EP4259473A1 - Charger for a service battery of an electric vehicle and electric vehicle comprising such a charger - Google Patents
Charger for a service battery of an electric vehicle and electric vehicle comprising such a chargerInfo
- Publication number
- EP4259473A1 EP4259473A1 EP21835672.3A EP21835672A EP4259473A1 EP 4259473 A1 EP4259473 A1 EP 4259473A1 EP 21835672 A EP21835672 A EP 21835672A EP 4259473 A1 EP4259473 A1 EP 4259473A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- battery
- charger
- vehicle
- service
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007726 management method Methods 0.000 claims description 21
- 235000019504 cigarettes Nutrition 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims description 4
- 229910001416 lithium ion Inorganic materials 0.000 claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 238000013024 troubleshooting Methods 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000019506 cigar Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/57—Charging stations without connection to power networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to the field of devices for electrically charging a battery, and more particularly a service battery mounted in an electric and/or hydrogen vehicle (also designated respectively by the acronyms PEV and H2EV).
- Service battery is understood to mean a battery supplying in particular electricity to the functional and/or safety components of the vehicle, such as the computer, the door locking system, the OBD connection (for "On-Board Diagnostics in English), autonomous driving aids, LED headlights, parking brake, radio, geolocation system, electric traction management, etc.
- the electrical network powered by said service battery is thus generally referred to as the "service electrical network”.
- Service batteries for electric vehicles are generally lower capacity batteries than traction batteries, and have a nominal voltage of 12 volts. These are so-called “deep discharge” batteries, or also called “slow discharge batteries”, because they do not support strong current surges very well (not designed to start a heat engine), but which support deep discharges very well, up to 80% of their capacity. These batteries are generally placed in the electric traction compartment (surrounded by safety protections) and are not or hardly accessible. In addition, to protect these batteries against destructive interventions, the use of cables to connect it to another vehicle is prohibited in most electric vehicle user manuals.
- the “service battery” can be designated by the term “functional battery”, each of these terms being interchangeable and can be used indifferently to designate this type of battery, which differentiates them. starter batteries.
- the service battery is connected to the storage battery or traction battery of the vehicle, for example via a direct-to-direct (or DC/DC) converter, to allow said service battery to remain charged and operational and ensure the correct operation of the various functional and/or safety components of the vehicle. Electric or hydrogen vehicles that do not have alternators for recharging batteries.
- service batteries generally of the "gel electrolyte” type, generally have electrical stresses. This type of battery does not support current peaks, particularly when deeply discharged, unlike conventional lead batteries used in combustion engine cars. It is therefore not possible to use a high-current lead-acid battery charger without risking damaging the service battery of an electric vehicle.
- the service battery of an electric vehicle is very difficult to access for the average user, for reasons of user safety and of guarantee of said vehicle.
- the present invention proposes to solve at least one of the drawbacks stated above and proposes a new type of electric vehicle battery charger.
- the present invention thus relates to a service battery charger, in particular for an electric vehicle, said charger comprising: - an electrical power source; - an electrical connection configured to connect to the electrical service network of the vehicle and connect said electrical power source to the battery of the vehicle; – an electrical management circuit configured to limit the intensity of the electrical current flowing, via the service electrical network, from the electrical power source to the vehicle battery.
- Said battery charger according to the invention in particular avoids having to access said battery at the level of the engine compartment, a place where the battery is difficult to access, which sometimes requires dismantling other elements in order to be able to access said service battery.
- the charger makes it possible to simply charge said battery and therefore to repair quickly and easily an electric vehicle whose said service battery is discharged.
- said charger comprises an electrical management circuit which limits the intensity of the charging current to a predetermined maximum value, for example to 10 amps, and preferably to 8 amps. This limitation of the intensity of the charging current thus makes it possible not to damage the battery (during its charging) or an element of the electrical network of said vehicle.
- said electrical connection is configured to be connected to a cigarette lighter socket and/or to a fuse plug.
- a large part of the vehicles have a so-called cigarette lighter socket, supplied with current and whose intensity is between 10 and 20 A, which makes it possible to light cigars or cigarettes.
- the power supply circuit of certain vehicles thus includes a protection fuse that can adopt two positions at the choice of the driver: - a first position called “permanent power supply” in which said cigarette lighter socket is electrically connected to the battery powered), even when the vehicle is off; – a second so-called “cut-off” position, preventing any electrical connection between said socket and the service battery (therefore not allowing the service battery to be recharged) when the vehicle is off (or when the ignition is off).
- all vehicles include a fuse box, generally arranged in the passenger compartment of the vehicle.
- a fuse box generally arranged in the passenger compartment of the vehicle.
- the fact of being able to connect to the cigarette lighter socket when it is operational when the ignition is off or to a fuse plug in a fuse box simplifies and speeds up the operation of recharging the vehicle battery.
- a configuration with a higher current is possible for vehicles having a higher caliber fuse and a battery capable of accepting a higher deep discharge output current (such as the batteries fitted to trucks, buses , etc.).
- said electrical power source is a battery having a nominal voltage greater than the nominal operating voltage of the battery to be charged.
- said electrical power source comprises one or more of the following elements: cell, battery, capacitor, supercapacitor or any other voltage source or generator.
- said electrical power source comprises the traction (or storage) battery of said vehicle, said charger being configured to be electrically connected to said traction battery.
- said battery of said charger is an electric battery of lithium-ion type and preferably multi-element having a nominal voltage of at least 14V, and preferably a nominal voltage of at least 16V.
- the battery of said charger comprises for example 4 lithium-ion cells, arranged in series, each having voltages ranging from 3.5 to 4.2 V and whose dimensions of the pack of 4 cells are for example 84 ⁇ 70 ⁇ 21 mm.
- This embodiment of said electrical power source has the advantages of being particularly economical and compact, while giving the tool advantageous autonomy.
- said electrical management circuit limits the intensity of the current flowing in said electrical connection (or load current), said load current flowing in particular via the service electrical network, according to a predetermined value. To do this, it may include a current limiting circuit. According to another possible feature, said electrical management circuit limits the intensity of the charging current to a predetermined value, such as 10 amps, and preferably 8 amps.
- said electrical management circuit is configured to raise and/or lower the voltage of the electrical power source (in particular of a battery).
- Said electrical management circuit is advantageously configured to raise and/or lower the voltage of the electrical power source so that the output voltage of said electrical management circuit is always adapted with respect to the nominal voltage value of the battery at charging, and thereby ensure optimal charging of said service battery of the vehicle.
- said charger comprises a man-machine interface configured to indicate one or more of the following information to the user of said charger: - said charger is on; – said charger is charging the service battery of the vehicle; – the value of the voltage of the battery to be charged reaches or exceeds a predetermined voltage value; – the value of the voltage of the battery to be charged and/or of the electrical power source; - the electrical power source of said charger is charged and / or exceeds a predetermined voltage value; – the load and/or voltage value of the electrical power source of said charger.
- said charger can thus be configured to diagnose the service battery by measuring its voltage, such as a measurement of the no-load voltage.
- Said measurement can be carried out prior to charging and/or during charging after momentary interruption (or suspension) thereof.
- said charger switches off automatically as soon as the voltage of the battery to be charged exceeds a threshold value. This function prevents the user from overcharging the battery of the electric vehicle and limits improper use of the charger by the user.
- said charger comprises a USB socket configured to supply electricity to said electrical power source. The battery of said charger can thus be easily recharged via the USB socket.
- Said invention also relates to a charger which is, on the one hand, configured to diagnose said service battery and which is, on the other hand, integrated into the vehicle, said power source of the charger being the battery of traction of said vehicle.
- the charger in the event of excessive discharge of the service battery during a stoppage of the vehicle, there may be an automatic or manual engagement of the charger to maintain a predetermined charge of said service battery (this with an acceptable current) to avoid leading to a discharge no longer allowing the start of said vehicle.
- said charger can also be referred to as a “charging and diagnostic device” for a motor vehicle service battery.
- the present invention also relates to an electric or hydrogen car, characterized in that said car comprises a service battery charger as defined above, said charger being an on-board system of said vehicle. Said charger according to the invention can thus be integrated into an electric vehicle or hydrogen as a back-up system in the event of service battery failure.
- the present invention also relates to a method for troubleshooting a service battery of an electric or hydrogen vehicle: - connection of an electrical power source to the service electrical network of the vehicle; – supply of the vehicle service battery via the electrical network, by a current whose intensity is limited to a predetermined value.
- the method includes a step of warning the user when the value of the battery voltage has reached a predetermined voltage value.
- the connection step to the service electrical network via a cigarette lighter socket and/or a fused plug.
