[go: up one dir, main page]

EP4211355B1 - Gas-powered drive system and operating method - Google Patents

Gas-powered drive system and operating method Download PDF

Info

Publication number
EP4211355B1
EP4211355B1 EP21777205.2A EP21777205A EP4211355B1 EP 4211355 B1 EP4211355 B1 EP 4211355B1 EP 21777205 A EP21777205 A EP 21777205A EP 4211355 B1 EP4211355 B1 EP 4211355B1
Authority
EP
European Patent Office
Prior art keywords
pressure
chamber
control
control valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21777205.2A
Other languages
German (de)
French (fr)
Other versions
EP4211355A1 (en
EP4211355C0 (en
Inventor
Olivier Georg Reinertz
Katharina Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinisch Westlische Technische Hochschuke RWTH filed Critical Rheinisch Westlische Technische Hochschuke RWTH
Publication of EP4211355A1 publication Critical patent/EP4211355A1/en
Application granted granted Critical
Publication of EP4211355B1 publication Critical patent/EP4211355B1/en
Publication of EP4211355C0 publication Critical patent/EP4211355C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/0413Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed in one direction only, with no control in the reverse direction, e.g. check valve in parallel with a throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/455Control of flow in the feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/51Pressure control characterised by the positions of the valve element
    • F15B2211/513Pressure control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5151Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/57Control of a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the invention relates to a gas-operated drive system, comprising a drive with a first chamber and a second chamber, which are separated from each other by a movable working element of the drive, in particular by a piston, an exhaust air throttle and a control valve, wherein one chamber of the two chambers can be connected to a gas source to form a chamber that drives the working element, and the other chamber of the two chambers can be connected to a gas sink via the exhaust air throttle to form a chamber that counteracts the movement of the working element, in particular by means of a changeover valve.
  • the gas escaping through the exhaust air throttle also flows through a check valve that opens in the direction of the gas sink. This has the advantage that the gas cannot/does not have to flow through the exhaust air throttle for a return stroke of the working element, but can be guided past the exhaust air throttle in parallel, in particular bypassing the exhaust air throttle, if necessary through other system components.
  • the invention further relates to a method for operating a gas-operated drive system, comprising a drive with a first chamber and a second chamber, which are separated from one another by a movable working element of the drive, in particular by a piston, wherein one chamber of the two chambers is connected to a gas source to form a chamber driving the working element and the other chamber of the two chambers is simultaneously connected to a gas sink via an exhaust air throttle, in particular by means of a changeover valve, to form a chamber counteracting the movement of the working element.
  • Typical drives of such a system are, for example, cylinder-piston units, in which the piston is arranged as a working element between the chambers and can be subjected to gas pressure on both sides from the direction of each of the two chambers.
  • pressurized gas is fed from a pressure source that provides gas at a pressure greater than the surrounding atmospheric pressure, e.g. a compressor, into one of the chambers, whereby a force is exerted on the working element that moves the working element.
  • This chamber thus forms a driving chamber.
  • the movement displaces gas from the other chamber.
  • This chamber from which gas is displaced when the working element moves, forms the counteracting chamber.
  • the size of the counteracting force can be influenced by throttling the gas flow from the counteracting chamber in the direction of a gas sink, e.g. simply the environment, by means of an exhaust air throttle.
  • the exhaust air throttle is referred to as such, even if air is not used as the gas, since this term has become established in the relevant terminology.
  • the exhaust air throttle is set in such a way, in particular with regard to the pressure falling across the exhaust air throttle, that a so-called supercritical flow of the gas through the exhaust air throttle results.
  • this can usually be achieved if the inlet-side pressure before the exhaust air throttle is at least 2 times greater is the pressure on the outlet side after the exhaust air throttle.
  • the pressures mentioned here and below are absolute pressures.
  • the flow velocity reaches the speed of sound, which has the advantage that the speed of the working element, e.g. the piston in a pneumatic cylinder, is independent of the load in the quasi-stationary state.
  • the invention can also provide a subcritical flow in which the speed of sound is not reached.
  • the object of the invention is to develop a system and a method of the type mentioned at the outset in such a way that an energetically more favorable mode of operation of an exhaust air throttled system can be achieved, preferably while further achieving a supercritical flow in the exhaust air throttle in order to obtain a preferred load-independent movement of the working element.
  • the driving chamber is assigned the control valve through which the driving chamber can be filled with gas from the gas source, whereby the opening cross-section of the control valve can be adjusted depending on a control pressure prevailing in the flow direction in front of the exhaust air throttle or falling above the exhaust air throttle, whereby the opening cross-section can be increased with the control valve.
  • the opening cross-section can be adjusted depending on a control pressure prevailing in the flow direction in front of the exhaust air throttle or falling above the exhaust air throttle, whereby the opening cross-section can be increased with the control valve.
  • the object is achieved in that a control valve is assigned to the driving chamber, through which the driving chamber is filled with gas from the gas source, wherein the opening cross section of the control valve is adjusted depending on a control pressure prevailing in the flow direction upstream of the exhaust air throttle or falling above the exhaust air throttle, that the opening cross section is increased with the control valve when the falling control pressure falls below a first limit pressure and the opening cross section is reduced, in particular the control valve is closed when the further falling control pressure falls below a second limit pressure.
  • the invention can preferably provide that when a control pressure is present which is greater than the first limit pressure, the control valve is initially closed, i.e. only opens when the first limit pressure is undershot and increases the opening cross-section as the control pressure continues to fall.
  • control pressure can also preferably be provided that as the control pressure continues to fall, the maximum opening cross-section between the two limit pressures is reached, but at the latest when the second limit pressure is reached. As the control pressure continues to fall, the opening cross-section of the control valve is reduced from the moment the second limit pressure is undershot, in particular until the control valve closes at a third limit pressure. It can also be provided that when the first limit pressure is present, the control valve is already partially open and does not close completely even if the control pressure is increased further.
  • control valve increases the opening cross-section with decreasing control pressure and with increasing control pressure reduced.
  • control valve reduces the opening cross-section with falling control pressure and increases it with increasing control pressure.
  • the respective change in the opening cross-section depends on the change in the control pressure, and in particular on its sign. This dependency can be linear, but does not have to be. A non-linear dependency between the change in control pressure and the change in the opening cross-section can also be provided.
  • a check valve that opens in the direction of the driving chamber is located in series with the control valve in the flow path of the gas.
  • a check valve that blocks in the direction of the driving chamber is located parallel to the control valve. The gas thus flows into the chamber through the control valve, whereas a return flow, e.g. during a return stroke of the working element, bypasses the control valve, especially if the latter is closed by its switching position in the return stroke.
  • the advantage of the invention is that a first limit pressure can be selected which ensures that the exhaust air throttle is operated with a desired differential pressure level across the exhaust air throttle. If the limit pressure is undershot, the control valve opens and more gas can flow into the driving chamber to achieve the desired pressure condition. In this way, regulation to the desired pressure level can be achieved.
  • a second limit pressure which is below the first limit pressure
  • the driving chamber in contrast to conventional exhaust air throttled systems, is not brought completely to the supply pressure of the system, but is only filled with the amount of air that leads to a pressure that is slightly higher than the pressure necessary to perform the task while maintaining a supercritical flow at the exhaust air throttle.
  • a return stroke of the working element is made possible, for example, particularly after switching by means of a switching valve, by supplying gas, preferably bypassing the exhaust air throttle, into the previously counteracting and now driving chamber, whereby in the return stroke the gas is led from the previously driving and now counteracting chamber past the closed control valve, e.g. through a check valve that opens in the return stroke.
  • the gas flow in the return stroke can take place, for example, through a pressure control valve, in particular a pressure reducer, which is parallel to the exhaust air throttle in terms of flow, e.g. still in series with a check valve that opens in the direction of the chamber.
  • control valve When the third limit pressure in the chamber currently to be filled is exceeded, the control valve is returned to an at least partially open position so that a new working stroke of the working element can be carried out, in particular by adjusting the desired control pressure in the range of the first limit pressure or in the range between the first and second limit pressure.
  • the invention provides that the first limit pressure is greater and the second limit pressure is smaller than a pressure that prevails in front of the exhaust air throttle or drops above the exhaust air throttle, which is required for a supercritical gas flow in the exhaust air throttle.
  • This required pressure can be 2 bar, for example. Absolute pressure. This ensures that during the control of the opening cross-section of the control valve based on the control pressure in the vicinity of the first limit pressure or in the area between the first and second limit pressures, there is always such a pressure in front of or falling above the exhaust air throttle that it is operated in supercritical flow, in particular until the end of the stroke is reached and the control valve closes, preferably while the control pressure falls below the second limit pressure and reaches the third limit pressure.
  • the first limit pressure is preferably 1% to 25% higher than the pressure required for supercritical flow, e.g. the required pressure can usually be 2 bar. Due to the required control range below the first limit pressure, a value of 2.3 bar is preferred for the first limit pressure. More preferably, the second limit pressure is at least 5% to 50% lower than the pressure required for supercritical flow and is preferably 1.5 bar.
  • the third limit pressure is preferably only slightly below the second limit pressure. However, real valve designs usually have larger control ranges, so that with the previously mentioned values a third limit pressure of 1.3 bar, for example, is realistic and fluid-mechanically easy to achieve. Preferably, all of the pressure specifications given for the limit values and the pressure required for supercritical flow are to be understood with a possible variation of plus/minus 10% of the stated value.
  • One way of controlling the control valve or the valve actuator located therein with regard to the opening cross-section can be that the system has an electronic/electrical control with which the control pressure can be measured, e.g. with a pressure sensor in a gas line section between the opposing chamber and the exhaust air throttle, and with which an electric valve drive for adjusting the valve actuator in the control valve can be controlled depending on the measured value of the control pressure.
  • the valve drive can thus be driven in order to move the valve actuator to increase the opening cross-section, in particular to move it in a first direction with falling control pressure when the Control pressure falls below the first limit value and to move the valve actuator to reduce the opening cross-section, in particular in a second direction opposite to the first, when the further falling control pressure falls below the second limit value, in particular at the end of the stroke of the working element.
  • valve actuator is purely gas-driven, so that additional electronic control can be omitted.
  • a gas line can be provided for this purpose, with which the control valve is fluidically connected to the opposing chamber, wherein the control pressure acting in the gas line acts on the valve actuator of the control valve.
  • the control pressure acting in the gas line acts on the valve actuator of the control valve.
  • valve actuator is preloaded with an actuating force, e.g. by means of a spring acting on the valve actuator, by means of which the valve actuator can be displaced with falling control pressure.
  • the opening cross-section of the control valve is increased in a pressure range between the first and second limit pressure with falling control pressure by the movement of the valve actuator, and in a pressure range below the second limit pressure with further falling control pressure, the opening cross-section of the control valve is reduced by the movement of the valve actuator, until it is preferably completely closed when the third limit pressure is reached.
  • valve actuator in the pressure range between the first and second limit pressure and in the pressure range below the second limit pressure, in particular both at the initially caused
  • the valve is moved in the same direction during the enlargement of the opening cross-section and the subsequent reduction of the opening cross-section. This is particularly advantageous because the successive effects are both causally linked to falling control pressure.
  • control valve has a characteristic curve describing the dependence of the opening cross-section and adjustment path, which has a reversing slope at an adjustment path position between the two extreme possible adjustment path positions.
  • a slope reversal in the characteristic curve can be present at the point where the second limit pressure is reached.
  • control valve has two control edges in the valve body that interact with the valve actuator or two control edges that are each arranged on separate valve actuators connected in series, in particular wherein in a direction of movement of the valve actuator defined by falling control pressure, the opening cross-section can be enlarged in a first movement section by interacting with the first control edge and in a subsequent second movement section in the same direction of movement, the opening cross-section can be reduced by interacting with the second control edge, in particular until the opening cross-section is completely closed.
  • a pressure regulating valve in particular a pressure reducer with a check valve, can be connected in parallel to the exhaust air throttle which is assigned to the counteracting chamber, through which the counteracting chamber can be filled with gas, in particular by shutting off the exhaust air throttle.
  • the invention can provide that a changeover valve is provided in the line area between the control valve and the drive, as well as the exhaust air throttle and the drive, with which in a In a first switching stage, the first chamber can be connected to the control valve and at the same time the second chamber can be connected to the exhaust air throttle, and in a second switching stage, the second chamber can be connected to the control valve and at the same time the first chamber can be connected to the exhaust air throttle.
  • the system has only one exhaust air throttle and only one control valve, but these interact with a respective chamber by switching both in the working stroke and in the return stroke.
  • the exhaust air throttle is always connected downstream to the pressure sink and the control valve on the inlet side is always supplied with gas from the pressure source.
  • a pressure regulating valve preferably a pressure reducing valve
  • a pressure regulating valve is arranged parallel to the control valve, which always ensures a minimum pressure in the driving chamber by bypassing the control valve which is in the closed position at the end of a working stroke. If the reversal of the direction of movement of the drive is initiated by switching the switching valve, there is always sufficient pressure available in the previously driving chamber, so that decompression of the chamber which now counteracts the movement causes pressure to build up in front of the exhaust air throttle, which causes the control valve to open via the control line and the resulting force exerted on the valve actuator in the control valve, thereby enabling a next pressure-controlled working stroke in the opposite direction.
  • this pressure regulating valve is intended for starting up the drive system from a completely pressureless state.
  • each of the two chambers is assigned an arrangement of an exhaust air throttle and a control valve with a control line connected to the other chamber, wherein each of the two chambers can be filled with gas through the assigned control valve in a process phase in which the respective chamber acts as a driving chamber, and each of the two chambers in a process phase in which the respective Chamber acts as a counteracting chamber, through which the associated exhaust air throttle can be emptied, in particular whereby in both process phases the respective stroke of the working element takes place with the described pressure control via the currently active control valve.
  • one of the arrangements can be connected to the pressure source by means of a changeover valve, while at the same time the other arrangement is connected to the pressure sink.
  • each of the two arrangements it can be achieved that when a respective arrangement is connected to the pressure source, the gas flow takes place via the control valve in the direction of the chamber to be filled and a gas flow via the exhaust air throttle is prevented, whereas conversely when connected to the pressure sink, a gas flow takes place via the exhaust air throttle to the pressure sink and a gas flow via the control valve is prevented.
  • a pressure control valve in particular a pressure reducer, is connected in parallel to at least one of the arrangements, preferably to both arrangements, with which the system can be moved from a pressure-relieved state in both chambers to an operating state, in particular by filling one of the two chambers with gas through the pressure control valve and simultaneously pressurizing and opening the control valve assigned to the other chamber.
  • the invention can also provide for an arrangement for minimum pressure loading for commissioning the system from a pressure-free state in both chambers to be integrated directly into the control valve.
  • Figure 1 shows a first embodiment of the invention with a cylinder-piston unit A as a working element, whose piston 3 separates two chambers 1 and 2. It is assumed here that the working element A executes a working stroke when the piston rod of the piston 3 extends.
  • a pressure source 4 can be connected to a line L1 and at the same time a pressure sink 6 can be connected to a line L2 or vice versa.
  • the pressure control according to the invention is only carried out in the working stroke, in particular to ensure that the chamber 1 driving in the working stroke is only filled with gas via the control valve 8 to such an extent that a supercritical flow is present at the exhaust air throttle 5.
  • control valve 8 via which the chamber 1 is filled, is located in the line L1, which leads to the chamber 1 that drives the working stroke.
  • a check valve R1 is arranged parallel to the control valve, which prevents an inflow into the chamber bypassing the control valve 8, but allows an outflow of gas from the chamber 1 in the return stroke, especially when the control valve 5 is then closed (as shown here).
  • gas from the chamber 2 which counteracts the movement of the piston 3 during the working stroke, is displaced to the pressure sink 6 via the exhaust air throttle 5 and the check valve R2 which is arranged in series with it and opens in the direction of the pressure sink 6.
  • the invention here provides that a gas line 9 as control line 9 connects the control valve 8 with a line section which lies in the line L2 between the counteracting chamber 2 and the exhaust air throttle 5.
  • the control pressure acting in this line section acts via the control line 9 on the valve actuator in the control valve 8 and can influence the position of the valve actuator and thus the opening cross-section of the control valve 8, according to the invention in such a way that with falling control pressure, when the control pressure falls below a first limit pressure, the opening cross-section is enlarged so that more gas flows into the driving chamber and when the pressure falls below a second limit pressure, which is smaller than the first limit pressure, the Opening cross-section is reduced, preferably completely closed, in particular when a third limit pressure is reached, preferably which is smaller than the second limit pressure.
  • the control pressure is thus kept in the control range around the first limit pressure until the second limit pressure is undershot.
  • This can preferably be selected so that a supercritical flow is achieved in the exhaust air throttle, the first limit pressure is thus greater than the minimum pressure required for the supercritical flow.
  • the second limit pressure is preferably smaller than this minimum pressure.
  • a return stroke can be initiated by switching the changeover valve 7.
  • connecting the pressure source 4 to the line L2 closes the check valve R2 and opens the check valve R3, which is in series with a pressure control valve 12, through which the chamber 2 is filled for the return stroke.
  • the gas then displaced from the chamber 1 can escape unhindered to the pressure sink 6, e.g. to the environment via the open check valve R1.
  • the pressure build-up in the chamber 2 simultaneously ensures that the valve actuator in the control valve 8 is subjected to force via the control line 9, so that it opens again, in particular when the third limit pressure is reached or exceeded, and initiates the next working stroke.
  • the pressure conditions required for cyclical working strokes are thus maintained.
  • the system can be started from a rest position by pressurizing the chamber 2.
  • Figure 2 shows a design in which a pressure-controlled movement of the piston 3 takes place both in the working stroke and in the return stroke based on the control pressure in the control line 9.
  • control valve 8 is provided in line L1, which in this design is constantly connected to the pressure source 4.
  • the pressure sink 6 is constantly connected to line L2 with the exhaust air throttle 5.
  • the pressure control valve 12 can be provided to achieve a minimum filling of the previously driving chamber, a pressurization of the control line 9 and an opening of the control valve 8 in an initial pressureless state of both chambers in the switching position shown here with the control valve closed (at the end of the working stroke). The system is thus returned to its regular operating state and can execute a movement by switching the switching valve.
  • each of the two chambers 1 and 2 is assigned an arrangement AN1 or AN2 comprising a control valve 8 and an exhaust air throttle 5.
  • the control line 9 of a control valve 8 that is assigned to a specific chamber has a fluid connection to the other chamber.
  • the check valves R1, R2 in each of the arrangements AN1, AN2 define the required flow direction.
  • R1 allows flow through the control valve 8 to the chamber, while R2 simultaneously blocks flow through the exhaust throttle when the pressure source 4 is connected to the arrangement AN1 or AN2, and R2 allows flow from the chamber through the exhaust throttle 5, while R1 simultaneously blocks flow through the control valve 8 when the pressure sink 6 is connected to the arrangement AN1 or AN2.
  • the changeover valve 7 can be used to alternately connect the pressure source 4 and the pressure sink 6 to an arrangement AN1, AN2.
  • pressure control is achieved in the working stroke and the return stroke, or in reversing working strokes, which fulfills the desired pressure criterion in the exhaust air throttling, preferably a supercritical flow.
  • the invention can provide here that a pressure control valve 11 with a check valve is arranged parallel to the arrangement AN2, through which an initial start-up of the system can take place when both chambers are depressurized, as described above. Furthermore, a pressure control valve can also be arranged parallel to the arrangement AN1, which is not shown.
  • FIGS. 4a and 4b show a possible embodiment of a control valve 8 with a valve actuator 8a, which has two actuators 8b and 8c connected by a tapered area.
  • a valve actuator 8a can be provided for all possible designs of the valve 8.
  • the valve actuator 8a is pressurized on the left side by the control pressure from the control line 9 and on the right side by a spring 13, which is arranged in a pressure-relieved space. As the control pressure in the line 9 falls, the valve actuator 8a is moved to the left with respect to this illustration.
  • the opening cross-section is increased and in the effect between the valve actuator 8a (its actuator 8c) and the control edge SK2, the opening cross-section is reduced.
  • the opening cross-section between connections 4 (to the pressure source) and 1 (to the chamber/to the controlled volume) can be adjusted depending on the control pressure.
  • the limit pressures mentioned can be defined by means of the spring 13, the force of which can be adjusted.
  • the control valve 8 On the right-hand side, the control valve 8 is relieved of gas pressure at connection 23.
  • the second and third limit pressures can be dependent on the first and can be determined by the spring and the design of the control valve in the geometry of the control edges.
  • the representation of the Figure 4a shows a position with maximum opening cross-section, which can occur with a control pressure between the first and second limit pressure or preferably at the second limit pressure.
  • the control valve can close when the first limit pressure is exceeded, or initially reduce the opening cross-section with increasing control pressure and then close, in particular if no residual opening, e.g. by a mechanical stop, or no parallel flow path is provided, and if the first limit pressure is undershot, according to the invention, the opening cross-section can be increased with decreasing control pressure up to the maximum opening position shown. If the control pressure drops further, the opening cross-section is reduced until it closes at the control edge SK2.
  • the Figure 4b shows a version of the same control valve of the Figure 4a , in a position in which the first limit pressure can be present in the control line 9.
  • the control valve is closed at the control edge SK1 and, with a falling control pressure starting from this position, would increase the opening cross-section from the closed position. With an increasing control pressure starting from this position, the control valve 8 would remain closed.
  • Figure 5 shows a design in which, compared to the Figures 4a and 4b two springs 13a, 13b are arranged coaxially one inside the other.
  • the spring 13b acts directly on the valve actuator 8a, the spring 13a indirectly via the bearing element 14, which can be moved up to the stop 15.
  • the limit pressures and the gradients of the opening characteristics of the two control edges depending on the control pressure can thus be decoupled from one another.
  • the space in which the springs 13a and 1b are arranged is pressure-relieved via the connection 23.
  • Figure 6 shows an embodiment in which the execution in the Figures 4a and 4b has been extended to include an integrated minimum pressure for starting from a pressureless state. This allows the previously Figures 2 and 3 The pressure reducers 11 and 12 shown and provided for this purpose are omitted.
  • the piston 20 shown on the right serves to return the after-pressure of the control valve 8 for the minimum pressure application.
  • a spring 21 acts on the piston 20, which is subjected to the pressure regulated by the control valve through the bore 22, in particular the pressure in the driving chamber 1. Connections 1 and 22 are therefore preferably directly connected.
  • the spring 21 has a preload so that the piston 20 only moves to the left when the after-pressure of the control valve 8 is sufficient, i.e. when the pressure in the driving chamber 1 has a minimum pressure predetermined by the spring 21.
  • the space in which the springs 13b and 21 are arranged is pressure-relieved via the connection 23.
  • the position of the piston defines the spring preload of the springs 13b and 13c. These define the position of the valve actuator 8a both as a function of the control pressure in line 9 and as a function of their preload and consequently the position of the piston 20.
  • the spring rates and preloads of the springs 13b and 13c correspond to the nominally required value for the known function of the valve, in particular as described above.
  • a displacement of the piston 20 to the right leads to a displacement of the valve actuator 8a to the right due to partial relaxation of the two springs 13b and 13c.
  • a spring system 21 consisting of disc springs can be used to load the piston 20.
  • FIG. 7 shows a modification of the designs of Figure 5 and Figure 6 .
  • the information there and in the Figures 4 described functions are not replaced by the functions described below, these also apply to the execution of the Figure 7 .
  • the piston 20 no longer acts on the valve actuator via a flexible spring 13b, but rather rigidly via the piston rod 20a.
  • the interaction of the piston 20 and spring 21 is reversed in the direction here. Again, the space in which the spring 21 is arranged is relieved of pressure by the connection 23.
  • the piston 20 is therefore pressurized from the direction of the valve interior with the pressure of the connection 1, e.g. via the line 22, which connects the space to the left of the piston 20 with the connection 1, preferably inside the valve.
  • the limit pressures and the gradients of the opening characteristics of the two control edges can be decoupled from each other depending on the control pressure.
  • this is not done here by the nested springs 13b and 21, but rather by the realization of position-dependent different opening cross-sections in the effect between a control edge, here the control edge SK1 and the valve actuator 8a, in particular in the case of an actuating body, here the actuating body 8b of the valve actuator 8a.
  • This way of influencing the characteristics via position-dependent different opening cross-sections can be carried out according to the invention independently of the other concrete constructions shown in the valve 8.
  • an actuating body e.g. here the actuating body 8b
  • the control grooves 8d end in front of the right axial end of the actuating body 8b.
  • the control pressure is preferably applied via the connection 9 to the axial face of the right actuator 8b, on which the piston rod 20a also acts.
  • the effect is against the spring 13c on the other side of the valve actuator 8a, which is arranged in a pressure-relieved space via the connection 23.
  • the movement of the valve actuator 8a is in the execution of the Figure 7 compared to the Figures 5 and 6 the other way round.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)

