[go: up one dir, main page]

EP4203185B1 - Improved wideband wire antenna - Google Patents

Improved wideband wire antenna Download PDF

Info

Publication number
EP4203185B1
EP4203185B1 EP22215304.1A EP22215304A EP4203185B1 EP 4203185 B1 EP4203185 B1 EP 4203185B1 EP 22215304 A EP22215304 A EP 22215304A EP 4203185 B1 EP4203185 B1 EP 4203185B1
Authority
EP
European Patent Office
Prior art keywords
relative electrical
interstices
height
substrate
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22215304.1A
Other languages
German (de)
French (fr)
Other versions
EP4203185A1 (en
EP4203185C0 (en
Inventor
Jefferson Champion
Stéphane Mallegol
Ismaël Pele
Erwan Goron
Jessica Benedicto
Noham Guy Philippe MARTIN
Rozenn ALLANIC
Cédric QUENDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Thales SA
Univerdite de Bretagne Occidentale
Original Assignee
Centre National de la Recherche Scientifique CNRS
Thales SA
Univerdite de Bretagne Occidentale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Thales SA, Univerdite de Bretagne Occidentale filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4203185A1 publication Critical patent/EP4203185A1/en
Application granted granted Critical
Publication of EP4203185B1 publication Critical patent/EP4203185B1/en
Publication of EP4203185C0 publication Critical patent/EP4203185C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the present invention relates to the field of wide frequency band wire antennas.
  • the antennas which are used either individually or in a goniometric or interferometric network, must operate in a very wide frequency band and in a circular, linear or double linear polarization, because neither the frequency nor the polarization of the signal to be captured are known a priori. It should be noted that the characteristics of an antenna being the same in reception and in transmission, an antenna can be characterized both in transmission and in reception. In what follows, the behavior in transmission is more often presented.
  • These antennas must have the smallest possible size and, in particular, a low thickness. They must also have radiation performances (gain, quality of radiation patterns, etc.) reproducible from one antenna to another, for network applications or to facilitate their replacement during a maintenance operation.
  • the radiating element consists of a metal wire which is shaped to describe, in a so-called radiating plane, a spiral-shaped pattern for a spiral antenna, or a log-periodic-shaped pattern for a log-periodic antenna, or a hybridization of these two geometries for a sinuous antenna (as defined for example in the article by Crocker DA et al. “Sinuous Antenna Design for UWB Radar” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, DOI: 10.1109/APUSNCURSINRSM.2019.8888630 ).
  • the metal wire is wound on itself so as to form, when viewed from above, a spiral.
  • This spiral can for example be an Archimedean spiral, a logarithmic spiral, or other.
  • several metal wires can be used to form as many spirals nested between each other.
  • the wire is shaped so as to have, when viewed from above, several segments. Each segment is inscribed in an angular sector, extends radially and has indentations. The length of each tooth and the spacing between two successive teeth of a segment follow a logarithmic progression.
  • the radiating element is produced by etching a thin metal layer, for example a copper layer between 2 and 40 ⁇ m, for example equal to 17.5 ⁇ m or 35 ⁇ m, deposited on a thin support film.
  • a thin metal layer for example a copper layer between 2 and 40 ⁇ m, for example equal to 17.5 ⁇ m or 35 ⁇ m, deposited on a thin support film.
  • the radiating plane is located above a metal reflecting plane.
  • the wave emitted by the radiating element towards the rear of the radiating plane is reflected forward by the reflecting plane.
  • the wave is phase-shifted by an angle ⁇ .
  • the reflected wave propagates forward and interferes, beyond the radiating plane, with the wave emitted by the radiating element towards the front of the radiating plane. This interference is constructive when, for a position of the wave front, the phases of the waves emitted forward and reflected forward are close. This occurs if the distance separating the radiating plane and the reflecting plane is close to ⁇ /4, where ⁇ is the wavelength in the dielectric medium between the radiating plane and the reflecting plane of the wave emitted by the radiating element.
  • the frequency band of such an antenna is restricted because of the relationship between the operating frequency of the antenna (i.e. the wavelength of the emitted wave) and the fixed distance between the radiating plane and the reflecting plane (which is defined by construction).
  • an antenna comprising, interposed between the radiating plane and the reflecting plane, a substrate having a relative electrical permittivity which varies as a function of the distance from the axis of the antenna, here called radius r.
  • the fixed distance between the radiating plane and the reflecting plane is thus overcome by modifying the wavelength in the substrate as a function of the radius by varying the value of the permittivity.
  • only one ring of the antenna functions correctly, i.e. allows for constructive interference in front of the radiating plane in transmission.
  • a permittivity gradient along the radius r is obtained by producing, in a disk made of a first dielectric material, vertical and through vias (empty or filled with a second dielectric material).
  • a permittivity gradient along the radius r is obtained by associating rings made of different dielectric materials, the lateral faces of the rings being beveled to obtain a continuous permittivity gradient along the radius r.
  • a first problem has been identified. It relates to the generation of creeping waves on the surface of the reflecting plane. Once generated, a creeping wave can disturb the reflection of the wave emitted backwards by the radiating element and consequently alter the constructive interference that one seeks to create with the wave emitted forwards in front of the radiating plane.
  • This first problem is caused by the substrate material in the immediate vicinity of the reflecting plane, which has too high a local relative electric permittivity. It should ideally be equal to or close to unity.
  • a second problem has been identified. It is related to the coupling established between two successive strands of the radiating element. Since each strand is associated with a specific operating frequency, such coupling degrades the accuracy of the antenna.
  • This second problem is caused by the substrate material in the immediate vicinity of the radiating plane, which has too high a local relative electric permittivity. It should ideally be equal to or close to unity.
  • a third problem has been identified. It lies in the disruption of the wave path when crossing the substrate.
  • the interface between two successive rings constitutes a jump in the local relative permittivity, i.e. an index jump. This interface therefore disrupts the direction of propagation of the waves by refraction.
  • the reflected wave no longer allows us to precisely establish constructive interference in front of the reflecting plane.
  • the aim of this invention is to solve these problems.
  • the invention relates to a wide-band frequency wire antenna comprising: a radiating element, the radiating element comprising at least one metal wire shaped around an axis of the antenna, in a transverse radiating plane; a reflecting plane, the reflecting plane being transverse to the axis, the radiating plane being located at a predetermined height (h0) above the reflecting plane; and a substrate, the substrate being interposed between the radiating element and the reflecting plane, and having a constant thickness, characterized in that a local relative electrical permittivity and/or a local relative electrical permeability of the substrate is a function of the radius, i.e. of the distance from the axis, and of a height, i.e. of a distance from the reflecting plane, the local relative electrical permittivity being, at constant height, increasing as a function of the radius, and, at constant radius, increasing as a function of the height at least for a portion of the substrate in the vicinity of the reflecting plane.
  • the wide frequency band wire antenna 2 comprises, stacked along an axis A, a reflector plane 8, a substrate 6 and a radiating element 4.
  • An origin O is chosen at the intersection of the axis A and the reflecting plane 8.
  • the coordinate along the A axis is called height h. It is therefore the distance to the reflecting plane 8.
  • a direction D is chosen extending radially with respect to the axis A in the reflecting plane 8.
  • the coordinate according to the direction D is called radius r. It is therefore the distance to the axis A.
  • the radiating element 4 is arranged in a radiating plane S, located at a height h 0 from the reflector plane 8.
  • the radiating element 4 is for example produced by etching a metal layer carried by a support film 5.
  • the radiating element 4 comprises, for example, first and second metal wires 10 and 12 which are respectively shaped according to a spiral, in particular an Archimedean spiral, around the axis A.
  • the reflecting plane 8 is for example a disk with axis A and radius r 0 . It is made of a metallic material. Its function is to reflect any incident wave whatever its frequency.
  • the substrate 6 has the general external shape of a disk with axis A of radius r 0 and constant thickness, equal to the height h 0 .
  • the substrate 6 is in contact, by a lower surface 14, with the reflecting plane 8.
  • the substrate 6 is in contact, by an upper surface 15, with the radiating element 4, or more precisely with the support film 5 of the radiating element 4.
  • a feed device (not shown in the figures) for the radiating element 4 is positioned below the reflector plane 8.
  • the reflector plane 8 and the substrate 6 are advantageously provided with a passage (not shown), along the axis A, for the passage of the feed lines for the radiating element 4.
  • the substrate 6 has a local relative electrical permittivity ⁇ r at the point P(r,h) which is a function of both the radius r and the height h. It can therefore be written: ⁇ r (r,h).
  • the material of the substrate 6 in contact with the reflecting plane 8 has a low permittivity such as to avoid the generation of creeping waves.
  • the dependence of the permittivity on h, for a given radius r is such that for h close to h 0 , that is to say for the points P(r, h) of the substrate 6 in the immediate vicinity of the radiating plane 4, the permittivity is minimal, preferably equal to unity.
  • the material of the substrate 6 in contact with the radiating element 4 has a low permittivity such as to avoid coupling between two consecutive strands of the radiating element 4.
  • the substrate material does not disturb the propagation of waves passing through the substrate.
  • the relative electrical permittivity considered is an effective permittivity, obtained by integration over the height h, at a given radius r.
  • THE figure 3 represents, in gray level, an example of a substrate whose permittivity ⁇ r at a point P(r, h) depends on the radius r and the height h of this point.
  • the local relative electric permittivity combines the three improvements identified above, namely a value close to unity on the lower surface 14, a value close to unity on the upper surface 15, and continuity at all points.
  • the local permittivity for a given radius r, has a first minimum for a zero height, then increases with the height, to reach a maximum (for example in the middle of the substrate (h 0 /2), then decreases with the height h, to reach a second minimum for the height h 0 .
  • y is a constant and predefined value parameter
  • n is a variable which can be an integer or a function depending on r and/or h
  • the local relative electric permittivity ⁇ r is a cosine function of the height h, at a given radius r.
  • e min which is preferably 1.
  • the effective permittivity at a given radius r i.e. the integral according to the variable h of the local relative electrical permittivity ⁇ r (r,h) between 0 and h 0 , is a function of the radius r adapted to allow the desired constructive interference, the principle on which this antenna technology is based.
  • an additive manufacturing process is preferably used, for example three-dimensional printing.
  • the material constituting the substrate 6 results from the combination of at least two materials, respectively a first material, having a first low relative permittivity, and a second material, having a second high relative permittivity.
  • the relative concentration of the first and second materials at a point P(r,h) is a function of the coordinates h and r.
  • the first material is deposited so as to have a plurality of first interstices, some of said first interstices being filled by the second material and/or the second material has a plurality of second interstices, some of said second interstices being filled by the first material.
  • three-dimensional printing makes it possible to structure the substrate into cells.
  • the first material is deposited to form the walls 32 of the cell while providing a gap 31, which is left empty.
  • the first material is deposited to form the walls 34 of the cell, while leaving a gap 33, the latter then being filled with the second material.
  • the second material is deposited to form the walls 36 of the cell while leaving a gap 35, the latter then being filled with the first material.
  • the second material is deposited to form the walls 37 of the cell, without leaving any gaps.
  • the cell is full.
  • the thickness of the walls (and therefore the size of the gaps) is adjusted for each cell so as to obtain the value of the local relative electrical permittivity sought, taking into account the properties of the materials used.
  • the first interstices and/or the second interstices have a characteristic dimension which depends on the distance from the axis and/or the distance from the radiating plane and/or the reflecting plane.
  • the first interstices and/or the second interstices have a rectangular parallelepiped shape (as a first approximation). Alternatively, they have a spherical shape.
  • the largest dimension of a gap is less than ⁇ /8, preferably less than ⁇ /10, more preferably less than ⁇ /15.
  • the structure of the substrate has, due to this alveolar structure, good mechanical resistance.
  • FIG. 5 is a graph representing the gain (in Decibel dB) as a function of the operating frequency (in Hertz Hz) of an antenna according to the state of the art and of an antenna according to the invention. The gain is here evaluated along the axis of the antenna.
  • the gain of the antenna according to the invention is much more stable in frequency with gain values often higher than those of an antenna according to the state of the art.
  • the antenna instead of characterizing the antenna by a local relative electrical permittivity function of r and h, it could be characterized by a local relative electrical permeability function of r and h.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Communication Cables (AREA)

Description

La présente invention a pour domaine celui des antennes filaires à large bande de fréquences.The present invention relates to the field of wide frequency band wire antennas.

Dans un système d'écoute électromagnétique, par exemple aéroporté, les antennes, qui sont utilisées, soit unitairement, soit en réseau goniométrique ou interférométrique, doivent fonctionner dans une très large bande de fréquences et dans une polarisation circulaire, linéaire ou double linéaire, car ni la fréquence ni la polarisation du signal à capter ne sont a priori connues. Il est à noter que les caractéristiques d'une antenne étant les mêmes en réception et en émission, une antenne peut être caractérisée aussi bien en émission qu'en réception. Dans ce qui suit le comportement en émission est plus souvent présenté.In an electromagnetic listening system, for example airborne, the antennas, which are used either individually or in a goniometric or interferometric network, must operate in a very wide frequency band and in a circular, linear or double linear polarization, because neither the frequency nor the polarization of the signal to be captured are known a priori. It should be noted that the characteristics of an antenna being the same in reception and in transmission, an antenna can be characterized both in transmission and in reception. In what follows, the behavior in transmission is more often presented.

Ces antennes doivent présenter un encombrement le plus réduit possible et, en particulier, une épaisseur faible. Elles doivent également présenter des performances de rayonnement (gain, qualité des diagrammes de rayonnement, etc.) reproductibles d'une antenne à l'autre, pour des applications en réseau ou pour en faciliter le remplacement lors d'une opération de maintenance.These antennas must have the smallest possible size and, in particular, a low thickness. They must also have radiation performances (gain, quality of radiation patterns, etc.) reproducible from one antenna to another, for network applications or to facilitate their replacement during a maintenance operation.

Dans ce contexte, il est connu d'utiliser des antennes filaires. Dans une telle antenne, l'élément rayonnant est constitué d'un fil métallique qui est conformé pour décrire, dans un plan dit rayonnant, un motif en forme de spirale pour une antenne spirale, ou en forme de log-périodique pour une antenne log-périodique, ou une hybridation de ces deux géométries pour une antenne sinueuse (telle que définie par exemple dans l'article de Crocker D.A. et al. « Sinuous Antenna Design for UWB Radar » 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, DOI: 10.1109/APUSNCURSINRSM.2019.8888630 ).In this context, it is known to use wire antennas. In such an antenna, the radiating element consists of a metal wire which is shaped to describe, in a so-called radiating plane, a spiral-shaped pattern for a spiral antenna, or a log-periodic-shaped pattern for a log-periodic antenna, or a hybridization of these two geometries for a sinuous antenna (as defined for example in the article by Crocker DA et al. “Sinuous Antenna Design for UWB Radar” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, DOI: 10.1109/APUSNCURSINRSM.2019.8888630 ).

Pour une antenne du type en spirale, le fil métallique est enroulé sur lui-même de manière à former, en vue de dessus, une spirale. Cette spirale peut par exemple être une spirale d'Archimède, une spirale logarithmique, ou autre. En variante, plusieurs fils métalliques peuvent être utilisés pour constituer autant de spirales imbriquées les unes entre les autres.For a spiral type antenna, the metal wire is wound on itself so as to form, when viewed from above, a spiral. This spiral can for example be an Archimedean spiral, a logarithmic spiral, or other. Alternatively, several metal wires can be used to form as many spirals nested between each other.

Dans une antenne du type log-périodique, le fil métallique est conformé de manière à comporter, en vue de dessus, plusieurs segments. Chaque segment est inscrit dans un secteur angulaire, s'étend radialement et présente des indentations. La longueur de chaque dent et l'écartement entre deux dents successives d'un segment suivent une progression logarithmique.In a log-periodic antenna, the wire is shaped so as to have, when viewed from above, several segments. Each segment is inscribed in an angular sector, extends radially and has indentations. The length of each tooth and the spacing between two successive teeth of a segment follow a logarithmic progression.

Dans ce qui suit on parlera d'un brin de l'élément rayonnant, qu'il s'agisse d'une spire du fil métallique d'une antenne spirale ou d'une dent d'un segment d'une antenne log-périodique.In the following we will talk about a strand of the radiating element, whether it is a turn of the wire of a spiral antenna or a tooth of a segment of a log-periodic antenna.

En pratique, en technologie planaire, l'élément rayonnant est réalisé par gravure d'une couche métallique fine, par exemple une couche de cuivre entre 2 et 40 µm, par exemple égale à 17,5 µm ou à 35 µm, déposée sur un film de support de faible épaisseur.In practice, in planar technology, the radiating element is produced by etching a thin metal layer, for example a copper layer between 2 and 40 µm, for example equal to 17.5 µm or 35 µm, deposited on a thin support film.

Dans une technologie connue, le plan rayonnant est situé au-dessus d'un plan réflecteur en métal. Dans une telle antenne, l'onde émise par l'élément rayonnant vers l'arrière du plan rayonnant est réfléchie vers l'avant par le plan réflecteur. Lors de cette réflexion, l'onde est déphasée d'un angle π. L'onde réfléchie se propage vers l'avant et vient interférer, au-delà du plan rayonnant, avec l'onde émise par l'élément rayonnant vers l'avant du plan rayonnant. Cette interférence est constructive lorsque, pour une position du front d'onde, les phases des ondes émise vers l'avant et réfléchie vers l'avant sont proches. Ceci se produit si la distance séparant le plan rayonnant et le plan réflecteur est proche de λ/4, où λ est la longueur d'onde dans le milieu diélectrique entre le plan rayonnant et le plan réflecteur de l'onde émise par l'élément rayonnant.In a known technology, the radiating plane is located above a metal reflecting plane. In such an antenna, the wave emitted by the radiating element towards the rear of the radiating plane is reflected forward by the reflecting plane. During this reflection, the wave is phase-shifted by an angle π. The reflected wave propagates forward and interferes, beyond the radiating plane, with the wave emitted by the radiating element towards the front of the radiating plane. This interference is constructive when, for a position of the wave front, the phases of the waves emitted forward and reflected forward are close. This occurs if the distance separating the radiating plane and the reflecting plane is close to λ/4, where λ is the wavelength in the dielectric medium between the radiating plane and the reflecting plane of the wave emitted by the radiating element.

L'épaisseur d'une telle antenne est réduite par rapport à celle d'une antenne selon d'autres technologies connues, notamment d'une antenne à cavité absorbante. De plus, sa fabrication est fortement simplifiée et reproductible.The thickness of such an antenna is reduced compared to that of an antenna according to other known technologies, in particular an absorbing cavity antenna. In addition, its manufacture is greatly simplified and reproducible.

Cependant, la bande de fréquences d'une telle antenne est restreinte à cause de la relation entre la fréquence de fonctionnement de l'antenne (c'est-à-dire la longueur d'onde de l'onde émise) et la distance fixe entre le plan rayonnant et le plan réflecteur (qui est définie par construction).However, the frequency band of such an antenna is restricted because of the relationship between the operating frequency of the antenna (i.e. the wavelength of the emitted wave) and the fixed distance between the radiating plane and the reflecting plane (which is defined by construction).

Pour répondre à cette problématique, la demanderesse a proposé, dans la demande FR 3 003 702 , deux modes de réalisation d'une antenne comportant, interposé entre le plan rayonnant et le plan réflecteur, un substrat présentant un permittivité électrique relative qui varie en fonction de la distance à l'axe de l'antenne, ici dénommée rayon r. On s'affranchit ainsi de la distance fixe entre le plan rayonnant et le plan réflecteur en modifiant la longueur d'onde dans le substrat en fonction du rayon en jouant sur la valeur de la permittivité. A une fréquence donnée, seul un anneau de l'antenne fonctionne correctement, c'est-à-dire permet d'avoir une interférence constructive en avant du plan rayonnant en émission.To address this issue, the applicant proposed, in the application FR 3 003 702 , two embodiments of an antenna comprising, interposed between the radiating plane and the reflecting plane, a substrate having a relative electrical permittivity which varies as a function of the distance from the axis of the antenna, here called radius r. The fixed distance between the radiating plane and the reflecting plane is thus overcome by modifying the wavelength in the substrate as a function of the radius by varying the value of the permittivity. At a given frequency, only one ring of the antenna functions correctly, i.e. allows for constructive interference in front of the radiating plane in transmission.

Dans le premier mode de réalisation, un gradient de permittivité selon le rayon r est obtenu en réalisant, dans un disque fabriqué en un premier matériau diélectrique, des vias verticaux et traversants (vides ou remplis d'un second matériau diélectrique).In the first embodiment, a permittivity gradient along the radius r is obtained by producing, in a disk made of a first dielectric material, vertical and through vias (empty or filled with a second dielectric material).