- the method comprises a step of setting up an electrical access point, in the vehicle, to the service battery, in order to establish an electrical connection between a third-party device, such as a recharging or diagnostic device and said service battery.
- a third-party device such as a recharging or diagnostic device and said service battery.
- the fuse connecting the cigarette lighter socket to the battery is positioned in a so-called "permanent power" position, that is to say in a position in which said cigarette lighter socket is electrically connected to the battery (therefore powered), even when the vehicle is off.
- [fig.1] is a very schematic representation of a first embodiment of a battery charger according to the invention
- [fig.2] is a very schematic representation of a second embodiment of a battery charger according to the invention
- [fig.3] is a schematic representation in perspective of the charger of the [fig.1] connected to the service electrical network of a vehicle via a cigarette lighter socket
- [fig.4] is a schematic representation in perspective of the charger of [fig.1] connected to the service electrical network of a vehicle by means of a fuse plug.
- the [fig.1] is a very schematic representation of a first embodiment of a battery charger 1 for an electric vehicle V.
- the battery charger 1 thus comprises: – an electrical power source 3; - an electrical connection 5 which is configured to connect to the service electrical network R of the vehicle V and which comprises two electrical cables 5a and 5b and a connector 5c; – an electrical (and/or electrotechnical) management circuit 7 configured to limit the intensity of the electrical output current I OUT (or load) flowing, via said electrical connection 5, from the electrical power source 3 to an electric battery B of the vehicle V; – a voltmeter 9 configured to measure the voltage (or an image of the voltage) of the battery B to be charged; – a man-machine interface 11 which is configured to indicate one or more pieces of information to the user of said charger 1, and which is in particular connected to said voltmeter 9.
- said management circuit 7 can be integrated into the cable 5a of the connection 5 connecting the positive terminal of the power source 3 to the positive terminal of the battery B of the vehicle or be a separate element interposed between said cable 5a and the power source 3.
- the cable 5b for its part, connects the negative terminal of the power source 3 to the negative terminal of the battery B of the vehicle.
- said power source 3 is an electric battery comprising four cells 3a of the lithium-ion type, arranged in series, each having a voltage of approximately 4V.
- the dimensions of the 4-cell 3a pack are approximately 84x70x21mm.
- the electric battery 3 of the charger 1 therefore has a nominal voltage U 1 of about 16 volts, while an electric vehicle service battery has a usual nominal voltage U 2 of about 12V.
- the battery 3 has a nominal voltage U 1 greater than the nominal operating voltage U 2 of the battery B to be charged of the electric vehicle V.
- Said charger further comprises a USB socket (not shown) configured to supply electricity from said electrical power source 3.
- said USB socket thus makes it possible to recharge the battery 3 of the charger 1.
- Said electrical management circuit 7 is, for its part, configured to limit the intensity of the output (or charging) current I OUT , which flows from battery 3 of charger 1 to battery B of vehicle V, at a predetermined maximum value I max .
- the predetermined maximum value I max is 10 amps, and preferably 8 amps.
- Said electrical management circuit 7 comprises, for this, a limiting circuit of current which comprises: - a transistor T 1 , such as a MOSFET or bipolar transistor, whose drain (or collector) is connected to the positive terminal of the battery 3 of the charger; – a resistor R 1 connected to the source (or emitter) of transistor T 1 ; – a reference voltage source 7a delivering a voltage V REF ; – an operational amplifier AO 1 whose output is connected to the gate (or base) of transistor T 1 , the inverting input is connected to a node N 1 located between the source of transistor T 1 and resistor R 1 , and whose non-inverting input is connected to the output of the reference voltage source 7a.
- the input of the reference voltage source 7a is connected to a node N 2 itself connected to one of the terminals of the resistor R 1 , said resistor R 1 having each of its terminals connected respectively at the nodes N 1 and N 2 .
- the operational amplifier AO 1 amplifies the difference between the voltages received at its inputs (inverting and non-inverting) and outputs a voltage which thus regulates the quantity of current which flows through the transistor T 1 ( and therefore generally the amount of current flowing from battery 3 of charger 1 to battery B of the vehicle).
- the man-machine interface 11 comprises, for its part, one or more luminous indicators, as light-emitting diodes (or LEDs), turning on or off to indicate the status of the charger and/or the state of the vehicle's battery to the user. It could also indicate a state of charge, for example by a play of color of the light-emitting diodes.
- the man-machine interface 11 can therefore indicate whether: the charger is on and ready for use; – said charger is charging the battery of the vehicle, in particular the service battery; - the value of the voltage of the battery to be charged reaches or exceeds a predetermined voltage value, for example the theoretical nominal operating voltage of said battery to be charged.
- the man-machine interface comprises a screen indicating the states mentioned above. Said screen can also indicate: – the charge and/or the voltage value of the vehicle battery and/or of the electrical power source. – the electrical power source of said charger is charged or exceeds a predetermined voltage value.
- the user can proceed, by means of said charger 1, to repair an electric (or hydrogen) vehicle whose functional battery B needs to be recharged.
- the user after mechanical unlocking of one of the doors of the vehicle, connects, by means of the electrical connection 5, the charger 1 to the electrical network R of the service vehicle V.
- the connection with the electrical network R of the service vehicle V can be done in different ways, for example via the cigarette lighter socket P, as shown in [fig.3], or via a fuse plug F, such as illustrated in [fig.4].
- said electrical connection 5 then comprises a connector 5d configured to cooperate with the cigarette lighter socket P.
- said electrical connection 5 comprises a 5th connector configured to cooperate with the fuse plug F (in particular located in the fuse box of the vehicle V) and a ground connector 5f configured to attach to an element G, in particular of the vehicle V, acting as ground electric.
- the fuse of the cigarette lighter socket it is sometimes necessary for the fuse of the cigarette lighter socket to be in a so-called “permanent power supply” position to allow the charger according to the invention to operate when the vehicle is switched off. After using the charger, the fuse can be replaced in a so-called “cut-off” position or advantageously left in the permanent supply position.
- the charger 1 indicates, via the man-machine interface 11 (such as an indicator), that the charger 1 is charging the battery B of the vehicle function. Once the vehicle's battery B reaches a predetermined voltage value, such as its nominal operating voltage U 2 , the man-machine interface indicates to the user that the operating battery B is charged and that he can start. the electric vehicle V. It will be noted that beforehand, said man-machine interface 11 can also indicate, for example by means of an indicator, that charger 1 is functional and able to charge said battery B of the vehicle.
- the charger switches off automatically. tically as soon as the voltage of the battery to be charged exceeds a threshold value.
- the [fig.2] is a very schematic representation of a second embodiment of a charger 10 according to the invention. The same elements bear the same references as in the first embodiment and will therefore not be detailed again.
- said electrical management circuit 27 is configured, on the one hand, to limit the intensity of the current I OUT at the output of the charger 10, and, on the other hand, to raise and/or lower the output voltage V OUT of said charger 10.
- said electrical management circuit 27 is advantageously configured to raise and/or lower the voltage of the electrical power source so that the output voltage V OUT of said electrical management circuit 27 is always adapted with respect to the value of the nominal voltage of the battery B to be charged. It will be noted that generally the electrical management circuit 27 raises the voltage received by the battery from the charger 3 so that the output voltage V OUT is greater than the nominal voltage U 2 of the battery B to be charged.
- said electrical management circuit 27 comprises: - a transformer 21 connected to the terminals of battery 3 of charger 10, via a transistor T 2 ; - a control circuit 23 connected to transistor T 2 , more particularly at the level of the gate of transistor T 2 , configured to limit the intensity of the output current I OUT and to regulate the value of the output voltage V OUT ; – a rectifying and filtering circuit 29 which itself comprises a diode D 1 and a capacitor C 1 , configured so that the output voltage V OUT is a DC voltage. More specifically, the source of transistor T 2 is connected to the negative terminal of battery 3 of charger 10, while the drain of transistor T 2 is connected to transformer 21.
- Said transistor T 2 is controlled by the control circuit 23 which is itself controlled by the output voltage V OUT and the output current I OUT .
- Said control circuit 23 also has setpoint values for the output voltage V OUT and current I OUT , for example 16 V and 8 A.
- said control circuit 23 depending on the voltage values V OUT and output current I OUT and the reference voltage and current, regulates the gate voltage of the transistor T 2 , which results in the modulation of the source-drain current until the output voltage and current correspond to the values of the voltages and setpoint current.
- the present invention also relates to an electric or hydrogen motor vehicle which comprises a battery charger as described previously, said charger being an on-board system of said vehicle.
- the charger When the charger is integrated into a motor vehicle, it is advantageous for it to be, on the one hand, configured to diagnose said service battery and, on the other hand, integrated into the vehicle, said power source of the charger then being advantageously the traction battery of said vehicle.
- Said charger may also comprise another electrical power source, such as a battery, etc.
- Said integrated charger is thus configured to engage, automatically or manually, to maintain a predetermined charge of said service battery, this in order to avoid a discharge of the service battery no longer allowing the starting of said vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Description Titre de l'invention : Chargeur de batterie de servitude de véhicule électrique et véhicule électrique comprenant un tel chargeur [0001] La présente invention se rapporte au domaine des dispositifs pour charger élec- triquement une batterie, et plus particulièrement une batterie de servitude montée dans un véhicule électrique et/ou à hydrogène (également désignés respectivement par les sigles PEV et H2EV). [0002] On entend par batterie de servitude, une batterie alimentant notamment en électricité les organes de fonction et/ou de sécurité du véhicule, tels que le calculateur, le système de verrouillage des portières, la liaison OBD (pour «On-Board Diagnostics » en langue anglaise), les aides à la conduite autonome, les phares à LED, le frein de parking, la radio, le système de géolocalisation, la gestion de la traction électrique, etc. Le réseau électrique alimenté par ladite batterie de servitude est ainsi généralement appelé « réseau électrique de servitude ». [0003] Les batteries de servitude pour véhicules électriques sont généralement des batteries de plus faible capacité que les batteries de traction, et présentent une tension nominale de 12 volts. Ce sont des batteries dites « à décharge profonde », ou encore appelées « batterie à décharge lente », car elles supportent très mal les forts appels de courant (non conçues pour démarrer un moteur thermique), mais qui supportent très bien les décharges profondes, jusqu’à 80 % de leur capacité. Ces batteries sont généralement disposées dans le compartiment de traction électrique (entourées de protections de sécurité) et sont peu ou pas accessibles. De plus, pour protéger ces batteries contre des interventions destructives, l’utilisation de câbles pour la relier à un autre véhicule est interdite dans la plupart des manuels d’utilisation de véhicules électriques. [0004] On notera également qu’on peut désigner la « batterie de servitude » par le terme « batterie de fonction », chacun de ces termes étant interchangeable et pouvant être indif- féremment employé pour désigner ce type de batterie, ce qui les différencie des batteries dites de démarrage. La batterie de servitude est reliée à la batterie de stockage ou batterie de traction du véhicule, par exemple par l’intermédiaire d’un convertisseur continu-continu (ou DC/ DC), pour permettre à ladite batterie de servitude de rester chargée et opérationnelle et assurer le bon fonctionnement des différents organes de fonction et/ou de sécurité du véhicule. Les véhicules électriques ou à hydrogène n’ayant pas d’alternateurs pour la recharge de batteries. [0005] Ainsi, lorsque la batterie de servitude vient à être déchargée suite à un problème de convertisseur, d’un court-circuit, de contraintes extérieures, à la suite d’un usage intensif des batteries de stockage et de fonction (les ayant amenées à être com- plètement déchargées), ou à la suite d’une non-utilisation prolongée du véhicule, il est alors nécessaire de pouvoir recharger la batterie de servitude pour permettre l’usage et l’accès à certaines fonctionnalités de base du véhicule. [0006] Plus particulièrement, si la batterie de servitude présente une valeur de tension in- férieure à une valeur prédéterminée, par exemple inférieure à 12V, les différents organes de fonction et de sécurité ne peuvent plus être activés. L’utilisateur ne peut donc plus utiliser l’ouverture centralisée des portières (seule la clef mécanique de secours permet de débloquer la portière conducteur), ni démarrer son véhicule, ni même le déplacer (le frein de parking électrique étant bloqué), pour l’amener au garage le plus proche pour réparation. De plus, dans de nombreux de cas, il est impossible de soulever le véhicule pour le déplacer. [0007] Par ailleurs, les batteries de servitude, généralement du type « électrolyte gel », présentent généralement des contraintes électriques. Ce type de batterie ne supporte pas les pics de courant, particulièrement lorsqu’elles sont déchargées profondément, contrairement aux batteries conventionnelles au plomb utilisées dans les voitures à moteur thermique. Il n’est donc pas possible d’utiliser un chargeur de batteries au plomb à fort courant sans risquer de détériorer la batterie de servitude d’un véhicule électrique. [0008] De plus, la batterie de servitude d’un véhicule électrique est très difficilement ac- cessible à l’utilisateur moyen, ceci pour des questions de sécurité de l’utilisateur et de garantie dudit véhicule. [0009] Ainsi, la présente invention propose de résoudre au moins l’un des inconvénients énoncés ci-dessus et propose un nouveau type de chargeur de batterie de véhicule électrique. [0010] La présente invention concerne ainsi un chargeur de batterie de servitude, notamment pour véhicule électrique, ledit chargeur comprenant : – une source d’alimentation électrique ; – une connexion électrique configurée pour se connecter au réseau électrique de servitude du véhicule et relier ladite source d’alimentation électrique à la batterie du véhicule ; – un circuit de gestion électrique configuré pour limiter l’intensité du courant électrique circulant, par l’intermédiaire du réseau électrique de servitude, de la source d’alimentation électrique vers la batterie du véhicule. [0011] Ledit chargeur de batterie selon l’invention évite notamment d’avoir à accéder à ladite batterie au niveau du compartiment moteur, endroit où la batterie est diffi- cilement accessible ce qui nécessite parfois de démonter d’autres éléments pour pouvoir accéder à ladite batterie de servitude. De plus, le chargeur permet de charger simplement ladite batterie et donc, de dépanner rapidement et aisément un véhicule électrique dont ladite batterie de servitude est déchargée. En outre, ledit chargeur comprend un circuit de gestion électrique qui limite l’intensité du courant de charge à une valeur maximale prédéterminée, par exemple à 10 ampères, et de préférence à 8 ampères. Cette limitation de l’intensité du courant de charge permet ainsi de ne pas endommager la batterie (lors de sa charge) ou un élément du réseau électrique dudit véhicule. [0012] Selon une caractéristique possible, ladite connexion électrique est configurée pour se connecter sur une prise allume-cigare et/ou sur une fiche à fusible. [0013] On notera qu’une grande partie des véhicules possèdent une prise dite allume-cigare, alimentée en courant et dont l’intensité est comprise entre 10 et 20A, ce qui permet d’allumer cigares ou cigarettes. Cependant, de nos jours, ces prises servent essen- tiellement à alimenter des accessoires, tels que des chargeurs, aspirateurs, gonfleurs, convertisseurs pour générer du 220 V AC, etc. Le circuit d’alimentation électrique de certains véhicules comprend ainsi un fusible de protection pouvant adopter deux positions au choix du conducteur : – une première position dite « d’alimentation permanente » dans laquelle ladite prise allume-cigare est reliée électriquement à la batterie (donc alimentée), même lorsque le véhicule est éteint ; – une deuxième position dite « de coupure », empêchant toute connexion électrique entre ladite prise et la batterie de servitude (ne permettant donc pas de recharger la batterie de servitude) lorsque le véhicule est éteint (ou lorsque le contact est coupé). Ainsi, pour recharger la batterie de servitude sans endommager le fusible disposé dans une première position, il est important de limiter l’intensité du courant de recharge de la batterie de servitude. De plus, l’ensemble des véhicules comprend une boîte à fusibles, généralement disposés dans l’habitacle du véhicule. Ainsi, le fait de pouvoir se connecter sur la prise d’allume-cigare quand elle est opé- rationnelle lorsque le contact est coupé ou sur une fiche à fusible d’une boîte à fusible, simplifie et accélère l’opération de recharge de la batterie du véhicule. [0014] Par ailleurs, une configuration avec un courant plus important est possible pour les véhicules possédant un fusible de calibre supérieur et une batterie capable d’accepter un courant de sortie de décharge profonde plus fort (telle que les batteries équipant des camions, autobus, etc.). [0015] Selon une caractéristique possible, ladite source d’alimentation électrique est une batterie présentant une tension nominale supérieure à la tension nominale de fonc- tionnement de la batterie à charger. [0016] Selon une autre caractéristique possible, ladite source d’alimentation électrique comprend un ou plusieurs des éléments suivants : pile, batterie, condensateur, super- condensateur ou tout autre source ou générateur de tension. [0017] Selon une autre caractéristique possible, ladite source d’alimentation électrique comprend la batterie de traction (ou de stockage) dudit véhicule, ledit chargeur étant configuré pour se connecter électriquement à ladite batterie de traction. [0018] Selon une autre caractéristique possible, ladite batterie dudit chargeur est une batterie électrique de type lithium-ion et de préférence multi-éléments présentant une tension nominale d’au moins 14V, et de préférence une tension nominale d’au moins 16V. La batterie dudit chargeur comprend par exemple 4 cellules lithium-ion, disposées en série, présentant chacune des tensions allant de 3,5 à 4,2 V et dont les dimensions du pack de 4 cellules sont par exemple de 84x70x21 mm. Ce mode de réalisation de ladite source d’alimentation électrique présente les avantages d’être particulièrement économique et compacte, tout en donnant à l’outil une autonomie avantageuse. [0019] Selon une autre caractéristique possible, ledit circuit de gestion électrique limite l’intensité du courant circulant dans ladite connexion électrique (ou courant de charge), ledit courant de charge circulant notamment par l’intermédiaire du réseau électrique de servitude, selon une valeur prédéterminée. Pour ce faire, il peut comprendre un circuit limiteur de courant. [0020] Selon une autre caractéristique possible, ledit circuit de gestion électrique limite l’intensité du courant de charge à une valeur prédéterminée, telle qu’à 10 ampères, et de préférence à 8 ampères. Cette valeur d’intensité permet de limiter les risques de détérioration de la batterie de servitude à charger, mais également de tous les éléments du réseau électrique de servitude dudit véhicule. [0021] Selon une autre caractéristique possible, ledit circuit de gestion électrique est configuré pour élever et/ou abaisser la tension de la source d’alimentation électrique (notamment d’une batterie). Ledit circuit de gestion électrique est avantageusement configuré pour élever et/ou abaisser la tension de la source d’alimentation électrique de sorte que la tension en sortie dudit circuit de gestion électrique soit toujours adaptée par rapport à la valeur de tension nominale de la batterie à charger, et pour ainsi assurer une charge optimale de ladite batterie de servitude du véhicule. [0022] Selon une autre caractéristique possible, ledit chargeur comprend une interface homme-machine configurée pour indiquer une ou plusieurs des informations suivantes à l’utilisateur dudit chargeur : – ledit chargeur est allumé ; – ledit chargeur est en train de charger la batterie de servitude du véhicule ; – la valeur de la tension de la batterie à charger atteint ou dépasse une valeur de tension prédéterminée ; – la valeur de la tension de la batterie à charger et/ou de la source d’alimentation électrique ; – la source d’alimentation électrique dudit chargeur est chargée et/ou dépasse une valeur de tension prédéterminée ; – la charge et/ou la valeur de tension de la source d’alimentation électrique dudit chargeur. [0023] On notera par ailleurs que ledit chargeur peut ainsi être configuré pour diagnostiquer la batterie de servitude par la mesure de sa tension, tel qu’une mesure de la tension à vide. Ladite mesure peut être réalisée préalablement à la charge et/ou pendant la charge après interruption (ou suspension) momentanée de celle-ci. [0024] Selon une autre caractéristique possible, ledit chargeur s’éteint automatiquement dès que la tension de la batterie à charger dépasse une valeur seuil. Cette fonction permet d’éviter que l’utilisateur ne charge de façon excessive la batterie du véhicule électrique et limite une mauvaise utilisation du chargeur par l’utilisateur. [0025] Selon une autre caractéristique possible, ledit chargeur comprend une prise USB configurée pour alimenter en électricité ladite source d’alimentation électrique. La batterie dudit chargeur peut ainsi être facilement rechargée par l’intermédiaire de la prise USB. [0026] Ladite invention se rapporte également à un chargeur qui est, d’une part, configuré pour diagnostiquer ladite batterie de servitude et qui est, d’autre part, intégré au véhicule, ladite source d’alimentation du chargeur étant la batterie de traction dudit véhicule. [0027] Ainsi, en cas de décharge excessive de la batterie de servitude pendant un arrêt du véhicule, il peut y avoir enclenchement, automatique ou manuel, du chargeur pour maintenir une charge prédéterminée de ladite batterie de servitude (ceci avec un courant acceptable) pour éviter d’aboutir à une décharge ne permettant plus le démarrage dudit véhicule. On notera par ailleurs que ledit chargeur peut également être désigné sous l’appellation « dispositif de recharge et de diagnostic » pour batterie de servitude véhicule automobile. [0028] La présente invention se rapporte également à une voiture électrique ou à hydrogène, caractérisée en ce que ladite voiture comprend un chargeur de batterie de servitude tel que défini ci-dessus, ledit chargeur étant un système embarqué dudit véhicule. Ledit chargeur selon l’invention peut ainsi être intégré à un véhicule électrique ou à hydrogène comme un système de secours en cas de défaillance de la batterie de servitude. [0029] La présente invention se rapporte également à un procédé de dépannage d’une batterie de servitude d’un véhicule électrique ou à hydrogène : – connexion d’une source d’alimentation électrique au réseau électrique de servitude du véhicule ; – alimentation de la batterie de servitude du véhicule par l’intermédiaire du réseau électrique, par un courant dont l’intensité est limitée à une valeur prédéterminée. [0030] Selon une caractéristique possible, le procédé comprend une étape d’avertissement de l’utilisateur lorsque la valeur de la tension de la batterie a atteint une valeur de tension prédéterminée. [0031] Selon une autre caractéristique possible, l’étape de connexion au réseau électrique de servitude par l’intermédiaire d’une prise allume-cigare et/ou d’une fiche à fusible. [0032] Selon une autre caractéristique possible, le procédé comprend une étape de mise en place d’un point d’accès électrique, dans le véhicule, à la batterie de servitude, afin d’établir une connexion électrique entre un dispositif tiers, tel qu’un dispositif de recharge ou de diagnostic et ladite batterie de servitude. [0033] Selon une autre caractéristique possible, le fusible reliant la prise allume-cigare à la batterie est positionné dans une position dite « d’alimentation permanente », c’est-à-dire dans une position dans laquelle ladite prise allume-cigare est reliée élec- triquement à la batterie (donc alimentée), et ce même lorsque le véhicule est éteint. [0034] L’invention sera mieux comprise, et d’autres buts, détails, caractéristiques et avantages de celles-ci apparaîtront plus clairement au cours de la description suivante de modes de réalisation particuliers de l’invention, donnée uniquement à titre illustratif et non limitatif, en référence aux dessins annexés, sur lesquels : [fig.1] est une représentation très schématique d’un premier mode de réalisation d’un chargeur de batterie selon l’invention ; [fig.2] est une représentation très schématique d’un deuxième mode de réalisation d’un chargeur de batterie selon l’invention ; [fig.3] est une représentation schématique en perspective du chargeur de la [fig.1] connecté au réseau électrique de servitude d’un véhicule par l’intermédiaire d’une prise allume-cigare, et [fig.4] est une représentation schématique en perspective du chargeur de la [fig.1] connecté au réseau électrique de servitude d’un véhicule par l’intermédiaire d’une fiche à fusible. [0035] La [fig.1] est une représentation très schématique d’un premier mode de réalisation d’un chargeur de batterie 1 pour un véhicule électrique V. [0036] Le chargeur de batterie 1 comprend ainsi : – une source d’alimentation électrique 3 ; – une connexion électrique 5 qui est configurée pour se connecter au réseau électrique R de servitude du véhicule V et qui comprend deux câbles électriques 5a et 5b et un connecteur 5c ; – un circuit de gestion électrique (et/ou électrotechnique) 7 configuré pour limiter l’intensité du courant électrique de sortie IOUT (ou de charge) circulant, par l’intermédiaire de ladite connexion électrique 5, de la source d’alimentation électrique 3 vers une batterie électrique B du véhicule V ; – un voltmètre 9 configuré pour mesurer la tension (ou une image de la tension) de la batterie B à charger ; – une interface homme-machine 11 qui est configurée pour indiquer une ou plusieurs informations à l’utilisateur dudit chargeur 1, et qui est notamment reliée audit voltmètre 9. [0037] On notera également que ledit chargeur 1 comprend éventuellement un circuit élec- tronique de gestion (non représenté) des différents éléments mentionnés ci-dessus. [0038] On notera que ledit circuit de gestion 7 peut être intégré dans le câble 5a de la connexion 5 reliant la borne positive de la source d’alimentation 3 à la borne positive de la batterie B du véhicule ou être un élément distinct interposé entre ledit câble 5a et la source d’alimentation 3. Le câble 5b, quant à lui, relie la borne négative de la source d’alimentation 3 à la borne négative de la batterie B du véhicule. [0039] Dans le présent mode de réalisation, ladite source d’alimentation 3 est une batterie électrique comprenant quatre cellules 3a de type lithium-ion, disposées en série, présentant chacune une tension d’environ 4V. Les dimensions du pack de 4 cellules 3a sont environ de 84x70x21mm. [0040] La batterie électrique 3 du chargeur 1 présente donc une tension nominale U1 d’environ 16 volts, tandis qu’une batterie de servitude de véhicule électrique présente une tension nominale U2 usuelle d’environ 12V. Ainsi, la batterie 3 présente une tension nominale U1 supérieure à la tension nominale U2 de fonctionnement de la batterie B à charger du véhicule électrique V. [0041] Ledit chargeur comprend en outre une prise USB (non représentée) configurée pour alimenter en électricité ladite source d’alimentation électrique 3. Dans le présent mode de réalisation, ladite prise USB permet ainsi de recharger la batterie 3 du chargeur 1. [0042] Ledit circuit de gestion électrique 7 est, quant à lui, configuré pour limiter l’intensité du courant de sortie (ou de charge) IOUT, qui circule de la batterie 3 du chargeur 1 vers la batterie B du véhicule V, à une valeur maximale prédéterminée Imax. Avanta- geusement, la valeur maximale prédéterminée Imax est de 10 ampères, et de préférence de 8 ampères. [0043] Ledit circuit de gestion électrique 7 comporte, pour cela, un circuit limiteur de courant qui comprend : – un transistor T1, tel qu’un transistor MOSFET ou bipolaire, dont le drain (ou le collecteur) est