Description

Die Erfindung betrifft ein gasbetriebenes Antriebssystem, umfassend einen Antrieb mit einer ersten Kammer und einer zweiten Kammer, die durch ein bewegliches Arbeitselement des Antriebs, insbesondere durch einen Kolben voneinander getrennt sind, eine Abluftdrossel und ein Steuerventil,
wobei eine Kammer der beiden Kammern zur Bildung einer das Arbeitselement antreibenden Kammer mit einer Gasquelle verbindbar ist und die andere Kammer der beiden Kammern zur Bildung einer der Bewegung des Arbeitselementes entgegenwirkenden Kammer gleichzeitig über die Abluftdrossel mit einer Gassenke verbindbar ist, insbesondere mittels eines Umschaltventils. Vorzugsweise strömt dabei das durch die Abluftdrossel entweichende Gas auch durch ein in Richtung zur Gassenke öffnendes Rückschlagventil. Dies hat den Vorteil, dass für einen Rückhub des Arbeitselementes das Gas nicht durch die Abluftdrossel strömen kann / muss, sondern insbesondere unter Umgehung der Abluftdrossel parallel an dieser vorbeigeführt werden kann, ggfs. durch andere Systembauteile hindurch.
The invention relates to a gas-operated drive system, comprising a drive with a first chamber and a second chamber, which are separated from each other by a movable working element of the drive, in particular by a piston, an exhaust air throttle and a control valve,
wherein one chamber of the two chambers can be connected to a gas source to form a chamber that drives the working element, and the other chamber of the two chambers can be connected to a gas sink via the exhaust air throttle to form a chamber that counteracts the movement of the working element, in particular by means of a changeover valve. Preferably, the gas escaping through the exhaust air throttle also flows through a check valve that opens in the direction of the gas sink. This has the advantage that the gas cannot/does not have to flow through the exhaust air throttle for a return stroke of the working element, but can be guided past the exhaust air throttle in parallel, in particular bypassing the exhaust air throttle, if necessary through other system components.

Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines gasbetriebenen Antriebssystems, umfassend einen Antrieb mit einer ersten Kammer und einer zweiten Kammer, die durch ein bewegliches Arbeitselement des Antriebs, insbesondere durch einen Kolben voneinander getrennt sind, wobei eine Kammer der beiden Kammern zur Bildung einer das Arbeitselement antreibenden Kammer mit einer Gasquelle verbunden wird und die andere Kammer der beiden Kammern zur Bildung einer der Bewegung des Arbeitselementes entgegenwirkenden Kammer gleichzeitig über eine Abluftdrossel mit einer Gassenke verbunden wird, insbesondere mittels eines Umschaltventils.The invention further relates to a method for operating a gas-operated drive system, comprising a drive with a first chamber and a second chamber, which are separated from one another by a movable working element of the drive, in particular by a piston, wherein one chamber of the two chambers is connected to a gas source to form a chamber driving the working element and the other chamber of the two chambers is simultaneously connected to a gas sink via an exhaust air throttle, in particular by means of a changeover valve, to form a chamber counteracting the movement of the working element.

Antriebssysteme und Verfahren dieser Art sind im Stand der Technik allgemein bekannt. Beispielsweise beschreibt die DE 10 2009 001 150 A1 allgemein die Drosselung von Pneumatikzylindern. Ein anderes gasbetriebenes Antriebssystem ist aus der FR 2 738 040 A1 bekannt.Drive systems and methods of this kind are generally known in the art. For example, the EN 10 2009 001 150 A1 general throttling of pneumatic cylinders. Another gas-powered drive system is from the FR 2 738 040 A1 known.

Typische Antriebe eines solchen Systems sind z.B. Zylinder-Kolbenaggregate, bei denen der Kolben als Arbeitselement zwischen den Kammern angeordnet ist und beidseits aus der Richtung jeder der beiden Kammern mit einem Gasdruck beaufschlagt sein kann.Typical drives of such a system are, for example, cylinder-piston units, in which the piston is arranged as a working element between the chambers and can be subjected to gas pressure on both sides from the direction of each of the two chambers.

Als Gas kann beispielsweise übliche Luft eingesetzt werden, die Erfindung ist jedoch nicht hierauf beschränkt.For example, ordinary air can be used as the gas, but the invention is not limited to this.

Die übliche Arbeitsweise ist es, dass unter Druck stehendes Gas von einer Druckquelle, die Gas mit einem Druck größer als der umgebende Atmosphärendruck bereitstellt, z.B. einem Kompressor, in eine der Kammern geleitet wird, wodurch auf das Arbeitselement eine das Arbeitselement bewegende Kraft ausgeübt wird. Diese Kammer bildet somit eine antreibende Kammer. Durch die Bewegung wird Gas aus der anderen Kammer verdrängt. Der dort herrschende Gasdruck übt eine der Bewegung entgegenwirkende Kraft auf das Arbeitselement aus. Diese Kammer, aus der Gas bei der Bewegung des Arbeitselementes verdrängt wird, bildet die entgegenwirkende Kammer. Die Größe der entgegenwirkenden Kraft kann dadurch beeinflusst werden, dass der Gasstrom aus der entgegenwirkenden Kammer in Richtung zu einer Gassenke, z.B. einfacherweise der Umwelt, mittels einer Abluftdrossel gedrosselt wird. Im Sinne der Erfindung wird die Abluftdrossel als solche bezeichnet, auch wenn als Gas nicht Luft eingesetzt wird, da sich dieser Begriff in der einschlägigen Terminologie durchgesetzt hat.The usual way of working is that pressurized gas is fed from a pressure source that provides gas at a pressure greater than the surrounding atmospheric pressure, e.g. a compressor, into one of the chambers, whereby a force is exerted on the working element that moves the working element. This chamber thus forms a driving chamber. The movement displaces gas from the other chamber. The gas pressure prevailing there exerts a force on the working element that counteracts the movement. This chamber, from which gas is displaced when the working element moves, forms the counteracting chamber. The size of the counteracting force can be influenced by throttling the gas flow from the counteracting chamber in the direction of a gas sink, e.g. simply the environment, by means of an exhaust air throttle. For the purposes of the invention, the exhaust air throttle is referred to as such, even if air is not used as the gas, since this term has become established in the relevant terminology.

Vorzugsweise wird im Stand der Technik und auch bei der Erfindung die Abluftdrossel so eingestellt, insbesondere hinsichtlich des über der Abluftdrossel abfallenden Druckes, dass sich eine sogenannte überkritische Strömung des Gases durch die Abluftdrossel ergibt. Z.B. kann dies üblicherweise erzielt werden, wenn der eingangsseitige Druck vor der Abluftdrossel mindestens 2 - mal größer ist als der ausgangsseitige Druck nach der Abluftdrossel. Die hier und im Folgenden genannten Drücke verstehen sich als Absolutdrücke.Preferably, in the prior art and also in the invention, the exhaust air throttle is set in such a way, in particular with regard to the pressure falling across the exhaust air throttle, that a so-called supercritical flow of the gas through the exhaust air throttle results. For example, this can usually be achieved if the inlet-side pressure before the exhaust air throttle is at least 2 times greater is the pressure on the outlet side after the exhaust air throttle. The pressures mentioned here and below are absolute pressures.

Bei der überkritischen Strömung erreicht die Strömungsgeschwindigkeit die Schallgeschwindigkeit, woraus der Vorteil erzielt wird, dass die Geschwindigkeit des Arbeitselementes, z.B. des Kolbens in einem Pneumatikzylinder, im quasistationären Zustand lastunabhängig ist. Die Erfindung kann ebenso eine unterkritische Strömung vorsehen, in welcher die Schallgeschwindigkeit nicht erreicht wird.In supercritical flow, the flow velocity reaches the speed of sound, which has the advantage that the speed of the working element, e.g. the piston in a pneumatic cylinder, is independent of the load in the quasi-stationary state. The invention can also provide a subcritical flow in which the speed of sound is not reached.

Problematisch bei dieser Betriebsweise ist es, dass diese energetisch ungünstig ist, weil die antreibende Kammer immer unter maximalen Gasdruck gesetzt wird. Grundsätzlich ist es auch bekannt, den Zustrom von Gas in die antreibende Kammer zu drosseln als Alternative zur Abluftdrosselung. Zwar ist diese als Zuluftdrosselung bekannte Verschaltung energetisch günstiger, jedoch ist die Geschwindigkeit des Arbeitselementes im Antrieb in einem solchen Fall nicht lastunabhängig, da selbst bei einer überkritischen Durchströmung der Zuluftdrossel zwar der zufließende Gasmassenstrom bei konstantem Versorgungsdruck lastunabhängig ist, jedoch aufgrund der lastabhängigen Gasdichte in der Antriebskammer der konstante Massenstrom zu einer lastabhängigen Geschwindigkeit des Arbeitselements im Antrieb führt.The problem with this mode of operation is that it is energetically unfavorable because the driving chamber is always placed under maximum gas pressure. In principle, it is also known to throttle the inflow of gas into the driving chamber as an alternative to exhaust air throttling. Although this connection, known as supply air throttling, is more energetically favorable, the speed of the working element in the drive is not load-independent in such a case, since even with a supercritical flow through the supply air throttle, the inflowing gas mass flow is load-independent at a constant supply pressure, but due to the load-dependent gas density in the drive chamber, the constant mass flow leads to a load-dependent speed of the working element in the drive.

Aufgabe der Erfindung ist es ein System und ein Verfahren der eingangs genannten Art, so weiterzubilden, dass eine energetisch günstigere Betriebsweise eines abluftgedrosselten Systems erzielt werden kann, vorzugsweise unter weiterer Erzielung einer überkritischen Strömung in der Abluftdrossel, um eine bevorzugte lastunabhängige Bewegung des Arbeitselementes zu erhalten.The object of the invention is to develop a system and a method of the type mentioned at the outset in such a way that an energetically more favorable mode of operation of an exhaust air throttled system can be achieved, preferably while further achieving a supercritical flow in the exhaust air throttle in order to obtain a preferred load-independent movement of the working element.

Diese Aufgabe wird im System dadurch gelöst, dass der antreibenden Kammer das Steuerventil zugeordnet ist, durch welches hindurch die antreibende Kammer mit Gas von der Gasquelle befüllbar ist, wobei der Öffnungsquerschnitt des Steuerventils in Abhängigkeit eines in Strömungsrichtung vor der Abluftdrossel herrschenden oder über der Abluftdrossel abfallenden Steuerdrucks einstellbar ist, wobei mit dem Steuerventil der Öffnungsquerschnitt vergrößerbar ist, wenn mit fallendem Steuerdruck ein erster Grenzdruck unterschritten ist und der Öffnungsquerschnitt verkleinerbar ist, insbesondere das Steuerventil schließbar ist, wenn mit weiter fallendem Steuerdruck ein zweiter Grenzdruck unterschritten ist.This task is solved in the system by the fact that the driving chamber is assigned the control valve through which the driving chamber can be filled with gas from the gas source, whereby the opening cross-section of the control valve can be adjusted depending on a control pressure prevailing in the flow direction in front of the exhaust air throttle or falling above the exhaust air throttle, whereby the opening cross-section can be increased with the control valve. is when a first limit pressure is undercut with falling control pressure and the opening cross-section can be reduced, in particular the control valve can be closed when a second limit pressure is undercut with further falling control pressure.

Im Verfahren wird die Aufgabe dadurch gelöst, dass der antreibenden Kammer ein Steuerventil zugeordnet wird/ist, durch welches hindurch die antreibende Kammer mit Gas von der Gasquelle befüllt wird, wobei der Öffnungsquerschnitt des Steuerventils in Abhängigkeit eines in Strömungsrichtung vor der Abluftdrossel herrschenden oder über der Abluftdrossel abfallenden Steuerdrucks eingestellt wird, dass mit dem Steuerventil der Öffnungsquerschnitt vergrößert wird, wenn der fallende Steuerdruck einen ersten Grenzdruck unterschreitet und der Öffnungsquerschnitt verkleinert wird, insbesondere das Steuerventil geschlossen wird, wenn der weiter fallende Steuerdruck einen zweiten Grenzdruck unterschreitet.In the method, the object is achieved in that a control valve is assigned to the driving chamber, through which the driving chamber is filled with gas from the gas source, wherein the opening cross section of the control valve is adjusted depending on a control pressure prevailing in the flow direction upstream of the exhaust air throttle or falling above the exhaust air throttle, that the opening cross section is increased with the control valve when the falling control pressure falls below a first limit pressure and the opening cross section is reduced, in particular the control valve is closed when the further falling control pressure falls below a second limit pressure.

Die Erfindung kann dabei vorzugsweise vorsehen, dass bei Vorliegen eines Steuerdruckes, der größer ist als der erste Grenzdruck, das Steuerventil zunächst geschlossen ist, also erst mit Unterschreitung des ersten Grenzdruckes öffnet und mit weiter fallendem Steuerdruck den Öffnungsquerschnitt vergrößert.The invention can preferably provide that when a control pressure is present which is greater than the first limit pressure, the control valve is initially closed, i.e. only opens when the first limit pressure is undershot and increases the opening cross-section as the control pressure continues to fall.

Ebenso kann es dabei vorzugsweise vorgesehen sein, dass mit weiter fallendem Steuerdruck der maximale Öffnungsquerschnitt zwischen den beiden Grenzdrücken erreicht wird, spätestens jedoch beim Erreichen des zweiten Grenzdrucks. Mit weiter fallendem Steuerdruck, wird der Öffnungsquerschnitt des Steuerventils ab der Unterschreitung des zweiten Grenzdrucks verkleinert, insbesondere bis zum Schließen des Steuerventils bei einem dritten Grenzdruck. Ebenso kann es vorgesehen sein, dass bei Vorliegen des ersten Grenzdruckes das Steuerventil bereits zum Teil geöffnet ist und auch bei weiterer Erhöhung des Steuerdrucks nicht vollständig schließt.It can also preferably be provided that as the control pressure continues to fall, the maximum opening cross-section between the two limit pressures is reached, but at the latest when the second limit pressure is reached. As the control pressure continues to fall, the opening cross-section of the control valve is reduced from the moment the second limit pressure is undershot, in particular until the control valve closes at a third limit pressure. It can also be provided that when the first limit pressure is present, the control valve is already partially open and does not close completely even if the control pressure is increased further.

Bei allen Ausführungen kann es vorzugsweise vorgesehen sein, dass im Bereich zwischen dem ersten und zweiten Grenzdruck das Steuerventil mit fallendem Steuerdruck den Öffnungsquerschnitt vergrößert und mit steigendem Steuerdruck verringert. Ebenso kann es bei allen Ausführungen vorzugsweise vorgesehen sein, dass im Bereich zwischen dem zweiten und dritten Grenzdruck das Steuerventil mit fallendem Steuerdruck den Öffnungsquerschnitt verkleinert und mit steigendem Steuerdruck vergrößert.In all designs, it can preferably be provided that in the range between the first and second limit pressure, the control valve increases the opening cross-section with decreasing control pressure and with increasing control pressure reduced. Likewise, in all designs it can preferably be provided that in the range between the second and third limit pressure the control valve reduces the opening cross-section with falling control pressure and increases it with increasing control pressure.

Die jeweilige Änderung des Öffnungsquerschnitts ist dabei von der Änderung des Steuerdruckes, und insbesondere auch von dessen Vorzeichen abhängig. Diese Abhängigkeit kann linear sein, muss es aber nicht. Es kann auch eine nichtlineare Abhängigkeit zwischen der Steuerdruckänderung und der Öffnungsquerschnittänderung vorgesehen sein.The respective change in the opening cross-section depends on the change in the control pressure, and in particular on its sign. This dependency can be linear, but does not have to be. A non-linear dependency between the change in control pressure and the change in the opening cross-section can also be provided.

Vorzugsweise liegt im Strömungsweg des Gases in Serie zum Steuerventil ein in Richtung zur antreibenden Kammer öffnendes Rückschlagventil. Alternativ liegt parallel zum Steuerventil ein in Richtung zur antreibenden Kammer sperrendes Rückschlagventil. So erfolgt der Zustrom des Gases in die Kammer durch das Steuerventil, ein Rückstrom hingegen, z.B. bei einem Rückhub des Arbeitselementes erfolgt am Steuerventil vorbei, insbesondere wenn dieses durch seine Schaltposition im Rückhub geschlossen ist.Preferably, a check valve that opens in the direction of the driving chamber is located in series with the control valve in the flow path of the gas. Alternatively, a check valve that blocks in the direction of the driving chamber is located parallel to the control valve. The gas thus flows into the chamber through the control valve, whereas a return flow, e.g. during a return stroke of the working element, bypasses the control valve, especially if the latter is closed by its switching position in the return stroke.

Der Vorteil der Erfindung liegt darin, dass ein erster Grenzdruck gewählt werden kann, der sicherstellt, dass die Abluftdrossel mit einem gewünschten Differenzdruckniveau über der Abluftdrossel betrieben wird. Wird der Grenzdruck unterschritten, so öffnet das Steuerventil und mehr Gas kann in die antreibende Kammer zuströmen um die gewünschte Druckbedingung zu erhalten. Es kann so eine Regelung auf das gewünschte Druckniveau erfolgen.The advantage of the invention is that a first limit pressure can be selected which ensures that the exhaust air throttle is operated with a desired differential pressure level across the exhaust air throttle. If the limit pressure is undershot, the control valve opens and more gas can flow into the driving chamber to achieve the desired pressure condition. In this way, regulation to the desired pressure level can be achieved.

Durch die weitere Berücksichtigung eines zweiten Grenzdruckes, der unter dem ersten Grenzdruck liegt, kann berücksichtigt werden, dass am Ende des möglichen Hubweges eines Arbeitselementes der Druck in der entgegenwirkenden Kammer weiter fällt, insbesondere auch durch weitere Öffnung des Steuerventils nicht erhöht werden könnte, so dass die Erfindung vorsieht, den Öffnungsquerschnitt zu verringern, vorzugsweise das Steuerventil ganz zu schließen. Insbesondere kann somit der Stillstand des Arbeitselementes am Hubende das auslösende Ereignis für das Schließen des Steuerventils sein. Das Arbeitselement wird so von der Druckquelle getrennt.By further taking into account a second limit pressure, which is below the first limit pressure, it can be taken into account that at the end of the possible stroke of a working element, the pressure in the counteracting chamber continues to fall, in particular it could not be increased by further opening of the control valve, so that the invention provides for reducing the opening cross-section, preferably closing the control valve completely. In particular, the standstill of the working element can thus at the end of the stroke is the triggering event for closing the control valve. The working element is thus separated from the pressure source.

Arbeitet der Antrieb, insbesondere der Zylinder gegen eine verhältnismäßig geringe äußere Last und reicht folglich eine geringe Druckdifferenz am Arbeitselement zur Verrichtung der Aufgabe, wird die antreibende Kammer im Gegensatz zu konventionellen abluftgedrosselten Systemen nicht vollständig auf den Versorgungsdruck des Systems gebracht, sondern nur mit der Luftmenge befüllt, die zu einem Druck führt, der etwas höher ist, als der zur Verrichtung der Aufgabe unter Wahrung einer überkritischen Durchströmung an der Abluftdrossel notwendige Druck.If the drive, in particular the cylinder, works against a relatively low external load and consequently a small pressure difference at the working element is sufficient to perform the task, the driving chamber, in contrast to conventional exhaust air throttled systems, is not brought completely to the supply pressure of the system, but is only filled with the amount of air that leads to a pressure that is slightly higher than the pressure necessary to perform the task while maintaining a supercritical flow at the exhaust air throttle.

Ein Rückhub des Arbeitselementes wird z.B. ermöglicht, insbesondere nach Umschaltung mittels eines Umschaltventils, durch Zuführung von Gas, vorzugsweise unter Umgehung der Abluftdrossel, in die zuvor entgegenwirkende und nun antreibend wirkende Kammer, wobei im Rückhub aus der zuvor antreibenden und nun entgegenwirkenden Kammer das Gas am geschlossenen Steuerventil vorbei, z.B. durch ein im Rückhub öffnendes Rückschlagventil, geführt wird. Der Gaszustrom kann im Rückhub z.B. durch ein Druckregelventil, insbesondere einen Druckminderer erfolgen, der strömungstechnisch zur Abluftdrossel parallel liegt, z.B. dabei weiterhin in Serie liegt zu einem in Richtung zur Kammer öffnenden Rückschlagventil.A return stroke of the working element is made possible, for example, particularly after switching by means of a switching valve, by supplying gas, preferably bypassing the exhaust air throttle, into the previously counteracting and now driving chamber, whereby in the return stroke the gas is led from the previously driving and now counteracting chamber past the closed control valve, e.g. through a check valve that opens in the return stroke. The gas flow in the return stroke can take place, for example, through a pressure control valve, in particular a pressure reducer, which is parallel to the exhaust air throttle in terms of flow, e.g. still in series with a check valve that opens in the direction of the chamber.

Dabei wird mit Überschreiten des dritten Grenzdruckes in der aktuell zu füllenden Kammer das Steuerventil in eine wiederum zumindest teilweise geöffnete Position zurückgeführt, so dass ein erneuter Arbeitshub des Arbeitselementes durchgeführt werden kann, insbesondere unter Einregelung des gewünschten Steuerdruckes im Bereich des ersten Grenzdruckes oder im Bereich zwischen dem ersten und zweiten Grenzdruck.When the third limit pressure in the chamber currently to be filled is exceeded, the control valve is returned to an at least partially open position so that a new working stroke of the working element can be carried out, in particular by adjusting the desired control pressure in the range of the first limit pressure or in the range between the first and second limit pressure.

Vorzugsweise sieht es die Erfindung vor, dass der erste Grenzdruck größer ist und der zweite Grenzdruck kleiner ist als ein Druck, der vor der Abluftdrossel herrscht oder über der Abluftdrossel abfällt, der benötigt ist für eine überkritische Gasströmung in der Abluftdrossel. Dieser nötige Druck kann z.B. 2 bar Absolutdruck betragen. So kann nämlich sichergestellt werden, dass während der Regelung des Öffnungsquerschnittes des Steuerventils anhand des Steuerdrucks in der Umgebung des ersten Grenzdruckes oder im Bereich zwischen erstem und zweitem Grenzdruck immer ein solcher Druck vor oder abfallend über der Abluftdrossel vorliegt, dass diese in überkritischer Strömung betrieben wird, insbesondere nämlich solange, bis dass das Hubende erzielt ist und das Steuerventil schließt, vorzugsweise während der Steuerdruck den zweiten Grenzdruck unterschreitet und den dritten Grenzdruck erreicht.Preferably, the invention provides that the first limit pressure is greater and the second limit pressure is smaller than a pressure that prevails in front of the exhaust air throttle or drops above the exhaust air throttle, which is required for a supercritical gas flow in the exhaust air throttle. This required pressure can be 2 bar, for example. Absolute pressure. This ensures that during the control of the opening cross-section of the control valve based on the control pressure in the vicinity of the first limit pressure or in the area between the first and second limit pressures, there is always such a pressure in front of or falling above the exhaust air throttle that it is operated in supercritical flow, in particular until the end of the stroke is reached and the control valve closes, preferably while the control pressure falls below the second limit pressure and reaches the third limit pressure.

Vorzugsweise ist der erste Grenzdruck 1% bis 25% größer als der für die überkritische Strömung nötige Druck, z.B. wobei der nötige Druck üblicherweise 2 bar betragen kann. Aufgrund der erforderlichen Regelspanne unterhalb des ersten Grenzdrucks ist ein Wert von 2,3 bar für den ersten Grenzdruck bevorzugt. Weiter bevorzugt ist der zweite Grenzdruck wenigstens 5% bis 50% kleiner als der für überkritische Strömung nötige Druck und liegt vorzugsweise bei 1,5 bar. Der dritte Grenzdruck liegt vorzugsweise nur geringfügig unterhalb des zweiten Grenzdrucks. Reale Ventilkonstruktionen weisen aber zumeist größere Regelspannen auf, sodass mit den zuvor genannten Werten ein dritter Grenzdruck von beispielsweise 1,3 bar realistisch und fluid-mechanisch einfach erzielbar ist. Vorzugsweise sind alle genannten Druckangaben für die Grenzwerte und den für die überkritische Strömung nötigen Druck mit einer möglichen Variation von plus/minus 10% des genannten Wertes zu verstehen.The first limit pressure is preferably 1% to 25% higher than the pressure required for supercritical flow, e.g. the required pressure can usually be 2 bar. Due to the required control range below the first limit pressure, a value of 2.3 bar is preferred for the first limit pressure. More preferably, the second limit pressure is at least 5% to 50% lower than the pressure required for supercritical flow and is preferably 1.5 bar. The third limit pressure is preferably only slightly below the second limit pressure. However, real valve designs usually have larger control ranges, so that with the previously mentioned values a third limit pressure of 1.3 bar, for example, is realistic and fluid-mechanically easy to achieve. Preferably, all of the pressure specifications given for the limit values and the pressure required for supercritical flow are to be understood with a possible variation of plus/minus 10% of the stated value.

Eine Möglichkeit das Steuerventil bzw. das darin befindliche Ventilstellglied hinsichtlich des Öffnungsquerschnittes zu steuern kann darin liegen, dass das System eine elektronische / elektrische Steuerung aufweist, mit welcher der Steuerdruck messbar ist, z.B. mit einem Drucksensor in einem Gasleitungsabschnitt zwischen entgegenwirkender Kammer und der Abluftdrossel, und mit der in Abhängigkeit des Messwertes des Steuerdrucks ein elektrischer Ventilantrieb zur Verstellung des Ventilstellglieds im Steuerventil ansteuerbar ist. So kann der Ventilantrieb angetrieben sein, um das Ventilstellglied zur Vergrößerung des Öffnungsquerschnittes zu bewegen, insbesondere mit fallendem Steuerdruck dafür in eine erste Richtung zu bewegen, wenn der Steuerdruck den ersten Grenzwert unterschreitet und das Ventilstellglied zur Verkleinerung des Öffnungsquerschnittes zu bewegen, insbesondere in eine zur ersten entgegengesetzte zweite Richtung zu bewegen, wenn der weiter fallende Steuerdruck den zweiten Grenzwert unterschreitet, insbesondere am Hubende des Arbeitselementes.One way of controlling the control valve or the valve actuator located therein with regard to the opening cross-section can be that the system has an electronic/electrical control with which the control pressure can be measured, e.g. with a pressure sensor in a gas line section between the opposing chamber and the exhaust air throttle, and with which an electric valve drive for adjusting the valve actuator in the control valve can be controlled depending on the measured value of the control pressure. The valve drive can thus be driven in order to move the valve actuator to increase the opening cross-section, in particular to move it in a first direction with falling control pressure when the Control pressure falls below the first limit value and to move the valve actuator to reduce the opening cross-section, in particular in a second direction opposite to the first, when the further falling control pressure falls below the second limit value, in particular at the end of the stroke of the working element.

Eine solche Art der Steuerung setzt jedoch eine aktive Komponente, hier die elektronische Steuerung voraus.However, this type of control requires an active component, in this case the electronic control.

Eine demgegenüber bevorzugte Ausführung kann es hingegen vorsehen, dass die Bewegung des Ventilstellgliedes rein gasgetrieben erfolgt, so dass eine zusätzliche elektronische Steuerung entfallen kann.A preferred embodiment, however, can provide that the movement of the valve actuator is purely gas-driven, so that additional electronic control can be omitted.

Vorzugsweise kann dafür eine Gasleitung vorgesehen sein, mit der das Steuerventil fluidisch mit der entgegenwirkenden Kammer verbunden ist, wobei der in der Gasleitung wirkende Steuerdruck auf das Ventilstellglied des Steuerventils wirkt. So wird direkt durch den Steuerdruck eine das Ventilstellglied positionierende Kraft ausgeübt.Preferably, a gas line can be provided for this purpose, with which the control valve is fluidically connected to the opposing chamber, wherein the control pressure acting in the gas line acts on the valve actuator of the control valve. In this way, a force positioning the valve actuator is exerted directly by the control pressure.

Vorzugsweise kann es vorgesehen sein, dass das Ventilstellglied mit einer Stellkraft vorbelastet ist, z.B. mittels einer am Ventilstellglied angreifenden Feder, durch die das Ventilstellglied mit fallendem Steuerdruck verschiebbar ist.Preferably, it can be provided that the valve actuator is preloaded with an actuating force, e.g. by means of a spring acting on the valve actuator, by means of which the valve actuator can be displaced with falling control pressure.

Grundsätzlich wird in dieser rein fluidischen Steuerung bewirkt, dass in einem Druckbereich zwischen dem ersten und zweiten Grenzdruck mit fallendem Steuerdruck durch die Bewegung des Ventilstellgliedes der Öffnungsquerschnitt des Steuerventils vergrößert wird und in einem Druckbereich unter dem zweiten Grenzdruck mit weiter fallendem Steuerdruck durch die Bewegung des Ventilstellgliedes der Öffnungsquerschnitt des Steuerventils verkleinert wird, bis dieser bei Erreichen des dritten Grenzdruckes vorzugsweise ganz geschlossen wird.Basically, in this purely fluidic control, the opening cross-section of the control valve is increased in a pressure range between the first and second limit pressure with falling control pressure by the movement of the valve actuator, and in a pressure range below the second limit pressure with further falling control pressure, the opening cross-section of the control valve is reduced by the movement of the valve actuator, until it is preferably completely closed when the third limit pressure is reached.

