129) through the PTSA (111). Method according to one of Claims 1 to 4, characterized in that in step b) the CCh concentration of the methane-containing gas (103) is reduced to below 6000 ppm. Method according to one of claims 1 to 5, characterized in that in step c) the CCh concentration of the product gas (117) to below 5200 ppm, preferably below 830 ppm, more preferably below 215 ppm, particularly preferably below 100 ppm and is most preferably lowered to below 50 ppm. Method according to one of Claims 1 to 6, characterized in that the treatment gas (129) is expanded and preferably heated before it is discharged as expanded and passing optionally heated processing gas (131) through the PTSA (111) in step d). The method according to claim 7, characterized in that the expanded and optionally heated processing gas (131) after its passage through the PTSA (111) in step d) and before its return in step e) or admixture to the methane-containing gas (103) on the Pressure of the methane-containing gas (103) is compressed. Method according to one of Claims 1 to 8, characterized in that at least part of the product gas (117) from step c), or at least part of the processing gas (129) before it is fed to the PTSA (111) in step d) for cooling the provided methane-containing gas (103) is used, preferably by the product gas (117) or the treatment gas (129) and the methane-containing gas (103), preferably in the countercurrent principle, are passed through a heat exchanger (115). Method according to one of Claims 7 or 8, characterized in that at least part of the product gas (117) from step c) is used to cool the methane-containing gas (103) provided, in that the product gas (117) and the methane-containing gas (103) , preferably in the countercurrent principle, are passed through a heat exchanger (115), and that at least part of the heat exchanger (115) exiting heated product gas (117) expands and as a treatment gas (131) for the regeneration of PTSA (111) genutzt wird. Verfahren gemäss einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mindestens ein Teil des Produktgases (117) aus Schritt c) zur Kühlung der PTSA (111) nach deren Regeneration genutzt wird. Verfahren gemäss einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das methanhaltige Gas (103) der PTSA (111) mit einem Druck von 5 - 25 bar, bevorzugt 10 - 20 bar und besonders bevorzugt 14 - 17 bar, zugeführt wird. Verfahren gemäss Anspruch 12, dadurch gekennzeichnet, dass das methanhaltige Gas (103) der PTSA (111) mit einer Temperatur von -130°C bis -80°C, bevorzugt -120°C bis - 100°C, besonders bevorzugt -116°C bis -110°C, zugeführt wird . Verfahren gemäss einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Produktgas (117) bzw. das verflüssigte Produktgas (125) vor der Abzweigung des Aufbereitungsgases dekomprimiert wird, bevorzugt auf ca. 1 bar . Verfahren gemäss einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das methanhaltige Gas (103) in Schritt a) eine CCh-Konzentration von maximal 60%, bevorzugt von maximal 6% und besonders bevorzugt von maximal 2,5% aufweist. Verfahren gemäss einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, dass das dekomprimierte verflüssigte Produktgas (126) einen Partikelfilter (138) , bevorzugt mit einer Porengrösse von <10 pm passiert, welcher Feststoffe aus dem dekomprimierten verflüssigten Produktgas (126) entfernt. Vorrichtung zur Durchführung eines Verfahrens zur Entfernung von CO2 aus einem Methan-angereicherten Gas gemäss einem der Ansprüche 1 bis 16, umfassend eine Gaseinspeiseleitung (101) , eine Kompressionseinheit (135) , mindestens eine Kühleinheit (105) zum Ausfrieren von CO2, eine PTSA (111) , eine Leitung zum Abtransport eines Methan-angereichertem Produktgases (117) und einePTSA (111) is used. Method according to one of Claims 1 to 10, characterized in that at least part of the product gas (117) from step c) is used to cool the PTSA (111) after it has been regenerated. Process according to one of Claims 1 to 11, characterized in that the methane-containing gas (103) is fed to the PTSA (111) at a pressure of 5-25 bar, preferably 10-20 bar and particularly preferably 14-17 bar. Process according to Claim 12, characterized in that the methane-containing gas (103) of the PTSA (111) has a temperature of -130°C to -80°C, preferably -120°C to -100°C, particularly preferably -116° C to -110°C, is supplied. Method according to one of Claims 1 to 13, characterized in that the product gas (117) or the liquefied product gas (125) is decompressed before the treatment gas is branched off, preferably to about 1 bar. Method according to one of Claims 1 to 14, characterized in that the methane-containing gas (103) in step a) has a CCh concentration of at most 60%, preferably at most 6% and particularly preferably at most 2.5%. Method according to one of Claims 4 to 15, characterized in that the decompressed liquefied product gas (126) preferably has a particle filter (138). with a pore size of <10 pm, which removes solids from the decompressed liquefied product gas (126). Device for carrying out a method for removing CO2 from a methane-enriched gas according to one of claims 1 to 16, comprising a gas feed line (101), a compression unit (135), at least one cooling unit (105) for freezing out CO2, a PTSA ( 111), a line for removing a methane-enriched product gas (117) and a Aufbereitungsgasleitung (134) , welche die PTSA (111) und die Gaseinspeiseleitung (101) verbindet. Make-up gas line (134) connecting the PTSA (111) and the gas feed line (101).
EP22702456.9A 2021-01-29 2022-01-27 Method for removing co2 from a methane-containing gas Pending EP4284535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21154198.2A EP4035759A1 (en) 2021-01-29 2021-01-29 Method for removing co2 from a methane-containing gas
PCT/EP2022/051882 WO2022162059A1 (en) 2021-01-29 2022-01-27 Method for removing co2 from a methane-containing gas

Publications (1)