relié à la borne positive de la batterie 3 du chargeur ; – une résistance R1 reliée à la source (ou à l’émetteur) du transistor T1 ; – une source de tension de référence 7a délivrant une tension VREF ; – un amplificateur opérationnel AO1 dont la sortie est reliée à la grille (ou à la base) du transistor T1, l’entrée inverseuse est reliée à un nœud N1 située entre la source du transistor T1 et la résistance R1, et dont l’entrée non-inverseuse est reliée à la sortie de la source de tension de référence 7a. [0044] On notera que l’entrée de la source de tension de référence 7a est reliée à un nœud N2 lui-même relié à l’une des bornes de la résistance R1, ladite résistance R1 ayant chacune de ses bornes reliées respectivement aux nœuds N1 et N2. [0045] Ainsi, les éléments énumérés ci-dessus permettent une régulation linéaire du courant de sortie IOUT (ou de charge). En effet, l’amplificateur opérationnel AO1 amplifie la différence entre les tensions reçues au niveau de ses entrées (inverseuse et non- inverseuse) et délivre en sortie une tension qui régule ainsi la quantité de courant qui circule à travers le transistor T1 (et donc de manière générale la quantité de courant circulant de la batterie 3 du chargeur 1 vers la batterie B du véhicule). En choisissant judicieusement, les valeurs de la résistance R1 et de la tension de référence VREF, on obtient un circuit 7 qui limite l’intensité du courant à une valeur pré- déterminée Imax. Par exemple, pour R1 = 0,1 Ω et VREF = 0,8 V, on aura Imax = 8 A. [0046] L’interface homme-machine 11 comprend, quant à elle, un ou plusieurs indicateurs lumineux, comme des diodes électroluminescentes (ou LED), s’allumant ou s’éteignant pour indiquer à l’utilisateur l’état du chargeur et/ou l’état de la batterie du véhicule. Elle pourrait également indiquer un état de charge, par exemple par un jeu de couleur des diodes électroluminescentes. [0047] L’interface homme-machine 11 peut donc indiquer si : – le chargeur est allumé et prêt à l’emploi ; – ledit chargeur est train de charger la batterie du véhicule, notamment la batterie de servitude ; – la valeur de la tension de la batterie à charger atteint ou dépasse une valeur de tension prédéterminée, par exemple la tension nominale de fonctionnement théorique de ladite batterie à charger. [0048] Dans une variante de réalisation non représentée, l’interface homme-machine comporte un écran indiquant les états mentionnés ci-dessus. Ledit écran peut également indiquer : – la charge et/ou la valeur de la tension de la batterie du véhicule et/ou de la source d’alimentation électrique. – la source d’alimentation électrique dudit chargeur est chargée ou dépasse une valeur de tension prédéterminée. [0049] Ainsi, l’utilisateur peut procéder, au moyen dudit chargeur 1, au dépannage d’un véhicule électrique (ou à hydrogène) dont la batterie B de fonction nécessite d’être rechargée. L’utilisateur, après déverrouillage mécanique d’une des portières du véhicule, connecte, au moyen de la connexion électrique 5, le chargeur 1 au réseau électrique R de servitude du véhicule V. La connexion avec le réseau électrique R de servitude du véhicule V peut se faire de différentes manières, par exemple par l’intermédiaire de la prise allume-cigare P, tel qu’illustré à la [fig.3], ou alors par l’intermédiaire d’une fiche à fusible F, tel qu’illustré à la [fig.4]. [0050] Plus particulièrement, à la [fig.3], ladite connexion électrique 5 comprend alors un connecteur 5d configuré pour coopérer avec la prise allume-cigare P. Dans le mode de réalisation de la [fig.4], ladite connexion électrique 5 comprend un connecteur 5e configurée pour coopérer avec la fiche à fusible F (notamment située dans la boîte à fusible du véhicule V) et un connecteur 5f de masse configuré pour se fixer à un élément G, notamment du véhicule V, faisant office de masse électrique. [0051] On notera qu’il est parfois nécessaire que le fusible de la prise allume-cigare soit dans une position dite « d’alimentation permanente » pour permettre au chargeur selon l’invention de fonctionner lorsque le véhicule est éteint. Après utilisation du chargeur, le fusible peut être replacé dans une position dite « de coupure » ou avantageusement laissé dans la position d’alimentation permanente. [0052] On notera également, dans le cas d’une connexion électrique par l’intermédiaire d’une fiche à fusible, qu’il est nécessaire de sélectionner une partie du réseau électrique adéquate au niveau des courants à injecter et de retirer préalablement le fusible présent. [0053] Le chargeur 1 indique alors, par l’intermédiaire de l’interface homme-machine 11 (tel qu’un voyant), que le chargeur 1 est en train de charger la batterie B de fonction du véhicule. Une fois que la batterie B du véhicule atteint une valeur de tension prédéterminée, telle que sa tension nominale U2 de fonctionnement, l’interface homme-machine indique à l’utilisateur que la batterie B de fonction est chargée et qu’il peut démarrer le véhicule V électrique. On notera qu’au préalable, ladite interface homme-machine 11 peut également indiquer, par exemple par l’intermédiaire d’un voyant, que le chargeur 1 est fonctionnel et apte à charger ladite batterie B du véhicule. [0054] Dans une variante de réalisation non représentée, le chargeur s’éteint automa- tiquement dès que la tension de la batterie à charger dépasse une valeur seuil. [0055] La [fig.2] est une représentation très schématique d’un deuxième mode de réalisation d’un chargeur 10 selon l’invention. Les mêmes éléments portent les mêmes références que dans le premier mode de réalisation et ne seront donc pas à nouveau détaillés. [0056] Ainsi, à la différence du premier mode de réalisation, ledit circuit de gestion électrique 27 est configuré, d’une part, pour limiter l’intensité du courant IOUT en sortie du chargeur 10, et, d’autre part, pour élever et/ou abaisser la tension de sortie VOUT dudit chargeur 10. [0057] Plus particulièrement, ledit circuit de gestion électrique 27 est avantageusement configuré pour élever et/ou abaisser la tension de la source d’alimentation électrique de sorte que la tension en sortie VOUT dudit circuit de gestion électrique 27 soit toujours adaptée par rapport à la valeur de la tension nominale de la batterie B à charger. On notera que généralement le circuit de gestion électrique 27 élève la tension reçue par la batterie du chargeur 3 pour que la tension de sortie VOUT soit supérieure à la tension nominale U2 de la batterie B à charger. [0058] Plus particulièrement, ledit circuit de gestion électrique 27 comprend : – un transformateur 21 relié aux bornes de la batterie 3 du chargeur 10, par l’intermédiaire d’un transistor T2 ; – un circuit de contrôle 23 relié au transistor T2, plus particulièrement au niveau de la grille du transistor T2, configuré pour limiter l’intensité du courant de sortie IOUT et réguler la valeur de la tension de sortie VOUT ; – un circuit de redressement et de filtrage 29 qui comprend lui-même une diode D1 et un condensateur C1, configuré pour que la tension de sortie VOUT soit une tension continue. [0059] Plus particulièrement, la source du transistor T2 est reliée à la borne négative de la batterie 3 du chargeur 10, tandis que le drain du transistor T2 est relié au transformateur 21. [0060] Ledit transistor T2 est piloté par le circuit de contrôle 23 qui est lui-même asservi par la tension de sortie VOUT et le courant de sortie IOUT. Ledit circuit de contrôle 23 présente de plus des valeurs de consigne pour les tension VOUT et courant IOUT de sortie, par exemple de 16 V et 8 A. Ainsi, ledit circuit de contrôle 23, en fonction des valeurs de tension VOUT et de courant IOUT de sortie et des tension et courant de consigne, régule la tension de grille du transistor T2, ce qui entraîne la modulation du courant source-drain jusqu’à ce que les tension et courant de sortie correspondent aux valeurs des tensions et courant de consigne. [0061] La présente invention se rapporte également à un véhicule automobile électrique ou à hydrogène qui comprend un chargeur de batterie tel que décrit précédemment, ledit chargeur étant un système embarqué dudit véhicule. [0062] Lorsque le chargeur est intégré dans un véhicule automobile, il est avantageux qu’il soit, d’une part, configuré pour diagnostiquer ladite batterie de servitude et, d’autre part, intégré au véhicule, ladite source d’alimentation du chargeur étant alors avanta- geusement la batterie de traction dudit véhicule. Ledit chargeur peut également comprend une autre source d’alimentation électrique, telle qu’une batterie, etc. Ledit chargeur intégré est ainsi configuré pour s’enclencher, automatiquement ou ma- nuellement, pour maintenir une charge prédéterminée de ladite batterie de servitude, ceci afin d’éviter une décharge de la batterie de servitude ne permettant plus le démarrage dudit véhicule. Description Title of the invention: Electric vehicle service battery charger and electric vehicle comprising such a charger [0001] The present invention relates to the field of devices for electrically charging a battery, and more particularly a service battery mounted in an electric and/or hydrogen vehicle (also designated respectively by the acronyms PEV and H2EV). [0002] Service battery is understood to mean a battery supplying in particular electricity to the functional and/or safety components of the vehicle, such as the computer, the door locking system, the OBD connection (for "On-Board Diagnostics in English), autonomous driving aids, LED headlights, parking brake, radio, geolocation system, electric traction management, etc. The electrical network powered by said service battery is thus generally referred to as the "service electrical network". [0003] Service batteries for electric vehicles are generally lower capacity batteries than traction batteries, and have a nominal voltage of 12 volts. These are so-called "deep discharge" batteries, or also called "slow discharge batteries", because they do not support strong current surges very well (not designed to start a heat engine), but which support deep discharges very well, up to 80% of their capacity. These batteries are generally placed in the electric traction compartment (surrounded by safety protections) and are not or hardly accessible. In addition, to protect these batteries against destructive interventions, the use of cables to connect it to another vehicle is prohibited in most electric vehicle user manuals. [0004] It will also be noted that the “service battery” can be designated by the term “functional battery”, each of these terms being interchangeable and can be used indifferently to designate this type of battery, which differentiates them. starter batteries. The service battery is connected to the storage battery or traction battery of the vehicle, for example via a direct-to-direct (or DC/DC) converter, to allow said service battery to remain charged and operational and ensure the correct operation of the various functional and/or safety components of the vehicle. Electric or hydrogen vehicles that do not have alternators for recharging batteries. [0005] Thus, when the service battery comes to be discharged following a converter problem, a short circuit, external constraints, following use intensive use of the storage and functional batteries (having caused them to be completely discharged), or following prolonged non-use of the vehicle, it is then necessary to be able to recharge the service battery to allow use and access to certain basic vehicle functions. [0006] More particularly, if the service battery has a voltage value lower than a predetermined value, for example lower than 12 V, the various function and safety devices can no longer be activated. The user can therefore no longer use the central opening of the doors (only the emergency mechanical key can unlock the driver's door), nor start his vehicle, nor even move it (the electric parking brake being blocked), for the to the nearest garage for repair. In addition, in many cases, it is impossible to lift the vehicle to move it. [0007] Furthermore, service batteries, generally of the "gel electrolyte" type, generally have electrical stresses. This type of battery does not support current peaks, particularly when deeply discharged, unlike conventional lead batteries used in combustion engine cars. It is therefore not possible to use a high-current lead-acid battery charger without risking damaging the service battery of an electric vehicle. [0008] Furthermore, the service battery of an electric vehicle is very difficult to access for the average user, for reasons of user safety and of guarantee of said vehicle. Thus, the present invention proposes to solve at least one of the drawbacks stated above and proposes a new type of electric vehicle battery charger. The present invention thus relates to a service battery charger, in particular for an electric vehicle, said charger comprising: - an electrical power source; - an electrical connection configured to connect to the electrical service network of the vehicle and connect said electrical power source to the battery of the vehicle; – an electrical management circuit configured to limit the intensity of the electrical current flowing, via the service electrical network, from the electrical power source to the vehicle battery. [0011] Said battery charger according to the invention in particular avoids having to access said battery at the level of the engine compartment, a place where the battery is difficult to access, which sometimes requires dismantling other elements in order to be able to access said service battery. In addition, the charger makes it possible to simply charge said battery and therefore to repair quickly and easily an electric vehicle whose said service battery is discharged. Furthermore, said charger comprises an electrical management circuit which limits the intensity of the charging current to a predetermined maximum value, for example to 10 amps, and preferably to 8 amps. This limitation of the intensity of the charging current thus makes it possible not to damage the battery (during its charging) or an element of the electrical network of said vehicle. [0012]According to one possible feature, said electrical connection is configured to be connected to a cigarette lighter socket and/or to a fuse plug. [0013] It will be noted that a large part of the vehicles have a so-called cigarette lighter socket, supplied with current and whose intensity is between 10 and 20 A, which makes it possible to light cigars or cigarettes. However, nowadays, these sockets are mainly used to power accessories, such as chargers, vacuum cleaners, inflators, converters to generate 220 V AC, etc. The power supply circuit of certain vehicles thus includes a protection fuse that can adopt two positions at the choice of the driver: - a first position called "permanent power supply" in which said cigarette lighter socket is electrically connected to the battery powered), even when the vehicle is off; – a second so-called “cut-off” position, preventing any electrical connection between said socket and the service battery (therefore not allowing the service battery to be recharged) when the vehicle is off (or when the ignition is off). Thus, to recharge the service battery without damaging the fuse arranged in a first position, it is important to limit the intensity of the service battery recharging current. In addition, all vehicles include a fuse box, generally arranged in the passenger compartment of the vehicle. Thus, the fact of being able to connect to the cigarette lighter socket when it is operational when the ignition is off or to a fuse plug in a fuse box, simplifies and speeds up the operation of recharging the vehicle battery. [0014] Furthermore, a configuration with a higher current is possible for vehicles having a higher caliber fuse and a battery capable of accepting a higher deep discharge output current (such as the batteries fitted to trucks, buses , etc.). [0015]According to one possible characteristic, said electrical power source is a battery having a nominal voltage greater than the nominal operating voltage of the battery to be charged. [0016]According to another possible characteristic, said electrical power source comprises one or more of the following elements: cell, battery, capacitor, supercapacitor or any other voltage source or generator. [0017] According to another possible feature, said electrical power source comprises the traction (or storage) battery of said vehicle, said charger being configured to be electrically connected to said traction battery. According to another possible characteristic, said battery of said charger is an electric battery of lithium-ion type and preferably multi-element having a nominal voltage of at least 14V, and preferably a nominal voltage of at least 16V. The battery of said charger comprises for example 4 lithium-ion cells, arranged in series, each having voltages ranging from 3.5 to 4.2 V and whose dimensions of the pack of 4 cells are for example 84×70×21 mm. This embodiment of said electrical power source has the advantages of being particularly economical and compact, while giving the tool advantageous autonomy. [0019]According to another possible characteristic, said electrical management circuit limits the intensity of the current flowing in said electrical connection (or load current), said load current flowing in particular via the service electrical network, according to a predetermined value. To do this, it may include a current limiting circuit. According to another possible feature, said electrical management circuit limits the intensity of the charging current to a predetermined value, such as 10 amps, and preferably 8 amps. This intensity value makes it possible to limit the risks of deterioration of the service battery to be charged, but also of all the elements of the service electrical network of said vehicle. [0021] According to another possible characteristic, said electrical management circuit is configured to raise and/or lower the voltage of the electrical power source (in particular of a battery). Said electrical management circuit is advantageously configured to raise and/or lower the voltage of the electrical power source so that the output voltage of said electrical management circuit is always adapted with respect to the nominal voltage value of the battery at charging, and thereby ensure optimal charging of said service battery of the vehicle. [0022]According to another possible characteristic, said charger comprises a man-machine interface configured to indicate one or more of the following information to the user of said charger: - said charger is on; – said charger is charging the service battery of the vehicle; – the value of the voltage of the battery to be charged reaches or exceeds a predetermined voltage value; – the value of the voltage of the battery to be charged and/or of the electrical power source; - the electrical power source of said charger is charged and / or exceeds a predetermined voltage value; – the load and/or voltage value of the electrical power source of said charger. [0023] It will also be noted that said charger can thus be configured to diagnose the service battery by measuring its voltage, such as a measurement of the no-load voltage. Said measurement can be carried out prior to charging and/or during charging after momentary interruption (or suspension) thereof. [0024]According to another possible characteristic, said charger switches off automatically as soon as the voltage of the battery to be charged exceeds a threshold value. This function prevents the user