Es kann dabei vorgesehen sein, dass das Ventilstellglied im Druckbereich zwischen dem ersten und zweiten Grenzdruck und im Druckbereich unter dem zweiten Grenzdruck, insbesondere also sowohl bei der zunächst bewirkten Vergrößerung des Öffnungsquerschnittes als auch bei der nachfolgend bewirkten Verkleinerung des Öffnungsquerschnittes, in derselben Richtung bewegt wird. Dies ist besonders vorteilhaft, weil die aufeinander folgenden Wirkungen beide mit fallendem Steuerdruck kausal verbunden sind.It can be provided that the valve actuator in the pressure range between the first and second limit pressure and in the pressure range below the second limit pressure, in particular both at the initially caused The valve is moved in the same direction during the enlargement of the opening cross-section and the subsequent reduction of the opening cross-section. This is particularly advantageous because the successive effects are both causally linked to falling control pressure.

Vorzugsweise kann dies erzielt werden, wenn das Steuerventil eine die Abhängigkeit von Öffnungsquerschnitt und Verstellweg beschreibende Kennlinie aufweist, die an einer Verstellwegposition zwischen den beiden extremal möglichen Verstellwegpositionen, eine sich umkehrende Steigung aufweist. Beispielsweise kann eine Steigungsumkehr in der Kennlinie am Ort des Erreichens des zweiten Grenzdruckes vorliegen.This can preferably be achieved if the control valve has a characteristic curve describing the dependence of the opening cross-section and adjustment path, which has a reversing slope at an adjustment path position between the two extreme possible adjustment path positions. For example, a slope reversal in the characteristic curve can be present at the point where the second limit pressure is reached.

Es kann auch vorgesehen sein, dass zwischen zwei Bereichen der Kennlinie mit umgekehrtem Vorzeichen der Steigung ein Bereich liegt, in welchem die Steigung den Wert "Null" aufweist.It can also be provided that between two areas of the characteristic curve with the opposite sign of the slope there is an area in which the slope has the value "zero".

Beispielsweise kann es vorgesehen sein, dass das Steuerventil zwei mit dem Ventilstellglied zusammenwirkende Steuerkanten im Ventilkörper oder zwei jeweils auf getrennten in Serie geschalteten Ventilstellgliedern angeordnete Steuerkanten aufweist, insbesondere wobei in einer durch fallenden Steuerdruck definierten Bewegungsrichtung des Ventilstellgliedes in einem ersten Bewegungsabschnitt durch Zusammenwirkung mit der ersten Steuerkante der Öffnungsquerschnitt vergrößerbar ist und in einem folgenden zweiten Bewegungsabschnitt in derselben Bewegungsrichtung durch Zusammenwirkung mit der zweiten Steuerkante der Öffnungsquerschnitt verkleinerbar ist, insbesondere bis zum vollständigen Verschluss des Öffnungsquerschnittes.For example, it can be provided that the control valve has two control edges in the valve body that interact with the valve actuator or two control edges that are each arranged on separate valve actuators connected in series, in particular wherein in a direction of movement of the valve actuator defined by falling control pressure, the opening cross-section can be enlarged in a first movement section by interacting with the first control edge and in a subsequent second movement section in the same direction of movement, the opening cross-section can be reduced by interacting with the second control edge, in particular until the opening cross-section is completely closed.

Wie zuvor bereits erwähnt, kann zur Abluftdrossel, die der entgegenwirkenden Kammer zugeordnet ist, ein Druckregulierventil, insbesondere ein Druckminderer mit Rückschlagventil parallelgeschaltet sein, durch den, insbesondere unter Absperrung der Abluftdrossel, die entgegenwirkende Kammer mit Gas füllbar ist.As already mentioned above, a pressure regulating valve, in particular a pressure reducer with a check valve, can be connected in parallel to the exhaust air throttle which is assigned to the counteracting chamber, through which the counteracting chamber can be filled with gas, in particular by shutting off the exhaust air throttle.

In einer möglichen Ausgestaltung der Erfindung kann die Erfindung vorsehen, dass im Leitungsbereich zwischen dem Steuerventil und dem Antrieb, sowie der Abluftdrossel und dem Antrieb ein Umschaltventil vorgesehen ist, mit dem in einer ersten Schaltstufe die erste Kammer mit dem Steuerventil und gleichzeitig die zweite Kammer mit der Abluftdrossel verbindbar ist und in einer zweiten Schaltstufe die zweite Kammer mit dem Steuerventil und gleichzeitig die erste Kammer mit der Abluftdrossel verbindbar ist.In a possible embodiment of the invention, the invention can provide that a changeover valve is provided in the line area between the control valve and the drive, as well as the exhaust air throttle and the drive, with which in a In a first switching stage, the first chamber can be connected to the control valve and at the same time the second chamber can be connected to the exhaust air throttle, and in a second switching stage, the second chamber can be connected to the control valve and at the same time the first chamber can be connected to the exhaust air throttle.

In dieser Ausführung kann es weiterhin vorgesehen sein, dass das System nur eine Abluftdrossel und nur ein Steuerventil ausweist, diese aber durch Umschaltung sowohl im Arbeitshub als auch im Rückhub mit einer jeweiligen Kammer zusammenwirken.In this design, it can also be provided that the system has only one exhaust air throttle and only one control valve, but these interact with a respective chamber by switching both in the working stroke and in the return stroke.

Vorzugsweise ist die Abluftdrossel in dieser möglichen Ausgestaltung immer stromabwärts mit der Drucksenke verbunden und das Steuerventil eingangsseitig immer mit Gas von der Druckquelle beaufschlagt.Preferably, in this possible embodiment, the exhaust air throttle is always connected downstream to the pressure sink and the control valve on the inlet side is always supplied with gas from the pressure source.

Weiter bevorzugt liegt zum Steuerventil ein Druckregulierventil, vorzugsweise ein Druckminderventil, parallel, mit dem unter Umgehung des am Ende eines Arbeitshubes in Schließstellung befindlichen Steuerventils ein Mindestdruck der antreibenden Kammer stets gewährleistet ist. Wird die Umkehr der Bewegungsrichtung des Antriebs durch Umschaltung des Umschaltventils eingeleitet, steht somit stets ein ausreichender Druck in der zuvor antreibenden Kammer zur Verfügung, so dass durch Dekompression der nun der Bewegung entgegenwirkenden Kammer ein Druckaufbau vor der Abluftdrossel erfolgt, der über die Steuerleitung und die so erfolgte Kraftausübung auf das Ventilstellglied im Steuerventil eine Öffnung des Steuerventils bewirkt, wodurch ein nächster druckgeregelter Arbeitshub in entgegengesetzter Richtung ermöglicht ist. Insbesondere ist dieses Druckregulierventil vorgesehen für das Hochfahren des Antriebssystems aus einem vollständig drucklosen Zustand.It is also preferred that a pressure regulating valve, preferably a pressure reducing valve, is arranged parallel to the control valve, which always ensures a minimum pressure in the driving chamber by bypassing the control valve which is in the closed position at the end of a working stroke. If the reversal of the direction of movement of the drive is initiated by switching the switching valve, there is always sufficient pressure available in the previously driving chamber, so that decompression of the chamber which now counteracts the movement causes pressure to build up in front of the exhaust air throttle, which causes the control valve to open via the control line and the resulting force exerted on the valve actuator in the control valve, thereby enabling a next pressure-controlled working stroke in the opposite direction. In particular, this pressure regulating valve is intended for starting up the drive system from a completely pressureless state.

Eine andere Ausführung kann auch vorsehen, dass jeder der beiden Kammern jeweils eine Anordnung aus einer Abluftdrossel und einem Steuerventil mit einer mit der anderen Kammer verbundenen Steuerleitung zugeordnet ist, wobei jede der beiden Kammern in einer Prozessphase, in welcher die jeweilige Kammer als antreibende Kammer wirkt, durch das zugeordnete Steuerventil mit Gas befüllbar ist und jede der beiden Kammern in einer Prozessphase, in welcher die jeweilige Kammer als entgegenwirkende Kammer wirkt, durch die zugeordnete Abluftdrossel entleerbar ist, insbesondere wobei in beiden Prozessphasen der jeweilige Hub vom Arbeitselement mit der beschriebenen Druckregelung über das aktuell aktive Steuerventil erfolgt.Another embodiment can also provide that each of the two chambers is assigned an arrangement of an exhaust air throttle and a control valve with a control line connected to the other chamber, wherein each of the two chambers can be filled with gas through the assigned control valve in a process phase in which the respective chamber acts as a driving chamber, and each of the two chambers in a process phase in which the respective Chamber acts as a counteracting chamber, through which the associated exhaust air throttle can be emptied, in particular whereby in both process phases the respective stroke of the working element takes place with the described pressure control via the currently active control valve.

In dieser Ausführung kann jeweils eine der Anordnungen mittels eines Umschaltventils mit der Druckquelle verbunden werden, wobei gleichzeitig die andere Anordnung mit der Drucksenke verbunden wird.In this embodiment, one of the arrangements can be connected to the pressure source by means of a changeover valve, while at the same time the other arrangement is connected to the pressure sink.

Vorzugsweise kann durch Rückschlagventile in jeder der beiden Anordnungen erzielt werden, dass bei einer Anschaltung einer jeweiligen Anordnung an die Druckquelle der Gasstrom über das Steuerventil in Richtung zur zu füllenden Kammer erfolgt und ein Gasstrom über die Abluftdrossel verhindert ist, wobei umgekehrt bei einer Anschaltung an die Drucksenke ein Gasstrom über die Abluftdrossel zur Drucksenke erfolgt und ein Gasstrom über das Steuerventil verhindert ist.Preferably, by means of check valves in each of the two arrangements, it can be achieved that when a respective arrangement is connected to the pressure source, the gas flow takes place via the control valve in the direction of the chamber to be filled and a gas flow via the exhaust air throttle is prevented, whereas conversely when connected to the pressure sink, a gas flow takes place via the exhaust air throttle to the pressure sink and a gas flow via the control valve is prevented.

In einer Weiterbildung kann es vorgesehen sein, dass zu wenigstens einer der Anordnungen, vorzugsweise zu beiden Anordnungen ein Druckregelventil, insbesondere ein Druckminderer parallelgeschaltet ist, mit dem das System aus einem in beiden Kammern druckentlasteten Zustand in einen Betriebszustand versetzbar ist, insbesondere durch Gasbefüllung einer der beiden Kammern durch das Druckregelventil und gleichzeitiger Druckbeaufschlagung und Öffnung des der anderen Kammer zugeordneten Steuerventils.In a further development, it can be provided that a pressure control valve, in particular a pressure reducer, is connected in parallel to at least one of the arrangements, preferably to both arrangements, with which the system can be moved from a pressure-relieved state in both chambers to an operating state, in particular by filling one of the two chambers with gas through the pressure control valve and simultaneously pressurizing and opening the control valve assigned to the other chamber.

Die Erfindung kann auch vorsehen, eine Anordnung zur Mindestdruckbeaufschlagung für die Inbetriebnahme des Systems aus einem in beiden Kammern drucklosen Zustand direkt in das Steuerventil zu integrieren.The invention can also provide for an arrangement for minimum pressure loading for commissioning the system from a pressure-free state in both chambers to be integrated directly into the control valve.

Die Erfindung wird nachfolgend anhand der Figuren näher beschrieben.The invention is described in more detail below with reference to the figures.

Figur 1 zeigt eine erste Ausführung der Erfindung mit einem Zylinder-Kolbenaggregat A als Arbeitselement, dessen Kolben 3 zwei Kammern 1 und 2 trennt. Es wird hier angenommen, dass das Arbeitselement A bei ausfahrender Kolbenstange des Kolbens 3 einen Arbeitshub ausführt. Figure 1 shows a first embodiment of the invention with a cylinder-piston unit A as a working element, whose piston 3 separates two chambers 1 and 2. It is assumed here that the working element A executes a working stroke when the piston rod of the piston 3 extends.

Mittels eines Umschaltventils 7 kann wahlweise eine Druckquelle 4 an eine Leitung L1 und gleichzeitig eine Drucksenke 6 an eine Leitung L2 angeschaltet werden oder umgekehrt. Es ist in dieser Ausführung vorgesehen, nur im Arbeitshub die erfindungsgemäße Druckregelung vorzunehmen, insbesondere zu bewirken, dass die im Arbeitshub antreibende Kammer 1 nur soweit mit Gas über das Steuerventil 8 befüllt wird, dass an der Abluftdrossel 5 eine überkritische Strömung vorliegt.By means of a changeover valve 7, a pressure source 4 can be connected to a line L1 and at the same time a pressure sink 6 can be connected to a line L2 or vice versa. In this embodiment, the pressure control according to the invention is only carried out in the working stroke, in particular to ensure that the chamber 1 driving in the working stroke is only filled with gas via the control valve 8 to such an extent that a supercritical flow is present at the exhaust air throttle 5.

Dafür ist es hier vorgesehen, dass in der Leitung L1, die zur im Arbeitshub antreibenden Kammer 1 führt, das Steuerventil 8 liegt, über welches die Befüllung der Kammer 1 erfolgt. Parallel zum Steuerventil ist ein Rückschlagventil R1 angeordnet, dass einen Zustrom in die Kammer unter Umgehung des Steuerventils 8 verhindert, aber einen Abstrom von Gas aus der Kammer 1 im Rückhub zulässt, insbesondere wenn das Steuerventil 5 dann (wie hier gezeigt) geschlossen ist.For this purpose, it is provided here that the control valve 8, via which the chamber 1 is filled, is located in the line L1, which leads to the chamber 1 that drives the working stroke. A check valve R1 is arranged parallel to the control valve, which prevents an inflow into the chamber bypassing the control valve 8, but allows an outflow of gas from the chamber 1 in the return stroke, especially when the control valve 5 is then closed (as shown here).

