EP4205910B1 - Power tool - Google Patents
Power tool Download PDFInfo
- Publication number
- EP4205910B1 EP4205910B1 EP22211541.2A EP22211541A EP4205910B1 EP 4205910 B1 EP4205910 B1 EP 4205910B1 EP 22211541 A EP22211541 A EP 22211541A EP 4205910 B1 EP4205910 B1 EP 4205910B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- equal
- stator
- power tool
- examples
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims description 135
- 238000003475 lamination Methods 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 34
- 239000011889 copper foil Substances 0.000 claims description 28
- 238000005304 joining Methods 0.000 claims description 4
- 239000012212 insulator Substances 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F1/00—Combination or multi-purpose hand tools
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
- H02K1/148—Sectional cores
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/325—Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/52—Fastening salient pole windings or connections thereto
- H02K3/521—Fastening salient pole windings or connections thereto applicable to stators only
- H02K3/522—Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
- H02K7/145—Hand-held machine tool
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2203/00—Specific aspects not provided for in the other groups of this subclass relating to the windings
- H02K2203/09—Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
Definitions
- the present application relates to a power tool such as a handheld power tool, a table tool, and an outdoor tool and, in particular, to an electric motor applied to the preceding power tools.
- a power tool such as a handheld power tool, a table tool, and an outdoor tool
- an electric motor applied to the preceding power tools is shown in US 10 328 566 B2 .
- winding structures used in electrical machines are shown in DE 10 2013 012659 A1 or US 2022/060073 A1 .
- Coil windings of an electric motor currently applied to a power tool are mostly copper wires with circular cross-sections.
- a slot fill factor of the electric motor is relatively low due to the shape of the coil windings, affecting the overall efficiency of the electric motor.
- the electric motor in operation generates a large amount of heat, and a gap between coils reduces the thermal conductivity of the electric motor, affecting the heat dissipation effect of the electric motor.
- the present application provides a brushless motor suitable for a power tool, and the preceding brushless motor can effectively improve the working efficiency of the power tool and effectively suppress a temperature rise while reducing power consumption.
- a power tool includes: a housing; and an electric motor disposed in the housing, wherein output power of the electric motor is greater than or equal to 120 W and less than or equal to 4500 W
- the electric motor includes at least a stator, a rotor, and a plurality of coil windings disposed on the stator, a cross-section of each of the plurality of coil windings is non-circular, and a slot fill factor of the electric motor is greater than or equal to 40%.
- the stator includes a stator core formed by stacking a plurality of stator laminations and an insulating member disposed on the stator core, and each of the plurality of coil windings is wound on the insulating member.
- an outer diameter of the plurality of stator laminations is greater than or equal to 30 mm and less than or equal to 100 mm; and an inner diameter of the plurality of stator laminations is greater than or equal to 10 mm and less than or equal to 60 mm.
- a stack length of the stator core is greater than or equal to 5 mm and less than or equal to 80 mm.
- the stator core is formed by joining a plurality of split cores into which the stator core is split in a circumferential direction of the stator core.
- the cross-section of each of the plurality of coil windings includes a rectangle, an ellipse, or a gradient shape.
- a cross-sectional area of each of the plurality of coil windings is configured to be less than or equal to 5 mm 2 .
- a rotational speed of the electric motor is greater than or equal to 15000 rpm and less than or equal to 60000 rpm.
- output torque of the electric motor is greater than or equal to 0.1 N ⁇ m and less than or equal to 8 N ⁇ m.
- a high efficiency region of motor efficiency accounts for 20% or more, and the high efficiency region is a region in which the motor efficiency is greater than or equal to 80%.
- the electric motor includes a printed circuit board and a conductive assembly disposed on the printed circuit board, and the conductive assembly is used for achieving electrical connections between the plurality of coil windings.
- the conductive assembly includes a conductive member and a copper foil, the copper foil is disposed on the printed circuit board, and the conductive member is connected in parallel to the copper foil.
- a sum of cross-sectional areas of the conductive member and the copper foil is Scu
- a sum of cross-sectional areas of coil windings soldered in correspondence with the conductive member and the copper foil is Sw
- Scu ⁇ Sw is Scu
- a thickness of the printed circuit board satisfies that 0.8 mm ⁇ h ⁇ 5 mm.
- the electric motor is a brushless motor driven by a driver circuit to operate.
- the brushless motor in which the cross-section of the coil winding is non-circular is applied to the handheld power tool, a table power tool, and the outdoor tool so that the slot fill factor of the brushless motor is improved, thereby improving the proportion of the high efficiency region of the motor efficiency and effectively suppressing the temperature rise while improving the working efficiency of the power tool.
- FIGS. 1 to 18 and 19 show examples of power tools in the present application, such as an electric drill, a table saw, and a smart mower.
- an electric motor in the present application is applicable to a handheld power tool such as an electric drill, an electric wrench, an electric screwdriver, an electric hammer drill, an electric circular saw, and a sander, a table tool such as a table saw, and an outdoor tool such as a mower, a snow thrower, a grass trimmer, a pair of electric shears, a pruner, and a chain saw.
- a handheld power tool such as an electric drill, an electric wrench, an electric screwdriver, an electric hammer drill, an electric circular saw, and a sander
- a table tool such as a table saw
- an outdoor tool such as a mower, a snow thrower, a grass trimmer, a pair of electric shears, a pruner, and a chain saw.
- the following examples are part, not all, of examples of the present application.
- FIG. 1 shows a handheld power tool as an example of the present application.
- the handheld power tool is particularly the electric drill.
- An electric drill 100 can provide at least torque to assist in driving a screw into a workpiece and may provide an impact force to perform an impact operation to satisfy usage requirements of a user.
- the electric drill 100 includes a housing 10 formed with a grip 11 for the user to hold. An end of the grip 11 is connected to a power supply interface for accessing a direct current power supply or an alternating current power supply.
- the power supply interface is connected to a battery pack 200 detachably connected to the housing 10.
- the power supply interface may also access alternating current power, such as mains power.
- the battery pack 20 is used as an energy source for the electric drill 100. Specifically, a rated output voltage of the battery pack 20 is greater than or equal to 12 V.
- a main control switch 111 is disposed on the grip 11 and used for controlling the start and stop of the electric drill 100.
- the main control switch 111 can implement a speed regulation function, and the user controls a rotational speed of the electric drill 100 by controlling a stroke by which the main control switch 111 is pressed.
- An accommodation space (not shown in the figure) is formed in the housing 10 along a direction of a first straight line 101, and a fan 30, an electric motor 40, and a transmission assembly (not shown in the figure) are disposed in the accommodation space in sequence.
- the electric motor 40 is supported by the housing 10 and drives an output shaft (not shown in the figure) to drive a drill bit to rotate.
- the electric motor 40 is configured to be a brushless motor, and the electric motor 40 is replaced with the brushless motor 40 in the following description.
- the brushless motor 40 in this example is configured to be an outer rotor brushless motor received in the housing 10 in a posture parallel to the first straight line 101.
- the brushless motor 40 includes a stator 41, a rotor 42 disposed on an outer side of the stator 41, and an electric motor shaft 43.
- the stator 41 has a stator core 411, an insulating member 412 disposed on the stator core 411, and multiple coil windings 413 wound on the stator core 411 with insulating members 412 between the coil windings 413 and the stator core 411.
- the rotor 42 is disposed on an outer circumferential side of the stator 41. Specifically, multiple permanent magnets 421 are uniformly distributed on an inner side of the rotor 42.
- a structure of the stator core 411 is configured to be an integral structure.
- the structure of the stator core 411 is configured to be a split structure.
- the structure of the stator core 411 is configured to be the split structure.
- the structure of the stator core 411 in this example is preferably configured to be a spliced structure.
- the stator core 411 is formed by joining multiple split cores 411a into which the stator core 411 is split in a circumferential direction of the stator core 411.
- the split core 411a is formed with a straight groove 4112b and a boss 4112c extending along a direction of the electric motor shaft 43.
- the straight groove 4112b on each split core 411a forms a snap-fit structure with the boss 4112c of a split core 411a adjacent to the each split core 411a, thereby limiting the stator core 411 on a plane perpendicular to the electric motor shaft 43.
- a stack length L of the stator core 411 is greater than or equal to 5 mm and less than or equal to 80 mm. In some examples, the stack length L of the stator core 411 is greater than or equal to 5 mm and less than or equal to 25 mm. In some examples, the stack length L of the stator core 411 is greater than or equal to 25 mm and less than or equal to 50 mm. In some examples, the stack length L of the stator core 411 is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length L of the stator core 411 is greater than or equal to 70 mm and less than or equal to 80 mm.Referring to FIGS.
- the stator core 411 is formed by stacking multiple stator laminations 4111 in a direction parallel to the electric motor shaft 43.
- the stator core 411 further includes fixing pins 4113 for fixing the multiple stator laminations 4111.
- the stator lamination 4111 is provided with a through hole 4112 through which the fixing pin 4113 can penetrate to fix the stator lamination 4111.
- an outer diameter D1 of the stator laminations 4111 is greater than or equal to 30 mm and less than or equal to 100 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 70 mm and less than or equal to 100 mm. An inner diameter D2 of the stator laminations is greater than or equal to 10 mm and less than or equal to 60 mm.
- the inner diameter D2 of the stator laminations is greater than or equal to 10 mm and less than or equal to 30 mm. In some examples, the inner diameter D2 of the stator laminations is greater than or equal to 30 mm and less than or equal to 60 mm.
- the stator core 411 further includes multiple stator teeth 4114 extending circumferentially inwards, and the insulating members 412 are disposed on the multiple stator teeth 4114.
- the insulating member 412 includes a front side insulator 412a and a rear side insulator 412b.
- the coil winding 413 is wound on the stator tooth 4114 with the front side insulator 412a and the rear side insulator 412b between the coil winding 413 and the stator tooth 4114.
- the front side insulator 412a is sleeved on a front side of the stator tooth 4114
- the rear side insulator 412b is sleeved on a rear side of the stator tooth 4114.
