EP4188769A1 - Motor vehicle driver assistance method - Google Patents
Motor vehicle driver assistance methodInfo
- Publication number
- EP4188769A1 EP4188769A1 EP21749614.0A EP21749614A EP4188769A1 EP 4188769 A1 EP4188769 A1 EP 4188769A1 EP 21749614 A EP21749614 A EP 21749614A EP 4188769 A1 EP4188769 A1 EP 4188769A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- interest
- vehicles
- parameters
- board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 230000033001 locomotion Effects 0.000 claims abstract description 15
- 230000001133 acceleration Effects 0.000 claims description 13
- 230000035484 reaction time Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 230000000272 proprioceptive effect Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00272—Planning or execution of driving tasks using trajectory prediction for other traffic participants relying on extrapolation of current movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0027—Minimum/maximum value selectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0031—Mathematical model of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
- B60W2520/125—Lateral acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/40—High definition maps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
Definitions
- the present invention relates generally to the field of motor vehicles, and more specifically to assistance in driving a motor vehicle.
- the assistance system to driving on board this vehicle must be able not only to detect all dynamic objects (hereinafter referred to as “third-party vehicles”) present in the immediate environment of the vehicle, such as other motor vehicles (cars, trucks, motorcycles ), but also to predict the future movements of these third-party vehicles.
- third-party vehicles dynamic objects present in the immediate environment of the vehicle, such as other motor vehicles (cars, trucks, motorcycles ), but also to predict the future movements of these third-party vehicles.
- a known method for assisting the driving of a motor vehicle of interest moving in a driving zone thus generally comprises:
- a detection step during which a driving assistance system on board the motor vehicle of interest detects at least one third-party vehicle present in the environment of the motor vehicle of interest from measurements delivered by at least one exteroceptive measurement sensor on board the vehicle of interest; and - a step of prediction, by the driving assistance system, of a trajectory associated with said at least one detected third-party vehicle.
- the known trajectory prediction methods can be based on a motion model based on physics, that is to say a model considering that the future motion of a vehicle depends only on the laws physics and assumes that the vehicle does not change speed or direction.
- the driving assistance system is able to determine a safety zone for the vehicle of interest, from the predicted trajectories and the current movement parameters. of the vehicle of interest.
- the system described in the document entitled “Implementing the RSS Model on NHTSA Pre-Crash Scenarios", available at the following link https://www.mobileye.com/responsibility-sensitive-safety/rss_on_nhtsa.pdf determines for example a safety zone for the vehicle of interest and the behavior to adopt in the event of violation thereof, by evaluating in particular a longitudinal safety distance and a lateral safety distance which must be maintained by the vehicle of interest with respect to to third-party vehicles moving around in its environment.
- the system uses, both in the trajectory prediction step and in the safety zone determination step, a set of parameters representative of the limitations of the kinematic performances associated with the vehicles, namely in particular:
- a disadvantage of this system lies in the fact that the above parameters are static, that is to say that they are fixed once and for all, and this, regardless of the vehicles present on the scene and the real environmental conditions associated with the driving scenario.
- reaction time is linked to the average reaction time of a driver, and also fixed empirically, for example at 1 second.
- the purpose of the present invention is to overcome the limitations of the prior art by proposing to adapt the value of at least one of the preceding parameters to the actual driving situations encountered.
- the subject of the present invention is a method for assisting the driving of a motor vehicle of interest moving in a driving zone comprising:
- a detection step during which a driving assistance system on board said motor vehicle of interest detects at least one third-party vehicle present in the environment of the motor vehicle of interest from measurements delivered by at least one exteroceptive measurement sensor on board the vehicle of interest;
- Said set of parameters may comprise a maximum longitudinal acceleration of said vehicles, and/or a maximum braking deceleration of said vehicles, and/or a maximum lateral acceleration of said vehicles, and/or a reaction time associated with said vehicles.
- Said at least one external source can be an exteroceptive sensor on board the vehicle of interest, for example a rain and/or light sensor.
- Said at least one external source can also be a proprioceptive sensor on board the vehicle of interest.
- Said at least one external source can also be a V2X communication module equipping an infrastructure located in the driving zone.
- the exteroceptive measurement sensor is a camera, or a radar or a lidar.
- FIG. 1 schematically illustrates, in top view, an example of a road scene serving to illustrate certain principles of the invention
- FIG. 2 schematically represents components of an example of an on-board system on a vehicle of interest capable of implementing a driving assistance method in accordance with the invention
- - Figure 3 illustrates an example of variation of a maximum braking deceleration as a function of the level of rain
- - Figure 4 illustrates an embodiment of the invention in which the external source is a V2X type communicating terminal installed in a driving zone
- FIG. 5 shows steps that can be implemented according to one embodiment of a driving assistance method according to the invention.
- a vehicle of interest Vi having an advanced driving assistance system in accordance with the invention, moves in a rolling zone.
- Two other vehicles Vi and V2 also evolve in the environment of the vehicle of interest Vi.
- the driving zone corresponds to a portion of the motorway, and that all vehicles travel in the same direction (from left to right in figure 1), according to the French highway code ( overtaking on the left and speed limit of 130 km/h).
- the third-party vehicles Vi, V2 are motor vehicles.
- the nature of the third-party vehicles present in the environment of the vehicle of interest has no impact on the principles of the present invention.
- a third-party vehicle can be any motorized vehicle (motor vehicle, motorcycle, truck, etc.), a semi-autonomous vehicle or an autonomous vehicle.
- the vehicle of interest Vi is conventionally equipped with several proprioceptive sensors (generally represented under the reference 1), such as a speed sensor, a steering wheel angle sensor and a GPS type navigation system, allowing it to have information on its current state (speed, acceleration, heading followed with respect to a reference (X,Y) linked to the vehicle of interest, current position with respect to an HD map board containing context-related information, such as speed limit regulations, type of road, etc.).
- proprioceptive sensors generally represented under the reference 1
- a speed sensor such as a speed sensor, a steering wheel angle sensor and a GPS type navigation system
- the vehicle of interest Vi also comprises one or more exteroceptive sensors (generally represented under the reference 2), comprising at least one measurement sensor (for example image sensor, a Radar, a Lidar) allowing it to detect the third-party vehicles present in its environment, and optionally, the information relating to the geometry of the road scene (in particular the marking lines, the road signs, etc.).
- exteroceptive sensors for example image sensor, a Radar, a Lidar
- other exteroceptive sensors not used in the detection of third-party vehicles such as a rain and/or light sensor, equip the vehicle of interest Vi.
- a driver assistance system 3 is also on board the vehicle of interest Vi. As represented schematically in FIG. 2, this driving assistance system 3 conventionally comprises:
- a detection module 30 configured to detect the presence of third-party vehicles moving in the environment of the vehicle of interest Vi from measurements delivered by the exteroceptive measurement sensor(s) 2;
- a decision module 31 capable of determining a so-called safety zone for the vehicle of interest Vi;
- control module 34 capable here of generating commands allowing lateral and/or longitudinal control of the vehicle of interest according to the safety zone delivered at the output of the decision module 31 (as we have seen previously, the control module could be replaced or supplemented by a module for generating a visual and/or audible alert intended for the driver of the vehicle of interest).
- the decision module 31 comprises a first so-called trajectory prediction sub-module 32, configured to predict the trajectory of each of the third-party vehicles detected in the environment of the vehicle of interest Vi by the detection module 30, such as than the vehicles Vi and V2 in the example of FIG. 1.
- This first sub-module 32 is more precisely capable of anticipating the trajectory of a detected third-party vehicle, according to its current speed and heading in the reference frame ( X,Y) associated with the vehicle of interest Vi, by applying a linear extrapolation on a motion model based on physics, and deducing therefrom a danger zone, such as the zones Ai and A2 represented on FIG. 1, symbolizing areas within which the vehicle of interest Vi must not penetrate.
- the decision module 31 further comprises a second sub-module 33 called security evaluation, receiving on the one hand, the output of the first sub-module 32 (in this case the danger zones Ai and A2 associated with the third-party vehicles detected), and on the other hand, the information related to the current dynamics of the vehicle of interest Vi (in particular its current speed, acceleration and orientation in the reference frame (X, Y)) and delivered by the proprioceptive sensors 1 . From this information received, the sub-module 33 is able to evaluate the so-called security zone (such as the zone Ai in FIG. 1) for the vehicle of interest.
- security evaluation receiving on the one hand, the output of the first sub-module 32 (in this case the danger zones Ai and A2 associated with the third-party vehicles detected), and on the other hand, the information related to the current dynamics of the vehicle of interest Vi (in particular its current speed, acceleration and orientation in the reference frame (X, Y)) and delivered by the proprioceptive sensors 1 . From this information received, the sub-module 33 is
- the calculations performed both by the first sub-module 32 for prediction and by the second sub-module 33 for security evaluation involve movement models based on physics, which models use a set of parameters representative of kinematic performance limitations associated with vehicles, including in particular:
- a minimum longitudinal safety distance d 1 TM separating the vehicle of interest of the third-party vehicle, and defining a longitudinal dimension of the safety zone for the vehicle of interest can be calculated by applying the following relationship: in which : V/ and v t are the current speeds of the vehicle of interest and of the third-party vehicle detected;
- - Pmin is the minimum deceleration that the vehicle of interest must perform to avoid a collision.
- the present invention provides for the use of at least one external source to transmit to the driving assistance system 3 at least one additional piece of information used by the system 3 to dynamically modify the value of at least one of the parameters of the set.
- the external source is also embedded in the vehicle of interest Vi. It may for example be one of the exteroceptive sensors 2 of the vehicle of interest.
- one of the exteroceptive sensors 2 on board the vehicle of interest Vi is a sensor capable of detecting the presence of rain
- the value to be assigned to the maximum braking deceleration p max of the vehicles will be equal to - 4 m/s 2 .
- FIG. 3 gives an example of variation of the values assigned to the maximum braking deceleration p max of the vehicles as a function of the level of rain detected, these values being recorded beforehand in the database 35.
- one of the exteroceptive sensors 2 of the vehicle of interest is a light sensor.
- the reaction time p of any driver is generally higher when it is dark or at night than in broad daylight.
- the value to be assigned to the reaction time p at least of third-party vehicles is 1 second;
- the value to be assigned to the reaction time p at least of the third-party vehicles will be higher, for example equal to 2 seconds.
- the external source embedded in the vehicle of interest Vi can be one of the proprioceptive sensors 1 of the vehicle of interest.
- the GPS-type navigation system of the vehicle of interest can be used to derive the exact time, and to deduce therefrom, like the luminosity sensor indicated previously, a value to be assigned to the time of reaction p, at least for third-party vehicles, as a function of the time supplied by this navigation system. Thanks to the GPS system, the vehicle of interest can also position itself very precisely on an on-board HD map, and derive at least one additional piece of information characteristic of the environment (for example the presence of a bridge, a tunnel, the type of road surface).
- the system 3 can in this case dynamically select a more suitable value for at least one of the parameters of the set.
- the type of road surface can have an advantageous effect on the values to be assigned to acceleration and deceleration under braking.
- the additional information provided to the driver assistance system 3 corresponds to a lane change maneuver performed or about to be performed by the vehicle of interest Vi.
- This information can be obtained by an exteroceptive sensor 2 of the vehicle of interest (for example an on-board camera detecting the crossing of a line of ground marking by the vehicle of interest) and/or by a proprioceptive sensor 1 (steering wheel angle sensor or detection of the on state of a turn signal of the vehicle of interest).
- an exteroceptive sensor 2 of the vehicle of interest for example an on-board camera detecting the crossing of a line of ground marking by the vehicle of interest
- a proprioceptive sensor 1 steering wheel angle sensor or detection of the on state of a turn signal of the vehicle of interest
- the precise value to be assigned in the event of a lane change maneuver can result either from a value obtained in a prior learning phase obtained online or offline (simulation of the behavior of third-party vehicles in terms of braking deceleration in different situations where the vehicle of interest is making a lane change).
- the external source providing the additional information which will make it possible to dynamically adapt the value to be assigned to at least one of the parameters of the set of parameters ⁇ ; Pmax>' a mix>'P ⁇ is a source on board the vehicle of interest Vi.
- the vehicle of interest Vi is also a vehicle able to communicate, that is to say to transmit and receive information, with other vehicles and dedicated terminals equipping the road infrastructure, such as terminal 4 in FIG. 4.
- the system 3 comprises a V2X communication module 36 (meaning Vehicle to everything in Anglo-Saxon terminology).
- V2X communication module 36 meaning Vehicle to everything in Anglo-Saxon terminology.
- at least one of the additional pieces of information such as that described above (detection of rain level, time of day, detection of luminosity, etc.) can be acquired directly by the infrastructure 4 by equipping the latter suitable measurement sensors.
- the infrastructure 4 knows the environmental specificities linked to the zone in which this infrastructure is located.
- the terminal 4 is located at a crossing to which are assigned different driving rules (for example the presence of stop signs, priority rules), as well as different information that can have consequences on the assessment of the danger (type of road surface, presence of a building at the crossing affecting visibility, etc.).
- driving rules for example the presence of stop signs, priority rules
- information that can have consequences on the assessment of the danger (type of road surface, presence of a building at the crossing affecting visibility, etc.).
- the terminal 4 is able to dynamically select the value of at least one of the parameters of the set of parameters ⁇ a ⁇ 1 ; (3 max ; a ⁇ l ax ⁇ p ⁇ .
- terminal 4 can choose to assign to the reaction time p of the vehicles a greater value (for example equal to 2 seconds) compared to the empirical value of one second generally used.
- the values thus assigned to the set of parameters ⁇ a max >Pmax>' a m l ax> P ⁇ are then transmitted by a V2X transmission module (not shown) fitted to terminal 4 and can thus be received by the reception module 36 of the vehicle of interest Vi when the latter approaches the intersection.
- the system 3 for aiding the driving of the vehicle of interest can then advantageously decide to temporarily replace the values of the parameters available to it in the database 35 by the values which it receives from the terminal 4.
- the step referenced 110 corresponds to a detection step during which the driving assistance system 3 of the motor vehicle of interest Vi detects at least one third-party vehicle present in its environment from measurements delivered by at least one exteroceptive measurement sensor 2;
- the driving assistance system 3 can then predict (step 120), the trajectory associated with said at least one detected third-party vehicle, and determine (step 130) a safety zone for the vehicle of interest Vi, from the predicted trajectory and current motion parameters of said vehicle of interest Vi, using vehicle motion models depending on a set of parameters representative of limitations of the kinematic performances associated with the vehicles;
- step 140 the value of at least one of the parameters of said set used in the prediction step 120 and the determination step 130 is dynamically modified (step 140) by the driving assistance system 3 as a function of at least additional information transmitted to the driving assistance system 3 by at least one external source whether onboard or not on the vehicle of interest Vi.
- the source external to the system 3 can be a proprioceptive sensor 1 or an exteroceptive sensor 2 of the vehicle of interest Vi, or a communication terminal 4 of the V2X type. Several of these sources can be combined to modify the value of several parameters of the set.
- step 130 the system is able, if necessary, to alert the driver of a dangerous situation and/or to generate automatic longitudinal and/or lateral control commands for the vehicle of interest (steps not shown).
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Abstract
The invention relates to a driver assistance method for a motor vehicle of interest equipped with a driver assistance system (3) and travelling in a driving area, comprising the steps of: detecting, by the system (3), at least one third-party vehicle present in the environment of the vehicle of interest based on measurements delivered by at least one exteroceptive measurement sensor (2) installed on-board the vehicle of interest; predicting, by the system (3), a trajectory associated with the detected third-party vehicle; and determining, by the system (3), a safety area for the vehicle of interest, based on the projected trajectory and the current movement parameters of the vehicle of interest. Vehicle movement models dependent on a set of parameters representative of limitations of the kinematic performances associated with the vehicles are used in the prediction and determination steps. According to the invention, the value of at least one of the parameters of said set is dynamically modified by the system (3) depending on at least one additional piece of information transmitted to the system (3) by at least one external source (1, 2, 4) installed, or not, on-board the vehicle of interest.
Description
ASSISTANCE A LA CONDUITE D’UN VEHICULE AUTOMOBILE ASSISTANCE WITH THE DRIVING OF A MOTOR VEHICLE
Domaine technique Technical area
[0001] La présente invention concerne de manière générale le domaine des véhicules automobiles, et plus spécifiquement l’assistance la conduite d’un véhicule automobile. The present invention relates generally to the field of motor vehicles, and more specifically to assistance in driving a motor vehicle.
Arrière-plan technologique Technology background
[0002] Afin d’augmenter la sécurité routière, certains véhicules automobiles, dits semi-autonomes, sont équipés de systèmes d’automatisation partielle ou de systèmes avancés d’assistance à la conduite (connus sous l’acronyme ADAS en terminologie anglo-saxonne), en particulier de systèmes réalisant, à la place du conducteur, le contrôle latéral et/ou le contrôle longitudinal du véhicule, ou alertant à tout le moins le conducteur d’une situation potentiellement dangereuse pour lui permettre de réagir à temps. Il est également prévu de rendre des véhicules automobiles complètement autonomes, c’est-à-dire sans conducteur. [0002] In order to increase road safety, certain so-called semi-autonomous motor vehicles are equipped with partial automation systems or advanced driver assistance systems (known by the acronym ADAS in English terminology ), in particular systems performing, in place of the driver, the lateral control and/or the longitudinal control of the vehicle, or at the very least alerting the driver of a potentially dangerous situation to enable him to react in time. There are also plans to make motor vehicles completely autonomous, i.e. without a driver.
[0003] Pour permettre à un véhicule autonome ou semi-autonome (appelé dans la suite « véhicule d’intérêt ») de détecter des situations dangereuses et de réagir en conséquence pour éviter ou réduire les risques d’accidents, le système d’assistance à la conduite embarqué sur ce véhicule doit être capable non seulement de détecter tous les objets dynamiques (appelés dans la suite « véhicules tiers ») présents dans l’environnement immédiat du véhicule, tels que les autres véhicules à moteur (voitures, camions, motocyclettes), mais aussi de prédire les mouvements futurs de ces véhicules tiers. [0003] To enable an autonomous or semi-autonomous vehicle (hereinafter referred to as a "vehicle of interest") to detect dangerous situations and to react accordingly to avoid or reduce the risk of accidents, the assistance system to driving on board this vehicle must be able not only to detect all dynamic objects (hereinafter referred to as "third-party vehicles") present in the immediate environment of the vehicle, such as other motor vehicles (cars, trucks, motorcycles ), but also to predict the future movements of these third-party vehicles.
[0004] Un procédé connu d’assistance à la conduite d’un véhicule automobile d’intérêt évoluant dans une zone de roulage comporte ainsi généralement: [0004] A known method for assisting the driving of a motor vehicle of interest moving in a driving zone thus generally comprises:
- une étape de détection lors de laquelle un système d’aide à la conduite embarqué sur le véhicule automobile d’intérêt détecte au moins un véhicule tiers présent dans l’environnement du véhicule automobile d’intérêt à partir de mesures délivrées par au moins un capteur de mesure extéroceptif embarqué sur le véhicule d’intérêt ; et
- une étape de prédiction, par le système d’aide à la conduite, d’une trajectoire associée audit au moins un véhicule tiers détecté. - a detection step during which a driving assistance system on board the motor vehicle of interest detects at least one third-party vehicle present in the environment of the motor vehicle of interest from measurements delivered by at least one exteroceptive measurement sensor on board the vehicle of interest; and - a step of prediction, by the driving assistance system, of a trajectory associated with said at least one detected third-party vehicle.
[0005] Comme décrit par exemple dans le document intitulé « A survey on motion prediction and risk assessment for intelligent vehicles >> (Lefèvre et al., Robomech Journal 2014,1 :1 http://www.robometechjournal.eom/content/1/1/1 ), les méthodes connues de prédiction de trajectoires peuvent être fondées sur un modèle de mouvement basés sur la physique, c’est-à-dire un modèle considérant que le mouvement futur d’un véhicule ne dépend que des lois de la physique et suppose que le véhicule ne change ni de vitesse, ni de cap. [0005] As described for example in the document entitled “A survey on motion prediction and risk assessment for intelligent vehicles” (Lefèvre et al., Robomech Journal 2014,1:1 http://www.robometechjournal.eom/content/ 1/1/1), the known trajectory prediction methods can be based on a motion model based on physics, that is to say a model considering that the future motion of a vehicle depends only on the laws physics and assumes that the vehicle does not change speed or direction.
[0006] Une fois que les trajectoires des véhicules tiers ont été prédites, le système d’aide à la conduite est en mesure de déterminer une zone de sécurité pour le véhicule d’intérêt, à partir des trajectoires prédites et des paramètres de mouvement courants du véhicule d’intérêt. [0006] Once the trajectories of the third-party vehicles have been predicted, the driving assistance system is able to determine a safety zone for the vehicle of interest, from the predicted trajectories and the current movement parameters. of the vehicle of interest.
[0007] Le système décrit dans le document intitulé « Implementing the RSS Model on NHTSA Pre-Crash Scenarios », disponible au lien suivant https://www.mobileye.com/responsibility-sensitive-safety/rss_on_nhtsa.pdf, détermine par exemple une zone de sécurité pour le véhicule d’intérêt et un comportement à adopter en cas de violation de celle-ci, en évaluant notamment une distance longitudinale de sécurité et une distance latérale de sécurité qui doivent être maintenue par le véhicule d’intérêt par rapport aux véhicules tiers qui évoluent dans son environnement. Pour ce faire, le système utilise, tant dans l’étape de prédiction de trajectoire que dans l’étape de détermination de la zone de sécurité un ensemble de paramètres représentatifs de limitations des performances cinématiques associées aux véhicules, à savoir en particulier: [0007] The system described in the document entitled "Implementing the RSS Model on NHTSA Pre-Crash Scenarios", available at the following link https://www.mobileye.com/responsibility-sensitive-safety/rss_on_nhtsa.pdf, determines for example a safety zone for the vehicle of interest and the behavior to adopt in the event of violation thereof, by evaluating in particular a longitudinal safety distance and a lateral safety distance which must be maintained by the vehicle of interest with respect to to third-party vehicles moving around in its environment. To do this, the system uses, both in the trajectory prediction step and in the safety zone determination step, a set of parameters representative of the limitations of the kinematic performances associated with the vehicles, namely in particular:
- l’accélération longitudinale maximale des véhicules ; - the maximum longitudinal acceleration of the vehicles;
- la décélération maximale au freinage des véhicules ; - the maximum braking deceleration of vehicles;
- l’accélération latérale maximale des véhicules ; et - the maximum lateral acceleration of the vehicles; and
- le temps de réaction associé aux véhicules. - the reaction time associated with the vehicles.
[0008] Un inconvénient de ce système réside dans le fait que les paramètres ci- dessus sont statiques, c’est-à-dire qu’ils sont fixés une fois pour toutes, et ce,
quels que soient les véhicules présents sur la scène et les conditions réelles d’environnement associées scénario de roulage. [0008] A disadvantage of this system lies in the fact that the above parameters are static, that is to say that they are fixed once and for all, and this, regardless of the vehicles present on the scene and the real environmental conditions associated with the driving scenario.
[0009] Par exemple, on considère de manière empirique que l’accélération longitudinale d’un véhicule, quel qu’il soit, est égale à 3m/s2 et que la décélération maximale au freinage d’un véhicule est égale à - 9m/s2. Le temps de réaction est quant à lui lié au temps de réaction moyen d’un conducteur, et fixé également de manière empirique, par exemple à 1 seconde. [0009] For example, it is considered empirically that the longitudinal acceleration of a vehicle, whatever it is, is equal to 3m/s 2 and that the maximum braking deceleration of a vehicle is equal to -9m /s 2 . The reaction time is linked to the average reaction time of a driver, and also fixed empirically, for example at 1 second.
[0010] Il peut en résulter des cas dans lesquels le système risque de sur évaluer la taille de la zone de sécurité, ce qui peut conduire à un accident. Il peut également en résulter des cas dans lesquels le système risque de sous évaluer la taille de la zone de sécurité, et de déclencher alors inutilement des contrôles latéraux/longitudinaux et/ou une alerte au conducteur du véhicule d’intérêt. [0010] This may result in cases in which the system risks over-evaluating the size of the safety zone, which may lead to an accident. It may also result in cases where the system may underestimate the size of the safety zone, and then trigger unnecessary lateral/longitudinal checks and/or an alert to the driver of the vehicle of interest.
Résumé de l’invention Summary of the invention
[0011 ] La présente invention a pour but de pallier les limitations de l’art antérieur en proposant d’adapter la valeur d’au moins un des paramètres précédents aux situations réelles de roulage rencontrées. [0011] The purpose of the present invention is to overcome the limitations of the prior art by proposing to adapt the value of at least one of the preceding parameters to the actual driving situations encountered.
[0012] En conséquence, la présente invention a pour objet un procédé d’assistance à la conduite d’un véhicule automobile d’intérêt évoluant dans une zone de roulage comportant : Consequently, the subject of the present invention is a method for assisting the driving of a motor vehicle of interest moving in a driving zone comprising:
- une étape de détection lors de laquelle un système d’aide à la conduite embarqué sur ledit véhicule automobile d’intérêt détecte au moins un véhicule tiers présent dans l’environnement du véhicule automobile d’intérêt à partir de mesures délivrées par au moins un capteur de mesure extéroceptif embarqué sur le véhicule d’intérêt ; - a detection step during which a driving assistance system on board said motor vehicle of interest detects at least one third-party vehicle present in the environment of the motor vehicle of interest from measurements delivered by at least one exteroceptive measurement sensor on board the vehicle of interest;
- une étape de prédiction, par le système d’aide à la conduite, d’une trajectoire associée audit au moins un véhicule tiers détecté; - a step of prediction, by the driving assistance system, of a trajectory associated with said at least one detected third-party vehicle;
- une étape de détermination, par le système d’aide à la conduite, d’une zone de sécurité pour le véhicule d’intérêt, à partir de la trajectoire prédite et des paramètres de mouvement courants dudit véhicule d’intérêt, ladite étape de prédiction et ladite étape de détermination utilisant des modèles de mouvement de véhicules dépendant d’un ensemble de paramètres
représentatifs de limitations des performances cinématiques associées aux véhicules, caractérisé en ce que la valeur d’au moins un des paramètres dudit ensemble utilisés dans l’étape de prédiction et l’étape de détermination est modifiée dynamiquement par le système d’aide à la conduite en fonction d’au moins une information additionnelle transmise au système d’aide à la conduite par au moins une source extérieure embarquée ou non sur le véhicule d’intérêt. - a step of determining, by the driving assistance system, a safety zone for the vehicle of interest, from the predicted trajectory and the current movement parameters of said vehicle of interest, said step of predicting and said step of determining using vehicle motion models dependent on a set of parameters representative of limitations of the kinematic performances associated with the vehicles, characterized in that the value of at least one of the parameters of the said set used in the step of prediction and the step of determination is dynamically modified by the driver assistance system as a function of at least one additional piece of information transmitted to the driving assistance system by at least one external source whether or not on board the vehicle of interest.
[0013] Ledit ensemble de paramètres peut comprendre une accélération longitudinale maximale desdits véhicules, et/ou une décélération maximale au freinage desdits véhicules, et/ou une accélération latérale maximale desdits véhicules, et/ou un temps de réaction associé auxdits véhicules. Said set of parameters may comprise a maximum longitudinal acceleration of said vehicles, and/or a maximum braking deceleration of said vehicles, and/or a maximum lateral acceleration of said vehicles, and/or a reaction time associated with said vehicles.
[0014] Ladite au moins une source extérieure peut être un capteur extéroceptif embarqué sur le véhicule d’intérêt, par exemple un capteur de pluie et/ou de luminosité. [0014] Said at least one external source can be an exteroceptive sensor on board the vehicle of interest, for example a rain and/or light sensor.
[0015] Ladite au moins une source extérieure peut également être un capteur proprioceptif embarqué sur le véhicule d’intérêt. [0015] Said at least one external source can also be a proprioceptive sensor on board the vehicle of interest.
[0016] Ladite au moins une source extérieure peut également être un module de communication V2X équipant une infrastructure située dans la zone de roulage. [0016] Said at least one external source can also be a V2X communication module equipping an infrastructure located in the driving zone.
[0017] Dans un mode de réalisation possible, le capteur de mesure extéroceptif est une caméra, ou un radar ou un Lidar. [0017] In one possible embodiment, the exteroceptive measurement sensor is a camera, or a radar or a lidar.
Brève description des dessins Brief description of the drawings
[0018] L’invention sera mieux comprise au vu de la description suivante faite en référence aux figures annexées, dans lesquelles : The invention will be better understood in view of the following description given with reference to the appended figures, in which:
- la figure 1 illustre schématiquement, en vue de dessus, un exemple de scène routière servant à illustrer certains principes de l’invention ; - Figure 1 schematically illustrates, in top view, an example of a road scene serving to illustrate certain principles of the invention;
- la figure 2 représente schématiquement des composantes d’un exemple de système embarqué sur un véhicule d’intérêt apte à mettre en oeuvre un procédé d’assistance à la conduite conforme à l’invention ; FIG. 2 schematically represents components of an example of an on-board system on a vehicle of interest capable of implementing a driving assistance method in accordance with the invention;
- la figure 3 illustre un exemple de variation d’une décélération maximale au freinage en fonction du niveau de pluie ;
- la figure 4 illustre un mode de réalisation de l’invention dans laquelle la source extérieure est une borne communicante de type V2X implantée dans une zone de roulage ; - Figure 3 illustrates an example of variation of a maximum braking deceleration as a function of the level of rain; - Figure 4 illustrates an embodiment of the invention in which the external source is a V2X type communicating terminal installed in a driving zone;
- la figure 5 représente des étapes susceptibles d’être mises en oeuvre selon un mode de réalisation d’un procédé d’assistance à la conduite conforme à l’invention. - Figure 5 shows steps that can be implemented according to one embodiment of a driving assistance method according to the invention.
Description de mode(s) de réalisation Description of embodiment(s)
[0019] Pour fixer les idées, l’invention va à présent être décrite dans le cadre de l’exemple non limitatif de la scène routière représentée schématiquement en vue de dessus sur la figure 1 . To fix ideas, the invention will now be described in the context of the non-limiting example of the road scene shown schematically in top view in Figure 1.
[0020] Sur cette figure 1 , un véhicule d’intérêt Vi, disposant d’un système avancé d’aide à la conduite conforme à l’invention, se déplace dans une zone de roulage. Deux autres véhicules Vi et V2 évoluent également dans l’environnement du véhicule d’intérêt Vi. Pour simplifier, on suppose non limitativement que la zone de roulage correspond à une portion d’autoroute, et que tous les véhicules circulent dans le même sens (de gauche vers la droite sur la figure 1 ), selon le code de la route français (dépassement par la gauche et vitesse limitée à 130 km/h). Dans l’exemple non limitatif, les véhicules tiers Vi, V2 sont des véhicules automobiles. La nature des véhicules tiers présents dans l’environnement du véhicule d’intérêt est cependant sans incidence sur les principes de la présente invention. En d’autres termes, un véhicule tiers peut être indifféremment tout véhicule motorisé (véhicule automobile, motocyclette, camion...), un véhicule semi-autonome ou un véhicule autonome. [0020] In this figure 1, a vehicle of interest Vi, having an advanced driving assistance system in accordance with the invention, moves in a rolling zone. Two other vehicles Vi and V2 also evolve in the environment of the vehicle of interest Vi. For simplicity, it is assumed, without limitation, that the driving zone corresponds to a portion of the motorway, and that all vehicles travel in the same direction (from left to right in figure 1), according to the French highway code ( overtaking on the left and speed limit of 130 km/h). In the nonlimiting example, the third-party vehicles Vi, V2 are motor vehicles. The nature of the third-party vehicles present in the environment of the vehicle of interest, however, has no impact on the principles of the present invention. In other words, a third-party vehicle can be any motorized vehicle (motor vehicle, motorcycle, truck, etc.), a semi-autonomous vehicle or an autonomous vehicle.
[0021] Comme représenté schématiquement sur la figure 2, le véhicule d’intérêt Vi est équipé classiquement de plusieurs capteurs proprioceptifs (globalement représentés sous la référence 1 ), tels qu’un capteur de vitesse, un capteur d’angle au volant et un système de navigation de type GPS, lui permettant de disposer d’informations sur son état courant (vitesse, accélération, cap suivi par rapport à un référentiel (X,Y) lié au véhicule d’intérêt, position courante par rapport à une carte HD embarquée contenant des informations liées au contexte, telles que la réglementation de limitation de vitesse, le type de route ...).
[0022] Le véhicule d’intérêt Vi comporte également un ou plusieurs capteurs extéroceptifs (globalement représentés sous la référence 2), comprenant au moins un capteur de mesure (par exemple capteur d’image, un Radar, un Lidar) lui permettant de détecter les véhicules tiers présents dans son environnement, et optionnellement, les informations relatives à la géométrie de la scène routière (en particulier les lignes de marquage, les panneaux de signalisation...). Dans le mode de réalisation non limitatif représenté, d’autres capteurs extéroceptifs non utilisés dans la détection des véhicules tiers, tels qu’un capteur de pluie et/ou de luminosité, équipent le véhicule d’intérêt Vi. As shown schematically in Figure 2, the vehicle of interest Vi is conventionally equipped with several proprioceptive sensors (generally represented under the reference 1), such as a speed sensor, a steering wheel angle sensor and a GPS type navigation system, allowing it to have information on its current state (speed, acceleration, heading followed with respect to a reference (X,Y) linked to the vehicle of interest, current position with respect to an HD map board containing context-related information, such as speed limit regulations, type of road, etc.). [0022] The vehicle of interest Vi also comprises one or more exteroceptive sensors (generally represented under the reference 2), comprising at least one measurement sensor (for example image sensor, a Radar, a Lidar) allowing it to detect the third-party vehicles present in its environment, and optionally, the information relating to the geometry of the road scene (in particular the marking lines, the road signs, etc.). In the non-limiting embodiment shown, other exteroceptive sensors not used in the detection of third-party vehicles, such as a rain and/or light sensor, equip the vehicle of interest Vi.
[0023] Un système 3 d’aide à la conduite est également embarqué sur le véhicule d’intérêt Vi. Tel que représenté schématiquement sur la figure 2, ce système 3 d’aide à la conduite comporte classiquement : [0023] A driver assistance system 3 is also on board the vehicle of interest Vi. As represented schematically in FIG. 2, this driving assistance system 3 conventionally comprises:
- un module 30 de détection configuré pour détecter la présence des véhicules tiers évoluant dans l’environnement du véhicule d’intérêt Vi à partir de mesures délivrées par le ou les capteurs de mesure extéroceptifs 2 ; - a detection module 30 configured to detect the presence of third-party vehicles moving in the environment of the vehicle of interest Vi from measurements delivered by the exteroceptive measurement sensor(s) 2;
- un module 31 de décision apte à déterminer une zone dite de sécurité pour le véhicule d’intérêt Vi; et - a decision module 31 capable of determining a so-called safety zone for the vehicle of interest Vi; and
- un module 34 de contrôle apte ici à générer des commandes permettant un contrôle latéral et/ou longitudinal du véhicule d’intérêt en fonction de la zone de sécurité délivrée en sortie du module 31 de décision (comme on l’a vu précédemment, le module de contrôle pourrait être remplacé ou complété par un module de génération d’alerte visuelle et/ou sonore à destination du conducteur du véhicule d’intérêt). - a control module 34 capable here of generating commands allowing lateral and/or longitudinal control of the vehicle of interest according to the safety zone delivered at the output of the decision module 31 (as we have seen previously, the control module could be replaced or supplemented by a module for generating a visual and/or audible alert intended for the driver of the vehicle of interest).
[0024] Le module 31 de décision comporte un premier sous-module 32 dit de prédiction de trajectoires, configuré pour prédire la trajectoire de chacun des véhicules tiers détectés dans l’environnement du véhicule d’intérêt Vi par le module 30 de détection, tels que les véhicules Vi et V2 dans l’exemple de la figure 1. Ce premier sous-module 32 est plus précisément apte à anticiper la trajectoire d’un véhicule tiers détecté, en fonction de sa vitesse et de son cap courants dans le référentiel (X,Y) associé au véhicule d’intérêt Vi, en appliquant une extrapolation linéaire sur un modèle de mouvement basé sur la physique, et à en déduire une zone de danger, telles que les zones Ai et A2 représentées sur
la figure 1 , symbolisant des zones à l’intérieur desquelles le véhicule d’intérêt Vi ne doit pas pénétrer. The decision module 31 comprises a first so-called trajectory prediction sub-module 32, configured to predict the trajectory of each of the third-party vehicles detected in the environment of the vehicle of interest Vi by the detection module 30, such as than the vehicles Vi and V2 in the example of FIG. 1. This first sub-module 32 is more precisely capable of anticipating the trajectory of a detected third-party vehicle, according to its current speed and heading in the reference frame ( X,Y) associated with the vehicle of interest Vi, by applying a linear extrapolation on a motion model based on physics, and deducing therefrom a danger zone, such as the zones Ai and A2 represented on FIG. 1, symbolizing areas within which the vehicle of interest Vi must not penetrate.
[0025] Le module 31 de décision comporte en outre un deuxième sous-module 33 dit d’évaluation de sécurité, recevant d’une part, la sortie du premier sous-module 32 (en l’occurrence les zones de danger Ai et A2 associées aux véhicules tiers détectés), et d’autre part, les informations liées à la dynamique courante du véhicule d’intérêt Vi (notamment sa vitesse, son accélération et son orientation courantes dans le référentiel (X, Y)) et délivrées par les capteurs proprioceptifs 1 . A partir de ces informations reçues, le sous-module 33 est apte à évaluer la zone dite de sécurité (telle que la zone Ai de la figure 1 ) pour le véhicule d’intérêt. The decision module 31 further comprises a second sub-module 33 called security evaluation, receiving on the one hand, the output of the first sub-module 32 (in this case the danger zones Ai and A2 associated with the third-party vehicles detected), and on the other hand, the information related to the current dynamics of the vehicle of interest Vi (in particular its current speed, acceleration and orientation in the reference frame (X, Y)) and delivered by the proprioceptive sensors 1 . From this information received, the sub-module 33 is able to evaluate the so-called security zone (such as the zone Ai in FIG. 1) for the vehicle of interest.
[0026] Comme cela a été indiqué en introduction, les calculs réalisés tant par le premier sous-module 32 de prédiction que par le deuxième sous-module 33 d’évaluation de sécurité font intervenir des modèles de mouvement basés sur la physique, lesquels modèles utilisent un ensemble de paramètres représentatifs de limitations des performances cinématiques associées aux véhicules, comprenant en particulier: As indicated in the introduction, the calculations performed both by the first sub-module 32 for prediction and by the second sub-module 33 for security evaluation involve movement models based on physics, which models use a set of parameters representative of kinematic performance limitations associated with vehicles, including in particular:
- l’accélération longitudinale maximale a^1 . des véhicules ; - the maximum longitudinal acceleration a^ 1 . cars ;
- la décélération maximale au freinage pmax des véhicules ; - the maximum braking deceleration p max of the vehicles;
- l’accélération latérale maximale a^l ,x des véhicules ; et - the maximum lateral acceleration a^ l , x of the vehicles; and
- le temps de réaction p associé aux véhicules. - the reaction time p associated with the vehicles.
[0027] Par exemple, dans le cas (non représenté) où le véhicule d’intérêt Vi est précédé par un véhicule tiers roulant dans la même direction et détecté par le système 3, une distance longitudinale minimale de sécurité d1™ séparant le véhicule d’intérêt du véhicule tiers, et définissant une dimension longitudinale de la zone de sécurité pour le véhicule d’intérêt, pourra être calculée en appliquant la relation suivante :
dans laquelle :
V/ et vt sont les vitesses courantes du véhicule d’intérêt et du véhicule tiers détecté ; [0027] For example, in the case (not shown) where the vehicle of interest Vi is preceded by a third vehicle traveling in the same direction and detected by the system 3, a minimum longitudinal safety distance d 1 ™ separating the vehicle of interest of the third-party vehicle, and defining a longitudinal dimension of the safety zone for the vehicle of interest, can be calculated by applying the following relationship: in which : V/ and v t are the current speeds of the vehicle of interest and of the third-party vehicle detected;
- Pmax est la décélération maximale au freinage des véhicules ; - Pmax is the maximum braking deceleration of the vehicles;
- Pmin est la décélération minimale que doit effectuer le véhicule d’intérêt pour éviter une collision. - Pmin is the minimum deceleration that the vehicle of interest must perform to avoid a collision.
[0028] Contrairement aux solutions connues qui consistent à utiliser un même ensemble de paramètres { a^1 ; pmax; a^l ax\ p } dont les valeurs sont fixées une fois pour toute et de manière empirique, la présente invention prévoit d’utiliser au moins une source extérieure pour transmettre au système 3 d’aide à la conduite au moins une information additionnelle utilisée par le système 3 pour modifier dynamiquement la valeur d’au moins un des paramètres de l’ensemble. Contrary to the known solutions which consist in using the same set of parameters { a^ 1 ; pmax ; a^ l ax \ p } whose values are fixed once and for all and empirically, the present invention provides for the use of at least one external source to transmit to the driving assistance system 3 at least one additional piece of information used by the system 3 to dynamically modify the value of at least one of the parameters of the set.
[0029] Dans un mode de réalisation possible, la source extérieure est embarquée également dans le véhicule d’intérêt Vi. Il peut s’agir par exemple d’un des capteurs extéroceptifs 2 du véhicule d’intérêt. In one possible embodiment, the external source is also embedded in the vehicle of interest Vi. It may for example be one of the exteroceptive sensors 2 of the vehicle of interest.
[0030] A titre d’exemple non limitatif, si l’un des capteurs extéroceptifs 2 embarqué sur le véhicule d’intérêt Vi est un capteur apte à détecter la présence de pluie, on peut prévoir de sélectionner la valeur affectée à la décélération maximale au freinage de l’ensemble parmi deux valeurs possibles mémorisées dans une base de données 35 du système 3, selon que ce capteur détecte ou non la présence de pluie. On peut par exemple décider que : [0030] By way of non-limiting example, if one of the exteroceptive sensors 2 on board the vehicle of interest Vi is a sensor capable of detecting the presence of rain, it is possible to select the value assigned to the maximum deceleration braking of the assembly from two possible values stored in a database 35 of the system 3, depending on whether or not this sensor detects the presence of rain. We can for example decide that:
- par temps sec, la valeur à affecter à la décélération maximale au freinage- in dry weather, the value to be assigned to the maximum braking deceleration
/ Pm Il aUx./ des véhicules est de - 9 m/s2 ; J / Pm Il aUx./ vehicles is - 9 m/s 2 ; J
- mais que si le capteur de pluie détecte la présence de pluie, la valeur à affecter à la décélération maximale au freinage pmax des véhicules sera égale à - 4 m/s2. - but that if the rain sensor detects the presence of rain, the value to be assigned to the maximum braking deceleration p max of the vehicles will be equal to - 4 m/s 2 .
[0031] En variante, si le capteur est apte à mesurer des niveaux de pluie, on peut prévoir d’adapter dynamiquement les valeurs d’accélération et de décélération au freinage en fonction des niveaux mesurés. La figure 3 donne un exemple de variation des valeurs affectées à la décélération maximale au freinage pmax des véhicules en fonction du niveau de pluie détecté, ces valeurs étant au préalable enregistrées dans la base de données 35.
[0032] Selon un autre exemple, l’un des capteurs extéroceptifs 2 du véhicule d’intérêt est un capteur de luminosité. Or, on comprend que le temps de réaction p d’un conducteur quelconque est généralement plus élevé lorsqu’il fait sombre ou nuit qu’en plein jour. Dans ce cas, on peut prévoir avantageusement de modifier la valeur à affecter au temps de réaction des véhicules, en particulier des véhicules tiers, en sélectionnant cette valeur parmi plusieurs valeurs pré mémorisées dans la base de données 35. On peut par exemple décider que :[0031] As a variant, if the sensor is able to measure rain levels, provision can be made to dynamically adapt the acceleration and deceleration values to braking as a function of the levels measured. FIG. 3 gives an example of variation of the values assigned to the maximum braking deceleration p max of the vehicles as a function of the level of rain detected, these values being recorded beforehand in the database 35. According to another example, one of the exteroceptive sensors 2 of the vehicle of interest is a light sensor. However, it is understood that the reaction time p of any driver is generally higher when it is dark or at night than in broad daylight. In this case, provision can advantageously be made to modify the value to be assigned to the reaction time of the vehicles, in particular third-party vehicles, by selecting this value from among several values pre-stored in the database 35. It is possible, for example, to decide that:
- le jour ou en bonnes conditions de luminosité, la valeur à affecter au temps de réaction p au moins des véhicules tiers est de 1 seconde ; - during the day or in good light conditions, the value to be assigned to the reaction time p at least of third-party vehicles is 1 second;
- mais que si le capteur détecte une faible luminosité, voire des conditions de roulage nocturne, la valeur à affecter au temps de réaction p au moins des véhicules tiers sera plus élevée, par exemple égale à 2 secondes. - but that if the sensor detects low light, or even night driving conditions, the value to be assigned to the reaction time p at least of the third-party vehicles will be higher, for example equal to 2 seconds.
[0033] En variante, la source extérieure embarquée dans le véhicule d’intérêt Vi peut être l’un des capteurs proprioceptifs 1 du véhicule d’intérêt. A titre d’exemple, on peut utiliser le système de navigation de type GPS du véhicule d’intérêt pour dériver l’heure exacte, et en déduire, à l’instar du capteur de luminosité indiqué précédemment, une valeur à affecter au temps de réaction p, au moins pour les véhicules tiers, en fonction de l’heure fournie par ce système de navigation. Grâce au système GPS, le véhicule d’intérêt peut également se positionner très précisément sur une carte HD embarquée, et dériver au moins une information additionnelle caractéristique de l’environnement (par exemple la présence d’un pont, d’un tunnel, du type de revêtement de la route...). En fonction de tables de correspondance pré mémorisées dans la base de données 35, le système 3 peut dans ce cas sélectionner dynamiquement une valeur plus adaptée pour au moins l’un des paramètres de l’ensemble. Typiquement, le type de revêtement de route peut jouer avantageusement sur les valeurs à affecter aux accélérations et décélération au freinage. Alternatively, the external source embedded in the vehicle of interest Vi can be one of the proprioceptive sensors 1 of the vehicle of interest. By way of example, the GPS-type navigation system of the vehicle of interest can be used to derive the exact time, and to deduce therefrom, like the luminosity sensor indicated previously, a value to be assigned to the time of reaction p, at least for third-party vehicles, as a function of the time supplied by this navigation system. Thanks to the GPS system, the vehicle of interest can also position itself very precisely on an on-board HD map, and derive at least one additional piece of information characteristic of the environment (for example the presence of a bridge, a tunnel, the type of road surface...). Depending on correspondence tables pre-stored in the database 35, the system 3 can in this case dynamically select a more suitable value for at least one of the parameters of the set. Typically, the type of road surface can have an advantageous effect on the values to be assigned to acceleration and deceleration under braking.
[0034] Dans un autre exemple non limitatif, l’information additionnelle fournie au système 3 d’aide à la conduite correspond à une manoeuvre de changement de voie effectuée ou sur le point d’être effectuée par le véhicule d’intérêt Vi. Cette information peut être obtenue par un capteur extéroceptif 2 du véhicule d’intérêt (par exemple une caméra embarquée détectant le franchissement d’une ligne de
marquage au sol par le véhicule d’intérêt) et/ou par un capteur proprioceptif 1 (capteur d’angle au volant ou détection de l’état allumé d’un clignotant du véhicule d’intérêt). Dans ce cas on peut choisir d’affecter à la décélération maximale au freinage pour les véhicules tiers une valeur différente selon que le véhicule d’intérêt est en train de changer de voie ou non. La valeur précise à affecter en cas de manoeuvre de changement de voie peut résulter soit d’une valeur obtenue dans une phase préalable d’apprentissage obtenue en ligne ou hors ligne (simulation du comportement de véhicules tiers en termes de décélération au freinage dans différentes situations où le véhicule d’intérêt effectue un changement de voie). In another non-limiting example, the additional information provided to the driver assistance system 3 corresponds to a lane change maneuver performed or about to be performed by the vehicle of interest Vi. This information can be obtained by an exteroceptive sensor 2 of the vehicle of interest (for example an on-board camera detecting the crossing of a line of ground marking by the vehicle of interest) and/or by a proprioceptive sensor 1 (steering wheel angle sensor or detection of the on state of a turn signal of the vehicle of interest). In this case, it is possible to choose to assign to the maximum braking deceleration for the third-party vehicles a different value depending on whether the vehicle of interest is changing lanes or not. The precise value to be assigned in the event of a lane change maneuver can result either from a value obtained in a prior learning phase obtained online or offline (simulation of the behavior of third-party vehicles in terms of braking deceleration in different situations where the vehicle of interest is making a lane change).
[0035] Dans tous les exemples précédents, la source extérieure fournissant l’information additionnelle qui va permettre d’adapter dynamiquement la valeur à affecter à au moins l’un des paramètres de l’ensemble de paramètres { ; Pmax>’ amix>' P } est une source embarquée sur le véhicule d’intérêt Vi. [0035] In all the previous examples, the external source providing the additional information which will make it possible to dynamically adapt the value to be assigned to at least one of the parameters of the set of parameters {; Pmax>' a mix>'P} is a source on board the vehicle of interest Vi.
[0036] Bien entendu, plusieurs informations additionnelles provenant de plusieurs capteurs embarqués (proprioceptifs et/ou extéroceptifs) peuvent être combinées pour changer la valeur d’un ou de plusieurs desdits paramètres, sans départir du cadre de la présente invention. Of course, several additional pieces of information coming from several on-board sensors (proprioceptive and/or exteroceptive) can be combined to change the value of one or more of said parameters, without departing from the scope of the present invention.
[0037] Dans un autre mode de réalisation, on suppose que, conformément à l’exemple non limitatif représenté sur la figure 2, le véhicule d’intérêt Vi est en outre un véhicule apte à communiquer, c’est-à-dire à transmettre et à recevoir de l’information, avec d’autres véhicules et des bornes dédiées équipant l’infrastructure routière, telles que la borne 4 de la figure 4. Pour ce faire, le système 3 comporte un module 36 de communication V2X (signifiant Vehicle to everything en terminologie anglo-saxonne). Dans ce cas, l’une au moins des informations additionnelles telles que celle décrites précédemment (détection de niveau de pluie, heure de la journée, détection de la luminosité...) peut être acquise directement par l’infrastructure 4 en équipant cette dernière des capteurs de mesures adéquats. En outre, l’infrastructure 4 connaît les spécificités environnementales liées à la zone sur laquelle cette infrastructure est implantée. Ainsi, dans l’exemple de la figure 4, la borne 4 est implantée au niveau d’un croisement auquel sont affectées différentes règles de conduite (par exemple la présence de stop, règles de priorités), ainsi que différentes informations pouvant
avoir des conséquences sur l’évaluation du danger (type de revêtement de la route, présence d’un bâtiment au niveau du croisement affectant la visibilité...). In another embodiment, it is assumed that, in accordance with the non-limiting example shown in Figure 2, the vehicle of interest Vi is also a vehicle able to communicate, that is to say to transmit and receive information, with other vehicles and dedicated terminals equipping the road infrastructure, such as terminal 4 in FIG. 4. To do this, the system 3 comprises a V2X communication module 36 (meaning Vehicle to everything in Anglo-Saxon terminology). In this case, at least one of the additional pieces of information such as that described above (detection of rain level, time of day, detection of luminosity, etc.) can be acquired directly by the infrastructure 4 by equipping the latter suitable measurement sensors. In addition, the infrastructure 4 knows the environmental specificities linked to the zone in which this infrastructure is located. Thus, in the example of Figure 4, the terminal 4 is located at a crossing to which are assigned different driving rules (for example the presence of stop signs, priority rules), as well as different information that can have consequences on the assessment of the danger (type of road surface, presence of a building at the crossing affecting visibility, etc.).
[0038] A partir au moins de l’une de ces informations additionnelles, la borne 4 est en mesure de sélectionner dynamiquement la valeur d’au moins un des paramètres de l’ensemble de paramètres { a^1 ; (3max; a^l ax\ p }. From at least one of these additional pieces of information, the terminal 4 is able to dynamically select the value of at least one of the parameters of the set of parameters {a^ 1 ; (3 max ; a^ l ax \ p }.
[0039] Par, dans la situation représentée sur la figure 4, le véhicule d’intérêt Vi risque de ne pas voir suffisamment tôt la présence du véhicule V3 arrivant sur la voie de droite, en raison de la présence du bâtiment situé à l’intersection. Dans ce cas, la borne 4 peut choisir d’affecter au temps de réaction p des véhicules une valeur plus importante (par exemple égale à 2 secondes) par rapport à la valeur empirique d’une seconde généralement utilisée. By, in the situation shown in Figure 4, the vehicle of interest Vi may not see the presence of the vehicle V3 arriving on the right lane early enough, due to the presence of the building located at the intersection. In this case, terminal 4 can choose to assign to the reaction time p of the vehicles a greater value (for example equal to 2 seconds) compared to the empirical value of one second generally used.
[0040] Les valeurs ainsi affectées à l’ensemble de paramètres { amax > Pmax>’ aml ax> P } sont alors transmises par un module d’émission V2X (non représenté) équipant la borne 4 et peuvent ainsi être reçues par le module de réception 36 du véhicule d’intérêt Vi lorsque ce dernier approche de l’intersection. Le système 3 d’aide à la conduite du véhicule d’intérêt peut alors avantageusement décider de remplacer temporairement les valeurs des paramètres dont il dispose dans la base de données 35 par les valeurs qu’il reçoit de la borne 4. The values thus assigned to the set of parameters { a max >Pmax>' a m l ax> P } are then transmitted by a V2X transmission module (not shown) fitted to terminal 4 and can thus be received by the reception module 36 of the vehicle of interest Vi when the latter approaches the intersection. The system 3 for aiding the driving of the vehicle of interest can then advantageously decide to temporarily replace the values of the parameters available to it in the database 35 by the values which it receives from the terminal 4.
[0041] Les étapes d’un procédé 100 d’assistance à la conduite du véhicule automobile d’intérêt Vi sont résumées sur la figure 5. : The steps of a method 100 for assisting the driving of the motor vehicle of interest Vi are summarized in FIG. 5:
- l’étape référencée 110 correspond à une étape de détection lors de laquelle le système 3 d’aide à la conduite du véhicule automobile d’intérêt Vi détecte au moins un véhicules tiers présent dans son environnement à partir de mesures délivrées par au moins un capteur de mesure extéroceptif 2; - the step referenced 110 corresponds to a detection step during which the driving assistance system 3 of the motor vehicle of interest Vi detects at least one third-party vehicle present in its environment from measurements delivered by at least one exteroceptive measurement sensor 2;
- le système 3 d’aide à la conduite peut alors prédire (étape 120), la trajectoire associée audit au moins un véhicule tiers détecté, et déterminer (étape 130) une zone de sécurité pour le véhicule d’intérêt Vi, à partir de la trajectoire prédite et des paramètres de mouvement courants dudit véhicule d’intérêt Vi, en utilisant des modèles de mouvement de véhicules dépendant d’un ensemble de
paramètres représentatifs de limitations des performances cinématiques associées aux véhicules ; - the driving assistance system 3 can then predict (step 120), the trajectory associated with said at least one detected third-party vehicle, and determine (step 130) a safety zone for the vehicle of interest Vi, from the predicted trajectory and current motion parameters of said vehicle of interest Vi, using vehicle motion models depending on a set of parameters representative of limitations of the kinematic performances associated with the vehicles;
- la valeur d’au moins un des paramètres dudit ensemble utilisés dans l’étape 120 de prédiction et l’étape 130 de détermination est modifiée dynamiquement ( étape 140) par le système 3 d’aide à la conduite en fonction d’au moins une information additionnelle transmise au système 3 d’aide à la conduite par au moins une source extérieure embarquée ou non sur le véhicule d’intérêt Vi. La source extérieure au système 3 peut être un capteur proprioceptif 1 ou un capteur extéroceptif 2 du véhicule d’intérêt Vi, ou une borne 4 de communication de type V2X. Plusieurs de ces sources peuvent être combinées pour modifier la valeur de plusieurs paramètres de l’ensemble. - the value of at least one of the parameters of said set used in the prediction step 120 and the determination step 130 is dynamically modified (step 140) by the driving assistance system 3 as a function of at least additional information transmitted to the driving assistance system 3 by at least one external source whether onboard or not on the vehicle of interest Vi. The source external to the system 3 can be a proprioceptive sensor 1 or an exteroceptive sensor 2 of the vehicle of interest Vi, or a communication terminal 4 of the V2X type. Several of these sources can be combined to modify the value of several parameters of the set.
A l’issue de l’étape 130, le système est en mesure si nécessaire d’alerter le conducteur d’une situation de danger et/ou de générer des commandes de contrôle longitudinal et/ou latéral automatique du véhicule d’intérêt (étapes non représentées).
At the end of step 130, the system is able, if necessary, to alert the driver of a dangerous situation and/or to generate automatic longitudinal and/or lateral control commands for the vehicle of interest (steps not shown).
Claims
Revendications Procédé (100) d’assistance à la conduite d’un véhicule automobile d’intérêt (Vi) évoluant dans une zone de roulage comportant : Claims Method (100) for assisting the driving of a motor vehicle of interest (Vi) moving in a driving zone comprising:
- une étape (110) de détection lors de laquelle un système (3) d’aide à la conduite embarqué sur ledit véhicule automobile d’intérêt (Vi) détecte au moins un véhicule tiers (Vi, V2) présent dans l’environnement du véhicule automobile d’intérêt (Vi) à partir de mesures délivrées par au moins un capteur de mesure extéroceptif (2) embarqué sur le véhicule d’intérêt ( Vi);- a detection step (110) during which a driving assistance system (3) on board said motor vehicle of interest (Vi) detects at least one third-party vehicle (Vi, V2) present in the environment of the motor vehicle of interest (Vi) from measurements delivered by at least one exteroceptive measurement sensor (2) on board the vehicle of interest (Vi);
- une étape (120) de prédiction, par le système (3) d’aide à la conduite, d’une trajectoire associée audit au moins un véhicule tiers détecté - a step (120) of prediction, by the driving assistance system (3), of a trajectory associated with said at least one detected third-party vehicle
(Vi, V2);(Vi, V2);
- une étape (130) de détermination, par le système (3) d’aide à la conduite, d’une zone de sécurité pour le véhicule d’intérêt (Vi), à partir de la trajectoire prédite et des paramètres de mouvement courants dudit véhicule d’intérêt (Vi), ladite étape (120) de prédiction et ladite étape (130) de détermination utilisant des modèles de mouvement de véhicules dépendant d’un ensemble de paramètres représentatifs de limitations des performances cinématiques associées aux véhicules, caractérisé en ce que la valeur d’au moins un des paramètres dudit ensemble utilisés dans l’étape de prédiction et l’étape de détermination est modifiée dynamiquement (140) par le système (3) d’aide à la conduite en fonction d’au moins une information additionnelle transmise au système - a step (130) of determining, by the driving assistance system (3), a safety zone for the vehicle of interest (Vi), from the predicted trajectory and the current movement parameters of said vehicle of interest (Vi), said step (120) of predicting and said step (130) of determining using models of movement of vehicles depending on a set of parameters representative of limitations of the kinematic performances associated with the vehicles, characterized in that the value of at least one of the parameters of said set used in the prediction step and the determination step is dynamically modified (140) by the driving assistance system (3) as a function of at least additional information transmitted to the system
(3) d’aide à la conduite par au moins une source extérieure (1 , 2, 4) embarquée ou non sur le véhicule d’intérêt (Vi). Procédé selon la revendication 1 , caractérisé en ce que ledit ensemble de paramètres comprend une accélération longitudinale maximale desdits véhicules. Procédé selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que ledit ensemble de paramètres comprend une décélération maximale au freinage desdits véhicules.
(3) driving assistance by at least one external source (1, 2, 4) whether or not on board the vehicle of interest (Vi). Method according to claim 1, characterized in that said set of parameters comprises a maximum longitudinal acceleration of said vehicles. Method according to any one of claims 1 or 2, characterized in that said set of parameters comprises a maximum braking deceleration of said vehicles.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que ledit ensemble de paramètres comprend une accélération latérale maximale desdits véhicules. 4. Method according to any one of claims 1 to 3, characterized in that said set of parameters comprises a maximum lateral acceleration of said vehicles.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que ledit ensemble de paramètres comprend un temps de réaction associé auxdits véhicules. 5. Method according to any one of claims 1 to 4, characterized in that said set of parameters comprises a reaction time associated with said vehicles.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que ladite au moins une source extérieure est un capteur extéroceptif (2) embarqué sur le véhicule d’intérêt (Vi). 6. Method according to any one of the preceding claims, characterized in that said at least one external source is an exteroceptive sensor (2) on board the vehicle of interest (Vi).
7. Procédé selon la revendication 6, caractérisé en ce que ledit capteur extéroceptif est un capteur de pluie et/ou de luminosité. 7. Method according to claim 6, characterized in that said exteroceptive sensor is a rain and/or light sensor.
8. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ladite au moins une source extérieure est un capteur proprioceptif (1 ) embarqué sur le véhicule d’intérêt (Vi). 8. Method according to any one of claims 1 to 5, characterized in that said at least one external source is a proprioceptive sensor (1) on board the vehicle of interest (Vi).
9. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ladite au moins une source extérieure est un module de communication V2X équipant une infrastructure (4) située dans la zone de roulage. 9. Method according to any one of claims 1 to 5, characterized in that said at least one external source is a V2X communication module equipping an infrastructure (4) located in the rolling area.
10. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le capteur de mesure extéroceptif est une caméra, ou un radar ou un Lidar.
10. Method according to any one of the preceding claims, characterized in that the exteroceptive measurement sensor is a camera, or a radar or a Lidar.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020120401.9A DE102020120401A1 (en) | 2020-08-03 | 2020-08-03 | DRIVER ASSISTANCE FOR A MOTOR VEHICLE |
PCT/EP2021/070935 WO2022028943A1 (en) | 2020-08-03 | 2021-07-27 | Motor vehicle driver assistance method |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4188769A1 true EP4188769A1 (en) | 2023-06-07 |
Family
ID=77180023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21749614.0A Pending EP4188769A1 (en) | 2020-08-03 | 2021-07-27 | Motor vehicle driver assistance method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4188769A1 (en) |
DE (1) | DE102020120401A1 (en) |
WO (1) | WO2022028943A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3147746A1 (en) * | 2023-04-14 | 2024-10-18 | Psa Automobiles Sa | METHOD FOR RECHARGING AN ELECTRIC VEHICLE BY A ROBOT IMPLEMENTING AN ANTI-CRUSHING STRATEGY FOR SAID ROBOT |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10356309A1 (en) | 2003-11-28 | 2005-06-23 | Robert Bosch Gmbh | Method and device for warning the driver of a motor vehicle |
DE102008023380A1 (en) | 2008-05-13 | 2009-11-19 | GM Global Technology Operations, Inc., Detroit | Motor vehicle with a driver assistance system |
DE102010033776A1 (en) | 2009-09-14 | 2011-05-26 | Daimler Ag | Method for evaluation and prediction of actions of two or more objects, particularly for operation of driver assistance system in vehicle, involves determining and saving current movement trajectories of object by detection unit |
DE102012009297A1 (en) | 2012-05-03 | 2012-12-13 | Daimler Ag | Method for assisting rider when feeding e.g. vehicle, involves proving information, warning and automatic engagement, which results during risk of collision and/or secondary collision with highest priority in priority list |
DE102013001228A1 (en) | 2013-01-25 | 2014-07-31 | Wabco Gmbh | A method for determining a triggering criterion for a braking and emergency braking system for a vehicle |
EP3291202B1 (en) * | 2016-08-29 | 2019-04-17 | Volvo Car Corporation | Method of road vehicle trajectory planning |
US10475343B2 (en) * | 2017-05-18 | 2019-11-12 | Ford Global Technologies, Llc | Vehicle ice strike prediction |
DE102018123896A1 (en) | 2018-06-25 | 2020-01-02 | Trw Automotive Gmbh | Method for operating an at least partially automated vehicle |
US20200189591A1 (en) * | 2018-12-18 | 2020-06-18 | Qualcomm Incorporated | Steering Command Limiting For Safe Autonomous Automobile Operation |
EP3683782B1 (en) * | 2019-01-18 | 2023-06-28 | Honda Research Institute Europe GmbH | Method for assisting a driver, driver assistance system, and vehicle including such driver assistance system |
-
2020
- 2020-08-03 DE DE102020120401.9A patent/DE102020120401A1/en active Pending
-
2021
- 2021-07-27 EP EP21749614.0A patent/EP4188769A1/en active Pending
- 2021-07-27 WO PCT/EP2021/070935 patent/WO2022028943A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022028943A1 (en) | 2022-02-10 |
DE102020120401A1 (en) | 2022-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3627270B1 (en) | Electronic device for determining a trajectory of emergency stopping of an autonomous vehicle, associated vehicle and method | |
EP3419877B1 (en) | Motor vehicle driving assistance device and method | |
EP3683779A1 (en) | Platform and method for supervising an infrastructure for transport vehicles, associated vehicle, transport system and computer program | |
FR3039917A1 (en) | METHOD AND DEVICE FOR GUIDING A VEHICLE IN A PARKING | |
CN112026757B (en) | An adaptive active anti-collision braking system with autonomous training and learning | |
EP4188769A1 (en) | Motor vehicle driver assistance method | |
WO2023233088A1 (en) | Method and device for controlling a driver assist system assisting with driving a vehicle on the basis of a speed limit | |
EP4408716A1 (en) | Method and device for detecting merging of a vehicle into a traffic lane | |
EP3983273B1 (en) | Method for determining the maximum authorised speed for a motor vehicle which uses an adaptive cruise-control function | |
EP4157689A1 (en) | Driver assistance method with virtual target for adaptive cruise control | |
FR3052418A1 (en) | METHOD AND DEVICE FOR ASSISTING THE DRIVING OF A VEHICLE CIRCULATING ON THE APPROACH OF A CARREFOUR | |
EP3793875B1 (en) | Adaptive cruise control for motor vehicle | |
FR3081416A1 (en) | METHOD FOR DETECTING A DEFECT OF A SENSOR EQUIPPED WITH A PARTIALLY OR FULLY AUTONOMOUS MOTOR VEHICLE. | |
WO2024134047A1 (en) | Method and device for controlling an adaptive cruise control system of an autonomous vehicle using a corridor mode | |
WO2023007066A1 (en) | Method and device for providing warning of vehicles driving contraflow in a given traffic lane | |
EP4448366A1 (en) | Systems for detecting a change in road type | |
FR3151012A1 (en) | Method and device for controlling a semi-automatic lane change system for a vehicle | |
FR3117972A1 (en) | Control method for controlling the movement of an autonomous motor vehicle | |
WO2024013437A1 (en) | Method and device for managing the stopping of an autonomous vehicle travelling along a traffic lane | |
WO2024134042A1 (en) | Method and device for controlling an adaptive cruise control system of an autonomous vehicle | |
WO2024003473A1 (en) | Method and device for controlling a driver-assistance system of a vehicle travelling in a road environment that includes an intersection | |
EP4402031A1 (en) | Method and device for determining a new maximum acceleration of a cruise control of an autonomous vehicle | |
WO2022254108A1 (en) | Method and device for maintaining the selection of a target vehicle by an on-board driving assistance system | |
WO2022195185A1 (en) | Method and device for determining the reliability of a low-definition map | |
FR3107024A1 (en) | Method and device for controlling a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |