EP4202565B1 - Frequency setting of a timepiece oscillator by opto-mechanical deformations - Google Patents
Frequency setting of a timepiece oscillator by opto-mechanical deformations Download PDFInfo
- Publication number
- EP4202565B1 EP4202565B1 EP21217879.2A EP21217879A EP4202565B1 EP 4202565 B1 EP4202565 B1 EP 4202565B1 EP 21217879 A EP21217879 A EP 21217879A EP 4202565 B1 EP4202565 B1 EP 4202565B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- actuator
- oscillator
- inertial mass
- laser
- writing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/02—Regulator or adjustment devices; Indexing devices, e.g. raquettes
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/006—Mechanisms for setting frequency by adjusting the devices fixed on the balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/04—Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
- G04C3/064—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling indirectly, i.e. without mechanical connection, contacts, e.g. by magnetic or optic means
Definitions
- the invention relates to a method for finely adjusting the rate of a mechanical clockwork oscillator comprising at least one inertial mass arranged to oscillate around an axis of rotation and returned to a rest position by elastic return means.
- the invention also relates to a mechanical clockwork oscillator suitable for implementing this method.
- the invention relates to the field of adjusting the rate of a mechanical watch oscillator, and in particular of an oscillator already fitted into a watch head.
- Changing the frequency of a mechanical oscillator almost always involves changing the stiffness of the elastic part, such as a spring, or changing its inertia/mass.
- the stiffness of the elastic part such as a spring
- devices for adjusting the stiffness of the balance spring are commonly found, such as varying its active length by moving pins.
- Another commonly used method is changing the inertia of the balance by moving small masses outward or inward of the balance, such as screws, or eccentric rotating weights.
- US 2017/017205 A1 discloses a microsystem for adjusting the rate of a watch oscillator comprising a flywheel comprising an eccentric unbalance and a toothing and arranged to pivot relative to a base plate of the microsystem, which comprises an actuator driving a first active pawl arranged to drive the toothing, and comprises a means for stopping the toothing in position, this actuator being a thermomechanical actuator arranged to transform a flow of energy of light origin (LASER) into a movement of a distal end of this thermomechanical actuator which carries a first active pawl or directly controls a movement of a first active pawl, this microsystem being able to be integrated into a watch comprising a crystal transparent to predetermined wavelength ranges and allowing the passage of a light ray for the adjustment of this microsystem,
- LASER flow of energy of light origin
- the invention proposes to precisely adjust the frequency of a mechanical watch oscillator, for example a watch balance spring, without having to disassemble the watch, or more generally the timepiece carrying this oscillator.
- the invention relates to a method for finely adjusting the rate of a mechanical clockwork oscillator, according to claim 1.
- the invention also relates to a mechanical clockwork oscillator according to claim 17, suitable for implementing this method.
- the invention further relates to a timepiece according to claim 23, in particular a watch, comprising such a mechanical timepiece oscillator.
- a timepiece according to claim 23, in particular a watch, comprising such a mechanical timepiece oscillator.
- Preferred embodiments are defined in dependent claims 2 to 16.
- the invention proposes to induce permanent mechanical tensions, and therefore a volume expansion, in particular by femtosecond laser excitation, in a flexible micro-mechanism machined in a glass (fused silica) or similar support.
- the support is embedded on the inertial mass of the oscillator, in particular the balance wheel, of a mechanical watch.
- the movement of a part of the mechanism will modify the inertia of this inertial mass, therefore the frequency of the oscillator, in particular the balance wheel-spring.
- Displacements of the order of several micrometers can be obtained in such glass microstructures by writing parallel internal tension expansion lines, as can be read in particular in the article " Non-contact sub-nanometer optical repositioning using femtosecond lasers”, by Y. Bellouard, in “Optic Express, November 2, 2015, volume 23, No. 22 ".
- microstructures themselves are made using a precise cutting process of +/-1 micrometer, using the same type of laser, followed by chemical attack, as can be read in the aforementioned article, or in the article " Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching”, by Y. Bellouard et al., in “Optics Express, 2004, 12, pages 2120-2129 “, or on the website of FEMTOprint SA, 6933 Muzzano (CH), on the page
- Optical excitation is direct through a glass or any non-absorbing casing separation for the laser wavelength, or defocused at the point of passage.
- the invention is illustrated more particularly, and not limitingly, for the case where the oscillator is a watch oscillator, and is a sprung balance.
- the invention relates to a method for finely adjusting the rate of a mechanical oscillator 100 for a timepiece, comprising at least one inertial mass 1 arranged to oscillate around an axis of rotation D and returned to a rest position by elastic return means.
- the oscillator 100 is equipped with at least one inertial mass 1 comprising an actuator 35 in a material capable of irreversible local micro-expansion under the action of laser shots.
- This actuator 35 is arranged to impart to a weight 3 a radial linear stroke relative to the axis of rotation D, directly or via at least one stroke amplifier 36, when a writing zone 39, or more particularly a first writing zone 391 on a first arm 33, or a second writing zone 392 on a second arm 34, which the actuator 35 comprises is subjected to appropriate laser shots.
- each writing zone 39, 391, 392 is capable of receiving expansion lines 390 by laser writing.
- writing zone 39 concerns the generic case, and the names “first writing zone 391” and “second writing zone 392” concern the preferred, but not limiting, application on respectively a first arm 33, and a second arm 34 of the weight 3.
- this inertial mass 1 is equipped with at least one pair of diametrically opposed actuators 35, in a material capable of irreversible local micro-expansion under the action of laser shots. This is particularly the case when an inertial mass 1 is a balance of a sprung balance type oscillator.
- an inertial mass 1 is cantilevered relative to the axis of rotation D, like the inertial masses suspended by flexible blades, which are symmetrical with respect to a plane passing through the axis of rotation D, this inertial mass 1 is equipped with at least one pair of actuators 35 symmetrical with respect to this plane of symmetry.
- this method is applied to an oscillator 100 with at least two inertial masses 1 each comprising such an actuator 35.
- a first adjustment in particular a rough one, is made of the initial rate of the oscillator 100 in a first rate range and the rate is measured.
- a third step 803 the direction and value of the deviation in rate to be imparted to the oscillator 100 are calculated to bring it into a second predetermined range of rate, and the direction and value of the stroke to be imparted to each weight 3 included in the oscillator 100 are calculated.
- a writing zone 39, 391, 392 is subjected to femtosecond laser shots to create at least one expansion line 390 by local molecular expansion of the material to deform the actuator 35 radially relative to the axis of rotation D.
- a fifth step 805 the rate of the oscillator 100 is measured, and if necessary the third step 803 and the fourth step 804 are repeated until the rate of the oscillator 100 is within the second predetermined rate range.
- a femtosecond laser source 700 is used, mounted on a cross-movement table 710, or with radial travel, so as to increment different series of shots on different radii relative to the axis of rotation D, to create a series of expansion lines 390 in the immediate vicinity of each other.
- a femtosecond laser source 700 is used to carry out shots in each direction of rotation of the inertial mass 1.
- control means 790 are used to control the firing of the femtosecond laser source 700, according to the information on the presence or absence of material provided by the combination of a detection laser 750 and a collection means 760 or a photodetector.
- an actuator 35 is chosen comprising, on a first arm 33, a first writing zone 391, and on a second arm 34 parallel to the first arm 33 in a radial linear direction L and joining it at a common segment 334, a second writing zone 392.
- the actuator 35 is thus mounted in an “S” shape between, on the one hand, a fixing zone 30 fixed to a support 2 mounted on the inertial mass 1 or directly fixed to the inertial mass 1, and on the other hand, an output point or a connecting neck 32 for connection with an amplifier mechanism 36.
- the actuator 35 is arranged to act in two opposite directions in the linear direction L, depending on whether, during the fourth step 804, the writing by femtosecond laser shots takes place in the first writing zone 391 on the first arm 33 for a advance adjustment, or in the second writing area 392 on the second arm 34 for a delay adjustment.
- an actuator 35 is chosen with an output point or a connecting neck 32 for connection with an amplifier mechanism 36 which is arranged to amplify the output stroke of the actuator 35, to impart an amplified stroke to the weight 3.
- this amplifier 36 is of the parallelogram type, and includes a connecting rod system with 310 connecting rods. arranged between flexible necks 31 forming a linear guide in a radial linear direction L.
- an actuator 35 is chosen comprising a fixing zone 30 secured to a support 2 mounted on the inertial mass 1.
- the support 2 forms a single-block assembly constituting a flexible micro-mechanism, with the actuator 35, an amplifier 36 and the weight 3 mounted in series with each other.
- an actuator 35 is chosen comprising a fixing zone 30 fixed to a support 2 mounted on the inertial mass 1 or secured to a support 2, and the actuator 35 and/or the support 2 is made of glass.
- the inertial mass 1 is chosen in the form of a balance, which comprises at least one pair of identical and diametrically opposed weights 3 relative to the axis of rotation D.
- the oscillator 100 is integrated into a watch head 500 of a watch 1000, which watch head 500 comprises at least one transparent transmissive element 600, which separates the exterior and the interior of the watch 1000, and allows optical access to at least one laser to at least the inertial mass 1 of the oscillator 100 of the watch.
- the oscillator 100 is equipped with stopping means or a second stop arranged to rest on an inertial mass 1, and the fourth step 804 is carried out in a blocked position of the inertial mass 1.
- the femtosecond laser writing shots are carried out during the oscillation of the inertial mass 1, the angular position and the shots of which are synchronized.
- the shots are carried out with a femtosecond laser, for example and not limited to a wavelength between 900 and 1100 nm, a pulse duration between 200 and 350 fs, a pulse energy approximately between 200 and 300 nJ, a repetition rate of 700 to 900 kHz. It is quite obvious that a different femtosecond laser (wavelength, pulse duration and energy) can be used, provided that it can modify the material in the same way described above.
- the invention also relates to a mechanical oscillator 100 for a timepiece comprising at least one inertial mass 1 arranged to oscillate about an axis of rotation D and returned to a rest position by elastic return means, suitable for implementing this method.
- at least one inertial mass 1 comprises an actuator 35 in a material capable of irreversible local micro-expansion under the action of laser shots.
- the actuator 35 is arranged to impart to a weight 3 a radial linear stroke relative to the axis of rotation D, directly or via at least one stroke amplifier 36, when a writing zone 39, 391, 392, which the actuator 35 comprises is subjected to appropriate laser shots.
- the actuator 35 comprises, on a first arm 33, a first writing zone 391, and on a second arm 34 parallel to the first arm 33 in a radial linear direction L and joining it at a common segment 334, a second writing zone 392, the actuator 35 thus being mounted in an “S” shape between, on the one hand, a fixing zone 30 fixed to a support 2 mounted on the inertial mass 1 or directly fixed to the inertial mass 1, and, on the other hand, an output point or a connecting neck 32 for connection with an amplifier mechanism 36, the actuator 35 being arranged to act in two opposite directions in the linear direction L, depending on whether femtosecond laser shots are applied in the first writing zone 391 on the first arm 33 for an advance adjustment, or in the second writing area 392 on second arm 34 for delay adjustment.
- the actuator 35 comprises an output point or a connecting neck 32 for connection with an amplifier mechanism 36 arranged to amplify the output stroke of the actuator 35, to impart an amplified stroke to the weight 3.
- the amplifier 36 is of the parallelogram type, and comprises a connecting rod system with connecting rods 310 arranged between flexible necks 31 forming a linear guide in a radial linear direction L.
- the actuator 35 comprises a fixing zone 30 secured to a support 2 mounted on the inertial mass 1, and the support 2 forms a single-piece assembly constituting a flexible micro-mechanism, with the actuator 35, an amplifier 36 and the mass 3 mounted in series with each other.
- the actuator 35 comprises a fixing zone 30 fixed to a support 2 mounted on the inertial mass 1 or secured to a support 2, and the actuator 35 and/or the support 2 is made of glass.
- the inertial mass 1 is a balance, which comprises at least one pair of identical and diametrically opposed weights 3 relative to the axis of rotation D.
- the invention also relates to a timepiece, in particular a watch 1000, comprising at least one such mechanical oscillator 100.
- the watch 1000 comprises a watch head 500 comprising at least one transparent transmissive element 600, which separates the exterior and the interior of the watch 1000, and allows optical access to at least one laser to at least the inertial mass 1 of the oscillator 100 of the watch.
- the figures illustrate non-limiting embodiments of the invention, in the particular case where the inertial mass 1 is a balance wheel.
- FIG 1 represents a timepiece 1000, in particular a watch, with a watch head 500, comprising a transparent transmissive element 600, such as a back, a crystal, or the like, which separates the exterior of the watch and the interior of the watch.
- This transparent transmissive element 600 allows optical access to the user and to an optical source to all or part of the oscillator 100 of the watch, and, in this case, at least the balance wheel 1, the balance spring not being shown so as not to overload the figures.
- This figure 1 represents, in a broken line, an incident laser beam RL meeting the pendulum 1.
- the invention proposes to adjust precisely, and through a casing that is at least locally transparent or of low optical absorption such as this transparent transmissive element 600, the frequency of a sprung balance by means of a focused laser beam.
- the oscillator 100 is either already roughly adjusted to +/- 15 seconds per day, for example using screws not shown, or precisely matched to an appropriate balance spring in this range.
- the action of the laser allows fine adjustment to 0-2 seconds per day, by moving small weights towards the outside or towards the inside of the balance 1, thus modifying its inertia, and therefore modifying the frequency of the oscillator, and thus allowing precise adjustment of the rate of the watch.
- FIG 2 shows, in plan view like the figure 1 , the detail of the balance 1 according to the invention.
- This balance 1 comprises, from its rim 19 towards the transparent transmissive element 600, a plurality of supports 2 arranged in symmetrical pairs relative to the axis of rotation D of the balance.
- These supports in particular chips, each support, on the side of the transparent transmissive element 600, at least one weight 3 which is radially movable relative to the axis of rotation D of the balance 1.
- figure 2 shows, for each support 2, three different positions of such a weight 3, one median in hatching intermediate between two extreme positions in broken line, at a radial distance X from the position intermediate. This limited number of radial positions of the weights 3 is only a special case to leave the figure readable.
- each support 2 is attached to the balance 1, for ease of execution; another variant where the supports 2 and the balance 1 form a single-piece assembly is possible, although more expensive to produce.
- FIG 3 is a section perpendicular to the transparent transmissive element 600, which separates, on the one hand in the upper part of the figure the external environment in which at least one laser source 700 is positioned, and on the other hand in the lower part of the figure the interior of the watch head which comprises the balance 1.
- This balance 1 comprises, from its rim 19 towards the transparent transmissive element 600, a plurality of supports 2 arranged in symmetrical pairs with respect to the axis of rotation D of the balance. These supports 2 support, on the side of the transparent transmissive element 600, each at least one weight 3 which is movable radially with respect to the axis of rotation D of the balance 1, under the action of a beam emitted by the laser source 700.
- figure 3 is centered on a weight 3 shown in hatching, and shows another radial position of this weight 3, shown in a broken line. The weights 3 are thus secured to a support 2, itself fixed on the rim 19 towards the outside of the balance 1 as illustrated.
- the displacement amplitude depends on several parameters of the laser exposure. This amplitude can be controlled very precisely, and the weights 3 remain in place after an exposure, and it is possible to move the weights 3 in both directions over a fixed number of cycles.
- the supports 2 In order not to disturb the imbalance, the supports 2 must be grouped in pairs, diametrically opposed, and they must be adjusted simultaneously to the same amplitude.
- the Figures 2 and 3 illustrate the simplest case with a single pair of supports 2. Another variation is to have an even number 2N of supports 2, N being an integer ranging from 1 to typically 10, and depending mainly on the diameter of the balance 1 and on the possibility of geometrically implanting these pairs of supports 2. In this configuration with a plurality of supports 2, not only the frequency but also the unbalance can be adjusted.
- curve C2 relating to weights 3 with a mass of 1.6 mg, corresponds to the displacement of +/- 10 micrometers of a glass parallelepiped of 0.30 ⁇ 1.33 ⁇ 1.70 mm 3 , on either side of its zero position.
- the frequency adjustment obtained here is +/- 11 seconds per day.
- This range can be easily extended, either by increasing the mass of the weights, or by increasing the peak-peak travel.
- One variant consists in particular in loading, on this glass plate, an additional mass, made of metal or any other ad hoc material.
- the support 2 carries fasteners 30, one of which carries the optomechanical actuator 35 itself, which comprises two parallel arms 33 and 34, forming a U because they are connected at the end by a common segment 334, the first arm 33 extending between a fastener 30 and the common segment, and the second arm 34 extending between the common segment 334 and an output point, here non-limitingly constituted by a connecting neck 32 with an amplifier mechanism 36.
- the other fastener 30 carries the weight 3, connected by the neck 31, acting as a center of rotation.
- each weight 3 is attached to a support 2 at the level of its fixings 30, for ease of execution.
- FIG. 6 And 9 Another variant, visible on the figures 6 And 9 has 12 , where the weight 3 and the corresponding support 2 form a single-piece assembly, in particular a chip, which makes it possible to produce the weight 3 and the support 2 on the same level, the support 2 is then limited to a fixing zone 30 for fixing on the balance 1.
- weights 3, the supports 2, and the balance 1 form a single-piece assembly, although this variant is even more expensive to produce.
- this first arm 33 and this second arm 34 are intended to receive laser pulses, and comprise writing zones respectively 391, 392, at the level of which bursts of very brief laser pulses, emitted by the laser source 700, will create, in the thickness of the material, a local modification of its structure by molecular expansion, this expansion being rapidly stopped by the stopping of the pulses, and the deformation therefore remaining a permanent deformation.
- These core deformations are infinitesimal, and therefore the method consists in locally juxtaposing a large quantity of zones thus expanded, to achieve a cumulative expansion sufficient to sufficiently move the weight 3 in a linear direction L.
- a mechanical amplifier 36 for example a mechanism of the parallelogram type with four necks such as visible on the figure 6 , makes it possible to transform the overall elongation, or the overall retraction, measurable at the exit point of the second arm 34, into a stroke of the weight 3 which is sufficient to significantly influence the operation of the oscillator 100.
- the figure 7 illustrates the case where the pulses attack the second writing zone 392 of the second arm 34, the overall movement of the exit point is then in the direction of arrow B, in a pushing movement of the weight 3.
- the figure 8 illustrates the case where the pulses attack the first writing zone 391 of the first arm 33, the overall movement of the exit point is then in the direction of arrow A, opposite to the direction of arrow B, in a retraction movement of the weight 3. It is thus possible to move a weight 3 radially in one direction or the other.
- the laser action does not cause cutting, or even superficial engraving, the goal is a molecular reordering at the heart of the material, in its thickness.
- the notion of writing expansion lines is a periphrasis to describe the application of series of pulses according to a network whose projection of the trajectories on the plane of the mass appears as a series of very close parallel expansion lines, or very sharp zig-zag expansion lines, or other; the goal is indeed to expand the material at the core, and to accumulate very close expansions along the same linear direction L.
- the non-limiting mechanism of Figures 5 to 8 presented here because of its great simplicity, comprises an actuator 35 in an "S" shape in a radial linear direction L, and arranged to act in two opposite directions in this same direction, depending on whether the writing takes place in the upper zone of the second arm 34 (advance) or the lower zone of the first arm 33 (retraction).
- the amplifier 36 comprises, without limitation, a connecting rod system with connecting rods 310 between flexible necks 31 forming a linear guide in the linear direction L, and makes it possible to amplify the stroke of the actuator by a multiplying factor Km, so that the embedded square table, i.e. the weight 3, moves by an amplitude of a few micrometers.
- a first step consists of writing, using the same core expansion process under the action of a laser, volumetric zones to be removed in a glass plate (fused silica).
- a second step the plate is subjected to a chemical attack, which selectively removes the stressed parts.
- the machining obtained is also precise to the micrometer, and allows these glass microstructures to be produced.
- FIGS. 9 and 10 illustrate the application of the invention to the particular numerical example presented above, with a balance with a diameter of 10.6 mm (outer diameter of the rim 19); the diameter 190, here 8.0 mm, corresponds to the diameter of gyration of the centers of mass of the weights.
- the actuator 35 and the amplifier 36 are adapted to limit the plane dimensions of the supports 2 to a square with a side of 2.0 mm, in particular a glass chip, with a thickness of 0.3 mm, which carries, on the same single level, the weight 3 and the support 2 limited to at least one fixing zone 30, for fixing to the balance 1 and for suspending the actuator 35, the amplifier 36, and the weight 3.
- the mass of the rectangular pallet which constitutes the weight 3 is worth 1.6 mg, which corresponds to the rate - displacement relationship C2 of the graph of the figure 4 .
- the distance between the middle of two bending necks 31 delimiting a connecting rod 310 is, in this example, 1.40 mm, and the distance between the middle of the lower bending neck 31 and the connecting neck 32 is 0.14 mm.
- These necks bending 31 or connection 32 have here a width of 20 micrometers, which is acceptable from a technological point of view.
- two zones 1 mm long in the linear direction L allow a single advance correction of +9 seconds per day and a delay correction of -9 seconds per day.
- a starting state is considered where, before correction, the rate of the watch is assumed to be known and measured, with the case closed.
- a dedicated setting is used to precisely position the watch head.
- a microscopic objective and a positioning stage with xy crossed movements then allow the centering of the laser source 700, in particular a femtosecond laser, on the balance 1.
- the balance wheel is immobilized by a blocking/braking lever, such as a stop-seconds or the like, or a spatial stopping and holding mechanism of the oscillator, and the laser shot is fired at a stationary target, or the pendulum 1 is still oscillating, and the laser shot must then be synchronized with its angular position.
- a blocking/braking lever such as a stop-seconds or the like
- a spatial stopping and holding mechanism of the oscillator the laser shot is fired at a stationary target, or the pendulum 1 is still oscillating, and the laser shot must then be synchronized with its angular position.
- the case where the balance is immobilized, and the laser shot is carried out on a stationary target can be resolved with semi-automatic positioning for example and not limited to control means managing a camera with image recognition software which centers on the axis of rotation D of the balance.
- the method is more complex, but more advantageous because the adjustment is carried out in flight, without the need to stop the pendulum.
- the shot can be started with the beginning of the passage of the support 2 through a detection laser beam 750, as illustrated in the Figures 11 and 12 .
- FIG 11 is a schematic view, in section passing through the axis of rotation D of the balance 1, and showing the rim 19 of this balance, carrying a support 2, the weight 3 not being shown, and the laser writing source 700 for writing on the writing zones 39, 391, 392, as well as, mounted obliquely in the left part of the figure, such a detection laser 750, the ray of which reflected by the balance 1 and the elements which it comprises is collected in the right part of the figure by a collection means 760 such as a photo-detector.
- FIG 12 illustrates the detail of the arrangement according to the figure 11 with a laser writing source 700 and a laser detection source 750, for the case where the balance 1 oscillates, and where the laser shot is synchronized with its angular position; the rim 19 of the balance 1 carries a chip according to the figure 9 ; the arc shown in a broken line corresponds to the instantaneous position of the laser writing source 700, which draws perpendicular to the plane of the figure, and which can thus write in the first writing zone 391 of the first arm lower 33 in this case, to create an expansion line 390, that is to say a molecular expansion symbolized by a small arrow in this first writing zone 391, the neighboring small arrows corresponding to other expansion lines 390, that is to say writings already carried out in the same zone with different positions in x of the writing source 700, corresponding to different radii relative to the axis of rotation D of the balance 1.
- a laser detection source 750 a converging lens 770, the incident radiation towards the balance 1, the reflection point on the balance 1 or on the organs that it carries, the reflected radiation, a converging lens 780, and the photo-detector 760.
- the left edge of the rim 19 of the balance 1 oscillates up and down in its circular trajectory.
- the chip 2 is fixed to the balance 1 by its base.
- the optics is composed of a writing laser source 700 for performing the optical axis writing in the z direction perpendicular to the plane of the balance 1, and a detection laser 750, for example inclined at an angle of 45° relative to the plane of the balance, the axes of the incident and reflected beams of which are included in the xz plane. Their respective spots may be slightly offset in x, but must remain on the same dimension in z.
- the VPD signal of the photodetector 760 associated with the detection laser 750 is at the value 1 when its spot is on a full area of the chip 2, that is to say successively fixing area 30/first lower arm 33/second upper arm 34/weight 3, as visible both on the median graph of the figure 13 and on the figure 12 , and the VPD signal is at the value 0 in a slot.
- this signal can be used to trigger and trigger the writing of the burst by the writing laser source 700, either between times t2 and t3, and more precisely in a first writing zone 391 for the advance adjustment on the first arm 33, or in a second writing zone 392 for the delay adjustment on the second arm 34.
- expansion lines 390 are written in the first advance zone on the first arm 33, which will pull the weight 3 towards the axis of rotation D of the balance 1, and cause a rate advance by increasing the frequency.
- the start of the optical intensity bursts IIE is triggered by the positive edge of the VPD signal at the instant TON, and their stop is triggered by the negative edge of the VPD signal at the instant TOFF.
- one alternation i.e. a half-period
- the detection of the direction of rotation is done using the VPD signal, the pattern of which is different depending on the direction. This makes it possible to always turn on the writing laser source 700 in the correct zone.
- This technique makes it possible to produce 2 millimeter chips with flexible elements that can move over micrometric amplitudes, with nanometric precision.
- the actuation of the nano-displacement of the actuator part 35 is carried out by laser writing of internal constraints.
- a system of flexible necks 31 and connecting rods 310 makes it possible to increase the amplitudes in the linear direction L.
- the invention offers the possibility of carrying out an infinitesimal and irreversible expansion, which, in theory, could allow, by a series of shots on the elastic return element of the oscillator, such that spiral spring, flexible blade or similar, to modify its stiffness; however, the creation of these deformed zones harms the homogeneity of the component, and the risk is an alteration of the elastic properties of this elastic return element.
- the invention is presented here preferentially for an action on the inertial element, regardless of whether it is suspended by a spiral spring or by elastic blades.
- the adjustment system is compact and does not require any additional complications in the 1000 watch, other than the mounting of two or more glass chips 2 on the balance wheel 1.
- This adjustment can be carried out directly on a complete watch 1000, provided that the watch head 500 comprises a transparent transmissive element 600, such as a back, a crystal, or other, which is transparent or non-absorbent for the writing laser in optical access on the oscillator.
- a transparent transmissive element 600 such as a back, a crystal, or other, which is transparent or non-absorbent for the writing laser in optical access on the oscillator.
- the invention naturally relates to a watch 1000 thus equipped.
- FIG 14 illustrates the peripherals and their links: the control means 790, a cross-motion table 710 for operating the writing laser 700, a detection laser 750, the means for collecting the reflected radiation 760, and means 720 for stopping and releasing the oscillator 100.
- the external part of the adjustment typically occupies the volume of an office, which allows for rapid and user-friendly adjustment, both in production and in the store for customer service.
- the implementation of the invention is all the better as one achieves an optimization of the absorption of the radiation by the physical protection separation (box, casing), that one realizes a reliable positioning system of the laser spot.
- the physical protection separation box, casing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- Laser Beam Processing (AREA)
Description
L'invention concerne un procédé d'ajustement fin de la marche d'un oscillateur mécanique d'horlogerie comportant au moins une masse inertielle agencée pour osciller autour d'un axe de rotation et rappelée vers une position de repos par des moyens de rappel élastique.The invention relates to a method for finely adjusting the rate of a mechanical clockwork oscillator comprising at least one inertial mass arranged to oscillate around an axis of rotation and returned to a rest position by elastic return means.
L'invention concerne encore un oscillateur mécanique d'horlogerie convenant à la mise en oeuvre de ce procédé.The invention also relates to a mechanical clockwork oscillator suitable for implementing this method.
L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel oscillateur mécanique d'horlogerie.The invention also relates to a timepiece, in particular a watch, comprising such a mechanical timepiece oscillator.
L'invention concerne le domaine du réglage de marche d'un oscillateur mécanique d'horlogerie, et en particulier d'un oscillateur déjà emboîté dans une tête de montre.The invention relates to the field of adjusting the rate of a mechanical watch oscillator, and in particular of an oscillator already fitted into a watch head.
La modification de la fréquence d'un oscillateur mécanique passe presque toujours par un changement de la rigidité de la partie élastique, notamment un ressort, ou par un changement de son inertie / de sa masse. Par exemple, dans les balanciers-spiraux de montres mécaniques, on trouve couramment des dispositifs d'ajustement de la raideur du spiral, comme la variation de sa longueur active par déplacement de goupilles. Une autre méthode couramment utilisée est la modification d'inertie du balancier par déplacement de petites masses vers l'extérieur ou vers l'intérieur du balancier, comme des vis, ou des masselottes tournantes excentrées.Changing the frequency of a mechanical oscillator almost always involves changing the stiffness of the elastic part, such as a spring, or changing its inertia/mass. For example, in the balance springs of mechanical watches, devices for adjusting the stiffness of the balance spring are commonly found, such as varying its active length by moving pins. Another commonly used method is changing the inertia of the balance by moving small masses outward or inward of the balance, such as screws, or eccentric rotating weights.
Cependant, ces opérations demandent d'ouvrir la montre et de sortir le mouvement, ce qui a tendance à fausser le résultat une fois la boîte refermée, avec une dérive allant parfois jusqu'à 10 secondes par jour, ce qui est fâcheux pour des mouvements devant être réglés de 0 à +2 secondes par jour. De plus, ces mécanismes délicats sont généralement tributaires de jeux mécaniques qui sont autant de sources de dérive, une fois que l'outil de réglage - et la force utilisée pour le réglage - sont retirés.However, these operations require opening the watch and removing the movement, which tends to distort the result once the case is closed, with a drift sometimes of up to 10 seconds per day, which is unfortunate for movements that need to be adjusted from 0 to +2 seconds per day. In addition, these delicate mechanisms are generally subject to mechanical play which is a source of drift, once the adjustment tool - and the force used for adjustment - are removed.
L'invention se proposer d'ajuster précisément la fréquence d'un oscillateur mécanique d'horlogerie, par exemple un balancier-spiral de montre, sans devoir démonter la montre, ou plus généralement la pièce d'horlogerie porteuse de cet oscillateur.The invention proposes to precisely adjust the frequency of a mechanical watch oscillator, for example a watch balance spring, without having to disassemble the watch, or more generally the timepiece carrying this oscillator.
A cet effet, l'invention concerne un procédé d'ajustement fin de la marche d'un oscillateur mécanique d'horlogerie, selon la revendication 1.For this purpose, the invention relates to a method for finely adjusting the rate of a mechanical clockwork oscillator, according to
L'invention concerne encore un oscillateur mécanique d'horlogerie selon la revendication 17, convenant à la mise en oeuvre de ce procédé.The invention also relates to a mechanical clockwork oscillator according to claim 17, suitable for implementing this method.
L'invention concerne encore une pièce d'horlogerie selon la revendication 23, notamment une montre, comportant un tel oscillateur mécanique d'horlogerie. Des modes de réalisation préférés sont définis dans les revendications dépendantes 2 à 16.The invention further relates to a timepiece according to claim 23, in particular a watch, comprising such a mechanical timepiece oscillator. Preferred embodiments are defined in
Les buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée qui va suivre, et en référence aux dessins annexés, où :
- la
figure 1 représente, de façon schématisée et en vue en plan, une montre, avec une tête de montre comportant un élément transparent transmissif qui sépare l'extérieur de la montre et l'intérieur de la montre. Cet élément transparent transmissif, ici représenté sous la forme d'un fond, permet un accès optique à l'utilisateur et à une source optique vers tout ou partie de l'oscillateur de la montre, qui est ici un balancier-spiral dont seul est représenté le balancier, le spiral n'étant pas représenté pour ne pas surcharger les figures. Cettefigure 1 représente, en trait interrompu, un rayon laser incident et rencontrant ce balancier; - la
figure 2 représente, de façon schématisée et en vue en plan comme lafigure 1 , le détail du balancier selon l'invention. Ce balancier comporte, depuis sa serge vers l'élément transparent transmissif, une pluralité de supports disposés par paires symétriques par rapport à l'axe de rotation du balancier. Ces supports supportent, du côté de l'élément transparent transmissif, chacune au moins une masselotte qui est mobile radialement par rapport à l'axe de rotation du balancier. La figure montre, pour chaque support, trois positions différentes d'une telle masselotte, l'une médiane en hachures intermédiaire entre deux positions extrêmes en trait interrompu; - la
figure 3 représente le balancier de lafigure 2 , en coupe perpendiculaire à l'élément transparent transmissif, lequel sépare, d'une part en partie supérieure de la figure le milieu extérieur dans lequel est positionnée au moins une source laser, et d'autre part en partie inférieure de la figure l'intérieur de la tête de montre qui comporte le balancier. La figure montre la serge portant un support supportant, du côté de l'élément transparent transmissif une telle masselotte qui est mobile radialement par rapport à l'axe de rotation du balancier, sous l'action d'un faisceau émis par la source laser. La figure est centrée sur une masselotte représentée en hachures, et montre une autre position radiale de cette masselotte, représentée en trait interrompu; - la
figure 4 est un graphe qui indique en ordonnée l'écart de marche en secondes par jour, et en abscisse la valeur du déplacement radial symétrique de deux masselottes, en micromètres, et superpose les résultats obtenus pour quatre valeurs de masse de masselotte, de 1,20 mg à 2,40 mg;
- la
figure 5 représente, de façon schématisée, et en vue en plan, le principe de la mise en oeuvre d'un actionneur opto-mécanique pour faire mouvoir une masselotte: le support porte des fixations, dont l'une porte l'actionneur opto-mécanique proprement dit, qui comporte deux bras parallèles, formant un U car reliés en bout par un segment commun, le premier bras s'étendant entre une fixation au support et le segment commun, et le deuxième bras s'étendant entre le segment commun et un point de sortie, ici constitué par un col d'un mécanisme amplificateur destiné à amplifier la course de sortie de l'actionneur opto-mécanique pour procurer une course suffisante à la masselotte; - la
figure 6 représente, de façon schématisée, et en vue en plan, une autre variante de l'actionneur opto-mécanique de lafigure 5 , dont la course de sortie selon une direction linéaire est amplifiée par un amplificateur mécanique, ici un mécanisme de type parallélogramme à quatre cols, qui permet de transformer l'allongement global, ou la rétraction globale, mesurable au point de sortie du deuxième bras, en une course de la masselotte qui soit suffisante pour influencer notablement la marche de l'oscillateur; - la
figure 7 illustre schématiquement le cas où les impulsions attaquent la zone d'écriture du deuxième bras, en haut sur la figure, le mouvement global du point de sortie est alors vers la gauche de la figure, dans un mouvement de poussée de la masselotte; - la
figure 8 illustre le cas opposé à celui de lafigure 7 , où les impulsions attaquent la zone d'écriture du premier bras, en bas sur la figure, le mouvement global du point de sortie est alors vers la droite de la figure, dans un mouvement de rétraction de la masselotte; - la
figure 9 représente, de façon similaire auxfigures 5 à 8 , une variante où une masselotte et le support correspondant forment un ensemble monobloc constitué par un chip, sur un niveau unique, le support est alors limité à une zone de fixation pour la fixation sur le balancier; cette variante convient en particulier à l'application de l'invention au cas particulier d'un balancier d'un diamètre de 10,6 mm, porteur de chips de 2 × 2 mm intégrant support et masselotte; - la
figure 10 représente, de façon similaire à lafigure 3 , une vue en plan du balancier équipé de deux chips selon lafigure 9 ; - la
figure 11 est une vue schématisée, en coupe passant par l'axe de rotation du balancier, et montrant la serge de ce balancier, portant un support, la masselotte n'étant pas représentée, et la source laser d'écriture émettrice pour l'écriture sur les zones d'écriture, ainsi que, monté obliquement en partie gauche de la figure, un laser de détection, dont le rayon réfléchi par le balancier et les éléments qu'il comporte est recueilli en partie droite de la figure par un moyen de recueil tel qu'un photo-détecteur; - la
figure 12 représente, de façon schématisée et en plan, un détail de l'agencement selon lafigure 11 avec une source d'écriture laser et une source de détection laser, pour le cas où le balancier oscille, et où le tir laser est synchronisé avec sa position angulaire; la figure représente une partie de la serge du balancier, portant un chip selon lafigure 9 ; l'arc représenté en trait interrompu correspond à la position instantanée de la source d'écriture laser, qui tire perpendiculairement au plan de la figure, et qui peut ainsi écrire dans la zone d'écriture du premier bras inférieur dans le cas d'espèce, pour créer une dilatation moléculaire symbolisée par une petite flèche dans cette zone d'écriture, les petites flèches voisines correspondant à des écritures déjà effectuées dans la même zone avec des positionnements différents en x de la source d'écriture, correspondant à des rayons différents par rapport à l'axe de rotation du balancier; en partie inférieure de la figure est visible depuis la gauche vers la droite une source de détection laser, une lentille convergente, le rayonnement incident vers le balancier, le point de réflexion sur le balancier ou sur les organes qu'il porte, le rayonnement réfléchi, une lentille convergente, et le photo-détecteur; - la
figure 13 juxtapose trois graphes temporels, établis avec en abcisses des échelles de temps différentes, mais qui sont agencés l'un par rapport à l'autre pour mettre en évidence des instants particuliers et les phénomènes qui s'y produisent : le graphe supérieur affiche en ordonnée la vitesse angulaire oméga OME du balancier, le graphe médian affiche en ordonnée la valeur du signal VPD du photo-détecteur, et le graphe inférieur affiche en ordonnée l'intensité optique IIE émise par la source laser d'écriture; - la
figure 14 est un schéma-blocs montrant les liens entre des moyens de pilotage, une table à mouvements croisés pour la manoeuvre du laser d'écriture, ce dernier, un laser de détection, le moyen de recueil du rayonnement réfléchi, et des moyens de mise en mouvement ou d'arrêt de l'oscillateur; - la
figure 15 est un schéma-blocs regroupant les cinq étapes principales du procédé d'ajustement de marche selon l'invention.
- there
figure 1 represents, schematically and in plan view, a watch, with a watch head comprising a transparent transmissive element which separates the exterior of the watch and the inside of the watch. This transparent transmissive element, here represented in the form of a background, allows optical access to the user and to an optical source to all or part of the oscillator of the watch, which is here a sprung balance of which only the balance is represented, the sprung balance not being represented for do not overload the figures. Thisfigure 1 represents, in a broken line, an incident laser beam meeting this pendulum; - there
figure 2 represents, schematically and in plan view, as thefigure 1 , the detail of the balance according to the invention. This balance comprises, from its rim towards the transparent transmissive element, a plurality of supports arranged in symmetrical pairs relative to the axis of rotation of the balance. These supports support, on the side of the transparent transmissive element, each at least one weight which is radially movable relative to the axis of rotation of the balance. The figure shows, for each support, three different positions of such a weight, one median in hatching intermediate between two extreme positions in broken line; - there
figure 3 represents the pendulum of thefigure 2 , in section perpendicular to the transparent transmissive element, which separates, on the one hand in the upper part of the figure the external environment in which at least one laser source is positioned, and on the other hand in the lower part of the figure the interior of the watch head which includes the balance. The figure shows the rim carrying a support supporting, on the side of the transparent transmissive element such a weight which is radially movable relative to the axis of rotation of the balance, under the action of a beam emitted by the laser source. The figure is centered on a weight shown in hatching, and shows another radial position of this weight, shown in a broken line; - there
figure 4 is a graph which indicates on the ordinate the deviation in steps in seconds per day, and on the abscissa the value of the symmetrical radial displacement of two weights, in micrometers, and superimposes the results obtained for four values of mass of massotte, from 1.20 mg to 2.40 mg;
- there
figure 5 represents, schematically, and in plan view, the principle of the implementation of an optomechanical actuator to move a weight: the support carries fixings, one of which carries the optomechanical actuator itself, which comprises two parallel arms, forming a U because they are connected at the end by a common segment, the first arm extending between a fixing to the support and the common segment, and the second arm extending between the common segment and an output point, here constituted by a neck of an amplifier mechanism intended to amplify the output stroke of the optomechanical actuator to provide sufficient stroke for the weight; - there
figure 6 represents, schematically and in plan view, another variant of the opto-mechanical actuator of thefigure 5 , the output stroke of which in a linear direction is amplified by a mechanical amplifier, here a four-neck parallelogram type mechanism, which makes it possible to transform the overall elongation, or the overall retraction, measurable at the output point of the second arm, into a stroke of the weight which is sufficient to significantly influence the operation of the oscillator; - there
figure 7 schematically illustrates the case where the impulses attack the writing zone of the second arm, at the top of the figure, the overall movement of the output point is then towards the left of the figure, in a pushing movement of the weight; - there
figure 8 illustrates the opposite case to that of thefigure 7 , where the pulses attack the writing area of the first arm, at the bottom in the figure, the overall movement of the exit point is then towards the right of the figure, in a retraction movement of the weight; - there
figure 9 represents, in a similar way toFigures 5 to 8 , a variant where a weight and the corresponding support form a single-piece assembly consisting of a chip, on a single level, the support is then limited to a fixing zone for fixing on the balance; this variant is particularly suitable for the application of the invention to the particular case of a balance with a diameter of 10.6 mm, carrying 2 × 2 mm chips integrating support and weight; - there
figure 10 represents, in a similar way to thefigure 3 , a plan view of the balance wheel equipped with two chips according to thefigure 9 ; - there
figure 11 is a schematic view, in section passing through the axis of rotation of the balance, and showing the rim of this balance, carrying a support, the weight not being shown, and the emitting writing laser source for writing on the writing areas, as well as, mounted obliquely in the left part of the figure, a detection laser, the ray of which reflected by the balance and the elements it comprises is collected in the right part of the figure by a collection means such as a photo-detector; - there
figure 12 represents, schematically and in plan, a detail of the arrangement according to thefigure 11 with a laser writing source and a laser detection source, for the case where the balance wheel oscillates, and where the laser shot is synchronized with its angular position; the figure represents a part of the balance wheel rim, carrying a chip according to thefigure 9 ; the arc shown in a broken line corresponds to the instantaneous position of the laser writing source, which draws perpendicular to the plane of the figure, and which can thus write in the writing area of the first lower arm in this case, to create a molecular expansion symbolized by a small arrow in this writing area, the neighboring small arrows corresponding to writings already carried out in the same area with different positions in x of the writing source, corresponding to different radii relative to the axis of rotation of the balance; in the lower part of the figure is visible from left to right a laser detection source, a converging lens, the incident radiation towards the balance, the reflection point on the balance or on the organs it carries, the reflected radiation, a converging lens, and the photo-detector; - there
figure 13 juxtaposes three time graphs, established with different time scales on the abscissa, but which are arranged in relation to each other to highlight particular moments and the phenomena which occur there: the upper graph displays on the ordinate the angular speed omega OME of the balance, the middle graph displays on the ordinate the value of the signal VPD of the photo-detector, and the lower graph displays on the ordinate the optical intensity IIE emitted by the writing laser source; - there
figure 14 is a block diagram showing the links between control means, a cross-motion table for operating the writing laser, the latter, a detection laser, the means for collecting the reflected radiation, and means for starting or stopping the oscillator; - there
figure 15 is a block diagram grouping the five main steps of the gait adjustment method according to the invention.
L'invention se propose d'induire des tensions mécaniques permanentes, et donc une expansion volumique, notamment par excitation laser femtoseconde, dans un micro-mécanisme flexible usiné dans un support en verre (silice fondue) ou similaire.The invention proposes to induce permanent mechanical tensions, and therefore a volume expansion, in particular by femtosecond laser excitation, in a flexible micro-mechanism machined in a glass (fused silica) or similar support.
Le support est embarqué sur la masse inertielle de l'oscillateur, notamment le balancier, d'une montre mécanique. Le déplacement d'une partie du mécanisme va modifier l'inertie de cette masse inertielle, donc la fréquence de l'oscillateur, notamment du balancier-spiral. Des déplacements de l'ordre de plusieurs micromètres peuvent être obtenus dans de telles microstructures en verre par écriture de lignes d'expansion de tensions internes parallèles, tel que lisible notamment dans l'article «
Les microstructures elles-mêmes sont réalisées grâce à un procédé de découpage précis à +/-1 micromètre, et utilisant le même type de laser, suivi d'une attaque chimique, tel que lisible dans l'article précité, ou dans l'article «
L'absence de pivots ou de tout autre guidage frottant garantit une grande précision de positionnement et une hystérésis nulle. L'excitation optique est directe à travers une glace ou toute séparation d'emboîtage non-absorbante pour la longueur d'onde du laser, ou encore défocalisée à l'endroit du passage.The absence of pivots or any other frictional guidance guarantees high positioning accuracy and zero hysteresis. Optical excitation is direct through a glass or any non-absorbing casing separation for the laser wavelength, or defocused at the point of passage.
L'invention est illustrée plus particulièrement, et non limitativement, pour le cas où l'oscillateur est un oscillateur de montre, et est un balancier-spiral.The invention is illustrated more particularly, and not limitingly, for the case where the oscillator is a watch oscillator, and is a sprung balance.
L'invention concerne un procédé d'ajustement fin de la marche d'un oscillateur mécanique 100 d'horlogerie, comportant au moins une masse inertielle 1 agencée pour osciller autour d'un axe de rotation D et rappelée vers une position de repos par des moyens de rappel élastique.The invention relates to a method for finely adjusting the rate of a
Selon l'invention, et tel que visible sur la
La dénomination « zone d'écriture 39 » concerne le cas générique, et les appellations « première zone d'écriture 391 » et « deuxième zone d'écriture 392 » concernent l'application préférée, mais non limitative, sur respectivement un premier bras 33, et un deuxième bras 34 de la masselotte 3.The name “writing
Plus particulièrement, quand une masse inertielle 1, soumise à un mouvement de rotation, s'étend de part et d'autre de l'axe de rotation D, on équipe cette masse inertielle 1 avec au moins une paire d'actionneurs 35 diamétralement opposés, dans un matériau apte à une micro-expansion locale irréversible sous l'action de tirs laser. C'est notamment le cas quand une masse inertielle 1 est un balancier d'un oscillateur de type balancier-spiral.More particularly, when an
Plus particulièrement, quand une masse inertielle 1, est en porte-à-faux par rapport à l'axe de rotation D, comme les masses inertielles suspendues par lames flexibles, qui sont symétriques par rapport à un plan passant par l'axe de rotation D, on équipe cette masse inertielle 1 avec au moins une paire d'actionneurs 35 symétriques par rapport à ce plan de symétrie.More particularly, when an
Plus particulièrement, on applique ce procédé à un oscillateur 100 avec au moins deux masses inertielles 1 comportant chacune un tel actionneur 35.More particularly, this method is applied to an
Dans une deuxième étape 802, on effectue un premier réglage, notamment grossier, de la marche initiale de l'oscillateur 100 dans une première plage de marche et on mesure la marche.In a
Dans une troisième étape 803, on calcule le sens et la valeur de l'écart de marche à imprimer à l'oscillateur 100 pour l'amener dans une deuxième plage de marche prédéterminée, et on calcule le sens et la valeur de la course à imprimer à chaque masselotte 3 que comporte l'oscillateur 100.In a
Dans une quatrième étape 804, on soumet au moins une zone d'écriture 39, 391, 392, à des tirs laser femtoseconde pour créer au moins une ligne d'expansion 390 par dilatation moléculaire locale du matériau pour déformer l'actionneur 35 radialement par rapport à l'axe de rotation D.In a
Dans une cinquième étape 805, on mesure la marche de l'oscillateur 100, et on réitère si nécessaire la troisième étape 803 et la quatrième étape 804 jusqu'à ce que la marche de l'oscillateur 100 soit dans la deuxième plage de marche prédéterminée.In a
Plus particulièrement, lors de la quatrième étape 804 on utilise une source laser femtoseconde 700, montée sur une table à mouvements croisés 710, ou à course radiale, de façon à incrémenter différentes séries de tirs sur des rayons différents par rapport à l'axe de rotation D, pour créer une série de lignes d'expansion 390 au voisinage immédiat les unes des autres.More particularly, during the
Plus particulièrement, lors de la quatrième étape 804, on utilise une source laser femtoseconde 700 pour effectuer des tirs dans chaque sens de rotation de la masse inertielle 1.More particularly, during the
Plus particulièrement, lors de la quatrième étape 804, on utilise des moyens de pilotage 790 pour piloter les tirs de la source laser femtoseconde 700, selon les informations de présence ou d'absence de matériau fournies par la combinaison d'un laser de détection 750 et un moyen de recueil 760 ou un photo-détecteur.More particularly, during the
Plus particulièrement, lors de la première étape 801, on choisit un actionneur 35 comportant, sur un premier bras 33 une première zone d'écriture 391, et sur un deuxième bras 34 parallèle au premier bras 33 selon une direction linéaire L radiale et le joignant au niveau d'un segment commun 334 une deuxième zone d'écriture 392. L'actionneur 35 est ainsi monté en « S » entre, d'une part une zone de fixation 30 fixée à un support 2 monté sur la masse inertielle 1 ou directement fixée sur la masse inertielle 1, et d'autre part un point de sortie ou un col de liaison 32 de liaison avec un mécanisme amplificateur 36. L'actionneur 35 est agencé pour agir dans deux sens opposés selon la direction linéaire L, selon que, lors de la quatrième étape 804, l'écriture par tirs laser femtoseconde a lieu dans la première zone d'écriture 391 sur le premier bras 33 pour un réglage d'avance, ou dans la deuxième zone d'écriture 392 sur le deuxième bras 34 pour un réglage de retard.More particularly, during the
Plus particulièrement, lors de la première étape 801, on choisit un actionneur 35 avec un point de sortie ou un col de liaison 32 de liaison avec un mécanisme amplificateur 36 lequel est agencé pour amplifier la course de sortie de l'actionneur 35, pour imprimer une course amplifiée à la masselotte 3.More particularly, during the
Plus particulièrement, cet amplificateur 36 est de type parallélogramme, et comporte un système d'embiellage avec des bielles 310 agencées entre des cols flexibles 31 formant un guidage linéaire selon une direction linéaire L radiale.More particularly, this
Plus particulièrement, lors de la première étape 801, on choisit un actionneur 35 comportant une zone de fixation 30 solidaire d'un support 2 monté sur la masse inertielle 1. Et le support 2 forme un ensemble monobloc constituant un micro-mécanisme flexible, avec l'actionneur 35, un amplificateur 36 et la masselotte 3 montés en série les uns avec les autres.More particularly, during the
Plus particulièrement, lors de la première étape 801, on choisit un actionneur 35 comportant une zone de fixation 30 fixée à un support 2 monté sur la masse inertielle 1 ou solidaire d'un support 2, et l'actionneur 35 et/ou le support 2 est en verre.More particularly, during the
Plus particulièrement, lors de la première étape 801, on choisit la masse inertielle 1 sous la forme d'un balancier, qui comporte au moins une paire de masselottes 3 identiques et diamétralement opposées par rapport à l'axe de rotation D.More particularly, during the
Plus particulièrement, lors de la première étape 801, on intègre l'oscillateur 100 dans une tête de montre 500 d'une montre 1000, laquelle tête de montre 500 comporte au moins un élément transparent transmissif 600, qui sépare l'extérieur et l'intérieur de la montre 1000, et permet un accès optique à au moins un laser vers au moins la masse inertielle 1 de l'oscillateur 100 de la montre.More particularly, during the
Dans une variante statique, lors de la première étape 801, on équipe l'oscillateur 100 de moyens d'arrêt ou d'un stop-secondes agencé pour prendre appui sur une masse inertielle 1, et on effectue la quatrième étape 804 dans une position bloquée de la masse inertielle 1.In a static variant, during the
Dans une variante dynamique, lors de la quatrième étape 804 on effectue les tirs laser femtoseconde d'écriture pendant l'oscillation de la masse inertielle 1, dont on synchronise la position angulaire et les tirs.In a dynamic variant, during the
Plus particulièrement, lors de la quatrième étape 804 on effectue les tirs avec un laser femtoseconde, par exemple et non limitativement de longueur d'onde entre 900 et 1100 nm, de durée d'impulsion entre 200 et 350 fs, d'énergie d'une impulsion environ entre 200 et 300 nJ, de taux de répétition de 700 à 900 kHz. Il est bien évident qu'un laser femtoseconde différent (longueur d'onde, durée d'impulsion et énergie) peut être utilisé, à condition qu'il puisse modifier la matière de la même façon décrite avant.More particularly, during the
L'invention concerne encore un oscillateur mécanique 100 d'horlogerie comportant au moins une masse inertielle 1 agencée pour osciller autour d'un axe de rotation D et rappelée vers une position de repos par des moyens de rappel élastique, convenant à la mise en oeuvre de ce procédé. Selon l'invention, au moins une masse inertielle 1 comporte un actionneur 35 dans un matériau apte à une micro-expansion locale irréversible sous l'action de tirs laser. L'actionneur 35 est agencé pour imprimer à une masselotte 3 une course linéaire radiale par rapport à l'axe de rotation D, directement ou par l'intermédiaire d'au moins un amplificateur de course 36, lorsqu'une zone d'écriture 39, 391, 392, que comporte l'actionneur 35 est soumise à des tirs laser appropriés.The invention also relates to a
Plus particulièrement, l'actionneur 35 comporte, sur un premier bras 33 une première zone d'écriture 391, et sur un deuxième bras 34 parallèle au premier bras 33 selon une direction linéaire L radiale et le joignant au niveau d'un segment commun 334 une deuxième zone d'écriture 392, l'actionneur 35 étant ainsi monté en « S » entre d'une part une zone de fixation 30 fixée à un support 2 monté sur la masse inertielle 1 ou directement fixée sur la masse inertielle 1, et d'autre part un point de sortie ou un col de liaison 32 de liaison avec un mécanisme amplificateur 36, l'actionneur 35 étant agencé pour agir dans deux sens opposés selon la direction linéaire L, selon que des tirs laser femtoseconde sont appliqués dans la première zone d'écriture 391 sur le premier bras 33 pour un réglage d'avance, ou dans la deuxième zone d'écriture 392 sur le deuxième bras 34 pour un réglage de retard.More particularly, the
Plus particulièrement, l'actionneur 35 comporte un point de sortie ou un col de liaison 32 de liaison avec un mécanisme amplificateur 36 agencé pour amplifier la course de sortie de l'actionneur 35, pour imprimer une course amplifiée à la masselotte 3. Et l'amplificateur 36 est de type parallélogramme, et comporte un système d'embiellage avec des bielles 310 agencées entre des cols flexibles 31 formant un guidage linéaire selon une direction linéaire L radiale.More particularly, the
Plus particulièrement, l'actionneur 35 comporte une zone de fixation 30 solidaire d'un support 2 monté sur la masse inertielle 1, et le support 2 forme un ensemble monobloc constituant un micro-mécanisme flexible, avec l'actionneur 35, un amplificateur 36 et la masselotte 3 montés en série les uns avec les autres.More particularly, the
Plus particulièrement, l'actionneur 35 comporte une zone de fixation 30 fixée à un support 2 monté sur la masse inertielle 1 ou solidaire d'un support 2, et l'actionneur 35 et/ou le support 2 est en verre.More particularly, the
Plus particulièrement, la masse inertielle 1 est un balancier, qui comporte au moins une paire de masselottes 3 identiques et diamétralement opposées par rapport à l'axe de rotation D.More particularly, the
L'invention concerne encore une pièce d'horlogerie, notamment une montre 1000, comportant au moins un tel oscillateur mécanique 100. Selon l'invention, la montre 1000 comporte une tête de montre 500 comportant au moins un élément transparent transmissif 600, qui sépare l'extérieur et l'intérieur de la montre 1000, et permet un accès optique à au moins un laser vers au moins la masse inertielle 1 de l'oscillateur 100 de la montre.The invention also relates to a timepiece, in particular a
Les figures illustrent des réalisations non limitatives de l'invention, dans le cas particulier où la masse inertielle 1 est un balancier.The figures illustrate non-limiting embodiments of the invention, in the particular case where the
La
L'invention se propose d'ajuster précisément, et au travers d'un emboîtage au moins localement transparent ou d'absorption optique faible tel que cet élément transparent transmissif 600, la fréquence d'un balancier-spiral au moyen d'un rayon laser focalisé. L'oscillateur 100 est, soit déjà réglé grossièrement à +/- 15 secondes par jour, par exemple à l'aide de vis non représentées, soit précisément appairé à un spiral adéquat dans cette plage. L'action du laser permet le réglage fin vers 0-2 secondes par jour, par le déplacement de petites masselottes vers l'extérieur ou vers l'intérieur du balancier 1, modifiant ainsi son inertie, et modifiant donc la fréquence de l'oscillateur, et permettant ainsi l'ajustement précis de la marche de la montre.The invention proposes to adjust precisely, and through a casing that is at least locally transparent or of low optical absorption such as this transparent
La
Les figures illustrent des variantes particulières où chaque support 2 est rapporté sur le balancier 1, pour une commodité d'exécution; une autre variante où les supports 2 et le balancier 1 forment un ensemble monobloc est possible, quoique plus coûteuse à produire.The figures illustrate particular variants where each
La
L'amplitude de déplacement dépend de plusieurs paramètres de l'exposition laser. Cette amplitude peut être contrôlée très précisément, et les masselottes 3 restent en place après une exposition, et il est possible de mouvoir les masselottes 3 dans les deux sens sur un nombre fixé de cycles. Pour ne pas perturber le balourd, il faut grouper les supports 2 par paire, diamétralement opposés, et il faut les régler simultanément sur la même amplitude. Les
Pour le cas particulier simple de deux supports 2 diamétralement opposés, illustré par les figures, la relation entre l'écart de marche (écart par rapport à la fréquence idéale) de l'oscillateur 100, en secondes par jour, et le déplacement radial X de deux masselottes 3, en mètres, est donnée par l'équation suivante:
- écart de marche
- avec R la valeur en mètres du rayon neutre de giration de la masselotte 3, lo l'inertie de base du balancier sans masselottes, en kg*m2, et m la masse d'une masselotte en kg.
- walking gap
- with R the value in meters of the neutral radius of gyration of the
mass 3, lo the basic inertia of the balance without masses, in kg*m 2 , and m the mass of a mass in kg.
La
- rayon extérieur du balancier = 5.3 mm;
- giration à R = 4 mm;
- inertie du balancier sans masselottes: 2e-9 kg*m2;
- masse d'une masselotte: 1.2 ≤ m ≤ 2.4 mg;
- plage visée +/- 15 secondes par jour.
- outer radius of the balance = 5.3 mm;
- gyration at R = 4 mm;
- inertia of the balance without weights: 2 e-9 kg*m 2;
- mass of a mass: 1.2 ≤ m ≤ 2.4 mg;
- target range +/- 15 seconds per day.
Le graphe de la
- courbe C1 pour m= 1,20 mg;
- courbe C2 pour m= 1,60 mg;
- courbe C3 pour m= 2,00 mg.
- courbe C4 pour m= 2,40 mg.
- curve C1 for m= 1.20 mg;
- curve C2 for m= 1.60 mg;
- curve C3 for m= 2.00 mg.
- curve C4 for m= 2.40 mg.
Par exemple, la courbe C2, relative à des masselottes 3 de masse de 1.6 mg, correspond au déplacement de +/- 10 micromètres d'un parallélépipède de verre de 0.30 × 1.33 × 1.70 mm3, de part et d'autre de sa position zéro. L'ajustement de fréquence obtenu est ici de +/- 11 secondes par jour. Cette plage peut être facilement étendue, soit par augmentation de la masse des masselottes, ou par augmentation de la course pic-pic. Une variante consiste notamment à embarquer, sur cette plaque de verre, une masse additionnelle, en métal ou tout autre matériau ad hoc.For example, curve C2, relating to
Le choix de l'actionneur opto-mécanique est essentiel pour l'obtention d'un résultat reproductible et précis. La publication déjà mentionnée «
La
Les
Une autre variante, visible sur les
De la même façon il est, encore, imaginable que les masselottes 3, les supports 2, et le balancier 1, forment un ensemble monobloc, quoique cette variante soit encore plus coûteuse à produire.Similarly, it is also conceivable that the
Selon l'invention ce premier bras 33 et ce deuxième bras 34 sont destinés à recevoir des impulsions laser, et comportent des zones d'écriture respectivement 391, 392, au niveau desquelles des salves d'impulsions laser très brèves, émises par la source laser 700, vont créer, dans l'épaisseur du matériau, une modification locale de sa structure par dilatation moléculaire, cette dilatation étant rapidement stoppée par l'arrêt des impulsions, et la déformation restant de ce fait une déformation permanente. Ces déformations à coeur sont infinitésimales, et de ce fait le procédé consiste à juxtaposer localement une grande quantité de zones ainsi dilatées, pour atteindre une dilatation cumulée suffisante pour mouvoir suffisamment la masselotte 3 selon une direction linéaire L. Avantageusement un amplificateur mécanique 36, par exemple un mécanisme de type parallélogramme à quatre cols tels que visible sur la
On comprend que le mouvement est différent, selon que les impulsions laser attaquent le premier bras 33 ou le deuxième bras 34: la
L'action du laser ne provoque pas de découpe, ni même une gravure superficielle, le but est un réordonnancement moléculaire au coeur du matériau, dans son épaisseur. La notion d'écriture de lignes d'expansion est une périphrase pour décrire l'application de séries d'impulsions selon un réseau dont la projection des trajectoires sur le plan de la masselotte se présente comme une série de lignes d'expansion parallèles très rapprochées, ou de lignes d'expansion en zig-zag très pointus, ou autre; le but est en effet de dilater la matière à coeur, et de cumuler selon la même direction linéaire L des dilatations très rapprochées.The laser action does not cause cutting, or even superficial engraving, the goal is a molecular reordering at the heart of the material, in its thickness. The notion of writing expansion lines is a periphrasis to describe the application of series of pulses according to a network whose projection of the trajectories on the plane of the mass appears as a series of very close parallel expansion lines, or very sharp zig-zag expansion lines, or other; the goal is indeed to expand the material at the core, and to accumulate very close expansions along the same linear direction L.
En écrivant des lignes d'expansion dans le volume du matériau au niveau des zones d'écriture 39, notamment première zone d'écriture 391, deuxième zone d'écriture 392, ce matériau se dilate suite à l'action de ces zones sujettes à des contraintes compressives. Cet état résulte d'un chauffage ponctuel très intense, mais suffisamment bref pour ne pas liquéfier la matière. Il y a juste une très faible dilatation du volume, la matière restant solide. Ce chauffage ponctuel est réalisé par une salve d'impulsions très brèves d'un laser femtoseconde, par exemple ce qui est décrit, mais non limité à, par l'article déjà cité «
Le mécanisme non limitatif des
Selon les informations de l'article déjà mentionné ci-dessus (Y. Bellouard, 2015), pour des blocs de 200 plans parallèles écrits dans un volume de longueur globale d'environ 1 mm selon la direction linéaire L, on obtient, avec les paramètres laser ci-dessus et selon les figures: un facteur multiplicateur Km de 6, une course amplifiée de la masselotte 3 d'environ 5 micromètres, pour 200 lignes d'expansion écrites sur une longueur de 1 mm; le déplacement propre au niveau de l'actionneur 35, selon la direction linéaire L, vaut donc, par ligne écrite : 5 / (200 * 6) = 4.167 nm / ligne (ou plan).According to the information in the article already mentioned above (Y. Bellouard, 2015), for blocks of 200 parallel planes written in a volume of overall length of approximately 1 mm in the linear direction L, we obtain, with the laser parameters above and according to the figures: a multiplying factor Km of 6, an amplified stroke of the
La même technique est utilisable pour découper la microstructure elle-même, selon les articles cités plus haut. Une première étape consiste à écrire, selon le même procédé de dilatation à coeur sous l'action d'un laser, des zones volumiques à enlever dans une plaque de verre (silice fondue). Dans une deuxième étape, la plaque est soumise à une attaque chimique, qui enlève sélectivement les parties sous contrainte. L'usinage obtenu est également précis au micromètre, et permet de réaliser ces microstructures en verre.The same technique can be used to cut the microstructure itself, according to the articles cited above. A first step consists of writing, using the same core expansion process under the action of a laser, volumetric zones to be removed in a glass plate (fused silica). In a second step, the plate is subjected to a chemical attack, which selectively removes the stressed parts. The machining obtained is also precise to the micrometer, and allows these glass microstructures to be produced.
Les
Le mécanisme schématisé sur les
Comme illustré en
La distance entre le milieu de deux cols de flexion 31 délimitant une bielle 310 est, sur cet exemple, de 1,40 mm, et la distance entre le milieu du col de flexion 31 inférieur et le col de liaison 32 est de 0,14 mm. Ces cols de flexion 31 ou de liaison 32 ont ici une largeur de 20 micromètres, ce qui est acceptable du point de vue technologique. Le facteur multiplicateur Km entre la course de l'actionneur, et celle de la masse vaut, en vertu du rapport des bras de leviers: Km = 1.400 mm / 0.140 mm = 10The distance between the middle of two bending
L'amplitude linéaire maximale de la structure vaut: +/- x = Km * 200 lignes d'expansion * 4.167 nm/ligne = 2000*4.167 nm = +/- 8.33 micromètres, ce qui correspond, via le graphe C2, à environ +/- Δmarche = +/- 9 secondes par jour.The maximum linear amplitude of the structure is: +/- x = Km * 200 expansion lines * 4.167 nm/line = 2000*4.167 nm = +/- 8.33 micrometers, which corresponds, via graph C2, to approximately +/- Δwalk = +/- 9 seconds per day.
La résolution du réglage par ligne écrite et en considérant 200 lignes d'expansion pour chacune des deux plages de 9 secondes par jour vaut donc d_marche (1 ligne) = 9/200 = 0.045 secondes par jour et par ligne, ce qui est largement suffisant pour ajuster une marche dans une plage de 0 - 2 secondes par jour.The resolution of the adjustment per written line and considering 200 expansion lines for each of the two ranges of 9 seconds per day is therefore d_marche (1 line) = 9/200 = 0.045 seconds per day and per line, which is largely sufficient to adjust a walk in a range of 0 - 2 seconds per day.
On note que deux zones de 1 mm de long selon la direction linéaire L permettent une seule correction d'avance de +9 secondes par jour et une correction de retard de -9 secondes par jour. Pour disposer de plusieurs cycles d'écriture, on peut, soit augmenter le nombre de supports 2, soit augmenter la masse, ce qui a pour effet de devoir écrire moins de lignes d'expansion pour le même déplacement, et donc de réserver de la place sur le premier bras 33 et sur le deuxième bras 34 pour des écritures ultérieures.It is noted that two
En ce qui concerne la mise en oeuvre de l'ajustement de la marche, on considère un état de départ où, avant correction, la marche de la montre est supposée connue et mesurée, boîte fermée. Pour effectuer la correction, un posage dédicacé est utilisé pour positionner précisément la tête de montre. Un objectif microscopique et un étage de positionnement à mouvements croisés xy permet ensuite le centrage de la source laser 700, notamment un laser femtosecondes, sur le balancier 1.With regard to the implementation of the rate adjustment, a starting state is considered where, before correction, the rate of the watch is assumed to be known and measured, with the case closed. To perform the correction, a dedicated setting is used to precisely position the watch head. A microscopic objective and a positioning stage with xy crossed movements then allow the centering of the
A partir de ce stade, deux options se présentent: ou bien le balancier est immobilisé par un levier de blocage/freinage, tel qu'un stop-secondes ou similaire, ou d'un mécanisme d'arrêt et de maintien spatial de l'oscillateur, et le tir laser est effectué sur une cible immobile, ou bien le balancier 1 oscille toujours, et le tir laser doit alors être synchronisé avec sa position angulaire.From this point, two options arise: either the balance wheel is immobilized by a blocking/braking lever, such as a stop-seconds or the like, or a spatial stopping and holding mechanism of the oscillator, and the laser shot is fired at a stationary target, or the
Le cas où le balancier est immobilisé, et le tir laser effectué sur une cible immobile, peut être résolu avec un positionnement semi-automatique par exemple et non limitativement avec des moyens de pilotage gérant une caméra avec un logiciel de reconnaissance d'image qui se centre sur l'axe de rotation D du balancier.The case where the balance is immobilized, and the laser shot is carried out on a stationary target, can be resolved with semi-automatic positioning for example and not limited to control means managing a camera with image recognition software which centers on the axis of rotation D of the balance.
Dans le cas où le balancier 1 oscille, et où le tir laser est synchronisé avec sa position angulaire, le procédé est plus complexe, mais plus avantageux car le réglage s'effectue en vol, sans besoin d'arrêter le balancier. Le tir peut être démarré avec le début du passage du support 2 à travers un rayon laser de détection 750, comme illustré sur les
La
La
Sur la
La
Lorsque le balancier 1 oscille, sa vitesse angulaire OME est maximum au voisinage du point neutre, soit entre les temps t1 et t4 du graphe supérieur de la
Le signal VPD du photo-détecteur 760 associé au laser de détection 750 est à la valeur 1 lorsque son spot est sur une zone pleine du chip 2, c'est-à-dire successivement zone de fixation 30/ premier bras inférieur 33/ deuxième bras supérieur 34/ masselotte 3, tel que visible à la fois sur le graphe médian de la
La durée Te d'écriture (de passage) dans la première zone d'avance sur le premier bras 33, ou dans la deuxième zone de retard sur le deuxième bras 34, qui est une zone de longueur Le, est donnée par:
- Te = Le / (R*A*2π*F), avec R = rayon de giration, A= amplitude angulaire du balancier et F= fréquence de l'oscillateur.
- Te = Le / (R*A*2π*F), with R = radius of gyration, A = angular amplitude of the balance and F = frequency of the oscillator.
Dans cet exemple, Le = 190 um, R = 4 mm, A = 270°, F = 4 Hz, d'où Te = 0.40 ms.In this example, Le = 190 um, R = 4 mm, A = 270°, F = 4 Hz, hence Te = 0.40 ms.
La fréquence de répétition des impulsions d'écriture étant de 800 kHz dans cet exemple, le nombre d'impulsions par passage vaut donc 800 * 0,40 = 320, et donc l'erreur maximum (cumulée) de la marche vaut donc : 1/320 * (+/-9 secondes par jour) = +/- 0.03 secondes par jour, ce qui est parfaitement satisfaisant pour l'application.The repetition frequency of the write pulses being 800 kHz in this example, the number of pulses per pass is therefore 800 * 0.40 = 320, and therefore the maximum (cumulative) error of the operation is therefore: 1/320 * (+/-9 seconds per day) = +/- 0.03 seconds per day, which is perfectly satisfactory for the application.
La technique d'usinage de verre par laser femtosecondes et attaque chimique, qui permet de réaliser des structures tridimensionnelles précises au micromètre près, est une technique éprouvée.The technique of machining glass using femtosecond lasers and chemical etching, which allows the production of three-dimensional structures precise to the nearest micrometer, is a proven technique.
Cette technique permet de réaliser des chips 2 millimétriques avec des éléments flexibles qui peuvent se déplacer sur des amplitudes micrométriques, avec des précisions nanométriques. L'actionnement du nano-déplacement de la partie actionneur 35 est effectué par écriture laser de contraintes internes. Un système de cols flexibles 31 et de bielles 310 permet d'augmenter les amplitudes selon la direction linéaire L.This technique makes it possible to produce 2 millimeter chips with flexible elements that can move over micrometric amplitudes, with nanometric precision. The actuation of the nano-displacement of the
La réalisation d'un tel chip 2 est adaptée au réglage précis et fiable de la marche d'un balancier-spiral, d'une précision de 0.03 seconde par jour, et d'une résolution de 0.09 seconde par jour, dans une plage de typiquement +/-10 seconde par jour. Bien sûr, l'amplitude de plage et la résolution peuvent être aisément variés par adaptation du design.The realization of such a
On peut noter que l'invention offre la possibilité d'effectuer une dilatation infinitésimale et irréversible, ce qui, en théorie, pourrait permettre, par une série de tirs sur l'élément de rappel élastique de l'oscillateur, tel que ressort spiral, lame flexible ou similaire, de modifier sa raideur; toutefois la création de ces zones déformées nuit à l'homogénéité du composant, et le risque est une altération des propriétés élastiques de cet élément de rappel élastique. C'est pourquoi l'invention est présentée ici préférentiellement pour une action sur l'élément inertiel, peu important qu'il soit suspendu par ressort spiral, ou par lames élastiques.It may be noted that the invention offers the possibility of carrying out an infinitesimal and irreversible expansion, which, in theory, could allow, by a series of shots on the elastic return element of the oscillator, such that spiral spring, flexible blade or similar, to modify its stiffness; however, the creation of these deformed zones harms the homogeneity of the component, and the risk is an alteration of the elastic properties of this elastic return element. This is why the invention is presented here preferentially for an action on the inertial element, regardless of whether it is suspended by a spiral spring or by elastic blades.
Le système de réglage est compact et ne nécessite pas de complications additionnelles dans la montre 1000, autre que le montage de deux ou plusieurs chips 2 en verre sur le balancier 1.The adjustment system is compact and does not require any additional complications in the 1000 watch, other than the mounting of two or
Ce réglage peut être effectué directement sur une montre 1000 complète, à la condition que la tête de montre 500 comporte un élément transparent transmissif 600, tel qu'un fond, une glace, ou autre, qui soit transparent ou non-absorbant pour le laser d'écriture en accès optique sur l'oscillateur. L'invention concerne naturellement une montre 1000 ainsi équipée.This adjustment can be carried out directly on a
La
La partie extérieure du réglage (posage, microscope, optiques et lasers) occupe typiquement le volume d'un bureau, ce qui permet un réglage rapide et convivial, autant en production qu'en boutique pour le service clients.The external part of the adjustment (positioning, microscope, optics and lasers) typically occupies the volume of an office, which allows for rapid and user-friendly adjustment, both in production and in the store for customer service.
La mise en oeuvre de l'invention est d'autant meilleure que l'on parvient à une optimisation de l'absorption du rayonnement par la séparation de protection physique (boîte, emboîtage), que l'on réalise un système de positionnement fiable du spot laser. Naturellement, il convient d'adopter un dimensionnement adapté pour les zones sous tension, au-dessus de certaines dimensions déterminées expérimentalement, pour éviter une fragilité accrue de ces zones sous tension, qui pourrait provoquer une rupture prématurée lors de chocs.The implementation of the invention is all the better as one achieves an optimization of the absorption of the radiation by the physical protection separation (box, casing), that one realizes a reliable positioning system of the laser spot. Naturally, it is appropriate to adopt a dimensioning adapted for the zones under tension, above certain dimensions determined experimentally, to avoid a increased fragility of these stress areas, which could cause premature rupture during impacts.
Claims (23)
- Method for the fine adjustment of the rate of a mechanical horological oscillator (100) including at least one inertial mass (1), for example but not restricted to: a balance, arranged to oscillate about an axis of rotation (D) and returned to a rest position by elastic return means, characterised in that, in a first step (801), said oscillator (100) is equipped with at least one inertial mass (1) including an actuator (35) in a material suitable for irreversible local micro-expansion under the effect of laser fires, said actuator (35) being arranged to impart to an inertia-block (3) a radial linear travel with respect to the axis of rotation (D), directly or by means of at least one travel amplifier (36), when a writing zone (39; 391; 392), included in the actuator (35) is subjected to suitable laser fires, in a second step (802), a first rough setting of the initial rate of said oscillator (100) is performed in a first rate range and said rate is measured, in a third step (803), the direction and the value of the rate deviation to be imparted to said oscillator (100) are calculated to bring it into a predetermined second rate range, and the direction and the value of the travel to be imparted to each said inertia-block (3) included in said oscillator (100) are calculated, in a fourth step (804), at least one said writing zone (39; 391; 392) is subjected to femtosecond laser fires to create at least one expansion line (390) by local molecular expansion of said material to deform said actuator (35) radially with respect to said axis of rotation (D), in a fifth step (805), the rate of said oscillator (100) is measured, and if required said third step (803) and said fourth step (804) are repeated until the rate of said oscillator (100) is within said second rate range.
- Method according to claim 1, characterised in that said method is applied to a said oscillator (100) with at least two said inertial masses (1) each including a said actuator (35).
- Method according to claim 1 or 2, characterised in that, during said fourth step (804), a femtosecond laser source (700) is used, mounted on a table with crossing movements (710) or with radial travel, so as to juxtapose different series of fires on different beams with respect to said axis of rotation (D) to create a series of said expansion lines (390) in the immediate vicinity of one another.
- Method according to one of claims 1 to 3, characterised in that, during said fourth step (804), a femtosecond laser source (700) is used to perform laser fires in each direction of rotation of said inertial mass (1).
- Method according to one of claims 1 to 4, characterised in that, during said fourth step (804), control means (790) are used to control the fires of said femtosecond laser source (700), according to the information in respect of the presence or absence of material provided by the combination of a detection laser (750) and a collection means (760) or a photodetector.
- Method according to one of claims 1 to 5, characterised in that, during said first step (801), a said actuator (35) is chosen including, on a first arm (33) a first writing zone (391), and on a second arm (34) parallel with the first arm (33) along a radial linear direction (L) and joining it at a common segment (334) a second writing zone (392), said actuator (35) thus being mounted in an "S" between, on one hand, a fastening zone (30) fastened to a support (2) mounted on said inertial mass (1) or directly fastened to said inertial mass (1), and, on the other, an exit point or a linking neck (32) for linking with an amplifying mechanism (36), said actuator (35) being arranged to act in two opposite directions along said linear direction (L), whereby, during said fourth step (804), femtosecond laser fire writing takes place in said first writing zone (391) on said first arm (33) for a gain setting, or in said second writing zone (392) on said second arm (34) for a loss setting.
- Method according to one of claims 1 to 6, characterised in that, during said first step (801), a said actuator (35) is chosen with an exit point or a linking neck (32) for linking with an amplifying mechanism (36) arranged to amplify the exit travel of said actuator (35), to impart an amplified travel to said inertia-block (3).
- Method according to claim 7, characterised in that said amplifier (36) is parallelogram type, and includes a connecting rod system with connecting rods (310) arranged between flexible necks (31) forming a linear guidance along a radial linear direction (L).
- Method according to one of claims 1 to 8, characterised in that, during said first step (801), a said actuator (35) is chosen including a fastening zone (30) rigidly connected to a support (2) mounted on said inertial mass (1), and in that said support (2) forms a one-piece assembly forming a flexible micro-mechanism, with said actuator (35), an amplifier (36) and said inertia-block (3) mounted in series with each other.
- Method according to one of claims 1 to 9, characterised in that, during said first step (801), a said actuator (35) is chosen including a fastening zone (30) fastened to a support (2) mounted on said inertial mass (1) or rigidly connected to a said support (2), and in that said actuator (35) and/or said support (2) is made of glass.
- Method according to one of claims 1 to 10, characterised in that, during said first step (801), said inertial mass (1) is chosen in the form of a balance, which includes at least one pair of identical said inertia-blocks (3) diametrically opposed with respect to said axis of rotation (D).
- Method according to one of claims 1 to 10, characterised in that, during said first step (801), said oscillator (100) is incorporated into a watch head (500) of a watch (1000), said watch head (500) including at least one transmissive transparent element (600), which separates the outside and inside of said watch (1000) and enables optical access for at least one laser to at least said inertial mass (1) of said oscillator (100) of the watch.
- Method according to one of claims 1 to 12, characterised in that, during said first step (801), said oscillator (100) is equipped with stopping means or a stop-seconds means arranged to bear on a said inertial mass (1), and in that said fourth step (804) is performed in a locked position of said inertial mass (1).
- Method according to one of claims 1 to 12, characterised in that, during said fourth step (804), said femtosecond laser writing fires are performed during the oscillation of said inertial mass (1), wherein the angular position and said fires are synchronised.
- Method according to one of claims 1 to 14, characterised in that, during said fourth step (804), said fires are performed with a femtosecond laser.
- Method according to claim 15, characterised in that, during said fourth step (804), said fires are performed with a femtosecond laser, of wavelength between 900 and 1100 nm, pulse time between 200 and 350 fs, pulse energy approximately between 200 and 300 nJ, repetition frequency of 700 to 900 kHz.
- Mechanical horological oscillator (100) including at least one inertial mass (1) arranged to oscillate about an axis of rotation (D) and returned to a rest position by elastic return means, characterised in that at least one said inertial mass (1) includes an actuator (35) in a material suitable for irreversible local micro-expansion under the action of laser fires, said actuator (35) being arranged to impart to an inertia-block (3) a radial linear travel with respect to said axis of rotation (D), directly or by means of at least one travel amplifier (36), when a writing zone (39; 391; 392) included in said actuator (35) is subjected to suitable laser fires.
- Mechanical oscillator (100) according to claim 17, characterised in that said actuator (35) includes, on a first arm (33) a first writing zone (391), and on a second arm (34) parallel with the first arm (33) along a radial linear direction (L) and joining it at a common segment (334) a second writing zone (392), said actuator (35) thus being mounted in an "S" between, on one hand, a fastening zone (30) fastened to a support (2) mounted on said inertial mass (1) or directly fastened to said inertial mass (1), and, on the other, an exit point or a linking neck (32) for linking with an amplifying mechanism (36), said actuator (35) being arranged to act in two opposite directions along said linear direction (L), whereby said femtosecond laser fires are applied in said first writing zone (391) on said first arm (33) for a gain setting, or in said second writing zone (392) on said second arm (34) for a loss setting.
- Mechanical oscillator (100) according to claim 17 or 18, characterised in that said actuator (35) includes an exit point of a linking neck (32) for linking with an amplifying mechanism (36) arranged to amplify the travel of said actuator (35), to impart an amplified travel to said inertia-block (3), and in that said amplifier (36) is parallelogram type, and includes a connecting rod system with connecting rods (310) arranged between flexible necks (31) forming a linear guidance along a radial linear direction (L).
- Mechanical oscillator (100) according to one of claims 17 to 19, characterised in that said actuator (35) includes a fastening zone (30) rigidly connected to a support (2) mounted on said inertial mass (1), and in that said support (2) forms a one-piece assembly forming a flexible micro-mechanism, with said actuator (35), an amplifier (36) and said inertia-block (3) mounted in series with each other.
- Mechanical oscillator (100) according to one of claims 17 to 20, characterised in that said actuator (35) includes a fastening zone (30) fastened to a support (2) mounted on said inertial mass (1) or rigidly connected to a said support (2), and in that said actuator (35) and/or said support (2) is made of glass.
- Mechanical oscillator (100) according to one of claims 17 to 21, characterised in that said inertial mass (1) is a balance, which includes at least one pair of identical said inertia-blocks (3) diametrically opposed with respect to said axis of rotation (D).
- Watch (1000) including at least one mechanical oscillator (100) according to one of claims 17 to 22, characterised in that said watch (1000) includes a watch head (500) including at least one transmissive transparent element (600), which separates the outside and inside of the watch (1000) and enables optical access for at least one laser to at least said inertial mass (1) of said oscillator (100) of the watch.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21217879.2A EP4202565B1 (en) | 2021-12-27 | 2021-12-27 | Frequency setting of a timepiece oscillator by opto-mechanical deformations |
US18/056,990 US20230205137A1 (en) | 2021-12-27 | 2022-11-18 | Frequency setting of a horological oscillator by optomechanical deformations |
JP2022199243A JP7573589B2 (en) | 2021-12-27 | 2022-12-14 | Setting the frequency of a horological oscillator by opto-mechanical deformation |
CN202211681722.9A CN116360231A (en) | 2021-12-27 | 2022-12-27 | Setting the frequency of a timepiece oscillator by optomechanical deformation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21217879.2A EP4202565B1 (en) | 2021-12-27 | 2021-12-27 | Frequency setting of a timepiece oscillator by opto-mechanical deformations |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4202565A1 EP4202565A1 (en) | 2023-06-28 |
EP4202565B1 true EP4202565B1 (en) | 2024-10-02 |
Family
ID=79165093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21217879.2A Active EP4202565B1 (en) | 2021-12-27 | 2021-12-27 | Frequency setting of a timepiece oscillator by opto-mechanical deformations |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230205137A1 (en) |
EP (1) | EP4202565B1 (en) |
JP (1) | JP7573589B2 (en) |
CN (1) | CN116360231A (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2062101A2 (en) | 2006-09-08 | 2009-05-27 | Gideon Levingston | Thermally compensating balance wheel |
CH704693B1 (en) | 2010-07-16 | 2015-08-14 | Eta Sa Manufacture Horlogère Suisse | A method of adjusting the oscillation frequency, and / or adjusting the inertia, and / or balancing a movable component of a clockwork movement, or a clockwork balance-spring assembly. |
CH711336A2 (en) * | 2015-07-16 | 2017-01-31 | Swatch Group Res & Dev Ltd | Microsystem for controlling the running of a clock oscillator. |
-
2021
- 2021-12-27 EP EP21217879.2A patent/EP4202565B1/en active Active
-
2022
- 2022-11-18 US US18/056,990 patent/US20230205137A1/en active Pending
- 2022-12-14 JP JP2022199243A patent/JP7573589B2/en active Active
- 2022-12-27 CN CN202211681722.9A patent/CN116360231A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230205137A1 (en) | 2023-06-29 |
JP2023097393A (en) | 2023-07-07 |
CN116360231A (en) | 2023-06-30 |
EP4202565A1 (en) | 2023-06-28 |
JP7573589B2 (en) | 2024-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3252545A1 (en) | Timepiece mechanism with balance wheel inertia adjustment | |
EP2423764B1 (en) | Device for measuring the torque of a hairspring | |
EP3252546B1 (en) | Timepiece mechanism with balance wheel inertia adjustment | |
EP3118693B1 (en) | Mechanism for regulating the rate of a clock oscillator | |
EP2795410B1 (en) | Pallet-stone and its manufacturing method | |
EP3365734B1 (en) | Oscilator for mechanical clockwork | |
CH704693A2 (en) | Method for adjusting oscillation frequency and/or inertia and/or e.g. dynamic balance of time balance motor in clock movement or balance and spring assembly of watch, involves controlling pulse using driving unit to drive movements of beam | |
CH709328B1 (en) | Escapement, timepiece movement and timepiece. | |
EP4202565B1 (en) | Frequency setting of a timepiece oscillator by opto-mechanical deformations | |
EP2795411B1 (en) | Method for manufacturing a resonator | |
CH719325A2 (en) | Process for adjusting the rate of a mechanical clock oscillator by opto-mechanical deformations. | |
EP3835879B1 (en) | Timepiece resonator mechanism with inertial mass wheel with inertia and unbalance adjustment | |
EP4021677B1 (en) | Laser machining device | |
CH713530A2 (en) | Exhaust, timepiece movement and timepiece. | |
EP3997525B1 (en) | Method for adjusting a timepiece oscillator with flexible pivot | |
EP3881650B1 (en) | Source and method for generating x-rays by laser interaction with a target | |
EP3637196B1 (en) | Mechanical oscillator | |
CH712524A2 (en) | Clock balance with inertia adjustment. | |
EP2340409B1 (en) | Device and method for vibrating a solid amplification member within a gyrolaser | |
FR3048790A1 (en) | MECHANISM FOR A WATCHING PART, A WATCHMAKING MOVEMENT AND A WATCHPIECE COMPRISING SUCH A MECHANISM. | |
WO2024002600A1 (en) | Optical device for scanning a light beam over a part to be machined | |
CH716908A2 (en) | Clockwork resonator mechanism with inertial mass with inertia and / or unbalance adjustment. | |
FR2566926A1 (en) | OPTICAL SYSTEM EQUIPPED WITH A QUICK SWITCH OF OPTICAL PATHWAYS | |
CH703460B1 (en) | Method and inertia adjustment device, balancing, or frequency, a clock pendulum. | |
CH703461A2 (en) | Method for adjusting oscillation frequency and/or inertia and/or e.g. dynamic balance of time balance motor in clock movement or balance and spring assembly of watch, involves controlling pulse using driving unit to drive movements of beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231109 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240102 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Free format text: PREVIOUS MAIN CLASS: G04B0017060000 Ipc: G04C0003060000 Ref country code: DE Ref legal event code: R079 Ref document number: 602021019568 Country of ref document: DE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04C 3/06 20060101AFI20240430BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240515 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021019568 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241121 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241121 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20241002 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1728921 Country of ref document: AT Kind code of ref document: T Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20250101 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241002 |