Im Arbeitshub wird Gas aus der Kammer 2, die im Arbeitshub der Bewegung des Kolbens 3 entgegenwirkt, über die Abluftdrossel 5 und das in Serie zu dieser liegende Rückschlagventil R2, welches in Richtung zur Drucksenke 6 öffnet, zur Drucksenke 6 verdrängt.During the working stroke, gas from the chamber 2, which counteracts the movement of the piston 3 during the working stroke, is displaced to the pressure sink 6 via the exhaust air throttle 5 and the check valve R2 which is arranged in series with it and opens in the direction of the pressure sink 6.

Als wesentlicher erfindungsgemäßer Aspekt sieht die Erfindung hier vor, dass eine Gasleitung 9 als Steuerleitung 9 das Steuerventil 8 mit einem Leitungsabschnitt verbindet, der in der Leitung L2 zwischen der entgegenwirkenden Kammer 2 und der Abluftdrossel 5 liegt.As an essential aspect of the invention, the invention here provides that a gas line 9 as control line 9 connects the control valve 8 with a line section which lies in the line L2 between the counteracting chamber 2 and the exhaust air throttle 5.

Der in diesem Leitungsabschnitt wirkende Steuerdruck, insbesondere faktisch der über der Abluftdrossel 5 abfallende Druck, wirkt über die Steuerleitung 9 auf das Ventilstellglied im Steuerventil 8 und kann die Position des Ventilstellgliedes und somit den Öffnungsquerschnitt des Steuerventils 8 beeinflussen, erfindungsgemäß nämlich so, dass mit fallendem Steuerdruck, wenn der Steuerdruck einen ersten Grenzdruck unterschreitet, der Öffnungsquerschnitt vergrößert wird, so dass mehr Gas in die antreibende Kammer nachströmt und bei weiterem Unterschreiten eines zweiten Grenzdruckes, der kleiner ist als der erste Grenzdruck, der Öffnungsquerschnitt verkleinert, vorzugsweise ganz geschlossen wird, insbesondere bei Erreichen eines dritten Grenzdrucks, vorzugsweise der kleiner ist als der zweite Grenzdruck.The control pressure acting in this line section, in particular the pressure falling across the exhaust air throttle 5, acts via the control line 9 on the valve actuator in the control valve 8 and can influence the position of the valve actuator and thus the opening cross-section of the control valve 8, according to the invention in such a way that with falling control pressure, when the control pressure falls below a first limit pressure, the opening cross-section is enlarged so that more gas flows into the driving chamber and when the pressure falls below a second limit pressure, which is smaller than the first limit pressure, the Opening cross-section is reduced, preferably completely closed, in particular when a third limit pressure is reached, preferably which is smaller than the second limit pressure.

So wird bis zum Unterschreiten des zweiten Grenzdruckes der Steuerdruck im Regelbereich um den ersten Grenzdruck gehalten. Dieser kann vorzugsweise so gewählt sein, dass eine überkritische Strömung in der Abluftdrossel erzielt ist, der erste Grenzdruck ist somit größer als der Mindestdruck der für die überkritische Strömung nötig ist. Der zweite Grenzdruck ist vorzugsweise kleiner als dieser Mindestdruck.The control pressure is thus kept in the control range around the first limit pressure until the second limit pressure is undershot. This can preferably be selected so that a supercritical flow is achieved in the exhaust air throttle, the first limit pressure is thus greater than the minimum pressure required for the supercritical flow. The second limit pressure is preferably smaller than this minimum pressure.

Am Hubende des Kolbens 3 kann dieser kein Gas mehr aus der Kammer 2 verdrängen, so dass durch den Abfall des Steuerdruckes unter den zweiten Grenzdruck das Steuerventil 8 seine Öffnung verringert bis dieses schließt, vorzugsweise bei Erreichen oder Unterschreiten des dritten Grenzdrucks.At the end of the stroke of the piston 3, it can no longer displace gas from the chamber 2, so that the control pressure drops below the second limit pressure and the control valve 8 reduces its opening until it closes, preferably when the third limit pressure is reached or undershot.

Ein Rückhub kann durch Umschaltung des Umschaltventils 7 eingeleitet werden. In diesem dargestellten Fall wird durch Anschaltung der Druckquelle 4 an die Leitung L2 ein Schließen des Rückschlagventils R2 und Öffnen des Rückschlagventils R3 bewirkt, welches in Serie zu einem Druckregelventil 12 liegt, durch welches die Befüllung der Kammer 2 für den Rückhub erfolgt. Das dann aus der Kammer 1 verdrängte Gas kann ungehindert zur Drucksenke 6, z.B. zur Umwelt über das offene Rückschlagventil R1 entweichen. Der Druckaufbau in der Kammer 2 sorgt zugleich für eine Kraftbeaufschlagung des Ventilstellgliedes in dem Steuerventil 8 über die Steuerleitung 9, so dass dieses wieder öffnet, insbesondere ab Erreichen oder Überschreiten des dritten Grenzdruckes, und einen nächsten Arbeitshub einleitet. Die für zyklische Arbeitshübe nötigen Druckbedingungen werden somit aufrechterhalten. Ein Start des Systems aus einer Ruhelage kann durch Druckbeaufschlagung der Kammer 2 erfolgen.A return stroke can be initiated by switching the changeover valve 7. In this case, connecting the pressure source 4 to the line L2 closes the check valve R2 and opens the check valve R3, which is in series with a pressure control valve 12, through which the chamber 2 is filled for the return stroke. The gas then displaced from the chamber 1 can escape unhindered to the pressure sink 6, e.g. to the environment via the open check valve R1. The pressure build-up in the chamber 2 simultaneously ensures that the valve actuator in the control valve 8 is subjected to force via the control line 9, so that it opens again, in particular when the third limit pressure is reached or exceeded, and initiates the next working stroke. The pressure conditions required for cyclical working strokes are thus maintained. The system can be started from a rest position by pressurizing the chamber 2.

Figur 2 zeigt eine Ausführung, bei der sowohl im Arbeitshub als auch im Rückhub eine druckgeregelte Bewegung des Kolbens 3 erfolgt anhand des Steuerdruckes in der Steuerleitung 9. Figure 2 shows a design in which a pressure-controlled movement of the piston 3 takes place both in the working stroke and in the return stroke based on the control pressure in the control line 9.

Auch hier ist das Steuerventil 8 in der Leitung L1 vorgesehen, die in dieser Ausführung konstant mit der Druckquelle 4 verbunden ist. Die Drucksenke 6 ist an der Leitung L2 mit der Abluftdrossel 5 konstant angeschlossen.Here too, the control valve 8 is provided in line L1, which in this design is constantly connected to the pressure source 4. The pressure sink 6 is constantly connected to line L2 with the exhaust air throttle 5.

Der wesentliche Unterschied zur Figur 1 ist der, dass über das Umschaltventil nun wahlweise die Kammer 1 an das Steuerventil und die Kammer 2 an die Abluftdrossel angeschlossen wird oder umgekehrt. Die zuvor beschriebene Druckregelung mit dem Steuerventil 8 erfolgt somit immer bzgl. der aktuell antreibenden Kammer von beiden Kammern 1, 2 und die Abluftdrosselung immer im Gas, das aus der aktuell entgegenwirkenden Kammer ausströmt.The main difference to Figure 1 is that the changeover valve can now be used to connect chamber 1 to the control valve and chamber 2 to the exhaust air throttle, or vice versa. The previously described pressure control with the control valve 8 therefore always takes place with respect to the currently driving chamber of both chambers 1, 2, and the exhaust air throttling always takes place in the gas that flows out of the currently opposing chamber.

Das Druckregelventil 12 kann vorgesehen sein, um in einem initialen drucklosen Zustand beider Kammern in der hier gezeigten Schaltstellung bei geschlossenem Steuerventil (am Ende des Arbeitshubes), eine Mindestbefüllung der vormals antreibenden Kammer, eine Druckbeaufschlagung der Steuerleitung 9 und ein Öffnen des Steuerventils 8 zu erzielen. Das System wird somit wieder in seinen regulären Betriebszustand versetzt und kann durch Umschaltung des Umschaltventils eine Bewegung ausführen.The pressure control valve 12 can be provided to achieve a minimum filling of the previously driving chamber, a pressurization of the control line 9 and an opening of the control valve 8 in an initial pressureless state of both chambers in the switching position shown here with the control valve closed (at the end of the working stroke). The system is thus returned to its regular operating state and can execute a movement by switching the switching valve.

Die Figur 3 zeigt eine weitere mögliche Ausführungsform, bei der jeder der beiden Kammern 1 und 2 jeweils eine Anordnung AN1 bzw. AN2 aus einem Steuerventil 8 und einer Abluftdrossel 5 zugeordnet ist. Die Steuerleitung 9 eines Steuerventils 8, dass einer bestimmten Kammer zugeordnet ist, hat eine Fluidverbindung zur jeweils anderen Kammer.The Figure 3 shows a further possible embodiment in which each of the two chambers 1 and 2 is assigned an arrangement AN1 or AN2 comprising a control valve 8 and an exhaust air throttle 5. The control line 9 of a control valve 8 that is assigned to a specific chamber has a fluid connection to the other chamber.

Durch die Rückschlagventile R1, R2 in jeder der Anordnungen AN1, AN2 wird die jeweils nötige Flussrichtung definiert. So ermöglicht R1 einen Fluss durch das Steuerventil 8 zur Kammer, wobei gleichzeitig R2 einen Fluss durch die Abluftdrossel sperrt, wenn die Druckquelle 4 an die Anordnung AN1 bzw. AN2 angeschaltet ist, und es ermöglicht R2 einen Fluss aus der Kammer durch die Abluftdrossel 5, wobei gleichzeitig R1 einen Fluss durch das Steuerventil 8 sperrt, wenn die Drucksenke 6 an die Anordnung AN1 bzw. AN2 angeschaltet ist.The check valves R1, R2 in each of the arrangements AN1, AN2 define the required flow direction. R1 allows flow through the control valve 8 to the chamber, while R2 simultaneously blocks flow through the exhaust throttle when the pressure source 4 is connected to the arrangement AN1 or AN2, and R2 allows flow from the chamber through the exhaust throttle 5, while R1 simultaneously blocks flow through the control valve 8 when the pressure sink 6 is connected to the arrangement AN1 or AN2.

Durch das Umschaltventil 7 kann eine alternierende Anschaltung der Druckquelle 4 und der Drucksenke 6 an eine Anordnung AN1, AN2 erfolgen.The changeover valve 7 can be used to alternately connect the pressure source 4 and the pressure sink 6 to an arrangement AN1, AN2.

Mit derselben zuvor beschriebenen Wirkung wird erzielt, dass im Arbeitshub und im Rückhub, bzw. bei reversierenden Arbeitshüben eine Druckregelung erfolgt die in der Abluftdrosselung das gewünschte Druckkriterium erfüllt, vorzugsweise eine überkritische Strömung.With the same effect described above, pressure control is achieved in the working stroke and the return stroke, or in reversing working strokes, which fulfills the desired pressure criterion in the exhaust air throttling, preferably a supercritical flow.

Die Erfindung kann hier vorsehen, dass parallel zur Anordnung AN2 ein Druckregelventil 11 mit Rückschlagventil liegt, durch welches eine initiale Inbetriebnahme des Systems erfolgen kann, wenn beide Kammern drucklos sind, so wie es auch zuvor beschrieben ist. Es kann weiterhin auch ein Druckregelventil parallel zur Anordnung AN1 liegen, was nicht gezeigt ist.The invention can provide here that a pressure control valve 11 with a check valve is arranged parallel to the arrangement AN2, through which an initial start-up of the system can take place when both chambers are depressurized, as described above. Furthermore, a pressure control valve can also be arranged parallel to the arrangement AN1, which is not shown.

Die Figuren 4a und 4b zeigen eine mögliche Ausführungsform eines Steuerventils 8 mit einem Ventilstellglied 8a, welches zwei durch einen verjüngten Bereich verbundene Stellkörper 8b und 8c aufweist. Eine solche Ausbildung des Ventilstellglieds 8a kann bei allen möglichen Ausführungen des Ventils 8 vorgesehen sein. Das Ventilstellglied 8a ist hier linksseitig durch den Steuerdruck aus der Steuerleitung 9 druckbeaufschlagt und hier rechts durch eine Feder 13, die in einem druckentlasteten Raum angeordnet ist, kraftbelastet. Mit fallendem Steuerdruck in der Leitung 9 wird also das Ventilstellglied 8a bezogen auf diese Darstellung nach links verschoben. Dabei wird in der Wirkung zwischen dem Ventilstellglied 8a (dessen Stellkörper 8b) und der Steuerkante SK1 der Öffnungsquerschnitt vergrößert und in der Wirkung zwischen dem Ventilstellglied 8a (dessen Stellkörper 8c) und der Steuerkante SK2 der Öffnungsquerschnitt verkleinert. Der Öffnungsquerschnitt zwischen den Anschlüssen 4 (zur Druckquelle) und 1 (zur Kammer/ zum gesteuerten Volumen) ist so steuerdruckabhängig einstellbar.The Figures 4a and 4b show a possible embodiment of a control valve 8 with a valve actuator 8a, which has two actuators 8b and 8c connected by a tapered area. Such a design of the valve actuator 8a can be provided for all possible designs of the valve 8. The valve actuator 8a is pressurized on the left side by the control pressure from the control line 9 and on the right side by a spring 13, which is arranged in a pressure-relieved space. As the control pressure in the line 9 falls, the valve actuator 8a is moved to the left with respect to this illustration. In the effect between the valve actuator 8a (its actuator 8b) and the control edge SK1, the opening cross-section is increased and in the effect between the valve actuator 8a (its actuator 8c) and the control edge SK2, the opening cross-section is reduced. The opening cross-section between connections 4 (to the pressure source) and 1 (to the chamber/to the controlled volume) can be adjusted depending on the control pressure.