- the coil winding 413 is wound back and forth on the front side insulator 412a and the rear side insulator 412b, that is, the coil winding 413 is wound on the stator tooth 4114 with the front side insulator 412a and the rear side insulator 412b between the coil winding 413 and the stator tooth 4114.
- a cross-section 413a of the coil winding 413 is non-circular.
- the cross-section of the coil winding 413 may be configured to be one of or a combination of a rectangle, an ellipse, or a gradient shape.
- the cross-section 413a of the coil winding 413 is a rectangle, and a cross-sectional area of the coil winding 413, that is, an area of the rectangle, is configured to be less than or equal to 5 mm 2 .
- the cross-sectional area 413a of the coil winding 413 is configured to be less than or equal to 3 mm 2 .
- the cross-section 413a of the coil winding 413 is a cross section of one coil winding in a plane perpendicular to a current direction flowing through the one coil winding.
- the multiple split cores 411a are assembled along the circumferential direction into the stator core 411, and a manner in which adjacent split cores 411a are mounted is described in detail above and is not repeated here.
- one split core 411a is used as an example, and the coil winding 413 is wound on the stator tooth 4114 and formed with a wire inlet end 4131 and a wire outlet end 4132.
- the coil winding 413 is wound on the stator tooth 4114 of each split core 411a, and then all the split cores 411a on which the coil windings 413 are wound are limited and fixed through the preceding snap-fit structures and assembled into the stator 41.
- the brushless motor 40 is configured to be a three-phase brushless motor, and the stator core 411 is composed of 12 split cores 411a.
- FIG. 9 shows the stator core 411 on which the coil windings 413 are wound.
- the coil winding 413 wound on each split core 411a is formed with the wire inlet end 4131 and the wire outlet end 4132.
- any split core 411a of the stator core 411 is defined as 1#
- the other split cores are defined as a split core 2#, a split core 3#, a split core 4#, a split core 5#, a split core 6#, a split core 7#, a split core 8#, a split core 9#, a split core 10#, a split core 11#, and a split core 12# in sequence along a counterclockwise direction.
- the coil winding 413 is wound on each split core and each coil winding 413 is formed with the wire inlet end 4131 and the wire outlet end 4132.
- the split core 1#, the split core 2#, the split core 7#, the split core 8#, and the coil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40.
- the split core 3#, the split core 4#, the split core 9#, the split core 10#, and the coil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40.
- the split core 5#, the split core 6#, the split core 11#, the split core 12#, and the coil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40.
- the three phases of the three-phase brushless motor 40 are formed by the preceding distribution method.
- those skilled in the art can adopt other numbers of split cores or other distribution methods for electrical connections, which is not limited in the present application.
- the three-phase brushless motor 40 further includes a printed circuit board 44.
- the printed circuit board 44 is fixedly disposed on a side of the stator 41 and used for implementing conductive connections between the coil windings 413 on the stator core 411 of the three-phase brushless motor 40.
- the coil winding 413 on the split core 1# enters at 1a, exits at 1b, is wound along an extension direction of the stator tooth 4114, enters at 2a, and exits at 2b to form a first layer of winding, and the coil winding 413 forms a second layer of winding according to this winding rule and finally exits at 3b to form a third layer of winding. Since a width of the stator tooth 4114 in the extension direction of the stator tooth 4114 is basically consistent, the space for placing the coil winding 413 and between two adjacent stator teeth 4114 gradually decreases in the extension direction of the stator tooth 4114.
- a length of the first layer of winding in the extension direction of the stator tooth 4114 is greater than a length of the second layer of winding in the extension direction of the stator tooth 4114.
- the length of the second layer of winding in the extension direction of the stator tooth 4114 is greater than a length of the third layer of winding in the extension direction of the stator tooth 4114.
- the coil windings 413 are wound in the preceding winding manner, which can ensure that a slot fill factor of the brushless motor 40 is greater than or equal to 40%.
- the coil winding 413 on the split core 1# has the wire inlet end 4131 at 1a and the wire outlet end 4132 at 3b.
- the coil winding 413 on the split core 2# has the wire inlet end 4131 at 4a and the wire outlet end 4132 at 5b.
- a conductive connection is implemented between the wire outlet end 4132 at 3b of the coil winding 413 on the split core 1# and the wire inlet end 4131 at 4a of the coil winding 413 on the split core 2# through the printed circuit board 44.
- the coil winding 413 on the split core 7# has the wire inlet end 4131 at 5a and the wire outlet end 4132 at 6b.
- the coil winding 413 on the split core 8# has the wire inlet end 4131 at 7a and the wire outlet end 4132 at 8b.
- a conductive connection is implemented between the wire outlet end 4132 at 6b of the coil winding 413 on the split core 7# and the wire inlet end 4131 at 7a of the coil winding 413 on the split core 8# through the printed circuit board 44.
- a conductive connection is implemented between the wire outlet end 4132 at 5b of the coil winding 413 on the split core 2# and the wire inlet end 4131 at 5a of the coil winding 413 on the split core 7# through the printed circuit board 44.
- the preceding wiring manner is the wiring of one phase of the brushless motor 40. It is to be understood that the wiring manners for the other two phases are similar to the preceding wiring manner and are not repeated here.
- a conductive assembly is arranged on the printed circuit board 44 and used for implementing electrical connections between the coil windings 413.
- the conductive assembly includes a conductive member 73 and a copper foil 72.
- the copper foil 72 is disposed on the printed circuit board 44 and connected in parallel to the conductive member 73.
- the conductive member 73 and the copper foil 72 replace wires and connections of the coil windings 413 around an outer circumference of the stator core 411 in the related art, thereby effectively reducing the crossing between wires and simplifying connections.
- lead-in wires and lead-out wires of multiple coil windings in a relevant structure are arranged along the direction of the electric motor shaft and occupy a relatively large space in height.
- the present application can effectively reduce the space occupied at an end of the electric motor, simplify wiring, and reduce the overall height of the electric motor, thereby improving the power density and connection efficiency of the electric motor.
- the conductive member 73 and the copper foil 72 are disposed on the printed circuit board 44 so that the structural connections are stable and reliable, and a risk and a cost are reduced. In some examples, the conductive member 73 and the copper foil 72 can be soldered to the coil windings 413.
- a sum of cross-sectional areas of the conductive member 73 and the copper foil 72 is Scu
- a sum of cross-sectional areas of coil windings 413 soldered in correspondence with the conductive member 73 and the copper foil 72 is Sw
- Scu ⁇ Sw is S0.
- N denotes a number of wires of the coil windings 413 at a solder joint, in other words, N denotes the number of strands of the multiple coils.
- S0 denotes a cross-sectional area of a single wire of the coil windings 413.
- N is 1.
- the cross-sectional areas of the conductive member 73 and the copper foil 72 are increased to be greater than the cross-sectional areas of the coil windings 413 soldered to the conductive member 73 and the copper foil 72, so as to ensure that a large current on the coil winding 413 can stably pass through the conductive member 73 and the copper foil 72.
- the cross-sectional area refers to an area of a cross-section basically perpendicular to a flow direction of the current.
- the copper foil 72 and the conductive member 73 are connected to the winding on each tooth of the stator core 411, the coil windings 413 on teeth belonging to the same phase are connected in series and in parallel through the copper foil 72 and the conductive member 73, and then phases are connected in a delta shape, a Y shape, or other shapes, so as to form inlet and outlet wires of the electric motor.
- the electric motor is a three-phase electric motor.
- multiple grooves 711 recessed radially inwards are arranged on an outer circumference of the printed circuit board 44, and the conductive member 73 extends into grooves 711 and is connected to the coil windings 413, so as to facilitate soldering of the coil windings 413.
- the conductive member 73 is a strip of copper, thereby improving the electrical conductivity and the performance of the electric motor.
- the conductive member 73 may be replaced with other conductive wires or metal stampings, so as to implementing the connections between the coil windings 413.
- the conductive member 73 when the number of the coil windings 413 is relatively large, resulting in a large number of solder joints, the conductive member 73 is soldered on an upper surface and a lower surface of the printed circuit board 44, so as to perform a double-sided arrangement, avoid overcrowding due to a single-sided arrangement, and facilitate a layout; when the number of the coil windings 413 is relatively small, in another example, the conductive member 73 is soldered on the upper surface or the lower surface of the printed circuit board 44, so as to perform the single-sided arrangement and simplify the structure.
- the conductive member 73 is specifically arranged according to actual situations, which is not limited.
- a thickness of the printed circuit board 44 satisfies that 0.8 mm ⁇ h ⁇ 5 mm, where the thickness refers to a thickness of the printed circuit board 44 itself, excluding thicknesses of the soldered conductive member 73 and solder joints, thereby avoiding the following case: the thickness of the printed circuit board 44 is so large that the electric motor is heightened, or the thickness of the printed circuit board 44 is so small that structural strength is affected. In this manner, reliability is ensured when the conductive member 73 is carried, and the layout of the conductive member 73 and the copper foil 72 is facilitated when multilayer wiring is adopted.
- the multilayer wiring may be adopted, that is, the conductive member 73 is arranged on both the upper surface and the lower surface of the printed circuit board 44, and the copper foil 72 is arranged in an inner layer of the printed circuit board 44 through a processing process of the printed circuit board 44.
- the printed circuit board 44 is provided with a threading through hole 713 and the conductive member 73 penetrates through the threading through hole 713 so that the routing of the conductive member 73 on the upper surface and the lower surface is achieved, thereby reducing the number of conductive members 73 and the number of solder joints.
- multiple conductive members 73 are disposed on the printed circuit board 44 and insulation distances are provided between the multiple conductive members 73.
- a certain insulation distance needs to be ensured between conductive members 73, thereby avoiding an insulation failure in a severe working condition.
- For a magnitude of the insulation distance reference is made to the related art and the details are not repeated here.
- an outer diameter of the printed circuit board 44 is less than or equal to an outer diameter of the stator core 411, thereby reducing the space occupied by the printed circuit board 44 and facilitating installation.