from overcharging the battery of the electric vehicle and limits improper use of the charger by the user. [0025] According to another possible feature, said charger comprises a USB socket configured to supply electricity to said electrical power source. The battery of said charger can thus be easily recharged via the USB socket. [0026] Said invention also relates to a charger which is, on the one hand, configured to diagnose said service battery and which is, on the other hand, integrated into the vehicle, said power source of the charger being the battery of traction of said vehicle. [0027] Thus, in the event of excessive discharge of the service battery during a stoppage of the vehicle, there may be an automatic or manual engagement of the charger to maintain a predetermined charge of said service battery (this with an acceptable current) to avoid leading to a discharge no longer allowing the start of said vehicle. It will also be noted that said charger can also be referred to as a “charging and diagnostic device” for a motor vehicle service battery. The present invention also relates to an electric or hydrogen car, characterized in that said car comprises a service battery charger as defined above, said charger being an on-board system of said vehicle. Said charger according to the invention can thus be integrated into an electric vehicle or hydrogen as a back-up system in the event of service battery failure. The present invention also relates to a method for troubleshooting a service battery of an electric or hydrogen vehicle: - connection of an electrical power source to the service electrical network of the vehicle; – supply of the vehicle service battery via the electrical network, by a current whose intensity is limited to a predetermined value. [0030]According to one possible characteristic, the method includes a step of warning the user when the value of the battery voltage has reached a predetermined voltage value. [0031] According to another possible feature, the connection step to the service electrical network via a cigarette lighter socket and/or a fused plug. [0032]According to another possible characteristic, the method comprises a step of setting up an electrical access point, in the vehicle, to the service battery, in order to establish an electrical connection between a third-party device, such as a recharging or diagnostic device and said service battery. According to another possible feature, the fuse connecting the cigarette lighter socket to the battery is positioned in a so-called "permanent power" position, that is to say in a position in which said cigarette lighter socket is electrically connected to the battery (therefore powered), even when the vehicle is off. The invention will be better understood, and other aims, details, characteristics and advantages thereof will appear more clearly during the following description of particular embodiments of the invention, given solely by way of illustration and non-limiting, with reference to the appended drawings, in which: [fig.1] is a very schematic representation of a first embodiment of a battery charger according to the invention; [fig.2] is a very schematic representation of a second embodiment of a battery charger according to the invention; [fig.3] is a schematic representation in perspective of the charger of the [fig.1] connected to the service electrical network of a vehicle via a cigarette lighter socket, and [fig.4] is a schematic representation in perspective of the charger of [fig.1] connected to the service electrical network of a vehicle by means of a fuse plug. [0035] The [fig.1] is a very schematic representation of a first embodiment of a battery charger 1 for an electric vehicle V. [0036] The battery charger 1 thus comprises: – an electrical power source 3; - an electrical connection 5 which is configured to connect to the service electrical network R of the vehicle V and which comprises two electrical cables 5a and 5b and a connector 5c; – an electrical (and/or electrotechnical) management circuit 7 configured to limit the intensity of the electrical output current I OUT (or load) flowing, via said electrical connection 5, from the electrical power source 3 to an electric battery B of the vehicle V; – a voltmeter 9 configured to measure the voltage (or an image of the voltage) of the battery B to be charged; – a man-machine interface 11 which is configured to indicate one or more pieces of information to the user of said charger 1, and which is in particular connected to said voltmeter 9. management (not shown) of the various elements mentioned above. It will be noted that said management circuit 7 can be integrated into the cable 5a of the connection 5 connecting the positive terminal of the power source 3 to the positive terminal of the battery B of the vehicle or be a separate element interposed between said cable 5a and the power source 3. The cable 5b, for its part, connects the negative terminal of the power source 3 to the negative terminal of the battery B of the vehicle. In the present embodiment, said power source 3 is an electric battery comprising four cells 3a of the lithium-ion type, arranged in series, each having a voltage of approximately 4V. The dimensions of the 4-cell 3a pack are approximately 84x70x21mm. The electric battery 3 of the charger 1 therefore has a nominal voltage U 1 of about 16 volts, while an electric vehicle service battery has a usual nominal voltage U 2 of about 12V. Thus, the battery 3 has a nominal voltage U 1 greater than the nominal operating voltage U 2 of the battery B to be charged of the electric vehicle V. Said charger further comprises a USB socket (not shown) configured to supply electricity from said electrical power source 3. In the present embodiment, said USB socket thus makes it possible to recharge the battery 3 of the charger 1. [0042] Said electrical management circuit 7 is, for its part, configured to limit the intensity of the output (or charging) current I OUT , which flows from battery 3 of charger 1 to battery B of vehicle V, at a predetermined maximum value I max . Advantageously, the predetermined maximum value I max is 10 amps, and preferably 8 amps. Said electrical management circuit 7 comprises, for this, a limiting circuit of current which comprises: - a transistor T 1 , such as a MOSFET or bipolar transistor, whose drain (or collector) is connected to the positive terminal of the battery 3 of the charger; – a resistor R 1 connected to the source (or emitter) of transistor T 1 ; – a reference voltage source 7a delivering a voltage V REF ; – an operational amplifier AO 1 whose output is connected to the gate (or base) of transistor T 1 , the inverting input is connected to a node N 1 located between the source of transistor T 1 and resistor R 1 , and whose non-inverting input is connected to the output of the reference voltage source 7a. Note that the input of the reference voltage source 7a is connected to a node N 2 itself connected to one of the terminals of the resistor R 1 , said resistor R 1 having each of its terminals connected respectively at the nodes N 1 and N 2 . Thus, the elements listed above allow linear regulation of the output current I OUT (or load). Indeed, the operational amplifier AO 1 amplifies the difference between the voltages received at its inputs (inverting and non-inverting) and outputs a voltage which thus regulates the quantity of current which flows through the transistor T 1 ( and therefore generally the amount of current flowing from battery 3 of charger 1 to battery B of the vehicle). By judiciously choosing the values of the resistor R 1 and of the reference voltage V REF , a circuit 7 is obtained which limits the intensity of the current to a pre-determined value I max . For example, for R 1 = 0.1 Ω and V REF = 0.8 V, we will have I max = 8 A. [0046] The man-machine interface 11 comprises, for its part, one or more luminous indicators, as light-emitting diodes (or LEDs), turning on or off to indicate the status of the charger and/or the state of the vehicle's battery to the user. It could also indicate a state of charge, for example by a play of color of the light-emitting diodes. The man-machine interface 11 can therefore indicate whether: the charger is on and ready for use; – said charger is charging the battery of the vehicle, in particular the service battery; - the value of the voltage of the battery to be charged reaches or exceeds a predetermined voltage value, for example the theoretical nominal operating voltage of said battery to be charged. In a variant embodiment not shown, the man-machine interface comprises a screen indicating the states mentioned above. Said screen can also indicate: – the charge and/or the voltage value of the vehicle battery and/or of the electrical power source. – the electrical power source of said charger is charged or exceeds a predetermined voltage value. Thus, the user can proceed, by means of said charger 1, to repair an electric (or hydrogen) vehicle whose functional battery B needs to be recharged. The user, after mechanical unlocking of one of the doors of the vehicle, connects, by means of the electrical connection 5, the charger 1 to the electrical network R of the service vehicle V. The connection with the electrical network R of the service vehicle V can be done in different ways, for example via the cigarette lighter socket P, as shown in [fig.3], or via a fuse plug F, such as illustrated in [fig.4]. [0050] More particularly, in [fig.3], said electrical connection 5 then comprises a connector 5d configured to cooperate with the cigarette lighter socket P. In the embodiment of [fig.4], said electrical connection 5 comprises a 5th connector configured to cooperate with the fuse plug F (in particular located in the fuse box of the vehicle V) and