Publication Number Publication Date
EP4284535A1 true EP4284535A1 (en) 2023-12-06

Family

ID=74418199

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21154198.2A Withdrawn EP4035759A1 (en) 2021-01-29 2021-01-29 Method for removing co2 from a methane-containing gas
EP22702456.9A Pending EP4284535A1 (en) 2021-01-29 2022-01-27 Method for removing co2 from a methane-containing gas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21154198.2A Withdrawn EP4035759A1 (en) 2021-01-29 2021-01-29 Method for removing co2 from a methane-containing gas

Country Status (7)

Country Link
US (1) US20240044579A1 (en)
EP (2) EP4035759A1 (en)
JP (1) JP7580621B2 (en)
CN (1) CN116761664B (en)
CA (1) CA3206709A1 (en)
MX (1) MX2023008830A (en)
WO (1) WO2022162059A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024136765A (en) * 2023-03-24 2024-10-04 エア・ウォーター株式会社 Liquefied methane production method and liquefied methane production apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732596A (en) * 1987-04-28 1988-03-22 Air Products And Chemicals, Inc. Gas separation process
US5062270A (en) * 1990-08-31 1991-11-05 Exxon Production Research Company Method and apparatus to start-up controlled freezing zone process and purify the product stream
FR2884305A1 (en) * 2005-04-08 2006-10-13 Air Liquide METHOD FOR RECOVERING AND LIQUEFACTING THE CO2 CONTENT IN A CO2-COOLED GAS
US8211211B1 (en) * 2007-09-25 2012-07-03 Kent S. Knaebel & Associates, Inc. Multi-stage adsorption system for gas mixture separation
US8734569B2 (en) * 2009-12-15 2014-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
JP2014508040A (en) * 2011-03-01 2014-04-03 エクソンモービル リサーチ アンド エンジニアリング カンパニー Selective sulfur removal method
US20150033793A1 (en) * 2013-07-31 2015-02-05 Uop Llc Process for liquefaction of natural gas
CA2974491C (en) 2015-02-03 2018-08-28 Ilng B.V. System and method for processing a hydrocarbon-comprising fluid
FR3046086B1 (en) 2015-12-24 2018-01-05 Waga Energy PROCESS FOR PRODUCING BIOMETHANE BY PURIFYING BIOGAS FROM NON-HAZARDOUS WASTE STORAGE FACILITIES (ISDND) AND INSTALLATION FOR IMPLEMENTING THE METHOD
PT3585500T (en) * 2017-02-03 2023-10-17 Air Liquide Advanced Tech Us Llc Integrated ptsa/membrane method and system for h2s and co2 removal from biogas
IT201700092437A1 (en) * 2017-08-09 2019-02-09 Univ Degli Studi Di Bari Aldo Moro Process for the treatment of a gas mixture comprising methane and carbon dioxide

Also Published As

Publication number Publication date
CN116761664A (en) 2023-09-15
WO2022162059A1 (en) 2022-08-04
JP7580621B2 (en) 2024-11-11
CA3206709A1 (en) 2022-08-04
CN116761664B (en) 2024-11-22
MX2023008830A (en) 2023-08-21
JP2024506144A (en) 2024-02-09
US20240044579A1 (en) 2024-02-08
EP4035759A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
DE1544080C3 (en)
AT508249B1 (en) PROCESS FOR CLEANING AND LIQUIDATING BIOGAS
EP1698607B1 (en) Process for regeneration of adsorbents
EP1729077A1 (en) Process and device for the recovery of products from synthesis gas
DE1044845B (en) Process for separating a component, in particular carbon dioxide, from a gas mixture
DE102007005494A1 (en) Producing liquid methane from a gas containing methane and carbon dioxide comprises scrubbing the gas to remove carbon dioxide and using the liquefied carbon dioxide to liquefy the methane
DE102011014678A1 (en) Process and apparatus for treating a carbon dioxide-containing gas stream
DE102007032536B4 (en) Method and device for producing liquid and / or gaseous methane
WO2022162059A1 (en) Method for removing co2 from a methane-containing gas
DE102005021530A1 (en) Process and apparatus for recovering products from synthesis gas
EP2997320A2 (en) Installation for reducing a carbon dioxide content of a gas flow which contains carbon dioxide and is rich in hydrocarbons, and a corresponding method
EP2373400A1 (en) Method for purifying gases and obtaining acid gases
EP1519781B1 (en) System unit for desorbing carbon dioxide from methanol
WO2021058130A1 (en) Method and system for obtaining components from natural gas
WO2021032319A1 (en) Method and system for processing natural gas
DD159259A3 (en) PROCESS FOR THE PRODUCTION OF HIGH-PURITY AMMONIA
DE3322473A1 (en) Method and device for avoiding enrichment of undesired components in a liquid medium
DE19856068C1 (en) Membrane separation of hydrocarbons from gas flow comprises inclusion of heat exchanger exploiting Joule-Thompson temperature reduction across membrane, to cool feedstock
EP3981498A1 (en) Method for purifying a gas mixture by ozone addition
DE19538614A1 (en) Working up natural gas contg., e.g., nitrogen@
DE102018002247A1 (en) Extraction of helium or helium and neon from natural gas
DE102022116801A1 (en) Process for processing biogas and/or natural gas to produce liquefied methane and processing plant
DE102010025819A1 (en) Process and apparatus for regenerating amine-containing detergent solutions derived from gas washes
DE102016011356A1 (en) Process and plant for producing a natural gas substitute and a carbon dioxide product
EP4144431A1 (en) Method and system for separation of a gas mixture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KANADEVIA INOVA AG