- the printed circuit board 44 can be fixedly connected to an end of the stator core 411, and the printed circuit board 44 is fixed to the stator core 411 so that the structure is mounted stably.
- a first region and a second region are provided on the printed circuit board 44, the first region is covered with the copper foil 72, and the second region is provided with at least one heat dissipation hole 712, so as to achieve heat dissipation, improve safety, and extend a service life; the copper foil 72 and the heat dissipation hole 712 are disposed in different regions, so as to prevent the copper foil 72 from covering the heat dissipation hole 712.
- the first region and the second region are arranged according to actual situations, which is not limited.
- the heat dissipation hole 712 and the threading through hole 713 are different and may be different in magnitude, shape, or the like, and a foolproof setting is performed so as to avoid a routing error of the conductive member 73.
- the brushless motor 40 in the preceding examples is the outer rotor brushless motor, and the technical solution in the present application may also be applied to an inner rotor brushless motor.
- the specific structure of the inner rotor brushless motor is described below in conjunction with FIGS. 13 and 14 .
- the inner rotor brushless motor includes a stator 51, where the stator 51 includes a stator core 511, an insulating member 512 disposed on the stator core 511, and a coil winding 513 wound on the insulating member 512.
- the stator core 511 is formed by joining multiple split cores 511a into which the stator core 511 is split in a circumferential direction of the stator core 511.
- the split core 511a is formed with a straight groove and a boss extending along a direction of an electric motor shaft.
- each split core 511a When the multiple split cores 511a are assembled into the stator core 511, the straight groove on each split core 511a forms a snap-fit structure with the boss of a split core 511a adjacent to the each split core 511a, thereby limiting the stator core 511 on a plane perpendicular to the electric motor shaft.
- the preceding limiting principle is similar to that of the brushless motor in the preceding example and is not repeated here.
- the coil winding 513 is wound on the stator core 511 with the insulating member 512 between the coil winding 513 and the stator core 511.
- the coil winding 513 on the split core 511a is wound on the stator tooth along an extension direction of the stator tooth and forms a first layer of winding, and the coil winding 513 forms a second layer of winding according to this winding rule until the last layer of winding is formed. Since the width of the stator tooth in the extension direction of the stator tooth is basically consistent, the space for placing the coil winding 513 and between two adjacent stator teeth gradually decreases in the extension direction of the stator tooth.
- a length of the last layer of winding wound on the stator tooth along the extension direction of the stator tooth is the smallest. It is to be understood that a length of the first layer of winding along the extension direction of the stator tooth, a length of the second layer of winding along the extension direction of the stator tooth, until a length of the last layer of winding along the extension direction of the stator tooth gradually decrease.
- a cross-section of the coil winding 513 is non-circular.
- the cross-section of the coil winding 513 may be configured to be one of or a combination of a rectangle, an ellipse, or a gradient shape.
- the cross-section of the coil winding 513 is a rectangle, and a cross-sectional area of the coil winding 513, that is, an area of the rectangle, is configured to be less than or equal to 5 mm 2 .
- the cross-sectional area of the coil winding 513 is configured to be less than or equal to 3 mm 2 .
- the electric drill 100 further includes a driver circuit 50 and a control module 60, which are used for controlling and driving the brushless motor 40 to operate.
- the driver circuit 50 distributes a voltage to phases of windings on the stator 41 of the brushless motor 40 according to a certain logical relationship such that the brushless motor 40 starts and generates continuous torque.
- the driver circuit 50 includes multiple electronic switches.
- the electronic switches include field-effect transistors (FETs).
- the electronic switches include insulated-gate bipolar transistors (IGBTs).
- the driver circuit 50 is a three-phase bridge circuit.
- the driver circuit 50 includes three electronic switches Q1, Q3, and Q5 provided as high-side switches and three electronic switches Q2, Q4, and Q6 provided as low-side switches.
- the driver circuit 50 is a circuit that switches energized states of the phases of windings of the brushless motor 40 and controls energized currents of the phases of windings to drive the brushless motor 40 to rotate. The turn-on sequence and time of each phase of windings depend on a position of the rotor 42 of the brushless motor 40. To make the brushless motor 40 rotate, the driver circuit 50 has multiple driving states.
- stator windings of the electric motor 40 In a driving state, stator windings of the electric motor 40 generate a magnetic field, and the control module 60 outputs a control signal based on different positions of the rotor to control the driver circuit 50 to switch between the driving states. Therefore, the magnetic field generated by the stator windings rotates to drive the rotor to rotate, thereby driving the brushless motor 40.
- output power of the brushless motor 40 using the preceding technical solution ranges from 120 W to 3000 W In some examples, the output power of the brushless motor 40 ranges from 120 W to 500 W In some examples, the output power of the brushless motor 40 ranges from 500 W to 1500 W In some examples, the output power of the brushless motor 40 ranges from 1500 W to 2000 W In some examples, the output power of the brushless motor 40 ranges from 2000 W to 2500 W In some examples, the output power of the brushless motor 40 ranges from 2500 W to 3000 W
- a rotational speed of the brushless motor 40 using the preceding technical solution ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor 40 ranges from 15000 rpm to 20000 rpm. In some examples, the rotational speed of the brushless motor 40 ranges from 20000 rpm to 30000 rpm. In some examples, the rotational speed of the brushless motor 40 ranges from 30000 rpm to 40000 rpm. In some examples, the rotational speed of the brushless motor 40 ranges from 40000 rpm to 60000 rpm.
- output torque of the brushless motor 40 using the preceding technical solution ranges from 0.1 N ⁇ m to 8 N ⁇ m. In some examples, the output torque of the brushless motor 40 ranges from 0.1 N ⁇ m to 3 N ⁇ m. In some examples, the output torque of the brushless motor 40 ranges from 3 N ⁇ m to 5 N m. In some examples, the output torque of the brushless motor 40 ranges from 5 N ⁇ m to 8 N ⁇ m.
- the other brushless motor is the brushless motor provided in the present application, and the cross-section of the coil winding is a rectangle.
- An inner diameter of a copper wire in the coil winding of the round wire motor is set to 0.75 mm.
- a copper wire in the coil winding of a flat wire motor has a width of 1.4 mm and a thickness of 0.5 mm.
- the two brushless motors have the same number of winding turns of the coil winding on the stator core.
- Table 1 is an effect comparison table of the round wire motor and the flat wire motor. Table 1 Test results of the round wire motor and the flat wire motor Round Wire Motor Flat Wire Motor Slot fill factor 31.1% 49.8% Copper weight 43.9 75.1 Average temperature rise of the winding (°C) 147.0 101.5
- the flat wire motor has a smaller gap and a larger contact area between coils due to the rectangular cross-section of the coil winding so that the thermal conductivity between the coil windings of the flat wire motor is better and the temperature rise of the electric motor can be effectively suppressed.
- the flat wire motor has a significantly higher slot fill factor than the round wire motor so that the flat wire motor has lower power consumption and higher working efficiency.
- the high efficiency region of the motor efficiency of the brushless motor with a rectangular cross-section of the coil winding accounts for 20% or more.
- the high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
- FIGS. 16 and 17 show the motor efficiency maps of the round wire motor and the flat wire motor, respectively.
- the round wire motor and the flat wire motor have basically the same specifications.
- the round wire motor and the flat wire motor with the specifications that the outer diameter of the stator laminations is 48 mm and the stack length of the stator core is 20 mm are used as an example.
- An area of the high efficiency region of the flat wire motor is significantly greater than an area of the high efficiency region of the round wire motor. In the test, a ratio of the area of the high efficiency region in which the efficiency of the flat wire motor is greater than 83% to the area of the high efficiency region in which the efficiency of the round wire motor is greater than 83% is greater than or equal to 7.
- the brushless motor in the present application has a higher slot fill factor so that the proportion of the high efficiency region of the motor efficiency of the brushless motor in the present application is higher, and the brushless motor can improve the working efficiency of the whole machine when applied to the power tool.
- FIG. 18 shows a second example of the power tool of the present application.
- the power tool is a table tool, in particular, a table saw 200.
- the table saw 200 includes a table 210 with a workplane 211 on which a workpiece can be placed.
- the workplane 211 is an upper surface of the table 210 and for a user to perform a cutting operation on.
- a hole is formed on the workplane 211.
- the table saw 200 further includes a saw blade 220 for cutting the workpiece. The saw blade 220 passes through the hole and extends.
- the table saw 200 further includes an electric motor for supplying power, and the saw blade 220 is driven by the electric motor disposed below the workplane 211 to rotate to implement a cutting function.
- the saw blade 220 is used for cutting the workpiece pushed along the workplane 211 and in contact with the saw blade 220, such as wood.
- the electric motor is preferably configured to be a brushless motor.
- the table saw 200 further includes a power supply device (not shown in the figure) electrically connected to the table saw 200 to supply electrical energy to the table saw 200.
- the power supply device may be a battery pack or a mains connector.
- the power supply device is configured to be the battery pack, where the battery pack is detachably connected to the table saw 200.
- a rated output voltage of the battery pack is greater than or equal to 18 V.
- the electric motor in this example is similar in structure to the brushless motor in the first example and is not described in detail here.
- the cross-section of the coil winding of the brushless motor is a rectangle, and the cross-sectional area of the coil winding, that is, the area of the rectangle, is configured to be less than or equal to 5 mm 2 . In some examples, the cross-sectional area of the coil winding is configured to be less than or equal to 3 mm 2 .
- the stack length of the stator core of the brushless motor is greater than or equal to 30 mm and less than or equal to 120 mm. In some examples, the stack length of the stator core is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the stack length of the stator core is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length of the stator core is greater than or equal to 70 mm and less than or equal to 90 mm. In some examples, the stack length of the stator core is greater than or equal to 90 mm and less than or equal to 120 mm. The outer diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 120 mm.
- the outer diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 60 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 60 mm and less than or equal to 80 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 80 mm and less than or equal to 100 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 100 mm and less than or equal to 120 mm. The inner diameter of the stator laminations is greater than or equal to 20 mm and less than or equal to 70 mm.