a ground connector 5f configured to attach to an element G, in particular of the vehicle V, acting as ground electric. It will be noted that it is sometimes necessary for the fuse of the cigarette lighter socket to be in a so-called “permanent power supply” position to allow the charger according to the invention to operate when the vehicle is switched off. After using the charger, the fuse can be replaced in a so-called “cut-off” position or advantageously left in the permanent supply position. [0052] It will also be noted, in the case of an electrical connection by means of a fused plug, that it is necessary to select a part of the electrical network suitable for the level of the currents to be injected and to first remove the fuse present. The charger 1 then indicates, via the man-machine interface 11 (such as an indicator), that the charger 1 is charging the battery B of the vehicle function. Once the vehicle's battery B reaches a predetermined voltage value, such as its nominal operating voltage U 2 , the man-machine interface indicates to the user that the operating battery B is charged and that he can start. the electric vehicle V. It will be noted that beforehand, said man-machine interface 11 can also indicate, for example by means of an indicator, that charger 1 is functional and able to charge said battery B of the vehicle. [0054] In a variant embodiment not shown, the charger switches off automatically. tically as soon as the voltage of the battery to be charged exceeds a threshold value. The [fig.2] is a very schematic representation of a second embodiment of a charger 10 according to the invention. The same elements bear the same references as in the first embodiment and will therefore not be detailed again. Thus, unlike the first embodiment, said electrical management circuit 27 is configured, on the one hand, to limit the intensity of the current I OUT at the output of the charger 10, and, on the other hand, to raise and/or lower the output voltage V OUT of said charger 10. More particularly, said electrical management circuit 27 is advantageously configured to raise and/or lower the voltage of the electrical power source so that the output voltage V OUT of said electrical management circuit 27 is always adapted with respect to the value of the nominal voltage of the battery B to be charged. It will be noted that generally the electrical management circuit 27 raises the voltage received by the battery from the charger 3 so that the output voltage V OUT is greater than the nominal voltage U 2 of the battery B to be charged. More specifically, said electrical management circuit 27 comprises: - a transformer 21 connected to the terminals of battery 3 of charger 10, via a transistor T 2 ; - a control circuit 23 connected to transistor T 2 , more particularly at the level of the gate of transistor T 2 , configured to limit the intensity of the output current I OUT and to regulate the value of the output voltage V OUT ; – a rectifying and filtering circuit 29 which itself comprises a diode D 1 and a capacitor C 1 , configured so that the output voltage V OUT is a DC voltage. More specifically, the source of transistor T 2 is connected to the negative terminal of battery 3 of charger 10, while the drain of transistor T 2 is connected to transformer 21. Said transistor T 2 is controlled by the control circuit 23 which is itself controlled by the output voltage V OUT and the output current I OUT . Said control circuit 23 also has setpoint values for the output voltage V OUT and current I OUT , for example 16 V and 8 A. Thus, said control circuit 23, depending on the voltage values V OUT and output current I OUT and the reference voltage and current, regulates the gate voltage of the transistor T 2 , which results in the modulation of the source-drain current until the output voltage and current correspond to the values of the voltages and setpoint current. The present invention also relates to an electric or hydrogen motor vehicle which comprises a battery charger as described previously, said charger being an on-board system of said vehicle. [0062] When the charger is integrated into a motor vehicle, it is advantageous for it to be, on the one hand, configured to diagnose said service battery and, on the other hand, integrated into the vehicle, said power source of the charger then being advantageously the traction battery of said vehicle. Said charger may also comprise another electrical power source, such as a battery, etc. Said integrated charger is thus configured to engage, automatically or manually, to maintain a predetermined charge of said service battery, this in order to avoid a discharge of the service battery no longer allowing the starting of said vehicle.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2013012A FR3117419B1 (en) | 2020-12-10 | 2020-12-10 | Electric vehicle service battery charger and electric vehicle comprising such a charger |
PCT/EP2021/084963 WO2022122901A1 (en) | 2020-12-10 | 2021-12-09 | Charger for a service battery of an electric vehicle and electric vehicle comprising such a charger |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4259473A1 true EP4259473A1 (en) | 2023-10-18 |
Family
ID=75539407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21835672.3A Pending EP4259473A1 (en) | 2020-12-10 | 2021-12-09 | Charger for a service battery of an electric vehicle and electric vehicle comprising such a charger |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240025287A1 (en) |
EP (1) | EP4259473A1 (en) |
CN (1) | CN116547166A (en) |
FR (1) | FR3117419B1 (en) |
WO (1) | WO2022122901A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12221009B2 (en) * | 2022-06-10 | 2025-02-11 | Powershow Limited | Power supply management device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2978303A1 (en) * | 2011-07-21 | 2013-01-25 | St Microelectronics Sa | Method for charging battery powered electric or hybrid vehicle, involves utilizing charging circuit to perform controlled charging of battery to be charged, and forwarding power supply to charging circuit of electricity supplier |
US10044197B2 (en) * | 2013-12-12 | 2018-08-07 | Milwaukee Electric Tool Corporation | Portable power supply and battery charger |
US20180342883A1 (en) * | 2017-05-25 | 2018-11-29 | Vector Products, Inc. | Battery charger with detachable battery |
DE102018206183A1 (en) * | 2018-04-23 | 2019-10-24 | Volkswagen Aktiengesellschaft | Mobile power supply and use thereof |
KR102699009B1 (en) * | 2019-04-18 | 2024-08-26 | 현대자동차주식회사 | Battery to vehicle charging system |
-
2020
- 2020-12-10 FR FR2013012A patent/FR3117419B1/en active Active
-
2021
- 2021-12-09 WO PCT/EP2021/084963 patent/WO2022122901A1/en active Application Filing
- 2021-12-09 CN CN202180082115.8A patent/CN116547166A/en active Pending
- 2021-12-09 EP EP21835672.3A patent/EP4259473A1/en active Pending
- 2021-12-09 US US18/266,257 patent/US20240025287A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3117419A1 (en) | 2022-06-17 |
WO2022122901A1 (en) | 2022-06-16 |
US20240025287A1 (en) | 2024-01-25 |
CN116547166A (en) | 2023-08-04 |
FR3117419B1 (en) | 2024-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2684274B1 (en) | Charge balancing system for batteries | |
EP1951553A2 (en) | Device for managing the supply to a network of power-consuming elements for a motor vehicle | |
EP2794340B1 (en) | Device for connecting/disconnecting a load for energy storage unit in an automotive vehicle | |
WO2020074397A1 (en) | Method and device for controlling the level of charge of a traction battery of an electric vehicle | |
EP3044025B1 (en) | Insulation fault detection device for testing for insulation faults under critical conditions | |
EP4259473A1 (en) | Charger for a service battery of an electric vehicle and electric vehicle comprising such a charger | |
WO2020254767A1 (en) | Hybrid electrical energy storage system | |
EP3844032B1 (en) | Electrical circuit and motor vehicle comprising such a circuit | |
EP4313669A1 (en) | Self-contained power supply device, in particular for charging a battery | |
EP3123591A1 (en) | Vehicle including onboard apparatus, particularly cryogenic apparatus, and connection device for supplying electrical power to said apparatus | |
FR3149430A1 (en) | CELLULAR BATTERY WITH NON-INTERRUPTING SWITCHING DEVICE(S), FOR A BATTERY ASSEMBLY OF A SYSTEM | |
FR3106093A1 (en) | CHARGING DEVICE FOR RECHARGEABLE ELECTRIC OR HYBRID MOTOR VEHICLES | |
WO2024153539A1 (en) | Device for charging a battery of an electric vehicle | |
FR3136904A1 (en) | POWER SUPPLY ADAPTER CONNECTED TO A CHARGING BOX OF AN ELECTRIFIED VEHICLE | |
WO2022263733A1 (en) | Management of an electric battery of a motor vehicle | |
WO2024153541A1 (en) | Method for managing a charge of a battery of an electric vehicle by another electric vehicle | |
FR3144947A1 (en) | Device for charging a battery of an electric vehicle. | |
FR3135670A1 (en) | SECURE CONTROL OF THE POWER SUPPLY OF AN EXTERNAL CONNECTOR TEMPORARILY COUPLED TO A SYSTEM CHARGING CONNECTOR | |
WO2024213963A1 (en) | Series battery system for powering an electric vehicle | |
FR3132149A1 (en) | MONITORING OF THE CHARGING VOLTAGE IN MODE 2 OR 3 AT THE TERMINALS OF A CONVERTER SUPPLYING A VEHICLE BATTERY | |
FR3141112A1 (en) | Activation of batteries connected in parallel | |
FR3094680A1 (en) | MOTOR VEHICLE INCLUDING AN ELECTRICAL POWER SUPPLY CIRCUIT WITH DOUBLE LITHIUM ACCUMULATOR | |
FR2875963A1 (en) | Electric energy storage unit e.g. battery, operation control system for hybrid motorization unit, has limiting units to limit charging power of storage units, when storage units` charging state is greater than maximum nominal charging state |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230511 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20241220 |