Mittels der Feder 13, deren Kraft einstellbar sein kann, kann eine Definition der genannten Grenzdrücke erfolgen. Rechtsseitig ist das Steuerventil 8 am Anschluß 23 gasdruckentlastet. Dabei können in allen möglichen Ausführungen eines Steuerventils der zweite und dritte Grenzdruck vom ersten abhängig sein und durch die Feder, sowie die Konstruktion des Steuerventils in der Geometrie der Steuerkanten bestimmt sein.The limit pressures mentioned can be defined by means of the spring 13, the force of which can be adjusted. On the right-hand side, the control valve 8 is relieved of gas pressure at connection 23. In all possible designs of a control valve, the second and third limit pressures can be dependent on the first and can be determined by the spring and the design of the control valve in the geometry of the control edges.

Die Darstellung der Figur 4a zeigt eine Position mit maximalem Öffnungsquerschnitt, was bei einem Steuerdruck zwischen dem ersten und zweiten Grenzdruck oder bevorzugt bei dem zweiten Grenzdruck vorliegen kann. Vorzugsweise kann mit steigendem Steuerdruck beim Überschreiten des ersten Grenzdrucks das Steuerventil schließen, oder zunächst mit steigendem Steuerdruck den Öffnungsquerschnitt verringern und dann schließen, insbesondere sofern keine Restöffnung, z.B. durch einen mechanischen Anschlag, bzw. kein paralleler Strömungspfad vorgesehen ist, und bei Unterschreitung des ersten Grenzdruckes erfindungsgemäß mit fallendem Steuerdruck den Öffnungsquerschnitt vergrößern bis zur gezeigten maximalen Öffnungsposition. Bei weiterem Abfall des Steuerdrucks wird der Öffnungsquerschnitt verringert bis zum Schließen an der Steuerkante SK2.The representation of the Figure 4a shows a position with maximum opening cross-section, which can occur with a control pressure between the first and second limit pressure or preferably at the second limit pressure. Preferably, with increasing control pressure, the control valve can close when the first limit pressure is exceeded, or initially reduce the opening cross-section with increasing control pressure and then close, in particular if no residual opening, e.g. by a mechanical stop, or no parallel flow path is provided, and if the first limit pressure is undershot, according to the invention, the opening cross-section can be increased with decreasing control pressure up to the maximum opening position shown. If the control pressure drops further, the opening cross-section is reduced until it closes at the control edge SK2.

Die Figur 4b zeigt eine Ausführung desselben Steuerventils der Figur 4a, in einer Position, in welcher der erste Grenzdruck in der Steuerleitung 9 vorliegen kann. In diesem Fall ist das Steuerventil an der Steuerkante SK1 geschlossen und würde mit fallendem Steuerdruck ausgehend von dieser Position den Öffnungsquerschnitt aus der geschlossenen Stellung vergrößern. Mit steigendem Steuerdruck würde ausgehend von dieser Position das Steuerventil 8 geschlossen bleiben.The Figure 4b shows a version of the same control valve of the Figure 4a , in a position in which the first limit pressure can be present in the control line 9. In this case, the control valve is closed at the control edge SK1 and, with a falling control pressure starting from this position, would increase the opening cross-section from the closed position. With an increasing control pressure starting from this position, the control valve 8 would remain closed.

Figur 5 zeigt eine Ausführung, bei der gegenüber den Figuren 4a und 4b zwei Federn 13a, 13b koaxial ineinander angeordnet sind. Die Feder 13b wirkt direkt auf das Ventilstellglied 8a, die Feder 13a indirekt über das bis in den Anschlag 15 verschiebliche Lagerelement 14. Es ist so ein erster Verschiebebereich des Ventilstellgliedes 8a definiert, in dem beide Federn zusammenwirken und ein zweiter - wenn das Lagerelement 14 im Anschlag liegt - in dem nur die Feder 13b wirkt. Die Grenzdrücke und die Steigungen der Öffnungscharakteristiken der beiden Steuerkanten in Abhängigkeit des Steuerdrucks können so voneinander entkoppelt werden. Der Raum, in dem die Federn 13a und 1b angeordnet sind, ist druckentlastet über den Anschluß 23. Figure 5 shows a design in which, compared to the Figures 4a and 4b two springs 13a, 13b are arranged coaxially one inside the other. The spring 13b acts directly on the valve actuator 8a, the spring 13a indirectly via the bearing element 14, which can be moved up to the stop 15. This defines a first displacement range of the valve actuator 8a in which both springs work together and a second - when the bearing element 14 is in the stop - in which only the spring 13b acts. The limit pressures and the gradients of the opening characteristics of the two control edges depending on the control pressure can thus be decoupled from one another. The space in which the springs 13a and 1b are arranged is pressure-relieved via the connection 23.

Figur 6 zeigt eine Ausführung, bei welcher die Ausführung in den Figuren 4a und 4b um eine integrierte Mindestdruckbeaufschlagung für das Anfahren aus einem drucklosen Zustand erweitert wurde. Hierdurch können die in den vorherigen Figuren 2 und 3 gezeigten und zu diesem Zweck vorgesehenen Druckminderer 11 bzw. 12 entfallen. Figure 6 shows an embodiment in which the execution in the Figures 4a and 4b has been extended to include an integrated minimum pressure for starting from a pressureless state. This allows the previously Figures 2 and 3 The pressure reducers 11 and 12 shown and provided for this purpose are omitted.

Der rechts dargestellte Kolben 20 dient der Rückführung des Nachdrucks des Steuerventils 8 für die Mindestdruckbeaufschlagung. Eine Feder 21 wirkt auf den Kolben 20, der durch die Bohrung 22 mit dem durch das Steuerventil geregelten Druck beaufschlagt wird, insbesondere also dem Druck in der antreibenden Kammer 1. Anschluß 1 und 22 sind somit vorzugsweise direkt verbunden. Die Feder 21 weist eine Vorspannung auf, sodass der Kolben 20 erst bei einem ausreichenden Nachdruck des Steuerventils 8 nach links fährt, also wenn der Druck in der antreibenden Kammer 1 einen durch die Feder 21 vorbestimmten Mindestdruck aufweist. Der Raum, in dem die Federn 13b und 21 angeordnet sind, ist druckentlastet über den Anschluß 23.The piston 20 shown on the right serves to return the after-pressure of the control valve 8 for the minimum pressure application. A spring 21 acts on the piston 20, which is subjected to the pressure regulated by the control valve through the bore 22, in particular the pressure in the driving chamber 1. Connections 1 and 22 are therefore preferably directly connected. The spring 21 has a preload so that the piston 20 only moves to the left when the after-pressure of the control valve 8 is sufficient, i.e. when the pressure in the driving chamber 1 has a minimum pressure predetermined by the spring 21. The space in which the springs 13b and 21 are arranged is pressure-relieved via the connection 23.

Die Lage des Kolbens definiert die Federvorspannung der Federn 13b und 13c. Diese definieren die Lage des Ventilstellglieds 8a sowohl in Abhängigkeit des Steuerdrucks in Leitung 9 als auch in Funktion ihrer Vorspannung und folglich der Position des Kolbens 20.The position of the piston defines the spring preload of the springs 13b and 13c. These define the position of the valve actuator 8a both as a function of the control pressure in line 9 and as a function of their preload and consequently the position of the piston 20.

Die Federraten und -vorspannungen der Federn 13b und 13c entsprechen bei einer Stellung des Kolbens 20 in der linken Extremlage dem nominell erforderlichen Wert für die bekannte Funktion des Ventils, insbesondere wie sie zuvor beschrieben wurde. Eine Verlagerung des Kolbens 20 nach rechts führt durch teilweise Entspannung der beiden Federn 13b und 13c zu einer Verlagerung des Ventilstellglieds 8a nach rechts.When the piston 20 is in the left extreme position, the spring rates and preloads of the springs 13b and 13c correspond to the nominally required value for the known function of the valve, in particular as described above. A displacement of the piston 20 to the right leads to a displacement of the valve actuator 8a to the right due to partial relaxation of the two springs 13b and 13c.

Bei einem gänzlich drucklosen Zustand des Systems liegt weder ein Druck in der Steuerleitung 9 noch stromab des Steuerventils, also in Bohrung 22, an. Der Kolben 20 steht belastet durch die Federn 21 und 13b in seiner rechten Extremlage. Es wird aufgrund der Verschiebung des Ventilstellglieds 8a nach rechts folglich das Steuerventil über die Steuerkante SK2 und den Stellkörper 8c geöffnet. Wird an der Zuleitung des Steuerventils ein Druck angelegt, beaufschlagt die zuvor beschriebene Ventilstellung das gesteuerte Volumen mit einem zunehmenden Druck, der über Bohrung 22 auf den Kolben 20 zurückwirkt. Erreicht dieser Druck den Sollwert, verfährt der Kolben 20 nach links, verschiebt das Ventilstellglied 8a durch Erhöhung der Verspannung der Federn 13b und 13c nach links und schließt das Steuerventil über Steuerkante SK2 und Stellkörper 8c.When the system is completely depressurized, there is no pressure in the control line 9 or downstream of the control valve, i.e. in bore 22. The piston 20 is in its right-hand extreme position, loaded by the springs 21 and 13b. Due to the displacement of the valve actuator 8a to the right, the control valve is consequently actuated via the control edge SK2 and the actuator body 8c. opened. If pressure is applied to the supply line of the control valve, the previously described valve position applies increasing pressure to the controlled volume, which acts back on the piston 20 via bore 22. If this pressure reaches the setpoint, the piston 20 moves to the left, displaces the valve actuator 8a to the left by increasing the tension of the springs 13b and 13c, and closes the control valve via control edge SK2 and actuator 8c.

Ab diesem Zeitpunkt verharrt der Kolben 20 während eines normalen Betriebs des Systems in seiner linken Extremlage und die Funktion des Ventils entspricht der Variante in den Figuren 4a und 4b. Zur Verbesserung des Betriebsverhaltens kann zur Belastung des Kolbens 20 insbesondere ein Federsystem 21, das aus Tellerfedern besteht, Verwendung finden.From this point on, the piston 20 remains in its left extreme position during normal operation of the system and the function of the valve corresponds to the variant in the Figures 4a and 4b To improve the operating behavior, a spring system 21 consisting of disc springs can be used to load the piston 20.

Die Figur 7 zeigt eine Abwandlung der Ausführungen von Figur 5 und Figur 6. Soweit die dort und in den Figuren 4 beschriebenen Funktionen nicht durch nachfolgend beschriebene Funktionen ersetzt sind, gelten diese auch für die Ausführung der Figur 7.The Figure 7 shows a modification of the designs of Figure 5 and Figure 6 . As far as the information there and in the Figures 4 described functions are not replaced by the functions described below, these also apply to the execution of the Figure 7 .

In Abwandlung der Figur 6 wirkt der Kolben 20 in dieser Ausführung nicht mehr über eine nachgiebige Feder 13b, sondern hier starr über die Kolbenstange 20a auf das Ventilstellglied. Die Zusammenwirkung von Kolben 20 und Feder 21 ist hier in der Richtung umgekehrt. Wiederum ist der Raum, in dem die Feder 21 angeordnet ist, druckentlastet durch den Anschluß 23. Hier ist der Kolben 20 demnach aus der Richtung des Ventilinneren druckbeaufschlagt mit dem Druck des Anschlusses 1, z.B. über die Leitung 22, die den Raum links von Kolben 20 mit den Anschluß 1 vorzugsweise ventilintern verbindet.In a variation of the Figure 6 In this version, the piston 20 no longer acts on the valve actuator via a flexible spring 13b, but rather rigidly via the piston rod 20a. The interaction of the piston 20 and spring 21 is reversed in the direction here. Again, the space in which the spring 21 is arranged is relieved of pressure by the connection 23. Here, the piston 20 is therefore pressurized from the direction of the valve interior with the pressure of the connection 1, e.g. via the line 22, which connects the space to the left of the piston 20 with the connection 1, preferably inside the valve.

Wie bei der Figur 5 können die Grenzdrücke und die Steigungen der Öffnungscharakteristiken der beiden Steuerkanten in Abhängigkeit des Steuerdrucks voneinander entkoppelt werden. Dies erfolgt hier jedoch nicht durch die ineinanderliegenden Federn 13b und 21, sondern abweichend hiervon durch die Realisierung von positionsabhängig unterschiedlichen Öffnungsquerschnitten in der Wirkung zwischen einer Steuerkante, hier der Steuerkante SK1 und dem Ventilstellglied 8a, insbesondere bei einem Stellkörper, hier dem Stellkörper 8b des Ventilstellgliedes 8a. Diese Art, über positionsabhängig unterschiedliche Öffnungsquerschnitte die Charakteristik zu beeinflussen, kann erfindungsgemäß unabhängig von den weiteren konkreten gezeigten Konstruktionen in dem Ventil 8 vorgenommen sein.As with the Figure 5 the limit pressures and the gradients of the opening characteristics of the two control edges can be decoupled from each other depending on the control pressure. However, this is not done here by the nested springs 13b and 21, but rather by the realization of position-dependent different opening cross-sections in the effect between a control edge, here the control edge SK1 and the valve actuator 8a, in particular in the case of an actuating body, here the actuating body 8b of the valve actuator 8a. This way of influencing the characteristics via position-dependent different opening cross-sections can be carried out according to the invention independently of the other concrete constructions shown in the valve 8.

Um diese positionsabhängigen Öffnungsquerschnitte zu realisieren kann ein Stellkörper, z.B. hier der Stellkörper 8b z.B. axial verlaufende Steuernuten 8d in seiner Oberfläche aufweisen, die in axialer Richtung nur bereichsweise, also nicht vollständig über die Oberfläche verlaufen. In diesem Beispiel enden die Steuernuten 8d vor dem rechten axialen Ende des Stellkörpers 8b.In order to realize these position-dependent opening cross-sections, an actuating body, e.g. here the actuating body 8b, can have axially running control grooves 8d in its surface, which only run in sections in the axial direction, i.e. not completely over the surface. In this example, the control grooves 8d end in front of the right axial end of the actuating body 8b.

Abweichend zu den Figuren 5 und 6 erfolgt die Steuerdruckbeaufschlagung hier vorzugsweise über den Anschluß 9, auf die axiale Stirnfläche des rechten Stellkörpers 8b, auf welche auch die Kolbenstange 20a wirkt. Die Wirkung erfolgt gegen die Feder 13c auf der anderen Seite des Ventilstellgliedes 8a, welche in einem über den Anschluß 23 druckentlasteten Raum angeordnet ist. Die Bewegung des Ventilstellgliedes 8a ist bei der Ausführung der Figur 7 im Vergleich zu den Figuren 5 und 6 andersherum.Deviating from the Figures 5 and 6 The control pressure is preferably applied via the connection 9 to the axial face of the right actuator 8b, on which the piston rod 20a also acts. The effect is against the spring 13c on the other side of the valve actuator 8a, which is arranged in a pressure-relieved space via the connection 23. The movement of the valve actuator 8a is in the execution of the Figure 7 compared to the Figures 5 and 6 the other way round.

Claims (11)

  1. Gas-powered drive system, comprising a drive (A) having
    a first chamber (1) and a second chamber (2), which are mutually separated by a movable working element (3) of the drive (A), in particular by a piston (3),
    an exhaust air throttle (5) and a control valve (8), wherein one chamber (1) of the two chambers (1, 2) for forming a chamber (1) driving the working element (3) is connectable to a gas source (4), and the other chamber (2) of the two chambers (1, 2) for forming a chamber counteracting the movement of the working element (3) is simultaneously connectable via the exhaust air throttle (5) to a gas sink (6), in particular by means of a switchover valve (7), wherein the driving chamber (1) is assigned the control valve (8) through which the driving chamber (1) is able to be filled with gas from the gas source (4), wherein the opening cross section of the control valve (8) is adjustable as a function of a control pressure prevailing in the flow direction ahead of the exhaust air throttle (5) or decreasing over the exhaust air throttle (5), wherein the opening cross section is able to be enlarged by the control valve (8) when a first limit pressure is undershot in the case of a decreasing control pressure, and characterized in that the opening cross section is able to be reduced, the control valve (8) in particular being able to be closed, when a second limit pressure is undershot in the case of a further decreasing control pressure.
  2. System according to Claim 1, characterized in that the first limit pressure is higher and the second limit pressure is lower than a pressure which prevails ahead of the exhaust air throttle (5) or decreases over the exhaust air throttle (5), and is required for a supercritical gas flow in the exhaust air throttle (5).
  3. System according to one of the preceding claims, characterized in that said system has an electronic/electrical control unit by way of which the control pressure is able to be measured, and by way of which an electric drive for adjusting the valve actuator in the control valve is actuatable as a function of the measured value of the control pressure.
  4. System according to one of preceding Claims 1 or 2, characterized in that a gas line (9) is provided as a control line (9) by which the control valve (8) is fluidically connected to the counteracting chamber (2), wherein the control pressure acting in the gas line (9) acts on the valve actuator of the control valve (8), in particular wherein the valve actuator is preloaded with an actuating force by way of which the valve actuator is able to be displaced in the case of a decreasing control pressure.
  5. System according to Claim 4, characterized in that the control valve (8) has a characteristic curve which describes the dependency of the opening cross section and the adjustment travel and at an adjustment travel position between the two possible adjustment travel position extremes has a reversing gradient.
  6. System according to Claim 4 or 5, characterized in that the control valve (8) has two control edges which interact with the valve actuator, or two control edges which are in each case disposed on separate valve actuators connected in series, in particular wherein, in a direction of movement of the valve actuator defined by a decreasing control pressure, in a first movement portion the opening cross section is able to be enlarged by interacting with the first control edge, and in a subsequent second movement portion in the same direction of movement the opening cross section is able to be reduced by interacting with the second control edge, in particular until the opening cross section is completely closed.
  7. System according to one of the preceding claims, characterized in that a pressure control valve (12), in particular a pressure reducer (12), preferably having a check valve connected in series, is connected in parallel to the exhaust air throttle (5) that is assigned to the counteracting chamber (2), by way of which pressure control valve (12)/pressure reducer (12) the counteracting chamber (2) is able to be filled with gas, in particular while shutting off the exhaust air throttle (5) .
  8. System according to one of the preceding claims, characterized in that provided in the line region between the control valve (8) and the drive (A), and the exhaust air throttle (5) and the drive (A), is the switchover valve (10) by way of which, in a first switching step, the first chamber (1) is connectable to the control valve (8), and simultaneously the second chamber (2) is connectable to the exhaust air throttle (5), and, in a second switching step, the second chamber (2) is connectable to the control valve (8), and simultaneously the first chamber (1) is connectable to the exhaust air throttle (5).
  9. System according to one of the preceding claims, characterized in that each of the two chambers (1, 2) is in each case assigned an assembly of one exhaust air throttle (5) and one control valve (8) having a control line (9) connected to the other chamber (2, 1), wherein each of the two chambers (1, 2) in a process phase in which the respective chamber (1, 2) acts as the driving chamber is able to be filled with gas through the assigned control valve (8), and each of the two chambers (1, 2) in a process phase in which the respective chamber (1, 2) acts as the counteracting chamber is able to be emptied through the assigned exhaust air throttle (5).
  10. System according to Claim 9, characterized in that a pressure control valve (11), in particular a pressure reducer (11), by way of which the system is able to be adjusted from a state in which both chambers are depressurized to an operating state, in particular by filling one of the two chambers (1, 2) with gas through the pressure control valve (11) and simultaneously pressurizing and opening the control valve (8) assigned to the other chamber (2, 1), is connected in parallel to at least one of the assemblies, preferably in parallel to both assemblies.
  11. Method for operating a gas-powered drive system, comprising a drive (A) having a first chamber (1) and a second chamber (2), which are mutually separated by a movable working element (3) of the drive (A), in particular by a piston (3), wherein one chamber (1) of the two chambers (1, 2) for forming a chamber (1) driving the working element (3) is connected to a gas source (4), and the other chamber (2) of the two chambers (1, 2) for forming a chamber counteracting the movement of the working element (3) is simultaneously connected via an exhaust air throttle (5) to a gas sink (6), in particular by means of a switchover valve (7), wherein the driving chamber (1) is assigned a control valve (8) through which the driving chamber (1) is filled with gas from the gas source (4), wherein the opening cross section of the control valve (8) is adjusted as a function of a control pressure prevailing in the flow direction ahead of the exhaust air throttle (5) or decreasing over the exhaust air throttle (5) in such a way that the opening cross section is enlarged by the control valve (8) when the decreasing control pressure undershoots a first limit pressure, and characterized in that the opening cross section is reduced, the control valve (8) in particular being closed, when the further decreasing control pressure undershoots a second limit pressure.
EP21777205.2A 2020-09-07 2021-09-06 Gas-powered drive system and operating method Active EP4211355B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020123331.0A DE102020123331A1 (en) 2020-09-07 2020-09-07 Gas powered propulsion system and method of operation
PCT/EP2021/074528 WO2022049298A1 (en) 2020-09-07 2021-09-06 Gas-powered drive system and operating method

Publications (3)

Publication Number Publication Date
EP4211355A1 EP4211355A1 (en) 2023-07-19
EP4211355B1 true EP4211355B1 (en) 2024-07-24
EP4211355C0 EP4211355C0 (en) 2024-07-24

Family

ID=77910738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21777205.2A Active EP4211355B1 (en) 2020-09-07 2021-09-06 Gas-powered drive system and operating method

Country Status (5)

Country Link
US (1) US12000412B2 (en)
EP (1) EP4211355B1 (en)
CN (1) CN116194678A (en)
DE (1) DE102020123331A1 (en)
WO (1) WO2022049298A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116277332B (en) * 2022-09-09 2024-02-09 广东豪德数控装备股份有限公司 Board end alignment device, gas circuit system and control method thereof and edge bonding machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028159A (en) 1973-07-05 1975-03-22
US4175473A (en) * 1976-06-08 1979-11-27 Shoketsu Kinzoku Kogyo Kabushiki Kaisha Fluid circuit
US4192346A (en) 1976-08-25 1980-03-11 Shoketsu Kinzoku Kogyo Kabushiki Kaisha Control valve
JPS54101070A (en) 1978-01-27 1979-08-09 Hitachi Metals Ltd Fluid cylinder control circuit
FR2738040B1 (en) * 1995-08-24 1997-10-17 Charmois Claude DEVICE FOR REGULATING THE SPEED OF THE ACTUATOR OF A PNEUMATIC ACTUATOR
US7392734B2 (en) * 2003-11-07 2008-07-01 Japan Science And Technology Agency Actuator using fluid cylinder, method of controlling the actuator, and choke valve devices
DE102004025322A1 (en) * 2004-05-19 2005-12-15 Sauer-Danfoss Aps Hydraulic valve arrangement
DE102004063044B4 (en) * 2004-12-22 2006-12-21 Sauer-Danfoss Aps Hydraulic control
WO2009133956A1 (en) 2008-05-02 2009-11-05 国立大学法人筑波大学 Actuator, actuator control method, and actuator control program
DE102009001150A1 (en) 2009-02-25 2010-09-02 Robert Bosch Gmbh Pneumatic throttle check valve for damping pneumatic cylinders in production plant, has throttle point and return valve formed in respective lines, where return valve is provided with ball and valve seat, which is associated with ball
RU2685167C1 (en) * 2018-09-10 2019-04-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет", (ДГТУ) Adaptive pneumatic drive with reverse pneumatic linkage

Also Published As

Publication number Publication date
EP4211355A1 (en) 2023-07-19
US12000412B2 (en) 2024-06-04
CN116194678A (en) 2023-05-30
EP4211355C0 (en) 2024-07-24
WO2022049298A1 (en) 2022-03-10
DE102020123331A1 (en) 2022-03-10
US20230304514A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
DE2930219C2 (en) Thrust reverser control device for jet engines
EP2644904A1 (en) Method for controlling a work system that can be operated using fluid and work system
EP0311779B1 (en) Hydraulic control system for a press
DE2704326A1 (en) PRESSURE MEDIUM FLOW CONTROL
DE102010032750B4 (en) pneumatic drive
AT516316A2 (en) Hydraulic circuit and machine with a hydraulic circuit
EP4211355B1 (en) Gas-powered drive system and operating method
DE102020201216B4 (en) Hydraulic casting unit
EP3464908B1 (en) Valve device
WO2021233641A1 (en) Load simulation test stand and capacity element for a load simulation test stand
DE1503350C3 (en) Device for regulating an axial piston motor that is acted upon by hydraulic fluid and drives a machine
DE3721826C1 (en) Servo valve arrangement
EP1430201B1 (en) Method for operating an electrohydraulic valve control system of an internal combustion engine, computer program and control and regulating device for operating an internal combustion engine
DE10138026C2 (en) Pneumatic drive control for controlling the movement of pneumatic drives
EP0483585B1 (en) Adjustable proportional throttle valve with feedback
DE2255461C2 (en) Electro-hydraulic actuator assembly
DE102011079691B3 (en) Hydrostatic adjusting device for hydraulic machine, has back pressure control devices that limits the back pressure in servo lines, when hydraulic machine is in zero position
DE102019220133B4 (en) Hydraulic casting unit
WO2013004388A2 (en) Valve for controlling a hydropneumatic device for pressure transmission, and hydropneumatic device for pressure transmission with a valve
DE3806015A1 (en) CONTROL ARRANGEMENT FOR CONTROLLING THE INTERNAL VOLUME OF A ROTATIONAL COMPRESSOR
DE2104362A1 (en) PRESSURE VALVE FOR HYDRAULIC SYSTEMS
EP0617202B1 (en) End-of-stroke-cushioning device for a movable system
DE102023104570B3 (en) Pneumatic drive, vent valve therefor and method for venting
DE102008042383A1 (en) Valve arrangement of a hydraulic control
DE4430058A1 (en) Hydraulic drive system with a speed-controlled consumer (load) and an electrohydraulic control device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502021004511

Country of ref document: DE

Owner name: RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE , DE

Free format text: FORMER OWNER: ANMELDERANGABEN UNKLAR / UNVOLLSTAENDIG, 80297 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021004511

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240809

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240826

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20241008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724

U1N Appointed representative for the unitary patent procedure changed [after the registration of the unitary effect]

Representative=s name: COHAUSZ HANNIG BORKOWSKI WISSGOTT; DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240724