Cependant, la réalisation de vias est délicate, notamment au centre de l'antenne où leur densité doit être élevée pour réduire la permittivité électrique relative. La tenue mécanique du substrat est alors fortement réduite. De plus, il est difficile de réaliser des vias avec un diamètre inférieur à λ/10, dimension au-dessous de laquelle la propagation d'une onde dans le substrat n'est pas perturbée par la présence de ces vias.However, the production of vias is delicate, especially in the center of the antenna where their density must be high to reduce the relative electrical permittivity. The mechanical strength of the substrate is then greatly reduced. In addition, it is difficult to produce vias with a diameter less than λ/10, a dimension below which the propagation of a wave in the substrate is not disturbed by the presence of these vias.

Dans le second mode de réalisation, un gradient de permittivité selon le rayon r est obtenu en associant des anneaux réalisés dans différents matériaux diélectriques, les faces latérales des anneaux étant biseautées pour obtenir un gradient de permittivité continu selon le rayon r.In the second embodiment, a permittivity gradient along the radius r is obtained by associating rings made of different dielectric materials, the lateral faces of the rings being beveled to obtain a continuous permittivity gradient along the radius r.

Cependant, quel que soit le mode de réalisation, un premier problème a été identifié. Il est relatif à la génération d'ondes rampantes à la surface du plan réflecteur. Une fois générée, une onde rampante peut perturber la réflexion de l'onde émise vers l'arrière par l'élément rayonnant et par conséquent altérer l'interférence constructive que l'on cherche à créer avec l'onde émise vers l'avant en avant du plan rayonnant.However, regardless of the embodiment, a first problem has been identified. It relates to the generation of creeping waves on the surface of the reflecting plane. Once generated, a creeping wave can disturb the reflection of the wave emitted backwards by the radiating element and consequently alter the constructive interference that one seeks to create with the wave emitted forwards in front of the radiating plane.

Ce premier problème est causé par le matériau du substrat à proximité immédiate du plan réflecteur, qui présente une permittivité électrique relative locale trop élevée. Elle devrait idéalement être égale ou proche de l'unité.This first problem is caused by the substrate material in the immediate vicinity of the reflecting plane, which has too high a local relative electric permittivity. It should ideally be equal to or close to unity.

Un second problème a été identifié. Il est lié au couplage s'établissant entre deux brins successifs de l'élément rayonnant. Puisque chaque brin est associé à une fréquence de fonctionnement spécifique, un tel couplage dégrade la précision de l'antenne.A second problem has been identified. It is related to the coupling established between two successive strands of the radiating element. Since each strand is associated with a specific operating frequency, such coupling degrades the accuracy of the antenna.

Ce second problème est causé par le matériau du substrat à proximité immédiate du plan rayonnant, qui présente une permittivité électrique relative locale trop élevée. Elle devrait idéalement être égale ou proche de l'unité.This second problem is caused by the substrate material in the immediate vicinity of the radiating plane, which has too high a local relative electric permittivity. It should ideally be equal to or close to unity.

Un troisième problème a été identifié. Il réside dans la perturbation du trajet des ondes à la traversée du substrat.A third problem has been identified. It lies in the disruption of the wave path when crossing the substrate.

Dans le premier mode de réalisation, notamment au centre de l'antenne associée aux fréquences élevées et donc aux longueurs d'onde courtes, il n'est pas possible de réaliser des vias de diamètre inférieur à λ/10. Les vias réalisés viennent par conséquent perturber par diffraction les ondes traversant le substrat.In the first embodiment, in particular at the center of the antenna associated with high frequencies and therefore short wavelengths, it is not possible to produce vias with a diameter less than λ/10. The vias produced therefore disturb the waves passing through the substrate by diffraction.

Dans le second mode de réalisation, l'interface entre deux anneaux successifs constitue un saut de la permittivité relative locale, c'est-à-dire un saut d'indice. Cette interface vient donc perturber par réfraction la direction de propagation des ondes.In the second embodiment, the interface between two successive rings constitutes a jump in the local relative permittivity, i.e. an index jump. This interface therefore disrupts the direction of propagation of the waves by refraction.

Dans ces deux cas, l'onde réfléchie ne permet plus d'établir précisément une interférence constructive en avant du plan réflecteur.In both cases, the reflected wave no longer allows us to precisely establish constructive interference in front of the reflecting plane.

Ces différents problèmes altèrent par conséquent les propriétés de l'antenne, en particulier son diagramme de rayonnement.These various problems therefore alter the properties of the antenna, in particular its radiation pattern.

Le but de cette invention est de résoudre ces problèmes.The aim of this invention is to solve these problems.

Pour cela l'invention a pour objet une antenne filaire à large bande de fréquences comportant : un élément rayonnant, l'élément rayonnant comportant au moins un fil métallique conformé autour d'un axe de l'antenne, dans un plan rayonnant transversal ; un plan réflecteur, le plan réflecteur étant transversal à l'axe, le plan rayonnant étant situé à une hauteur prédéterminée (h0) au-dessus du plan réflecteur ; et un substrat, le substrat étant interposé entre l'élément rayonnant et le plan réflecteur, et présentant une épaisseur constante, caractérisée en ce qu'une permittivité électrique relative locale et/ou une perméabilité électrique relative locale du substrat est une fonction du rayon, c'est-à-dire de la distance à l'axe, et d'une hauteur, c'est-à-dire d'une distance au plan réflecteur, la permittivité électrique relative locale étant, à hauteur constante, croissante en fonction du rayon, et, à rayon constant, croissante en fonction de la hauteur au moins pour une portion du substrat au voisinage du plan réflecteur.For this purpose, the invention relates to a wide-band frequency wire antenna comprising: a radiating element, the radiating element comprising at least one metal wire shaped around an axis of the antenna, in a transverse radiating plane; a reflecting plane, the reflecting plane being transverse to the axis, the radiating plane being located at a predetermined height (h0) above the reflecting plane; and a substrate, the substrate being interposed between the radiating element and the reflecting plane, and having a constant thickness, characterized in that a local relative electrical permittivity and/or a local relative electrical permeability of the substrate is a function of the radius, i.e. of the distance from the axis, and of a height, i.e. of a distance from the reflecting plane, the local relative electrical permittivity being, at constant height, increasing as a function of the radius, and, at constant radius, increasing as a function of the height at least for a portion of the substrate in the vicinity of the reflecting plane.

Suivant des modes particuliers de réalisation, l'antenne comporte une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement possibles :

  • la permittivité électrique relative locale et/ou la perméabilité électrique relative locale est, à rayon constant, décroissante en fonction de la hauteur au moins pour une portion du substrat au voisinage de l'élément rayonnant.
  • la permittivité électrique relative locale et/ou la perméabilité électrique relative locale est, à rayon constant, une fonction cosinus de la hauteur.
  • la permittivité électrique relative locale et/ou la perméabilité électrique relative locale est une fonction continue du rayon et de la hauteur.
  • le substrat résulte de la combinaison d'au moins un premier matériau présentant une première permittivité électrique relative et/ou une première perméabilité électrique relative, avec un second matériau présentant une seconde permittivité électrique relative différente de la première et/ou une seconde perméabilité électrique relative différente de la première, une concentration relative des premier et second matériaux étant fonction du rayon et de la hauteur.
  • la combinaison des premier et second matériaux est réalisée par la mise en oeuvre d'une technologie de fabrication additive, notamment d'impression tridimensionnelle.
  • le premier matériau présente une pluralité de premiers interstices, certains desdits premiers interstices étant remplis par le second matériau et/ou le second matériau présente une pluralité de seconds interstices, certains desdits seconds interstices étant remplis par le premier matériau.
  • les premiers interstices et/ou les seconds interstices ont une dimension caractéristique qui dépend du rayon et/ou de la hauteur.
  • les premiers interstices et/ou les seconds interstices ont une forme parallélépipédique ou sphérique, la plus grande dimension d'un interstice étant de préférence inférieure à λ/10.
According to particular embodiments, the antenna comprises one or more of the following characteristics, taken in isolation or in all technically possible combinations:
  • the local relative electrical permittivity and/or the local relative electrical permeability is, at constant radius, decreasing as a function of the height at least for a portion of the substrate in the vicinity of the radiating element.
  • the local relative electric permittivity and/or the local relative electric permeability is, at constant radius, a cosine function of the height.
  • the local relative electric permittivity and/or local relative electric permeability is a continuous function of radius and height.
  • the substrate results from the combination of at least a first material having a first relative electrical permittivity and/or a first relative electrical permeability, with a second material having a second relative electrical permittivity different from the first and/or a second relative electrical permeability different from the first, a relative concentration of the first and second materials being a function of the radius and the height.
  • the combination of the first and second materials is achieved by implementing additive manufacturing technology, in particular three-dimensional printing.
  • the first material has a plurality of first interstices, some of said first interstices being filled by the second material and/or the second material has a plurality of second interstices, some of said second interstices being filled by the first material.
  • the first interstices and/or the second interstices have a characteristic dimension which depends on the radius and/or the height.
  • the first interstices and/or the second interstices have a parallelepiped or spherical shape, the largest dimension of an interstice preferably being less than λ/10.

L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui va suivre d'un mode de réalisation particulier, donné uniquement à titre d'exemple non limitatif, cette description étant faite en se référant aux dessins annexés sur lesquels :

  • La figure 1 est une vue en perspective d'une antenne selon l'invention ;
  • La figure 2 est une demi-section selon un plan axial de l'antenne de la figure 1 ;
  • La figure 3 est un graphe représentant la permittivité électrique relative locale dans le substrat de l'antenne de la figure 1 en fonction du rayon r (distance à l'axe A) et la hauteur h (distance au plan réflecteur) ;
  • La figure 4 illustre une structure possible du substrat de l'antenne de la figure 1 permettant d'obtenir la distribution de permittivité électrique relative locale représentée sur la figure 3 ; et,
  • La figure 5 est un graphe représentant le gain en fonction de la fréquence d'une antenne selon l'état de la technique et d'une antenne selon l'invention.
  • Les figures représentent un mode de réalisation préférentiel de l'antenne selon l'invention.
The invention and its advantages will be better understood upon reading the detailed description which follows of a particular embodiment, given solely as a non-limiting example, this description being made with reference to the appended drawings in which:
  • There figure 1 is a perspective view of an antenna according to the invention;
  • There figure 2 is a half-section along an axial plane of the antenna of the figure 1 ;
  • There figure 3 is a graph representing the local relative electrical permittivity in the antenna substrate of the figure 1 as a function of the radius r (distance to the axis A) and the height h (distance to the reflecting plane);
  • There figure 4 illustrates a possible structure of the antenna substrate of the figure 1 allowing to obtain the local relative electrical permittivity distribution represented on the figure 3 ; And,
  • There figure 5 is a graph representing the gain as a function of the frequency of an antenna according to the state of the art and of an antenna according to the invention.
  • The figures represent a preferred embodiment of the antenna according to the invention.

Comme représenté sur les figures 1 et 2, l'antenne filaire à large bande de fréquences 2 comporte, empilés selon un axe A, un plan réflecteur 8, un substrat 6 et un élément rayonnant 4.As shown in the figures 1 And 2 , the wide frequency band wire antenna 2 comprises, stacked along an axis A, a reflector plane 8, a substrate 6 and a radiating element 4.

Une origine O est choisie à l'intersection de l'axe A et du plan réflecteur 8.An origin O is chosen at the intersection of the axis A and the reflecting plane 8.

La coordonnée selon l'axe A est dénommée hauteur h. Il s'agit donc de la distance au plan réflecteur 8.The coordinate along the A axis is called height h. It is therefore the distance to the reflecting plane 8.

Une direction D est choisie s'étendant radialement par rapport à l'axe A dans le plan réflecteur 8. La coordonnée selon la direction D est dénommée rayon r. Il s'agit donc de la distance à l'axe A.A direction D is chosen extending radially with respect to the axis A in the reflecting plane 8. The coordinate according to the direction D is called radius r. It is therefore the distance to the axis A.

L'élément rayonnant 4 est disposé dans un plan rayonnant S, situé à une hauteur h0 du plan réflecteur 8.The radiating element 4 is arranged in a radiating plane S, located at a height h 0 from the reflector plane 8.

L'élément rayonnant 4 est par exemple réalisé par gravure d'une couche métallique portée par un film de support 5.The radiating element 4 is for example produced by etching a metal layer carried by a support film 5.

L'élément rayonnant 4 comporte par exemple des premier et second fils métalliques 10 et 12 qui sont respectivement conformés selon une spirale, notamment d'Archimède, autour de l'axe A.The radiating element 4 comprises, for example, first and second metal wires 10 and 12 which are respectively shaped according to a spiral, in particular an Archimedean spiral, around the axis A.

Le plan réflecteur 8 est par exemple un disque d'axe A et de rayon r0. Il est réalisé en un matériau métallique. Il a pour fonction de réfléchir toute onde incidente quelle que soit sa fréquence.The reflecting plane 8 is for example a disk with axis A and radius r 0 . It is made of a metallic material. Its function is to reflect any incident wave whatever its frequency.

Le substrat 6 présente la forme générale extérieure d'un disque d'axe A de rayon r0 et d'épaisseur constante, égale à la hauteur h0.The substrate 6 has the general external shape of a disk with axis A of radius r 0 and constant thickness, equal to the height h 0 .

Le substrat 6 est en contact, par une surface inférieure 14, avec le plan réflecteur 8. Le substrat 6 est en contact, par une surface supérieure 15, avec l'élément rayonnant 4, ou plus exactement avec le film de support 5 de l'élément rayonnant 4.The substrate 6 is in contact, by a lower surface 14, with the reflecting plane 8. The substrate 6 is in contact, by an upper surface 15, with the radiating element 4, or more precisely with the support film 5 of the radiating element 4.

Un dispositif d'alimentation (non représenté sur les figures) de l'élément rayonnant 4 est positionné au-dessous du plan réflecteur 8. Le plan réflecteur 8 et le substrat 6 sont avantageusement munis d'un passage (non représenté), le long de l'axe A, pour le passage des lignes d'alimentation de l'élément rayonnant 4.A feed device (not shown in the figures) for the radiating element 4 is positioned below the reflector plane 8. The reflector plane 8 and the substrate 6 are advantageously provided with a passage (not shown), along the axis A, for the passage of the feed lines for the radiating element 4.

Plus la fréquence de fonctionnement F augmente, plus la zone active Z de l'antenne 2 se rapproche de l'axe A. C'est donc la partie périphérique de l'antenne 2 qui rayonne aux fréquences de fonctionnement basses et la partie centrale de l'antenne 2 qui rayonne aux fréquences de fonctionnement hautes.The higher the operating frequency F, the closer the active zone Z of antenna 2 gets to axis A. It is therefore the peripheral part of antenna 2 which radiates at low operating frequencies and the central part of antenna 2 which radiates at high operating frequencies.

Selon l'invention, le substrat 6 présente une permittivité électrique relative locale εr au point P(r,h) qui est une fonction à la fois du rayon r et de la hauteur h. Elle peut donc s'écrire : εr(r,h).According to the invention, the substrate 6 has a local relative electrical permittivity ε r at the point P(r,h) which is a function of both the radius r and the height h. It can therefore be written: ε r (r,h).

La figure 3 représente un exemple possible de cette fonction. Sur la figure 3, des courbes d'iso-permittivité ont été représentées et la valeur correspondante de la permittivité électrique relative locale εr indiquée.There figure 3 represents a possible example of this function. On the figure 3 , iso-permittivity curves have been plotted and the corresponding value of the local relative electrical permittivity ε r indicated.

La dépendance de la permittivité εr en h, pour un rayon r donné, est telle que pour h proche de 0, c'est-à-dire pour des points P(r, h) du substrat à proximité immédiate du plan réflecteur 8, la permittivité est minimale, de préférence égale à l'unité.The dependence of the permittivity ε r on h, for a given radius r, is such that for h close to 0, that is to say for points P(r, h) of the substrate in the immediate vicinity of the reflecting plane 8, the permittivity is minimal, preferably equal to unity.

Ainsi, le matériau du substrat 6 au contact du plan réflecteur 8 présente une permittivité faible de nature à éviter la génération d'ondes rampantes.Thus, the material of the substrate 6 in contact with the reflecting plane 8 has a low permittivity such as to avoid the generation of creeping waves.

Avantageusement, la dépendance de la permittivité en h, pour un rayon r donné, est telle que pour h proche de h0, c'est-à-dire pour les points P(r, h) du substrat 6 à proximité immédiate du plan rayonnant 4, la permittivité est minimale, de préférence égale à l'unité.Advantageously, the dependence of the permittivity on h, for a given radius r, is such that for h close to h 0 , that is to say for the points P(r, h) of the substrate 6 in the immediate vicinity of the radiating plane 4, the permittivity is minimal, preferably equal to unity.

Ainsi, le matériau du substrat 6 au contact de l'élément rayonnant 4 présente une permittivité faible de nature à éviter le couplage entre deux brins consécutifs de l'élément rayonnant 4.Thus, the material of the substrate 6 in contact with the radiating element 4 has a low permittivity such as to avoid coupling between two consecutive strands of the radiating element 4.

De plus, indépendamment de l'un et/ou de l'autre de ces comportements aux limites inférieure et supérieure du substrat 6, la dépendance de la permittivité relative locale εr(r,h) est avantageusement continue en h et en r.Moreover, independently of one and/or the other of these behaviors at the lower and upper limits of the substrate 6, the dependence of the local relative permittivity ε r (r,h) is advantageously continuous in h and in r.

Ainsi, le matériau du substrat ne perturbe pas la propagation des ondes à la traversée du substrat.Thus, the substrate material does not disturb the propagation of waves passing through the substrate.

Il est à noter que dans l'état de la technique, la permittivité électrique relative considérée est une permittivité effective, obtenue par intégration sur la hauteur h, à un rayon r donné.It should be noted that in the state of the art, the relative electrical permittivity considered is an effective permittivity, obtained by integration over the height h, at a given radius r.

Le figure 3 représente, en niveau de gris, un exemple de substrat dont la permittivité εr en un point P(r, h) dépend du rayon r et de la hauteur h de ce point.THE figure 3 represents, in gray level, an example of a substrate whose permittivity ε r at a point P(r, h) depends on the radius r and the height h of this point.

La permittivité électrique relative locale combine les trois améliorations identifiées ci-dessus, à savoir une valeur proche de l'unité sur la surface inférieure 14, une valeur proche de l'unité sur la surface supérieure 15 et une continuité en tout point.The local relative electric permittivity combines the three improvements identified above, namely a value close to unity on the lower surface 14, a value close to unity on the upper surface 15, and continuity at all points.

La permittivité locale, pour un rayon r donné, présente un premier minimum pour une hauteur nulle, puis augmente avec la hauteur, pour atteindre un maximum (par exemple au milieu du substrat (h0/2), puis diminue avec la hauteur h, pour atteindre un second minimum pour la hauteur h0.The local permittivity, for a given radius r, has a first minimum for a zero height, then increases with the height, to reach a maximum (for example in the middle of the substrate (h 0 /2), then decreases with the height h, to reach a second minimum for the height h 0 .

De préférence, la dépendance en h et r de la permittivité électrique relative locale est de la forme générale : ε r r ,h = π 2 r h 0 2 ε min n + 1 h 0 n h n y + ε min

Figure imgb0001
où y est un paramètre de valeur constante et prédéfinie, et n est une variable pouvant être un entier ou une fonction dépendant de r et/ou hPreferably, the dependence on h and r of the local relative electric permittivity is of the general form: ε r r ,h = π 2 r h 0 2 ε min n + 1 h 0 n h n y + ε min
Figure imgb0001
where y is a constant and predefined value parameter, and n is a variable which can be an integer or a function depending on r and/or h

Dans le mode de réalisation de la figure 3, la permittivité prend la forme particulière : ε r r ,h = A r cos h h 0 2 h 0 2 + ε min

Figure imgb0002
In the embodiment of the figure 3 , the permittivity takes the particular form: ε r r ,h = HAS r cos h h 0 2 h 0 2 + ε min
Figure imgb0002

Dans cet exemple, la permittivité électrique relative locale εr est une fonction cosinus de la hauteur h, à rayon r donné.In this example, the local relative electric permittivity ε r is a cosine function of the height h, at a given radius r.

La valeur du minimum de cette fonction est emin , qui vaut de préférence 1.The value of the minimum of this function is e min , which is preferably 1.

La valeur du maximum de cette fonction pour une hauteur h donnée, dépend du rayon r.The value of the maximum of this function for a given height h depends on the radius r.

Comme dans l'état de la technique, la permittivité effective à rayon r donné, c'est-à-dire l'intégrale selon la variable h de la permittivité électrique relative locale εr(r,h) entre 0 et h0, est une fonction du rayon r adaptée pour permettre l'interférence constructive recherchée, principe sur laquelle cette technologie d'antenne est fondée.As in the state of the art, the effective permittivity at a given radius r, i.e. the integral according to the variable h of the local relative electrical permittivity ε r (r,h) between 0 and h 0 , is a function of the radius r adapted to allow the desired constructive interference, the principle on which this antenna technology is based.

Comme illustré par la figure 4, pour la réalisation du substrat 6, on met de préférence en oeuvre un procédé de fabrication additive, par exemple d'impression tridimensionnelle.As illustrated by the figure 4 , for the production of the substrate 6, an additive manufacturing process is preferably used, for example three-dimensional printing.

Le matériau constitutif du substrat 6 résulte de la combinaison d'au moins deux matériaux, respectivement un premier matériau, présentant une première permittivité relative basse, et un second matériau, présentant une seconde permittivité relative élevée.The material constituting the substrate 6 results from the combination of at least two materials, respectively a first material, having a first low relative permittivity, and a second material, having a second high relative permittivity.

La concentration relative des premier et second matériaux en un point P(r,h) est fonction des coordonnées h et r.The relative concentration of the first and second materials at a point P(r,h) is a function of the coordinates h and r.

Par exemple et de préférence, le premier matériau est déposé de manière à présenter une pluralité de premiers interstices, certains desdits premiers interstices étant remplis par le second matériau et/ou le second matériau présente une pluralité de seconds interstices, certains desdits seconds interstices étant remplis par le premier matériau.For example and preferably, the first material is deposited so as to have a plurality of first interstices, some of said first interstices being filled by the second material and/or the second material has a plurality of second interstices, some of said second interstices being filled by the first material.

Par exemple, l'impression tridimensionnelle permet de structurer le substrat en cellules.For example, three-dimensional printing makes it possible to structure the substrate into cells.

Pour réaliser la cellule 21, le premier matériau est déposé pour former les parois 32 de la cellule tout en ménageant un interstice 31, qui est laissé vide.To produce the cell 21, the first material is deposited to form the walls 32 of the cell while providing a gap 31, which is left empty.

Pour réaliser la cellule 22, le premier matériau est déposé pour former les parois 34 de la cellule, tout en ménageant un interstice 33, ce dernier étant ensuite rempli avec le second matériau.To produce the cell 22, the first material is deposited to form the walls 34 of the cell, while leaving a gap 33, the latter then being filled with the second material.

Pour réaliser la cellule 23, le second matériau est déposé pour former les parois 36 de la cellule tout en ménageant un interstice 35, ce dernier étant ensuite rempli avec le premier matériau.To produce the cell 23, the second material is deposited to form the walls 36 of the cell while leaving a gap 35, the latter then being filled with the first material.

Pour réaliser la cellule 24, le second matériau est déposé pour former les parois 37 de la cellule, sans ménager d'interstices. La cellule est pleine.To make the cell 24, the second material is deposited to form the walls 37 of the cell, without leaving any gaps. The cell is full.

L'épaisseur des parois (et donc la dimension des interstices) est ajustée pour chaque cellule de manière à obtenir la valeur de la permittivité électrique relative locale recherchée, en tenant compte des propriétés des matériaux mis en oeuvre.The thickness of the walls (and therefore the size of the gaps) is adjusted for each cell so as to obtain the value of the local relative electrical permittivity sought, taking into account the properties of the materials used.

Avantageusement, les premiers interstices et/ou les seconds interstices ont une dimension caractéristique qui dépend de la distance à l'axe et/ou de la distance au plan rayonnant et/ou au plan réflecteur.Advantageously, the first interstices and/or the second interstices have a characteristic dimension which depends on the distance from the axis and/or the distance from the radiating plane and/or the reflecting plane.

Les premiers interstices et/ou les seconds interstices ont une forme parallélépipédique rectangle (en première approximation). En variante, ils ont une forme sphérique.The first interstices and/or the second interstices have a rectangular parallelepiped shape (as a first approximation). Alternatively, they have a spherical shape.

La plus grande dimension d'un interstice est inférieure λ/8, de préférence inférieure à λ/10, de préférence encore à inférieure à λ/15.The largest dimension of a gap is less than λ/8, preferably less than λ/10, more preferably less than λ/15.

La structure du substrat présente, à cause de cette structure alvéolaire, une bonne résistance mécanique.The structure of the substrate has, due to this alveolar structure, good mechanical resistance.

La figure 5 est un graphe représentant le gain (en Décibel dB) en fonction de la fréquence de fonctionnement (en Hertz Hz) d'une antenne selon l'état de la technique et d'une antenne selon l'invention. Le gain est ici évalué selon l'axe de l'antenne.There figure 5 is a graph representing the gain (in Decibel dB) as a function of the operating frequency (in Hertz Hz) of an antenna according to the state of the art and of an antenna according to the invention. The gain is here evaluated along the axis of the antenna.

On constate, notamment pour la première moitié du spectre en fréquence, que le gain de l'antenne selon l'invention est beaucoup plus stable en fréquence avec des valeurs de gain souvent supérieures à celles d'une antenne selon l'état de la technique.It is noted, in particular for the first half of the frequency spectrum, that the gain of the antenna according to the invention is much more stable in frequency with gain values often higher than those of an antenna according to the state of the art.

En variante, au lieu de caractériser l'antenne par une permittivité électrique relative locale fonction de r et de h, celle-ci pourrait être caractérisée par une perméabilité électrique relative locale fonction de r et de h.Alternatively, instead of characterizing the antenna by a local relative electrical permittivity function of r and h, it could be characterized by a local relative electrical permeability function of r and h.

Claims (9)

  1. A wideband wire antenna (2) comprising:
    - a radiating element (4), the radiating element comprising at least one metal wire (10, 12) shaped around an axis (A) of the antenna, in a transverse radiating plane (S);
    - a reflecting plane (8), the reflecting plane being transverse to the axis (A), the radiating plane being located at a predetermined height (h0) above the reflecting plane (8); and,
    - a substrate (6), the substrate being interposed between the radiating element (4) and the reflecting plane (8), and having a constant thickness,
    characterized in that a local relative electrical permittivity and/or a local relative electrical permeability of the substrate (6) is a function of the radius (r), i.e. the distance to the axis (A), and a height (h), i.e. a distance to the reflecting plane (8), the local relative electrical permittivity and/or a local relative electrical permeability being, at constant height, increasing as a function of the radius, and, at constant radius, increasing as a function of the height at least for a portion of the substrate (6) in the vicinity of the reflecting plane (8).
  2. The antenna according to claim 1, wherein the local relative electrical permittivity and/or the local relative electrical permeability is, at constant radius (r), decreasing with height at least for a portion of the substrate (6) in the vicinity of the radiating element (4).
  3. The antenna according to claim 2, wherein the local relative electrical permittivity and/or the local relative electrical permeability is, at constant radius (r), a cosine function of the height (h).
  4. The antenna according to any one of the preceding claims, wherein the local relative electrical permittivity and/or the local relative electrical permeability is a continuous function of the radius (r) and the height (h).
  5. The antenna according to any of the preceding claims, wherein the substrate (6) results from the combination of at least a first material having a first relative electrical permittivity and/or a first relative electrical permeability, with a second material having a second relative electrical permittivity different from the first and/or a second relative electrical permeability different from the first, a relative concentration of the first and second materials being a function of the radius (r) and height (h).
  6. The antenna according to claim 5, wherein the combination of the first and second materials is achieved by using an additive manufacturing technology, in particular three-dimensional printing.
  7. The antenna according to claim 5 or claim 6, wherein the first material has a plurality of first interstices, some of said first interstices (31, 33) being filled by the second material and/or the second material has a plurality of second interstices (35), some of said second interstices being filled by the first material.
  8. The antenna according to claim 4, wherein the first interstices and/or the second interstices have a characteristic dimension which depends on the radius (r) and/or on the height (h).
  9. The antenna according to claim 7 or claim 8, wherein the first interstices (31, 33) and/or the second interstices (35, 37) have a parallelepipedal or spherical shape, the largest dimension of an interstice preferably being less than λ/10.
EP22215304.1A 2021-12-21 2022-12-21 Improved wideband wire antenna Active EP4203185B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2114098A FR3131108B1 (en) 2021-12-21 2021-12-21 IMPROVED WIRE ANTENNA WITH WIDE FREQUENCY BAND.

Publications (3)

Publication Number Publication Date
EP4203185A1 EP4203185A1 (en) 2023-06-28
EP4203185B1 true EP4203185B1 (en) 2024-09-04
EP4203185C0 EP4203185C0 (en) 2024-09-04

Family

ID=81346638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22215304.1A Active EP4203185B1 (en) 2021-12-21 2022-12-21 Improved wideband wire antenna

Country Status (4)

Country Link
US (1) US12080955B2 (en)
EP (1) EP4203185B1 (en)
FR (1) FR3131108B1 (en)
IL (1) IL299213A (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563616A (en) * 1994-03-18 1996-10-08 California Microwave Antenna design using a high index, low loss material
US6075485A (en) * 1998-11-03 2000-06-13 Atlantic Aerospace Electronics Corp. Reduced weight artificial dielectric antennas and method for providing the same
US6137453A (en) * 1998-11-19 2000-10-24 Wang Electro-Opto Corporation Broadband miniaturized slow-wave antenna
US6567048B2 (en) * 2001-07-26 2003-05-20 E-Tenna Corporation Reduced weight artificial dielectric antennas and method for providing the same
FR2906410B1 (en) * 2006-09-25 2008-12-05 Cnes Epic BIP MATERIAL ANTENNA (BAND PHOTONIC PROHIBITED), SYSTEM AND METHOD USING THE ANTENNA
FR2965669B1 (en) * 2010-10-01 2012-10-05 Thales Sa BROADBAND ANTENNA REFLECTOR FOR CIRCULAR POLARIZED PLANE WIRE ANTENNA AND METHOD FOR PRODUCING THE ANTENNA DEFLECTOR
US8847846B1 (en) * 2012-02-29 2014-09-30 General Atomics Magnetic pseudo-conductor spiral antennas
FR3003702B1 (en) 2013-03-22 2016-07-15 Thales Sa IMPROVED WIRED ANTENNA WITH BROADBAND FREQUENCY.
FR3003701B1 (en) * 2013-03-22 2016-07-15 Thales Sa IMPROVED WIRED ANTENNA WITH BROADBAND FREQUENCY.
FR3052600B1 (en) * 2016-06-10 2018-07-06 Thales WIRELESS BROADBAND ANTENNA WITH RESISTIVE PATTERNS
CN207183522U (en) * 2017-06-02 2018-04-03 厦门大学嘉庚学院 Terahertz wave band three-dimensional tapered dielectric constants array antenna structure
FR3080959B1 (en) * 2018-05-04 2021-06-25 Thales Sa WIRED WIDE BAND ANTENNA
US12160041B2 (en) * 2021-04-30 2024-12-03 The Board Of Trustees Of The University Of Alabama Miniaturized reflector antenna

Also Published As

Publication number Publication date
FR3131108B1 (en) 2023-12-22
EP4203185A1 (en) 2023-06-28
IL299213A (en) 2023-07-01
FR3131108A1 (en) 2023-06-23
US12080955B2 (en) 2024-09-03
EP4203185C0 (en) 2024-09-04
US20230198157A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
EP2573872B1 (en) Lens antenna comprising a diffractive dielectric component able to shape a hyperfrequency wave front.
EP2622685B1 (en) Broadband antenna reflector for a circularly-polarized planar wire antenna and method for producing said antenna reflector
EP3469657B1 (en) Broadband wire antenna with resistive patterns having variable resistance
EP0886889A1 (en) Wide band printed network antenna
FR2989842A1 (en) SLOW-WAVE RADIOFREQUENCY PROPAGATION LINE
EP1430566B1 (en) Broadband or multiband antenna
FR2922687A1 (en) COMPACT BROADBAND ANTENNA.
EP3788674A1 (en) Broadband wire antenna
EP1550182B1 (en) Microwave slot-type device and slot-type antennas employing a photonic bandgap structure
EP0012645A1 (en) Sheet antenna composed of two circular rings
EP4203185B1 (en) Improved wideband wire antenna
EP2147479B1 (en) Antenna having oblique radiating elements
FR3017493A1 (en) COMPACT WIRED ANTENNA WITH RESISTIVE PATTERNS
FR3003701A1 (en) IMPROVED WIRED ANTENNA WITH BROADBAND FREQUENCY.
FR2552273A1 (en) Omnidirectional microwave antenna
FR3003702A1 (en) IMPROVED WIRED ANTENNA WITH BROADBAND FREQUENCY.
FR2918803A1 (en) Parasitic monopole antenna system i.e. tactical air navigation antenna system, for use in e.g. drone, has conducting rim formed on surface of dielectric layer and electrically connecting one end of one hole with end of another hole
EP3537541B1 (en) Electromagnetic decoupling
FR3103066A1 (en) LASER WITH LOCKING MODE WITH PORTS AND ASSOCIATED OPTICAL COMPONENT
EP4270642A1 (en) Improved horn antenna
EP3537540B1 (en) Electromagnetic decoupling
EP4401239A1 (en) Antenna system comprising an antenna and a passive device for angular deviation of a main lobe of radiation from the antenna
WO2016139403A1 (en) Omnidirectional wideband antenna structure
EP4285441A1 (en) System for reducing the reflectivity of an incident electromagnetic wave on a surface and device implementing said system
EP4148902A1 (en) Electromagnetic system with angular deviation of the main dispersion lobe of an antenna.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 19/10 20060101ALI20240408BHEP

Ipc: H01Q 9/27 20060101ALI20240408BHEP

Ipc: H01Q 5/25 20150101ALI20240408BHEP

Ipc: H01Q 1/38 20060101AFI20240408BHEP

INTG Intention to grant announced

Effective date: 20240422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022005880

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20241002

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT RO SE SI

Effective date: 20241024

U20 Renewal fee paid [unitary effect]

Year of fee payment: 3

Effective date: 20241127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904