- the inner diameter of the stator laminations is greater than or equal to 20 mm and less than or equal to 40 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 70 mm.
- the output power of the brushless motor using the preceding technical solution ranges from 500 W to 5000 W In some examples, the output power of the brushless motor ranges from 500 W to 1500 W In some examples, the output power of the brushless motor ranges from 1500 W to 3000 W In some examples, the output power of the brushless motor ranges from 3000 W to 5000 W In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 20000 rpm. In some examples, the rotational speed of the brushless motor ranges from 20000 rpm to 30000 rpm.
- the rotational speed of the brushless motor ranges from 30000 rpm to 40000 rpm. In some examples, the rotational speed of the brushless motor ranges from 40000 rpm to 60000 rpm. In some examples, the output torque of the brushless motor ranges from 0.5 N ⁇ m to 10 N.m. In some examples, the output torque of the brushless motor ranges from 0.5 N ⁇ m to 2 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 2 N ⁇ m to 5 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 5 N ⁇ m to 8 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 8 N ⁇ m to 10 N ⁇ m.
- the high efficiency region of the motor efficiency of the brushless motor using the preceding technical solution accounts for 20% or more.
- the high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
- FIG. 19 shows a third example of the power tool of the present application.
- the power tool is an outdoor tool, in particular, a riding mower 300.
- the riding mower 300 includes a rack 311, a seat 312, a power output assembly 313, a moving assembly 314, an operating device 315, and a power supply device 316.
- the rack 311 is used for carrying the seat 312 and at least partially extends in a front and rear direction.
- the seat 312 is used for an operator to sit on and is mounted to the rack 311.
- the power output assembly 313 includes a first electric motor for driving a mowing element to rotate at a high speed and a second electric motor for driving the moving assembly 314 to move.
- the power supply device 316 is used for powering the first electric motor, the second electric motor, and other electronic assemblies on the riding mower 300.
- the power supply device 316 is disposed on a rear side of the seat 312 on the rack 311.
- the power supply device 316 includes multiple battery packs for supplying power to the power tool.
- a rated output voltage of the battery pack is configured to be greater than or equal to 18 V.
- the operating device 315 is used by the operator to control the riding mower 300 to move and/or determine whether the riding mower 300 enters a working state.
- the stack length of the stator core of the brushless motor is greater than or equal to 10 mm and less than or equal to 100 mm. In some examples, the stack length of the stator core is greater than or equal to 10 mm and less than or equal to 30 mm. In some examples, the stack length of the stator core is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the stack length of the stator core is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length of the stator core is greater than or equal to 70 mm and less than or equal to 100 mm. The outer diameter of the stator laminations is greater than or equal to 30 mm and less than or equal to 120 mm.
- the output power of the brushless motor using the preceding technical solution ranges from 500 W to 5000 W In some examples, the output power of the brushless motor ranges from 500 W to 1500 W In some examples, the output power of the brushless motor ranges from 1500 W to 3000 W In some examples, the output power of the brushless motor ranges from 3000 W to 5000 W In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 2000 rpm to 100000 rpm. In some examples, the rotational speed of the brushless motor ranges from 20000 rpm to 40000 rpm.
- the rotational speed of the brushless motor ranges from 40000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 60000 rpm to 80000 rpm. In some examples, the rotational speed of the brushless motor ranges from 80000 rpm to 100000 rpm. In some examples, the output torque of the brushless motor ranges from 0.2 N ⁇ m to 20 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 0.2 N ⁇ m to 5 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 5 N ⁇ m to 15 N ⁇ m. In some examples, the output torque of the brushless motor ranges from 15 N ⁇ m to 20 N ⁇ m.
- the high efficiency region of the motor efficiency of the brushless motor using the preceding technical solution accounts for 20% or more.
- the high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Windings For Motors And Generators (AREA)
Description
- The present application relates to a power tool such as a handheld power tool, a table tool, and an outdoor tool and, in particular, to an electric motor applied to the preceding power tools. The preamble of
claim 1 is shown inUS 10 328 566 B2 - Examples of winding structures used in electrical machines are shown in
DE 10 2013 012659 A1 orUS 2022/060073 A1 . - Coil windings of an electric motor currently applied to a power tool are mostly copper wires with circular cross-sections. When the preceding coil windings are wound on a stator core, on the one hand, a slot fill factor of the electric motor is relatively low due to the shape of the coil windings, affecting the overall efficiency of the electric motor. On the other hand, the electric motor in operation generates a large amount of heat, and a gap between coils reduces the thermal conductivity of the electric motor, affecting the heat dissipation effect of the electric motor.
- To solve the deficiencies of the related art, the present application provides a brushless motor suitable for a power tool, and the preceding brushless motor can effectively improve the working efficiency of the power tool and effectively suppress a temperature rise while reducing power consumption.
- To achieve the preceding object, the present application adopts the technical solutions described below.
- A power tool includes: a housing; and an electric motor disposed in the housing, wherein output power of the electric motor is greater than or equal to 120 W and less than or equal to 4500 W The electric motor includes at least a stator, a rotor, and a plurality of coil windings disposed on the stator, a cross-section of each of the plurality of coil windings is non-circular, and a slot fill factor of the electric motor is greater than or equal to 40%.
- In one example, the stator includes a stator core formed by stacking a plurality of stator laminations and an insulating member disposed on the stator core, and each of the plurality of coil windings is wound on the insulating member.
- In one example, an outer diameter of the plurality of stator laminations is greater than or equal to 30 mm and less than or equal to 100 mm; and an inner diameter of the plurality of stator laminations is greater than or equal to 10 mm and less than or equal to 60 mm.
- In one example, a stack length of the stator core is greater than or equal to 5 mm and less than or equal to 80 mm.
- In one example, the stator core is formed by joining a plurality of split cores into which the stator core is split in a circumferential direction of the stator core.
- In one example, the cross-section of each of the plurality of coil windings includes a rectangle, an ellipse, or a gradient shape.
- In one example, a cross-sectional area of each of the plurality of coil windings is configured to be less than or equal to 5 mm2.
- In one example, a rotational speed of the electric motor is greater than or equal to 15000 rpm and less than or equal to 60000 rpm.
- In one example, output torque of the electric motor is greater than or equal to 0.1 N·m and less than or equal to 8 N·m.
- In one example, a high efficiency region of motor efficiency accounts for 20% or more, and the high efficiency region is a region in which the motor efficiency is greater than or equal to 80%.
- In one example, the electric motor includes a printed circuit board and a conductive assembly disposed on the printed circuit board, and the conductive assembly is used for achieving electrical connections between the plurality of coil windings.
- In one example, the conductive assembly includes a conductive member and a copper foil, the copper foil is disposed on the printed circuit board, and the conductive member is connected in parallel to the copper foil.
- In one example, a sum of cross-sectional areas of the conductive member and the copper foil is Scu, a sum of cross-sectional areas of coil windings soldered in correspondence with the conductive member and the copper foil is Sw, and Scu ≥ Sw.
- In one example, a thickness of the printed circuit board satisfies that 0.8 mm ≤ h ≤ 5 mm.
- In one example, the electric motor is a brushless motor driven by a driver circuit to operate.
- In the technical solutions of the present application, the brushless motor in which the cross-section of the coil winding is non-circular is applied to the handheld power tool, a table power tool, and the outdoor tool so that the slot fill factor of the brushless motor is improved, thereby improving the proportion of the high efficiency region of the motor efficiency and effectively suppressing the temperature rise while improving the working efficiency of the power tool.
-
-
FIG. 1 is a perspective view of a handheld power tool as a first example of the present application; -
FIG. 2 is a perspective view of an outer rotor brushless motor according to the present application; -
FIG. 3 is a partial exploded view of the brushless motor inFIG. 2 ; -
FIG. 4 is a partial exploded view of a stator core of the brushless motor inFIG. 2 ; -
FIG. 5 is a perspective view of part of a structure of a brushless motor from another perspective; -
FIG. 6 is a perspective view of the stator core of the brushless motor inFIG. 4 from another perspective; -
FIG. 7 is an exploded view of one split core of a stator core; -
FIG. 8 is a perspective view of a split core on which a coil winding is wound; -
FIG. 9 is a perspective view of a stator core on which coil windings are wound; -
FIG. 10 is a cross-sectional view of the stator core inFIG. 9 ; -
FIG. 11 is a perspective view of a printed circuit board on which a conductive assembly is disposed; -
FIG. 12 is another perspective view of a printed circuit board on which a conductive assembly is disposed; -
FIG. 13 is a perspective view of an inner rotor brushless motor according to the present application; -
FIG. 14 is a perspective view of the inner rotor brushless motor inFIG. 13 from another perspective; -
FIG. 15 is a diagram illustrating a control principle of a brushless motor; -
FIG. 16 is a motor efficiency map of a round wire motor; -
FIG. 17 is a motor efficiency map of a flat wire motor; -
FIG. 18 is a perspective view of a table tool as another example of the present application; and -
FIG. 19 is a perspective view of an outdoor tool as another example of the present application. - The present application is described below in detail in conjunction with drawings and examples.
-
FIGS. 1 to 18 and19 show examples of power tools in the present application, such as an electric drill, a table saw, and a smart mower. Actually, an electric motor in the present application is applicable to a handheld power tool such as an electric drill, an electric wrench, an electric screwdriver, an electric hammer drill, an electric circular saw, and a sander, a table tool such as a table saw, and an outdoor tool such as a mower, a snow thrower, a grass trimmer, a pair of electric shears, a pruner, and a chain saw. Apparently, the following examples are part, not all, of examples of the present application. -
FIG. 1 shows a handheld power tool as an example of the present application. The handheld power tool is particularly the electric drill. Anelectric drill 100 can provide at least torque to assist in driving a screw into a workpiece and may provide an impact force to perform an impact operation to satisfy usage requirements of a user. - Referring to
FIGS. 1 and2 , theelectric drill 100 includes ahousing 10 formed with agrip 11 for the user to hold. An end of thegrip 11 is connected to a power supply interface for accessing a direct current power supply or an alternating current power supply. In some examples, the power supply interface is connected to abattery pack 200 detachably connected to thehousing 10. Of course, the power supply interface may also access alternating current power, such as mains power. In this example, thebattery pack 20 is used as an energy source for theelectric drill 100. Specifically, a rated output voltage of thebattery pack 20 is greater than or equal to 12 V. Further, amain control switch 111 is disposed on thegrip 11 and used for controlling the start and stop of theelectric drill 100. Of course, in some examples, themain control switch 111 can implement a speed regulation function, and the user controls a rotational speed of theelectric drill 100 by controlling a stroke by which themain control switch 111 is pressed. An accommodation space (not shown in the figure) is formed in thehousing 10 along a direction of a firststraight line 101, and afan 30, anelectric motor 40, and a transmission assembly (not shown in the figure) are disposed in the accommodation space in sequence. Theelectric motor 40 is supported by thehousing 10 and drives an output shaft (not shown in the figure) to drive a drill bit to rotate. In this example, theelectric motor 40 is configured to be a brushless motor, and theelectric motor 40 is replaced with thebrushless motor 40 in the following description. - Referring to
FIGS. 2 to 4 , thebrushless motor 40 in this example is configured to be an outer rotor brushless motor received in thehousing 10 in a posture parallel to the firststraight line 101. Specifically, thebrushless motor 40 includes astator 41, arotor 42 disposed on an outer side of thestator 41, and anelectric motor shaft 43. Thestator 41 has astator core 411, an insulatingmember 412 disposed on thestator core 411, andmultiple coil windings 413 wound on thestator core 411 with insulatingmembers 412 between thecoil windings 413 and thestator core 411. Therotor 42 is disposed on an outer circumferential side of thestator 41. Specifically, multiplepermanent magnets 421 are uniformly distributed on an inner side of therotor 42. - In some examples, a structure of the
stator core 411 is configured to be an integral structure. In another example, the structure of thestator core 411 is configured to be a split structure. In this example, the structure of thestator core 411 is configured to be the split structure. Specifically, the structure of thestator core 411 in this example is preferably configured to be a spliced structure. Next, the specific structure and splicing manner of thestator core 411 in this example are described. - In some examples, referring to
FIG. 4 , thestator core 411 is formed by joiningmultiple split cores 411a into which thestator core 411 is split in a circumferential direction of thestator core 411. Thesplit core 411a is formed with astraight groove 4112b and aboss 4112c extending along a direction of theelectric motor shaft 43. When themultiple split cores 411a are assembled into thestator core 411, thestraight groove 4112b on eachsplit core 411a forms a snap-fit structure with theboss 4112c of asplit core 411a adjacent to the eachsplit core 411a, thereby limiting thestator core 411 on a plane perpendicular to theelectric motor shaft 43. - In some examples, referring to
FIG. 5 , a stack length L of thestator core 411 is greater than or equal to 5 mm and less than or equal to 80 mm. In some examples, the stack length L of thestator core 411 is greater than or equal to 5 mm and less than or equal to 25 mm. In some examples, the stack length L of thestator core 411 is greater than or equal to 25 mm and less than or equal to 50 mm. In some examples, the stack length L of thestator core 411 is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length L of thestator core 411 is greater than or equal to 70 mm and less than or equal to 80 mm.Referring toFIGS. 4 and7 , thestator core 411 is formed by stackingmultiple stator laminations 4111 in a direction parallel to theelectric motor shaft 43. Thestator core 411 further includes fixingpins 4113 for fixing themultiple stator laminations 4111. Thestator lamination 4111 is provided with a throughhole 4112 through which thefixing pin 4113 can penetrate to fix thestator lamination 4111. - In some examples, referring to
FIG. 6 , an outer diameter D1 of thestator laminations 4111 is greater than or equal to 30 mm and less than or equal to 100 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the outer diameter D1 of the stator laminations is greater than or equal to 70 mm and less than or equal to 100 mm. An inner diameter D2 of the stator laminations is greater than or equal to 10 mm and less than or equal to 60 mm. In some examples, the inner diameter D2 of the stator laminations is greater than or equal to 10 mm and less than or equal to 30 mm. In some examples, the inner diameter D2 of the stator laminations is greater than or equal to 30 mm and less than or equal to 60 mm. - Referring to
FIGS. 7 and8 , thestator core 411 further includesmultiple stator teeth 4114 extending circumferentially inwards, and the insulatingmembers 412 are disposed on themultiple stator teeth 4114. Specifically, the insulatingmember 412 includes afront side insulator 412a and arear side insulator 412b. Here, the coil winding 413 is wound on thestator tooth 4114 with thefront side insulator 412a and therear side insulator 412b between the coil winding 413 and thestator tooth 4114. Specifically, thefront side insulator 412a is sleeved on a front side of thestator tooth 4114, and therear side insulator 412b is sleeved on a rear side of thestator tooth 4114. The coil winding 413 is wound back and forth on thefront side insulator 412a and therear side insulator 412b, that is, the coil winding 413 is wound on thestator tooth 4114 with thefront side insulator 412a and therear side insulator 412b between the coil winding 413 and thestator tooth 4114. - Next, a shape of the coil winding 413 on the
stator 41, a manner in which the coil winding 413 is wound on thestator 41, and a wiring manner are described in detail with reference toFIGS. 8 to 10 . - In this example, a
cross-section 413a of the coil winding 413 is non-circular. Specifically, the cross-section of the coil winding 413 may be configured to be one of or a combination of a rectangle, an ellipse, or a gradient shape. Preferably, in this example, thecross-section 413a of the coil winding 413 is a rectangle, and a cross-sectional area of the coil winding 413, that is, an area of the rectangle, is configured to be less than or equal to 5 mm2. In some examples, thecross-sectional area 413a of the coil winding 413 is configured to be less than or equal to 3 mm2. Thecross-section 413a of the coil winding 413 is a cross section of one coil winding in a plane perpendicular to a current direction flowing through the one coil winding. - The
multiple split cores 411a are assembled along the circumferential direction into thestator core 411, and a manner in whichadjacent split cores 411a are mounted is described in detail above and is not repeated here. Referring toFIG. 8 , onesplit core 411a is used as an example, and the coil winding 413 is wound on thestator tooth 4114 and formed with awire inlet end 4131 and awire outlet end 4132. In the assembly process of thestator 41, the coil winding 413 is wound on thestator tooth 4114 of eachsplit core 411a, and then all thesplit cores 411a on which thecoil windings 413 are wound are limited and fixed through the preceding snap-fit structures and assembled into thestator 41. Preferably, in this example, thebrushless motor 40 is configured to be a three-phase brushless motor, and thestator core 411 is composed of 12split cores 411a. -
FIG. 9 shows thestator core 411 on which thecoil windings 413 are wound. The coil winding 413 wound on eachsplit core 411a is formed with thewire inlet end 4131 and thewire outlet end 4132. If anysplit core 411a of thestator core 411 is defined as 1#, the other split cores are defined as asplit core 2#, asplit core 3#, asplit core 4#, asplit core 5#, asplit core 6#, asplit core 7#, asplit core 8#, asplit core 9#, asplit core 10#, asplit core 11#, and asplit core 12# in sequence along a counterclockwise direction. The coil winding 413 is wound on each split core and each coil winding 413 is formed with thewire inlet end 4131 and thewire outlet end 4132. As an example, thesplit core 1#, thesplit core 2#, thesplit core 7#, thesplit core 8#, and thecoil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40. Thesplit core 3#, thesplit core 4#, thesplit core 9#, thesplit core 10#, and thecoil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40. Thesplit core 5#, thesplit core 6#, thesplit core 11#, thesplit core 12#, and thecoil windings 413 wound on the split cores are used as one phase of the three-phase brushless motor 40. The three phases of the three-phase brushless motor 40 are formed by the preceding distribution method. Of course, those skilled in the art can adopt other numbers of split cores or other distribution methods for electrical connections, which is not limited in the present application. - Referring to
FIG. 3 , the three-phase brushless motor 40 further includes a printedcircuit board 44. The printedcircuit board 44 is fixedly disposed on a side of thestator 41 and used for implementing conductive connections between thecoil windings 413 on thestator core 411 of the three-phase brushless motor 40. - One phase of the three-
phase brushless motor 40 is used as an example. Referring toFIG. 10 , the coil winding 413 on thesplit core 1# enters at 1a, exits at 1b, is wound along an extension direction of thestator tooth 4114, enters at 2a, and exits at 2b to form a first layer of winding, and the coil winding 413 forms a second layer of winding according to this winding rule and finally exits at 3b to form a third layer of winding. Since a width of thestator tooth 4114 in the extension direction of thestator tooth 4114 is basically consistent, the space for placing the coil winding 413 and between twoadjacent stator teeth 4114 gradually decreases in the extension direction of thestator tooth 4114. Thus, a length of the first layer of winding in the extension direction of thestator tooth 4114 is greater than a length of the second layer of winding in the extension direction of thestator tooth 4114. The length of the second layer of winding in the extension direction of thestator tooth 4114 is greater than a length of the third layer of winding in the extension direction of thestator tooth 4114. - In this example, the
coil windings 413 are wound in the preceding winding manner, which can ensure that a slot fill factor of thebrushless motor 40 is greater than or equal to 40%. - Specifically, referring to
FIG. 10 , the coil winding 413 on thesplit core 1# has thewire inlet end 4131 at 1a and thewire outlet end 4132 at 3b. The coil winding 413 on thesplit core 2# has thewire inlet end 4131 at 4a and thewire outlet end 4132 at 5b. A conductive connection is implemented between thewire outlet end 4132 at 3b of the coil winding 413 on thesplit core 1# and thewire inlet end 4131 at 4a of the coil winding 413 on thesplit core 2# through the printedcircuit board 44. Similarly, the coil winding 413 on thesplit core 7# has thewire inlet end 4131 at 5a and thewire outlet end 4132 at 6b. The coil winding 413 on thesplit core 8# has thewire inlet end 4131 at 7a and thewire outlet end 4132 at 8b. A conductive connection is implemented between thewire outlet end 4132 at 6b of the coil winding 413 on thesplit core 7# and thewire inlet end 4131 at 7a of the coil winding 413 on thesplit core 8# through the printedcircuit board 44. In some examples, a conductive connection is implemented between thewire outlet end 4132 at 5b of the coil winding 413 on thesplit core 2# and thewire inlet end 4131 at 5a of the coil winding 413 on thesplit core 7# through the printedcircuit board 44. The preceding wiring manner is the wiring of one phase of thebrushless motor 40. It is to be understood that the wiring manners for the other two phases are similar to the preceding wiring manner and are not repeated here. - In some examples, a conductive assembly is arranged on the printed
circuit board 44 and used for implementing electrical connections between thecoil windings 413. Referring toFIG. 11 , the conductive assembly includes aconductive member 73 and acopper foil 72. Thecopper foil 72 is disposed on the printedcircuit board 44 and connected in parallel to theconductive member 73. Theconductive member 73 and thecopper foil 72 replace wires and connections of thecoil windings 413 around an outer circumference of thestator core 411 in the related art, thereby effectively reducing the crossing between wires and simplifying connections. On the other hand, the following is avoided: lead-in wires and lead-out wires of multiple coil windings in a relevant structure are arranged along the direction of the electric motor shaft and occupy a relatively large space in height. The present application can effectively reduce the space occupied at an end of the electric motor, simplify wiring, and reduce the overall height of the electric motor, thereby improving the power density and connection efficiency of the electric motor. Theconductive member 73 and thecopper foil 72 are disposed on the printedcircuit board 44 so that the structural connections are stable and reliable, and a risk and a cost are reduced. In some examples, theconductive member 73 and thecopper foil 72 can be soldered to thecoil windings 413. - In some examples, a sum of cross-sectional areas of the
conductive member 73 and thecopper foil 72 is Scu, and a sum of cross-sectional areas ofcoil windings 413 soldered in correspondence with theconductive member 73 and thecopper foil 72 is Sw, and Scu ≥ Sw. When thecoil windings 413 consists of multiple coils with the same cross-sectional area, Sw = N × S0. N denotes a number of wires of thecoil windings 413 at a solder joint, in other words, N denotes the number of strands of the multiple coils. S0 denotes a cross-sectional area of a single wire of thecoil windings 413. When the coil winding includes only one coil, N is 1. The cross-sectional areas of theconductive member 73 and thecopper foil 72 are increased to be greater than the cross-sectional areas of thecoil windings 413 soldered to theconductive member 73 and thecopper foil 72, so as to ensure that a large current on the coil winding 413 can stably pass through theconductive member 73 and thecopper foil 72. It is to be noted that the cross-sectional area refers to an area of a cross-section basically perpendicular to a flow direction of the current. - In some examples, the
copper foil 72 and theconductive member 73 are connected to the winding on each tooth of thestator core 411, thecoil windings 413 on teeth belonging to the same phase are connected in series and in parallel through thecopper foil 72 and theconductive member 73, and then phases are connected in a delta shape, a Y shape, or other shapes, so as to form inlet and outlet wires of the electric motor. In the solution, for each phase of the electric motor, when the current is relatively large, thecopper foil 72 and theconductive member 73 are not burned by the large current. In some examples, the electric motor is a three-phase electric motor. - In an example,
multiple grooves 711 recessed radially inwards are arranged on an outer circumference of the printedcircuit board 44, and theconductive member 73 extends intogrooves 711 and is connected to thecoil windings 413, so as to facilitate soldering of thecoil windings 413. - Since copper has good electrical conductivity, in an example, the
conductive member 73 is a strip of copper, thereby improving the electrical conductivity and the performance of the electric motor. In other examples, theconductive member 73 may be replaced with other conductive wires or metal stampings, so as to implementing the connections between thecoil windings 413. - In an example, as shown in
FIG. 12 , when the number of thecoil windings 413 is relatively large, resulting in a large number of solder joints, theconductive member 73 is soldered on an upper surface and a lower surface of the printedcircuit board 44, so as to perform a double-sided arrangement, avoid overcrowding due to a single-sided arrangement, and facilitate a layout; when the number of thecoil windings 413 is relatively small, in another example, theconductive member 73 is soldered on the upper surface or the lower surface of the printedcircuit board 44, so as to perform the single-sided arrangement and simplify the structure. Theconductive member 73 is specifically arranged according to actual situations, which is not limited. - In an example, a thickness of the printed
circuit board 44 satisfies that 0.8 mm ≤ h ≤ 5 mm, where the thickness refers to a thickness of the printedcircuit board 44 itself, excluding thicknesses of the solderedconductive member 73 and solder joints, thereby avoiding the following case: the thickness of the printedcircuit board 44 is so large that the electric motor is heightened, or the thickness of the printedcircuit board 44 is so small that structural strength is affected. In this manner, reliability is ensured when theconductive member 73 is carried, and the layout of theconductive member 73 and thecopper foil 72 is facilitated when multilayer wiring is adopted. - In some examples, as shown in
FIG. 11 , when the printedcircuit board 44 is relatively thick, the multilayer wiring may be adopted, that is, theconductive member 73 is arranged on both the upper surface and the lower surface of the printedcircuit board 44, and thecopper foil 72 is arranged in an inner layer of the printedcircuit board 44 through a processing process of the printedcircuit board 44. In an example, the printedcircuit board 44 is provided with a threading throughhole 713 and theconductive member 73 penetrates through the threading throughhole 713 so that the routing of theconductive member 73 on the upper surface and the lower surface is achieved, thereby reducing the number ofconductive members 73 and the number of solder joints. - In an example, as shown in
FIG. 11 , multipleconductive members 73 are disposed on the printedcircuit board 44 and insulation distances are provided between the multipleconductive members 73. A certain insulation distance needs to be ensured betweenconductive members 73, thereby avoiding an insulation failure in a severe working condition. For a magnitude of the insulation distance, reference is made to the related art and the details are not repeated here. - In consideration of a dimension of the electric motor, in an example, an outer diameter of the printed
circuit board 44 is less than or equal to an outer diameter of thestator core 411, thereby reducing the space occupied by the printedcircuit board 44 and facilitating installation. - In some examples, the printed
circuit board 44 can be fixedly connected to an end of thestator core 411, and the printedcircuit board 44 is fixed to thestator core 411 so that the structure is mounted stably. - In an example, as shown in
FIG. 11 , a first region and a second region are provided on the printedcircuit board 44, the first region is covered with thecopper foil 72, and the second region is provided with at least oneheat dissipation hole 712, so as to achieve heat dissipation, improve safety, and extend a service life; thecopper foil 72 and theheat dissipation hole 712 are disposed in different regions, so as to prevent thecopper foil 72 from covering theheat dissipation hole 712. The first region and the second region are arranged according to actual situations, which is not limited. In some examples, theheat dissipation hole 712 and the threading throughhole 713 are different and may be different in magnitude, shape, or the like, and a foolproof setting is performed so as to avoid a routing error of theconductive member 73. - The
brushless motor 40 in the preceding examples is the outer rotor brushless motor, and the technical solution in the present application may also be applied to an inner rotor brushless motor. The specific structure of the inner rotor brushless motor is described below in conjunction withFIGS. 13 and 14 . - Referring to
FIG. 13 , the inner rotor brushless motor includes astator 51, where thestator 51 includes astator core 511, an insulatingmember 512 disposed on thestator core 511, and a coil winding 513 wound on the insulatingmember 512. Thestator core 511 is formed by joiningmultiple split cores 511a into which thestator core 511 is split in a circumferential direction of thestator core 511. Specifically, thesplit core 511a is formed with a straight groove and a boss extending along a direction of an electric motor shaft. When themultiple split cores 511a are assembled into thestator core 511, the straight groove on eachsplit core 511a forms a snap-fit structure with the boss of asplit core 511a adjacent to the eachsplit core 511a, thereby limiting thestator core 511 on a plane perpendicular to the electric motor shaft. The preceding limiting principle is similar to that of the brushless motor in the preceding example and is not repeated here. - Referring to
FIG. 14 , the coil winding 513 is wound on thestator core 511 with the insulatingmember 512 between the coil winding 513 and thestator core 511. The coil winding 513 on thesplit core 511a is wound on the stator tooth along an extension direction of the stator tooth and forms a first layer of winding, and the coil winding 513 forms a second layer of winding according to this winding rule until the last layer of winding is formed. Since the width of the stator tooth in the extension direction of the stator tooth is basically consistent, the space for placing the coil winding 513 and between two adjacent stator teeth gradually decreases in the extension direction of the stator tooth. Thus, a length of the last layer of winding wound on the stator tooth along the extension direction of the stator tooth is the smallest. It is to be understood that a length of the first layer of winding along the extension direction of the stator tooth, a length of the second layer of winding along the extension direction of the stator tooth, until a length of the last layer of winding along the extension direction of the stator tooth gradually decrease. - In this example, a cross-section of the coil winding 513 is non-circular. Specifically, the cross-section of the coil winding 513 may be configured to be one of or a combination of a rectangle, an ellipse, or a gradient shape. In this example, the cross-section of the coil winding 513 is a rectangle, and a cross-sectional area of the coil winding 513, that is, an area of the rectangle, is configured to be less than or equal to 5 mm2. In some examples, the cross-sectional area of the coil winding 513 is configured to be less than or equal to 3 mm2.
- Referring to
FIG. 15 , theelectric drill 100 further includes adriver circuit 50 and acontrol module 60, which are used for controlling and driving thebrushless motor 40 to operate. Driven by a drive signal outputted by thecontrol module 60, thedriver circuit 50 distributes a voltage to phases of windings on thestator 41 of thebrushless motor 40 according to a certain logical relationship such that thebrushless motor 40 starts and generates continuous torque. Specifically, thedriver circuit 50 includes multiple electronic switches. In some examples, the electronic switches include field-effect transistors (FETs). In other examples, the electronic switches include insulated-gate bipolar transistors (IGBTs). In some examples, thedriver circuit 50 is a three-phase bridge circuit. Thedriver circuit 50 includes three electronic switches Q1, Q3, and Q5 provided as high-side switches and three electronic switches Q2, Q4, and Q6 provided as low-side switches. Thedriver circuit 50 is a circuit that switches energized states of the phases of windings of thebrushless motor 40 and controls energized currents of the phases of windings to drive thebrushless motor 40 to rotate. The turn-on sequence and time of each phase of windings depend on a position of therotor 42 of thebrushless motor 40. To make thebrushless motor 40 rotate, thedriver circuit 50 has multiple driving states. In a driving state, stator windings of theelectric motor 40 generate a magnetic field, and thecontrol module 60 outputs a control signal based on different positions of the rotor to control thedriver circuit 50 to switch between the driving states. Therefore, the magnetic field generated by the stator windings rotates to drive the rotor to rotate, thereby driving thebrushless motor 40. - In some examples, output power of the
brushless motor 40 using the preceding technical solution ranges from 120 W to 3000 W In some examples, the output power of thebrushless motor 40 ranges from 120 W to 500 W In some examples, the output power of thebrushless motor 40 ranges from 500 W to 1500 W In some examples, the output power of thebrushless motor 40 ranges from 1500 W to 2000 W In some examples, the output power of thebrushless motor 40 ranges from 2000 W to 2500 W In some examples, the output power of thebrushless motor 40 ranges from 2500 W to 3000 W - In some examples, a rotational speed of the
brushless motor 40 using the preceding technical solution ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of thebrushless motor 40 ranges from 15000 rpm to 20000 rpm. In some examples, the rotational speed of thebrushless motor 40 ranges from 20000 rpm to 30000 rpm. In some examples, the rotational speed of thebrushless motor 40 ranges from 30000 rpm to 40000 rpm. In some examples, the rotational speed of thebrushless motor 40 ranges from 40000 rpm to 60000 rpm. - In some examples, output torque of the
brushless motor 40 using the preceding technical solution ranges from 0.1 N·m to 8 N·m. In some examples, the output torque of thebrushless motor 40 ranges from 0.1 N·m to 3 N·m. In some examples, the output torque of thebrushless motor 40 ranges from 3 N·m to 5 N m. In some examples, the output torque of thebrushless motor 40 ranges from 5 N·m to 8 N·m. - In the preceding technical solution of the present application, the brushless motor in which the cross-section of the coil winding is non-circular is applied. Compared with a conventional electric motor in which a cross-section of a coil winding is circular, the brushless motor in the present application has a higher slot fill factor so that the proportion of a high efficiency region of the efficiency of the brushless motor is higher. Next, two brushless motors with the same volume are used as an example. It is assumed that one of the brushless motors is a common electric motor, that is, the cross-section of the coil winding is circular. The common electric motor is simply referred to as a round wire motor. It is assumed that the other brushless motor is the brushless motor provided in the present application, and the cross-section of the coil winding is a rectangle. An inner diameter of a copper wire in the coil winding of the round wire motor is set to 0.75 mm. A copper wire in the coil winding of a flat wire motor has a width of 1.4 mm and a thickness of 0.5 mm. In addition, the two brushless motors have the same number of winding turns of the coil winding on the stator core. Table 1 is an effect comparison table of the round wire motor and the flat wire motor.
Table 1 Test results of the round wire motor and the flat wire motor Round Wire Motor Flat Wire Motor Slot fill factor 31.1% 49.8% Copper weight 43.9 75.1 Average temperature rise of the winding (°C) 147.0 101.5 - As can be seen from Table 1, compared with the round wire motor with the same specification, the flat wire motor has a smaller gap and a larger contact area between coils due to the rectangular cross-section of the coil winding so that the thermal conductivity between the coil windings of the flat wire motor is better and the temperature rise of the electric motor can be effectively suppressed.
- On the other hand, as can be seen from the test results, compared with the round wire motor with the same specification, the flat wire motor has a significantly higher slot fill factor than the round wire motor so that the flat wire motor has lower power consumption and higher working efficiency.
- In this example, the high efficiency region of the motor efficiency of the brushless motor with a rectangular cross-section of the coil winding accounts for 20% or more. The high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
-
FIGS. 16 and17 show the motor efficiency maps of the round wire motor and the flat wire motor, respectively. The round wire motor and the flat wire motor have basically the same specifications. The round wire motor and the flat wire motor with the specifications that the outer diameter of the stator laminations is 48 mm and the stack length of the stator core is 20 mm are used as an example. An area of the high efficiency region of the flat wire motor is significantly greater than an area of the high efficiency region of the round wire motor. In the test, a ratio of the area of the high efficiency region in which the efficiency of the flat wire motor is greater than 83% to the area of the high efficiency region in which the efficiency of the round wire motor is greater than 83% is greater than or equal to 7. It is to be understood that the high efficiency region of the motor efficiency of the flat wire motor is increased by a factor of 7 relative to that of the round wire motor. Thus, the flat wire motor has a larger high efficiency region than the round wire motor. Therefore, the flat wire motor provided in the present application can improve the working efficiency of the power tool when applied to the power tool. - That the coil winding with a non-circular cross-section is applied to the brushless motor and the preceding brushless motor is applied to the power tool to improve the working efficiency of the power tool is described in detail in the preceding examples. On the one hand, the cross-section of the coil winding of the brushless motor is configured to be non-circular so that the gap between coils becomes smaller and the contact area between coils becomes larger. In this manner, the thermal conductivity of the brushless motor is better and the temperature rise of the brushless motor can be effectively suppressed. On the other hand, the brushless motor in the present application has a higher slot fill factor so that the proportion of the high efficiency region of the motor efficiency of the brushless motor in the present application is higher, and the brushless motor can improve the working efficiency of the whole machine when applied to the power tool.
- In fact, the technical solution of the present application with respect to the brushless motor can also be applied to other types of power tool.
FIG. 18 shows a second example of the power tool of the present application. The power tool is a table tool, in particular, atable saw 200. The table saw 200 includes a table 210 with aworkplane 211 on which a workpiece can be placed. Specifically, theworkplane 211 is an upper surface of the table 210 and for a user to perform a cutting operation on. A hole is formed on theworkplane 211. The table saw 200 further includes asaw blade 220 for cutting the workpiece. Thesaw blade 220 passes through the hole and extends. The table saw 200 further includes an electric motor for supplying power, and thesaw blade 220 is driven by the electric motor disposed below theworkplane 211 to rotate to implement a cutting function. Thesaw blade 220 is used for cutting the workpiece pushed along theworkplane 211 and in contact with thesaw blade 220, such as wood. Specifically, the electric motor is preferably configured to be a brushless motor. In some examples, the table saw 200 further includes a power supply device (not shown in the figure) electrically connected to the table saw 200 to supply electrical energy to the table saw 200. The power supply device may be a battery pack or a mains connector. In this example, preferably, the power supply device is configured to be the battery pack, where the battery pack is detachably connected to the table saw 200. Specifically, a rated output voltage of the battery pack is greater than or equal to 18 V. - The electric motor in this example is similar in structure to the brushless motor in the first example and is not described in detail here. It is to be noted that the cross-section of the coil winding of the brushless motor is a rectangle, and the cross-sectional area of the coil winding, that is, the area of the rectangle, is configured to be less than or equal to 5 mm2. In some examples, the cross-sectional area of the coil winding is configured to be less than or equal to 3 mm2.
- Specifically, the stack length of the stator core of the brushless motor is greater than or equal to 30 mm and less than or equal to 120 mm. In some examples, the stack length of the stator core is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the stack length of the stator core is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length of the stator core is greater than or equal to 70 mm and less than or equal to 90 mm. In some examples, the stack length of the stator core is greater than or equal to 90 mm and less than or equal to 120 mm. The outer diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 120 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 60 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 60 mm and less than or equal to 80 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 80 mm and less than or equal to 100 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 100 mm and less than or equal to 120 mm. The inner diameter of the stator laminations is greater than or equal to 20 mm and less than or equal to 70 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 20 mm and less than or equal to 40 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 70 mm.
- Specifically, the output power of the brushless motor using the preceding technical solution ranges from 500 W to 5000 W In some examples, the output power of the brushless motor ranges from 500 W to 1500 W In some examples, the output power of the brushless motor ranges from 1500 W to 3000 W In some examples, the output power of the brushless motor ranges from 3000 W to 5000 W In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 20000 rpm. In some examples, the rotational speed of the brushless motor ranges from 20000 rpm to 30000 rpm. In some examples, the rotational speed of the brushless motor ranges from 30000 rpm to 40000 rpm. In some examples, the rotational speed of the brushless motor ranges from 40000 rpm to 60000 rpm. In some examples, the output torque of the brushless motor ranges from 0.5 N·m to 10 N.m. In some examples, the output torque of the brushless motor ranges from 0.5 N·m to 2 N·m. In some examples, the output torque of the brushless motor ranges from 2 N·m to 5 N·m. In some examples, the output torque of the brushless motor ranges from 5 N·m to 8 N·m. In some examples, the output torque of the brushless motor ranges from 8 N·m to 10 N·m.
- In this example, the high efficiency region of the motor efficiency of the brushless motor using the preceding technical solution accounts for 20% or more. The high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
- In fact, the technical solution of the present application with respect to the brushless motor can also be applied to other types of power tool.
FIG. 19 shows a third example of the power tool of the present application. The power tool is an outdoor tool, in particular, a ridingmower 300. Specifically, the ridingmower 300 includes arack 311, aseat 312, apower output assembly 313, a movingassembly 314, anoperating device 315, and apower supply device 316. - The
rack 311 is used for carrying theseat 312 and at least partially extends in a front and rear direction. Theseat 312 is used for an operator to sit on and is mounted to therack 311. - The
power output assembly 313 includes a first electric motor for driving a mowing element to rotate at a high speed and a second electric motor for driving the movingassembly 314 to move. Thepower supply device 316 is used for powering the first electric motor, the second electric motor, and other electronic assemblies on the ridingmower 300. - In some examples, the
power supply device 316 is disposed on a rear side of theseat 312 on therack 311. In some examples, thepower supply device 316 includes multiple battery packs for supplying power to the power tool. In this example, preferably, a rated output voltage of the battery pack is configured to be greater than or equal to 18 V. - The operating
device 315 is used by the operator to control the ridingmower 300 to move and/or determine whether the ridingmower 300 enters a working state. - In this example, preferably, the first electric motor or the second electric motor is configured to be a brushless motor and is similar in structure to the brushless motor in the first example, which is not described in detail here. It is to be noted that, in this example, the cross-section of the coil winding of the brushless motor is a rectangle, and the cross-sectional area of the coil winding, that is, the area of the rectangle, is configured to be less than or equal to 5 mm2. In some examples, the cross-sectional area of the coil winding is configured to be less than or equal to 3 mm2.
- Specifically, the stack length of the stator core of the brushless motor is greater than or equal to 10 mm and less than or equal to 100 mm. In some examples, the stack length of the stator core is greater than or equal to 10 mm and less than or equal to 30 mm. In some examples, the stack length of the stator core is greater than or equal to 30 mm and less than or equal to 50 mm. In some examples, the stack length of the stator core is greater than or equal to 50 mm and less than or equal to 70 mm. In some examples, the stack length of the stator core is greater than or equal to 70 mm and less than or equal to 100 mm. The outer diameter of the stator laminations is greater than or equal to 30 mm and less than or equal to 120 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 30 mm and less than or equal to 60 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 60 mm and less than or equal to 80 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 80 mm and less than or equal to 100 mm. In some examples, the outer diameter of the stator laminations is greater than or equal to 100 mm and less than or equal to 120 mm. The inner diameter of the stator laminations is greater than or equal to 10 mm and less than or equal to 110 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 10 mm and less than or equal to 40 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 40 mm and less than or equal to 70 mm. In some examples, the inner diameter of the stator laminations is greater than or equal to 70 mm and less than or equal to 110 mm.
- Specifically, the output power of the brushless motor using the preceding technical solution ranges from 500 W to 5000 W In some examples, the output power of the brushless motor ranges from 500 W to 1500 W In some examples, the output power of the brushless motor ranges from 1500 W to 3000 W In some examples, the output power of the brushless motor ranges from 3000 W to 5000 W In some examples, the rotational speed of the brushless motor ranges from 15000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 2000 rpm to 100000 rpm. In some examples, the rotational speed of the brushless motor ranges from 20000 rpm to 40000 rpm. In some examples, the rotational speed of the brushless motor ranges from 40000 rpm to 60000 rpm. In some examples, the rotational speed of the brushless motor ranges from 60000 rpm to 80000 rpm. In some examples, the rotational speed of the brushless motor ranges from 80000 rpm to 100000 rpm. In some examples, the output torque of the brushless motor ranges from 0.2 N·m to 20 N·m. In some examples, the output torque of the brushless motor ranges from 0.2 N·m to 5 N·m. In some examples, the output torque of the brushless motor ranges from 5 N·m to 15 N·m. In some examples, the output torque of the brushless motor ranges from 15 N·m to 20 N·m.
- In this manner, the high efficiency region of the motor efficiency of the brushless motor using the preceding technical solution accounts for 20% or more. The high efficiency region of the brushless motor is a region in which the motor efficiency is greater than or equal to 80%.
Claims (15)
- A power tool (100, 200, 300), comprising:a housing (10); andan electric motor (40) disposed in the housing, wherein output power of the electric motor is greater than or equal to 120 W and less than or equal to 4500 W;wherein the electric motor comprises at least a stator (41), a rotor (42), and a plurality of coil windings (413) disposed on the stator,characterized in thata cross-section (413a) of each of the plurality of coil windings is non-circular, and a slot fill factor of the electric motor is greater than or equal to 40%.
- The power tool of claim 1, wherein the stator comprises a stator core (411) formed by stacking a plurality of stator laminations (4111) and an insulating member (412) disposed on the stator core, and each of the plurality of coil windings is wound on the insulating member.
- The power tool of claim 2, wherein an outer diameter of the plurality of stator laminations is greater than or equal to 30 mm and less than or equal to 100 mm; and an inner diameter of the plurality of stator laminations is greater than or equal to 10 mm and less than or equal to 60 mm.
- The power tool of claim 2, wherein a stack length of the stator core is greater than or equal to 5 mm and less than or equal to 80 mm.
- The power tool of claim 2, wherein the stator core is formed by joining a plurality of split cores (411a) into which the stator core is split in a circumferential direction of the stator core.
- The power tool of claim 1, wherein the cross-section of each of the plurality of coil windings comprises a rectangle, an ellipse, or a gradient shape.
- The power tool of claim 6, wherein a cross-sectional area of each of the plurality of coil windings is configured to be less than or equal to 5 mm2.
- The power tool of claim 1, wherein a rotational speed of the electric motor is greater than or equal to 15000 rpm and less than or equal to 60000 rpm.
- The power tool of claim 1, wherein output torque of the electric motor is greater than or equal to 0.1 N·m and less than or equal to 8 N·m.
- The power tool of claim 1, wherein a high efficiency region of motor efficiency accounts for 20% or more, and the high efficiency region is a region in which the motor efficiency is greater than or equal to 80%.
- The power tool of claim 1, wherein the electric motor comprises a printed circuit board (44) and a conductive assembly disposed on the printed circuit board, and the conductive assembly is used for achieving electrical connections between the plurality of coil windings.
- The power tool of claim 11, wherein the conductive assembly comprises a conductive member (73) and a copper foil (72), the copper foil is disposed on the printed circuit board, and the conductive member is connected in parallel to the copper foil.
- The power tool of claim 12, wherein a sum of cross-sectional areas of the conductive member and the copper foil is Scu, a sum of cross-sectional areas of coil windings soldered in correspondence with the conductive member and the copper foil is Sw, and Scu ≥ Sw.
- The power tool of claim 11, wherein a thickness of the printed circuit board satisfies that 0.8 mm ≤ h ≤ 5 mm.
- The power tool of claim 1, wherein the electric motor is a brushless motor driven by a driver circuit (50) to operate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111630035 | 2021-12-28 | ||
CN202222498842.7U CN218276381U (en) | 2022-09-21 | 2022-09-21 | Brushless motors and power tools |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4205910A1 EP4205910A1 (en) | 2023-07-05 |
EP4205910B1 true EP4205910B1 (en) | 2025-01-29 |
Family
ID=84421423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22211541.2A Active EP4205910B1 (en) | 2021-12-28 | 2022-12-06 | Power tool |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230208241A1 (en) |
EP (1) | EP4205910B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220060073A1 (en) * | 2020-08-19 | 2022-02-24 | Honeywell International Inc. | Electric machine stator winding |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009056676A1 (en) * | 2009-12-02 | 2011-06-09 | Volkswagen Ag | Winding for an electric machine and a method for producing such a winding |
EP2524773B1 (en) * | 2011-05-19 | 2017-06-21 | Black & Decker Inc. | Electronic power apparatus for a power tool |
DE102013212087C5 (en) * | 2013-06-25 | 2019-12-12 | Breuckmann GmbH & Co. KG | Method for producing a coil |
DE102013012659B4 (en) * | 2013-07-30 | 2022-12-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process and embossing tool for the production of an electrotechnical coil |
CN106571725A (en) * | 2015-10-09 | 2017-04-19 | 德昌电机(深圳)有限公司 | Air flow adjusting device |
US10328567B2 (en) * | 2015-10-14 | 2019-06-25 | Black & Decker Inc. | Brushless motor system for power tools |
US10236745B2 (en) * | 2016-06-07 | 2019-03-19 | Nidec Corporation | Motor |
TWM576750U (en) * | 2017-07-25 | 2019-04-11 | 美商米沃奇電子工具公司 | Electrical composition, electric device system, battery pack, electric motor, motor assembly and electric motor assembly |
EP3578313A1 (en) * | 2018-06-06 | 2019-12-11 | HILTI Aktiengesellschaft | Setting device |
WO2021071171A1 (en) * | 2019-10-11 | 2021-04-15 | 주식회사 아모텍 | Stator for electric motor, and electric motor comprising same |
US20230402899A1 (en) * | 2020-10-29 | 2023-12-14 | Koki Holdings Co., Ltd. | Work machine |
JP2023010183A (en) * | 2021-07-09 | 2023-01-20 | 株式会社マキタ | electric work machine |
-
2022
- 2022-12-06 EP EP22211541.2A patent/EP4205910B1/en active Active
- 2022-12-09 US US18/078,472 patent/US20230208241A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220060073A1 (en) * | 2020-08-19 | 2022-02-24 | Honeywell International Inc. | Electric machine stator winding |
Also Published As
Publication number | Publication date |
---|---|
US20230208241A1 (en) | 2023-06-29 |
EP4205910A1 (en) | 2023-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070210733A1 (en) | Electronically commutated motor and control system | |
US8115361B2 (en) | Coil assembly for electrical rotating machine, stator for electrical rotating machine, and electrical rotating machine | |
US11870316B2 (en) | Brushless motor including a nested bearing bridge | |
US10027196B2 (en) | Electric tool | |
CN109863668B (en) | Motor and Stator with Busbar and End Face Assemblies | |
US20240405650A1 (en) | Brushless dc motor having high power density for power tool | |
JP2017017975A (en) | Electric compressor | |
EP4205910B1 (en) | Power tool | |
CN116352661A (en) | Hand-held electric tool, bench tool and outdoor tool | |
CN219611536U (en) | power tool | |
JP6507773B2 (en) | Hand-held power tool | |
JP2002291261A (en) | Power converter apparatus | |
CN222339286U (en) | Power tools and walking equipment | |
US20240421647A1 (en) | Stator | |
CN108604846B (en) | Module for controlling the power supply of an electric motor | |
KR20060129648A (en) | Brushless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231206 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20241204 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |