EP4187004A1 - Fibre material with antimicrobial and odour-neutralising effect - Google Patents
Fibre material with antimicrobial and odour-neutralising effect Download PDFInfo
- Publication number
- EP4187004A1 EP4187004A1 EP21210621.5A EP21210621A EP4187004A1 EP 4187004 A1 EP4187004 A1 EP 4187004A1 EP 21210621 A EP21210621 A EP 21210621A EP 4187004 A1 EP4187004 A1 EP 4187004A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cellulose
- silver
- ruthenium
- antimicrobial
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 106
- 230000000845 anti-microbial effect Effects 0.000 title claims abstract description 68
- 230000000694 effects Effects 0.000 title description 20
- 239000000463 material Substances 0.000 title description 9
- 229920002678 cellulose Polymers 0.000 claims abstract description 110
- 239000001913 cellulose Substances 0.000 claims abstract description 110
- 229910052709 silver Inorganic materials 0.000 claims abstract description 68
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 66
- 239000004332 silver Substances 0.000 claims abstract description 65
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 64
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002657 fibrous material Substances 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000004480 active ingredient Substances 0.000 claims abstract description 43
- 239000004753 textile Substances 0.000 claims abstract description 29
- 235000019645 odor Nutrition 0.000 claims abstract description 23
- 239000004599 antimicrobial Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000004627 regenerated cellulose Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000012876 carrier material Substances 0.000 claims description 18
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical group CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 claims description 17
- 238000009987 spinning Methods 0.000 claims description 16
- 239000013543 active substance Substances 0.000 claims description 7
- 150000002736 metal compounds Chemical class 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910001507 metal halide Inorganic materials 0.000 claims description 3
- 150000005309 metal halides Chemical class 0.000 claims description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 3
- 150000004692 metal hydroxides Chemical class 0.000 claims description 3
- 229910021518 metal oxyhydroxide Inorganic materials 0.000 claims description 3
- 239000002923 metal particle Substances 0.000 claims description 3
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 21
- 230000001877 deodorizing effect Effects 0.000 abstract description 13
- 230000002688 persistence Effects 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 229920000433 Lyocell Polymers 0.000 description 28
- 238000012360 testing method Methods 0.000 description 28
- 230000000840 anti-viral effect Effects 0.000 description 15
- 230000000844 anti-bacterial effect Effects 0.000 description 14
- 239000004744 fabric Substances 0.000 description 14
- 229920000742 Cotton Polymers 0.000 description 13
- 241000219146 Gossypium Species 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 208000012886 Vertigo Diseases 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 241000191967 Staphylococcus aureus Species 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- JMGVPAUIBBRNCO-UHFFFAOYSA-N [Ru].[Ag] Chemical compound [Ru].[Ag] JMGVPAUIBBRNCO-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000004745 nonwoven fabric Substances 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 9
- 241000588747 Klebsiella pneumoniae Species 0.000 description 8
- 239000003139 biocide Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 229920003043 Cellulose fiber Polymers 0.000 description 6
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 150000003304 ruthenium compounds Chemical class 0.000 description 5
- -1 silver halogen -Compounds Chemical class 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 229920000297 Rayon Polymers 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 210000004243 sweat Anatomy 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 229920002749 Bacterial cellulose Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000588748 Klebsiella Species 0.000 description 3
- 241000702217 Pseudomonas virus phi6 Species 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000005016 bacterial cellulose Substances 0.000 description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 235000010388 propyl gallate Nutrition 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229940100890 silver compound Drugs 0.000 description 3
- 150000003379 silver compounds Chemical class 0.000 description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052946 acanthite Inorganic materials 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007380 fibre production Methods 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 229940056910 silver sulfide Drugs 0.000 description 2
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- UKHWJBVVWVYFEY-UHFFFAOYSA-M silver;hydroxide Chemical compound [OH-].[Ag+] UKHWJBVVWVYFEY-UHFFFAOYSA-M 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- NTWSIWWJPQHFTO-AATRIKPKSA-N (2E)-3-methylhex-2-enoic acid Chemical compound CCC\C(C)=C\C(O)=O NTWSIWWJPQHFTO-AATRIKPKSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- RSFQOQOSOMBPEJ-UHFFFAOYSA-N 3-Methyl-2-hexenoic acid Natural products CCC(C)=CC(O)=O RSFQOQOSOMBPEJ-UHFFFAOYSA-N 0.000 description 1
- RGRNSTGIHROKJB-UHFFFAOYSA-N 3-hydroxy-3-methylhexanoic acid Chemical compound CCCC(C)(O)CC(O)=O RGRNSTGIHROKJB-UHFFFAOYSA-N 0.000 description 1
- HFVMLYAGWXSTQI-QYXZOKGRSA-N 5alpha-androst-16-en-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)(C=CC4)[C@@H]4[C@@H]3CC[C@H]21 HFVMLYAGWXSTQI-QYXZOKGRSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920001046 Nanocellulose Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- GZLCNRXKVBAALW-UHFFFAOYSA-N O=[Ru](=O)=O Chemical compound O=[Ru](=O)=O GZLCNRXKVBAALW-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- ROZSPJBPUVWBHW-UHFFFAOYSA-N [Ru]=O Chemical class [Ru]=O ROZSPJBPUVWBHW-UHFFFAOYSA-N 0.000 description 1
- DUDJJJCZFBPZKW-UHFFFAOYSA-N [Ru]=S Chemical compound [Ru]=S DUDJJJCZFBPZKW-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000004182 chemical digestion Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical compound OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009986 fabric formation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- UJZXIGKNPLTUOZ-UHFFFAOYSA-N n,n-dimethyl-1-phenylmethanamine oxide Chemical compound C[N+](C)([O-])CC1=CC=CC=C1 UJZXIGKNPLTUOZ-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000035943 smell Effects 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
- D01F1/103—Agents inhibiting growth of microorganisms
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
- D01F2/06—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/20—Cellulose-derived artificial fibres
- D10B2201/22—Cellulose-derived artificial fibres made from cellulose solutions
- D10B2201/24—Viscose
Definitions
- the invention relates to a fiber material with an antimicrobial effect, which comprises fibers made from regenerated cellulose and/or regenerated cellulose derivatives and at least one antimicrobial active ingredient component.
- the invention also relates to a method for producing a fiber material with an antimicrobial effect, a fiber material produced by this method and the use of an antimicrobial active component as a means of reducing or preventing odors in textile fiber materials.
- Antimicrobial fibers, fiber composites, yarns and textile fabrics are known. Numerous publications such as the DE 10 2006 056977 B3 , DE 10 2007 019 768 A1 and DE 10 2008 045 290 A1 Additives made from antimicrobial, particulate, liquid or meltable or vaporizable active ingredients or active ingredient compounds made from metallic nano- or microphases, salts, glasses or modified aluminosilicates or organic biocide active ingredients for wet, dry-wet or dry-spun fibers. These additives are added before or during the shaping process or to finish fibers, yarns or textiles (e.g EP 0 677 989 B1 ).
- the disadvantageous common feature of fibers, fiber composites, yarns and fabrics functionalized in this way is the insufficient resistance and the resultant worsening or even non-existent effect that is difficult for the user to control, for example due to the active ingredients essential for the function being washed out.
- cellulose In addition to the textile, paper and building materials industries, cellulose is also used in medicine. The widespread use of cellulose materials, in particular their use for medical applications, has led to the development of cellulose fibers with an antimicrobial finish. The majority of work to date on the production of antimicrobial cellulose has involved the introduction of biocidally acting nano-silver particles on or in the cellulose fibers through various deposition processes (e.g U.S. 8,367,089 B2 and DE 603 05 172 T2 ).
- the object is achieved according to the invention by a fiber material of the type mentioned in which the active ingredient component comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in contact with one another and in the cellulose - and/or cellulose derivative - Fibers are embedded and / or at least partially surrounded by them.
- the fiber material according to the invention comprises regenerated fibers which not only have antimicrobial properties but, surprisingly, also have deodorizing and/or odor-neutralizing properties.
- the fiber material according to the invention (hereinafter also referred to as “hygiene fibers”) are not based on the release of heavy metal ions or organic biocide active ingredients, but surprisingly still show an antimicrobial effectiveness that clearly exceeds the values required in the relevant standards.
- the fiber materials according to the invention also have a deodorizing and/or odor-neutralizing effect, which is not only due to the inhibition or killing of microorganisms, but also advantageously to a neutralization (e.g. by degradation or conversion) of organic substances (odorous substances or - molecules) based.
- the persistence of the effectiveness of the hygiene fibers according to the invention is particularly surprising.
- the antimicrobial, deodorizing and/or odor-neutralizing properties of the fiber material according to the invention do not depend on the presence or accessibility of the active ingredient component on the surface of the hygiene fibers, but despite the presence in the fiber cross-section of the cellulose - and/or cellulose derivative - fibers introduced active ingredient component with complete and wash-out resistant inclusion in the fiber matrix are fully pronounced.
- a particular advantage of the fiber material according to the invention is that it has properties that are comparable to those of untreated fiber materials, for example with regard to mechanical stability, durability, dyeability, water absorption/absorbency and processability.
- the active substance component comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in electrical contact with one another.
- Silver and ruthenium have different electrochemical potentials and thus form a galvanic cell (ie a "microgalvanic element"). If this cell is short-circuited via an aqueous phase, a high electric field strength is created due to the small distance (nm or ⁇ m range) between the two metals that are in contact. This contributes significantly to killing germs. Redox reactions take place on both electrodes of the microgalvanic element, each of which leads to the killing of microorganisms.
- the active ingredient component of silver and ruthenium according to the invention whose antimicrobial effectiveness is not based on the release of biocides or metal ions, but on the catalytically supported generation of oxygen radicals, does not change its composition even with long-term use and, in contrast to biocides or oligodynamic metals, does not require a depot or devices that regulate biocide or metal ion release.
- the two metals can be applied, for example, as a layer system on the surface of a particulate carrier (carrier material), the layer of one metal lying at least partially over that of the other metal.
- the respective upper layer can be porous (particularly nanoporous) or microcracked, particularly cluster-shaped, applied to or deposited on the other metal, so that the aqueous solution or moisture has access to both half-cells and the microgalvanic element is short-circuited .
- the two metals (half elements) can also be applied in the form of individual particles to the surface of a particulate carrier (carrier material).
- bimetal particles that include both metals and/or metal particles that each include only one of the two metals.
- the latter can be applied sequentially, i.e. first particles of the first metal and then particles of the second metal (or vice versa), or simultaneously as a mixture of particles of both metals onto a carrier material in such a way that they are in electrically conductive contact.
- the particles can be applied to the carrier material in a single layer (lying next to one another) and/or at least partially in multiple layers (lying on top of one another).
- silver and ruthenium are at least partially embedded in particulate form and homogeneously distributed in the cellulose and/or cellulose derivative fibers and/or are at least partially surrounded by them.
- the homogeneous distribution of individual particles within the fibers or in the fiber cross section ensures a uniform antimicrobial, deodorizing and/or odor-neutralizing effect of the active component within and on the entire surface of the fibers.
- silver and ruthenium are present at least partially in the form of silver/ruthenium bimetallic particles.
- the silver/ruthenium bimetallic particles can, for example, comprise silver particles which are partially coated with ruthenium. Additionally or alternatively, the silver/ruthenium bimetallic particles may comprise particles of cellulose and/or cellulose derivatives coated with silver and ruthenium.
- the silver and/or the ruthenium is/are partially present in the form of a metal compound.
- the metal compound can include, for example, at least one metal oxide, metal oxyhydrate, metal hydroxide, metal oxyhydroxide, metal halide and/or at least one metal sulfide.
- the present invention thus advantageously also includes, for example, an active ingredient component which is a semiconducting, catalytically active ruthenium compound (half element I of a galvanic element) and a semiconducting, sparingly soluble silver compound (e.g.
- Ruthenium is a noble metal that has several oxidation states and, due to its different valences, is able to form different ruthenium oxides, for example.
- Surface redox transitions such as Ru(VIII)/Ru(VI), Ru(VI)/Ru(IV), Ru(IV)/Ru(III) and possibly Ru(III)/Ru(II) are the cause of the high catalytic activity of the ruthenium mixed compounds and their good electrical conductivity. The unusually pronounced catalytic and electrocatalytic properties of the ruthenium compounds depend on the variation of the oxidation states.
- the antimicrobial effect is, for example, particularly high in the case of active substance components according to the invention which comprise ruthenium(VI) oxide in the first half element.
- active substance components according to the invention which comprise ruthenium(VI) oxide in the first half element.
- the high catalytic activity of such half-elements for the reduction of oxygen can be attributed to the easy change in the oxidation state and the easy exchange of oxygen, which preferably take place at the active centers of the semiconductor surface.
- the ruthenium is only changed in terms of its value, which causes the actual redox reaction to occur. Therefore, no ruthenium compound is consumed or formed, only the oxidation states are changed.
- the ruthenium compound binds the molecular oxygen, allowing it to be catalytically reduced. Therefore, the presence of several valences is a prerequisite for the catalytic effect and the redox reaction.
- the active ingredient component can, for example, in addition to metallic ruthenium and metallic silver, also contain a semiconducting, catalytically active ruthenium oxide or ruthenium sulfide (half element I of the galvanic element) and a semiconducting, poorly soluble silver compound (silver oxide, silver hydroxide, silver sulfide, silver-halogen compounds or combinations from it; half-element II of the galvanic element).
- the fiber material according to the invention can be used, for example, in the form of antimicrobial fibers as a component of fiber composites, yarns and/or textile fabrics (hygiene fiber composites, hygiene yarns or textile hygiene fabrics), so that they have antimicrobial, deodorizing and odor-neutralizing properties that last over their entire textile life cycle.
- the antimicrobial active ingredient component is therefore added during fiber production, for example in the lyocell, viscose or carbamate process.
- the effect of this is that the active substance component or silver and ruthenium can be completely embedded in the fibers and/or is at least partially surrounded or entwined by them.
- the addition of the silver-ruthenium active substance component did not result in a reduction in the on-set temperature or any other disadvantageous impairment of the production process. In this way, the fiber production could be carried out on the standard systems and with the standard processes without any loss of quality, even with the addition of this active ingredient component.
- the antimicrobial, deodorizing and/or odor-neutralizing effect of the fiber material produced according to the invention which is produced, for example, using the dry-wet spinning process and is already provided with particulate, liquid or meltable or vaporizable active ingredient components during the shaping process, not based on the release of heavy metal ions or organic biocide active substances and nevertheless shows an antimicrobial effectiveness that clearly exceeds the values required in the relevant standards.
- the persistence of the effectiveness of the fiber material produced according to the invention is surprising for the person skilled in the art. No appreciable deterioration in effectiveness can be observed either after 50 washes or after 100 washes.
- fiber materials according to the invention still show a high level of effectiveness in the antibacterial test based on DIN EN ISO 20743:2013 ( absorption method) both against the gram-positive test germ Staphylococcus aureus and against the gram-negative test germ Klebsiella pneunomiae and in the antiviral test based on ISO 18184 (test virus: phi 6 DSM 21518, host bacterium: Pseudomonas sp. DSM 21482) still has full antiviral effectiveness within from 2 hours.
- the active ingredient component introduced into the fiber cross-section of the fibers is fully effective, even on the fiber surface, even if it is completely, homogeneously and wash-out-resistantly included in the fiber matrix.
- a particular advantage of the fiber material produced according to the method according to the invention is that it has properties that are comparable to those of untreated fiber materials, e.g. in terms of mechanical stability, durability, dyeability, water absorption/absorbency and processability.
- the antimicrobial active component is added in solid form, in particular as a powder, and dispersed in the pulp and/or the spinning solution and/or optionally the solvent system.
- the antimicrobial active ingredient component in solid form in particular as a powder, is first dispersed in the solvent system and the dispersion produced in this way is then added to the pulp.
- the pulp is homogenized after the addition of the antimicrobial active ingredient component.
- silver and ruthenium are added at least partially in the form of silver metal particles which are partially coated with metallic ruthenium.
- silver and ruthenium are at least partially in the form of particles are added, which comprise a support material on which metallic silver and metallic ruthenium are applied.
- the carrier material is preferably selected in such a way that it also dissolves or at least separates from the silver and ruthenium under the conditions required in step d) for dissolving the cellulose and/or cellulose derivatives.
- the carrier material can comprise cellulose and/or at least one cellulose derivative.
- an antimicrobial fiber material can advantageously be produced using the method according to the invention with such a cellulose-silver-ruthenium particle variant of the active component using lyocell technology, since the cellulose-silver-ruthenium particles, despite their catalytic activity, have no negative have an influence on the decomposition temperature (on-set temperature) of the solvent N-methylmorpholine-N-oxide (NMMO) used in the lyocell process and can therefore be processed in the lyocell process.
- NMMO solvent N-methylmorpholine-N-oxide
- the carrier material cellulose dissolves in the NMMO and releases the silver-ruthenium particles deposited on the carrier material evenly distributed in the cellulose-containing solvent, so that antimicrobial regenerated Lyocell fibers for the textile industry, but also for nonwovens ( Non-wovens) and other technical applications such as foils, e.g. B. for packaging can be produced.
- These particles are not nanoparticles but rather particles that have a length, diameter and/or circumference greater than 100 nanometers (nm).
- the carrier material can, for example, comprise at least one material selected from the group consisting of cellulose, glass, zeolite, silicate, metal or a metal alloy, metal oxide (eg TiO2), ceramic, graphite and a polymer.
- the active ingredient component can thus be adjusted in a targeted manner by the choice of the carrier material with regard to the integration requirements in the cellulose and/or cellulose derivative fibers of the specific application. For example, in relation to water absorption/absorbency (e.g.
- cellulose as a carrier material
- a Magnets magnetic particles such as iron particles as carrier material
- cellulose integration in the production of regenerated fibers, in which the cellulose doped with the active ingredient component according to the invention dissolves in the organic cellulose solution and the active ingredient component is finely distributed in the pulp, from which then cellulose threads can be spun, or the color design (e.g. white color: cellulose as the carrier material).
- cellulose as the carrier material for silver and ruthenium.
- cellulose (C) or its derivatives can be used as a carrier material as microcrystalline (MCC) or nanocrystalline cellulose powder (NCC), which have a number of inherent properties that support the antimicrobial, deodorizing and/or odor-neutralizing effect of the fiber material according to the invention.
- MCC microcrystalline
- NCC nanocrystalline cellulose powder
- the regenerated fibers produced according to the invention can be varied not only in fiber length but also in fiber cross-section, as a result of which the fiber surface can be increased considerably.
- fibers with star (Trilobal) or letter-like (Umberto) cross sections are also available.
- the cellulose carrier surface can also be significantly enlarged by so-called bacterial cellulose (BC) due to its tissue-like, fine network structure. BC also has an increased water absorption capacity and is therefore often used in medical applications.
- the active ingredient component can also include other substances that have surface-active effects (e.g. surfactants), lipophilic properties (e.g. oils or fats) and/or hydrophilic properties (e.g. silicate particles).
- surfactants e.g. surfactants
- lipophilic properties e.g. oils or fats
- hydrophilic properties e.g. silicate particles
- the solvent is N-methylmorpholine-N-oxide (NMMO), which often used in the production of regenerated fibers.
- NMMO N-methylmorpholine-N-oxide
- suitable solvents or solvent systems such as N,N-dimethylbenzylamine-N-oxide or sodium hydroxide/carbon disulfide (NaOH/CS2), can also be used as solvents for the cellulose or cellolose derivatives in the manufacturing process.
- the object is also achieved according to the invention by a fiber material that was produced by means of the method described above.
- This fiber material according to the invention is characterized by an antimicrobial, deodorizing and/or odor-neutralizing effect that lasts over its entire service life and has other properties that are comparable to those of untreated fiber materials, e.g. in terms of mechanical stability, service life, dyeability, water absorption/absorbency and processability. are comparable.
- an antimicrobial active ingredient component which comprises metallic silver (Ag) and metallic ruthenium (Ru) as an agent for reducing or preventing odors in textile fiber materials.
- Fibers doped with this antimicrobial active ingredient component and fiber composites, yarns and textile fabrics made from them not only have an antimicrobial effect that lasts over the entire life cycle of the textile structures, but also surprisingly and advantageously have a deodorizing and/or odor-neutralizing effect. It turned out that this additional effect is not solely due to the inhibition or killing of microorganisms, but is also based in particular on a neutralization (eg through degradation or conversion) of organic substances.
- organic substances that can be responsible for bad smells from textile fiber materials are, for example, 3-methyl-2-hexenoic acid, thioalcohol, androstenone, butyric acid, n- valeric acid, n -hexanoic acid and n -octanoic acid. These and many other odorous substances can also be neutralized effectively and over the entire textile life cycle by using the antimicrobial Ag/Ru active ingredient component according to the invention.
- yarns, knitted fabrics or woven fabrics made from the fiber material according to the invention are outstandingly suitable as sports, leisure or outdoor textiles, as home textiles and as medical textiles for wound care or healing.
- Woven or nonwoven fabrics made from the fiber material according to the invention can also be used, for example, as permanently antimicrobial cleaning cloths (e.g. in the kitchen), plastic-coated nonwoven pieces in dishwashers or to support the washing effect in the washing machine.
- the invention also relates to hygiene fiber composites made from them, hygiene yarns and textile hygiene fabrics and textiles made up from them.
- Hygienic yarns can be mixed as part of the secondary spinning process from 1 to 99% of the fiber material according to the invention with many mixed fibers used in textiles (natural and chemical fibers such as cotton, linen, hemp, wool, viscose, modal, lyocell, polyester, polyacrylonitrile, polyamide, polypropylene ) form.
- Hygiene fibers and/or hygiene yarns made from them can also be processed into fabrics with an active ingredient content of 0.05 to 90% using the usual textile fabric formation processes (including nonwoven fabric manufacture).
- yarns, fabrics or textiles can also be subsequently coated with the antimicrobial active component in one of the processing processes mentioned or special finishing steps.
- coating using special techniques such as ultrasonic impregnation or the like is also possible.
- Regular fibers within the meaning of the invention refers to man-made fibers made from regenerated cellulose and/or cellulose derivatives, which are produced from cellulose (pulp is a fibrous mass produced during the chemical digestion of plant fibers, which consists mainly of cellulose or cellulose derivatives (wood)) by means of a chemical process become.
- regenerated fibers are viscose, modal, lyocell and cupro.
- Antimicrobial effect within the meaning of the invention refers to the property of a substance, a substance combination, a material, material composite and/or a surface of the same to kill microorganisms, to inhibit their growth and/or to prevent or impede microbial colonization or attachment.
- Microorganisms within the meaning of the invention refers to unicellular or few-celled, microscopically small organisms or particles that are selected from the group consisting of bacteria, fungi, algae, protozoa and viruses.
- Pulp in the sense of the invention refers to a cellulose dispersion dissolved down to the individual fibers in an aqueous solution.
- Particles designates individual particulate bodies which as a whole are delimited from other particles and their surroundings. All possible particle shapes and sizes, regardless of geometry and mass, are included within the scope of the invention.
- Half-element in the sense of the invention refers to a part of a galvanic element that forms this in conjunction with at least one other half-element.
- a half-element comprises a metal electrode, which is at least partially in an electrolyte.
- Gagalvanic cell refers to the combination of two different metals, each of which has an electrode (anode or cathode). If the two metal electrodes are in direct contact with each other or if they are electrically conductively connected to one another via an electron conductor, the less noble metal with the lower redox potential (electron donor, anode) gives electrons to the more noble metal with the higher redox potential (electron acceptor, cathode) and sets in Follow the redox processes at the electrodes.
- Electrode within the meaning of the invention denotes a substance (e.g. ions in an aqueous solution) which, under the influence of an electric field, conducts electric current through the directed movement of ions.
- Metal within the meaning of the invention refers to atoms of a chemical element of the periodic table of elements (all elements that are not non-metals), which form a metal lattice by means of metallic bonds and thus a macroscopically homogeneous material, which is characterized, among other things, by high electrical conductivity and a high thermal conductivity.
- the term "metal” also includes alloys comprising at least two different metals, metal compounds such as metal oxides, metal oxyhydrates, metal hydroxides, metal oxyhydroxides, metal halides and metal sulfides, and combinations of metals and corresponding metal compounds.
- figure 1 shows the antimicrobial effectiveness of an antimicrobial cellulose thread produced by the Lyocell process, which was produced by adding a cellulose-based silver/ruthenium active ingredient component to the Lyocell process, against E. coli (DSM 498) using the around the thin A thread of inhibition zone developed around it.
- Figures 2 to 7 show the significant antimicrobial effect of cellulose Ag/Ru threads produced using a Lyocell process against Staphylococcus aureus (DSM 799), Klebsiella pneumoniae (DSM 789) and bacteriophage phi6 (DSM 21518).
- the cellulose filaments were produced by adding only 1% of a particulate cellulose-based silver-ruthenium hybrid to a cellulose dope.
- the test material with an active ingredient content of 1% Ag/Ru was spun with a target titer of 1.7 dtex. 10 g/l Afilan RA was used as finish.
- To determine the textile-physical values staple fibers with a length of 40 mm were cut by hand.
- a fiber mixture with a mixing ratio of 30% Ag/Ru fiber and 70% pure cellulose fiber was used for the wet webs.
- unmodified cellulose fibers were also washed and, in addition to a control (PET) and high-purity cotton (Tula organic cotton), evaluated with regard to the antimicrobial effect.
- figure 3 shows the result of an analytical odor test on polyester fibers.
- a defined quantity of Hohenstein sweat simulation ng 114 was applied to textile die-cuts, incubated in an odor bag for 60 minutes at 37°C and finally the odor intensity was assessed by odor testers in accordance with VDI 3882 using an olfactory sampler. It can be seen here that under the test conditions for the polyester fiber fleece coated with silver and ruthenium, a reduction in the intensity of sweat odor of 0.7 intensity points was determined compared to the reference. The odor intensity of the reference was rated strong to very strong by the odor testers, while the odor intensity of the Ag/Ru non-woven fabric was rated clear to strong.
- the Ag/Ru active ingredient component causes a significant reduction in odor intensity in polyester fibers. It is to be expected (and still to be proven) that the odor reduction through the use according to the invention of the Ag/Ru active substance component in fiber materials made of cellulose and/or cellulose derivatives is even more pronounced in comparison with a corresponding reference material. This expectation is based on the fact that plastic fibers absorb odor molecules less well than e.g. B. cotton or cellulose. Polyester fabrics, for example, release odor molecules more quickly or more easily (ie in greater numbers) than cotton. From this fact one can conclude that the odor molecules are held inside the cotton or cellulose fibers so that they are effectively neutralized by an embedded antimicrobial active component comprising metallic silver (Ag) and metallic ruthenium (Ru). can become.
- an embedded antimicrobial active component comprising metallic silver (Ag) and metallic ruthenium (Ru).
- the spinning solution prepared in this way is extruded with a gear spinning pump through nozzle holes with a diameter of 90 ⁇ m under weak N 2 pressure and the resulting spinning capillaries are distorted in the air gap, regenerated when passing the spinning bath surface and exhaustively freed from NMMO with the spinning bath in countercurrent.
- the fibers cut into staple fibers with a staple length of 38 mm have a final fineness (according to DIN EN ISO 1973 1995-12) of 1.62 dtex. Its tenacity (according to DIN EN ISO 5079 1996-2) is 43.60 cN/tex, its elongation (also determined according to DIN EN ISO 5079:1996-2) is 12.8% and its loop tearing strength (according to DIN 53843-2). :1988-03) was determined to be 15.10 cN/tex.
- a finely ground ion exchange resin (weakly crosslinked cation exchanger based on a crosslinked copolymer of acrylic acid and sodium acrylate with a particle size D 90 ⁇ 8 ⁇ m) is dissolved in 1 l using an Ultra-Turrax high-performance disperser aqueous NMMO (60%, w/w) and, after a standing time of 30 minutes, added to a pulp made from 377 g of cellulose (MoDo, DP: 590, solids content: 95.5%) and 3,372 g of NMMO. The modified pulp is again homogenized for 15 minutes at 10,000 rpm .
- the loaded staple fibers are dried at 80 °C until they reach equilibrium moisture content.
- the silver content of the fibers manufactured in this way is around 6 percent.
- the mixture is homogenized at 10,000 rpm for 15 minutes and then, analogously to previous examples 1 or 2, to staple fibers with a length of 40 mm, a fineness of 1.5 dtex, a tensile strength of 35.4 cN/tex, one Elongation at break of 14.2% and a loop tearing strength related to the fineness of 9.8 cN/tex.
- the zinc content is 9%.
- the fibers spun and post-treated analogously to Example 1 have a final fineness of 1.76 dtex, a tensile strength of 42 cN/tex, an elongation at break of 13.6% and a loop strength of 14.4 cN/tex, and are therefore the fibers Example 1 completely equivalent.
- the antibacterial effectiveness (based on DIN EN ISO 20743:2013 absorption method) was determined against both gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pneumoniae) test strains. It was calculated as the difference between the Ig reduction of a control tested in parallel (Tula cotton) and the Ig reduction of a short fiber fleece sample over 24 hours in each case. Values above 3 are considered to have a strong antibacterial effect.
- a fiber sample produced according to Example 1 proved to be antibacterial against neither gram-positive nor gram-negative test germs.
- the investigation also revealed no reduction in viral load over a 2-hour determination time. Even after 50 or 100 wash cycles, these samples showed no or only very low, non-specific antibacterial and no antiviral activities, which can result from the very smooth fiber morphology (cf. Table 1).
- Example 6 The lyocell fibers, which had been spun analogously to Example 2 or Example 3, were processed into staple fiber yarns and subsequently into blended fabrics with a total functional fiber content of approx. 30%. Representative pieces of tissue were subjected to the antibacterial and antiviral studies referred to in Example 6. Unwashed mixed fabrics showed an Ig reduction ⁇ log of 4.0 (Example 2) or 3.4 (Example 3) compared to Staphylococcus aureus and 3.8 (Example 2) or 3.1 (Example 3) compared to Klebsiella pneumoniae. The reduction in viral load after 2 hours was 3.1 (Example 2) and 3.0 (Example 3), respectively.
- the antibacterial Ig reduction ⁇ log compared to Staphylococcus areus was 2.9 (Example 2) or 2.0 (Example 3) and compared to Klebsiella pneumoniae to 2.4 (Example 2) or 1.8 (Example 3) dropped.
- the reduction in viral load at 2 hours declined into the low antiviral potency for both samples, and was 2.4 (Example 2) and 2.1 (Example 3). Based on the values obtained, no larger number of wash cycles was examined.
- Fibers produced analogously to example 1 and example 4 were cut into short staple fibers with staple lengths of ⁇ 5 mm before the fibers were dried.
- the staple fibers, dried to equilibrium moisture content, were processed with the aid of a Rapid-Kothen type sheet former to form circular wet fleece pieces with a dry weight of about 150 g/m 2 .
- both completely unmodified and short-fiber nonwovens made of 70% pure lyocell fibers (manufactured according to example 1) and 30% fibers with 1% silver/ruthenium additive (manufactured according to example 4) were used. Similar to Example 4, the test germs mentioned there were also tested here.
- Unmodified fibers were tested as a reference after 0 and 100 washes, and 70/30 short fiber batts as a sample after 0, 50 and 100 washes.
- the washing tests of all wet nonwovens were carried out based on DIN EN ISO 6330. After the end of the washing test, the washed nonwovens were each opened separately, redispersed in deionized water and placed back into the short-fiber nonwoven using Rapid Köthen sheet formers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Die Erfindung betrifft ein Fasermaterial mit antimikrobieller Wirkung, das Fasern aus regenerierter Cellulose und/oder regenerierten Cellulose-Derivaten sowie mindestens eine antimikrobielle Wirkstoffkomponente umfasst. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines Fasermaterials mit antimikrobieller Wirkung, ein nach diesem Verfahren hergestelltes Fasermaterial und die Verwendung einer antimikrobiellen Wirkstoffkomponente als Mittel zur Reduzierung oder Vermeidung von Gerüchen in textilen Fasermaterialien. Die Wirkstoffkomponente des erfindungsgemäßen Fasermaterials umfasst metallisches Silber (Ag) und metallisches Ruthenium (Ru), wobei Silber und Ruthenium miteinander in Kontakt stehen und in die Cellulose - und/oder Cellulose-Derivat - Fasern eingebettet und/oder zumindest teilweise von diesen umgeben sind. Das erfindungsgemäße Fasermaterial weist nicht nur antimikrobielle, sondern in vorteilhafter Weise auch desodorierende und/oder geruchsneutralisierende Eigenschaften auf. Dabei ist insbesondere die Beständigkeit der Wirksamkeit der erfindungsgemäßen Hygienefasern überraschend. Sowohl nach 50 Waschungen als auch nach 100 Waschungen ist keine nennenswerte Verschlechterung der Wirksamkeit bzw. Reduzierung der antimikrobiellen, desodorierenden und/oder geruchsneutralisierenden Eigenschaften zu beobachten.The invention relates to a fiber material with an antimicrobial effect, which comprises fibers made from regenerated cellulose and/or regenerated cellulose derivatives and at least one antimicrobial active ingredient component. The invention also relates to a method for producing a fiber material with an antimicrobial effect, a fiber material produced by this method and the use of an antimicrobial active component as a means of reducing or preventing odors in textile fiber materials. The active ingredient component of the fiber material according to the invention comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in contact with one another and embedded in the cellulose and/or cellulose derivative fibers and/or at least partially surrounded by them. The fiber material according to the invention has not only antimicrobial properties, but also advantageously deodorizing and/or odor-neutralizing properties. The persistence of the effectiveness of the hygiene fibers according to the invention is particularly surprising. No significant deterioration in the effectiveness or reduction in the antimicrobial, deodorizing and/or odor-neutralizing properties can be observed either after 50 washes or after 100 washes.
Description
Die Erfindung betrifft ein Fasermaterial mit antimikrobieller Wirkung, das Fasern aus regenerierter Cellulose und/oder regenerierten Cellulose-Derivaten sowie mindestens eine antimikrobielle Wirkstoffkomponente umfasst. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines Fasermaterials mit antimikrobieller Wirkung, ein nach diesem Verfahren hergestelltes Fasermaterial und die Verwendung einer antimikrobiellen Wirkstoffkomponente als Mittel zur Reduzierung oder Vermeidung von Gerüchen in textilen Fasermaterialien.The invention relates to a fiber material with an antimicrobial effect, which comprises fibers made from regenerated cellulose and/or regenerated cellulose derivatives and at least one antimicrobial active ingredient component. The invention also relates to a method for producing a fiber material with an antimicrobial effect, a fiber material produced by this method and the use of an antimicrobial active component as a means of reducing or preventing odors in textile fiber materials.
Antimikrobielle Fasern, Faserverbunde, Garne und textile Flächengebilde sind bekannt. So beschreiben zahlreiche Veröffentlichungen wie beispielsweise die
Cellulose wird neben der Textil-, Papier- und Baustoffindustrie auch im Medizinbereich eingesetzt. Die weite Verbreitung des Einsatzes von Cellulose-Werkstoffen, insbesondere deren Einsatz für medizinische Anwendungen, haben zur Entwicklung von antimikrobiell ausgerüsteten Cellulose-Fasern geführt. Die Mehrzahl der Arbeiten zur Herstellung antimikrobieller Cellulose hat sich bisher mit dem Einbringen von biozidal wirkenden Nano-Silberpartikeln auf bzw. in die Cellulose-Fasern durch verschiedene Abscheidungsprozesse beschäftigt (z.B.
Antimikrobielle Fasern oder Textilien, die Beschichtungen oder Wirkstoffe bzw. Wirkstoffverbunde enthalten, wie beispielsweise Kombinationen aus Silber-, Kupfer- oder Zink-Ionen, welche in oder an der Fasermatrix fixiert werden, z.B. an Ionen-Austauscher-Harzen, in Gläsern oder modifizierten Alumosilikaten, zeigen zwar eine bessere Beständigkeit gegen Auswaschung, die Wirksamkeit verschlechtert sich jedoch auch hierbei bereits nach 10-20 Waschzyklen, da diese Technologien einheitlich auf der Abgabe des jeweiligen Wirkstoffs basieren (Depot-Effekt). Aufgrund dieses Depot-Effektes wären für eine längere Beständigkeit der Wirkung höhere Wirkstoffkonzentrationen von deutlich mehr als 1 Gew.-% notwendig. Dem steht entgegen, dass die oben genannten antimikrobiellen Wirkstoffe wie beispielsweise Silber, Kupfer, Zink usw. wegen der damit bestehenden Gefahr einer Behinderung der Cellulose-Modifizierung (Viskose- bzw. Carbamat-Prozess) bzw. der spontanen, autokatalytischen Zersetzung des eingesetzten Lösungsmittels (Lyocell-Prozess), die sich in einem exothermen DSC-Kurvenverlauf durch eine deutliche Absenkung der Temperatur für den Zersetzungsbeginn des bevorzugt eingesetzten N-Methylmorpholin-N-oxid (NMMO) ("on-set-Temperatur") von ca. 160°C auf z.T. unter 130°C bemerkbar macht, nicht oder nur in sehr geringer Menge (<< 1 %) im Formgebungsschritt (Lösungsherstellung und Faserspinnung) in die Fasermatrix eingebracht werden können. Ebenfalls nachteilig insbesondere bei Wirkstoffkonzentrationen von mehreren Gewichtsprozent, wie Sie für eine beständige Wirksamkeit herkömmlicher Wirkstoffe benötigt würden, ist die Beeinträchtigung der Fasereigenschaften wie z.B. mechanische Stabilität, lange Lebensdauer, Färbbarkeit, Wasseraufnahme-/Saugfähigkeit und Verarbeitbarkeit.Antimicrobial fibers or textiles that contain coatings or active ingredients or active ingredient compounds, such as combinations of silver, copper or zinc ions, which are fixed in or on the fiber matrix, e.g. on ion exchange resins, in glasses or modified aluminosilicates , show a better resistance to washing out, but the effectiveness deteriorates after 10-20 wash cycles, since these technologies are based uniformly on the release of the respective active ingredient (depot effect). Because of this depot effect, higher active ingredient concentrations of significantly more than 1% by weight would be necessary for a longer persistence of the effect. This is opposed by the fact that the antimicrobial agents mentioned above, such as silver, copper, zinc, etc., because of the risk they impede the cellulose modification (viscose or carbamate process) or the spontaneous, autocatalytic decomposition of the solvent used ( Lyocell process), which is reflected in an exothermic DSC curve by a significant reduction in the temperature for the start of decomposition of the preferably used N-methylmorpholine-N-oxide (NMMO) ("on-set temperature") of approx. 160°C sometimes below 130°C, cannot or only in very small amounts (<<1%) be introduced into the fiber matrix in the shaping step (solution production and fiber spinning). Also disadvantageous, especially with active ingredient concentrations of several percent by weight, as you would need for a constant effectiveness of conventional active ingredients, is the impairment of fiber properties such as mechanical stability, long life, dyeability, water absorption/absorbency and processability.
Zusammenfassend ist festzustellen, dass es bis dato keine Fasern, Faserverbunde, Garne und textile Flächengebilde gibt, welche unter Verwendung von Standardprozessen und -anlagen hergestellt werden können, Fasereigenschaften aufweisen, welche mit denen unbehandelter Fasern vergleichbar sind, und eine über den gesamten textilen Lebenszyklus anhaltende antimikrobielle Wirkung besitzen.In summary, it can be said that to date there are no fibers, fiber composites, yarns and textile fabrics that can be produced using standard processes and equipment, have fiber properties that are comparable to those of untreated fibers and have a lasting effect over the entire textile life cycle have an antimicrobial effect.
Es ist Aufgabe der vorliegenden Erfindung ein Fasermaterial mit einer über den gesamten Lebenszyklus anhaltenden antimikrobiellen Wirkung bereitzustellen, welches unter Verwendung von Standardprozessen und Anlagen hergestellt werden kann und Eigenschaften besitzt, die mit denen unbehandelter Fasermaterialien vergleichbar sind.It is an object of the present invention to provide a fiber material with an antimicrobial effect that lasts over the entire life cycle, which can be produced using standard processes and equipment and has properties that are comparable to those of untreated fiber materials.
Die Aufgabe wird erfindungsgemäß durch ein Fasermaterial der eingangs genannten Art gelöst, bei dem die Wirkstoffkomponente metallisches Silber (Ag) und metallisches Ruthenium (Ru) umfasst, wobei Silber und Ruthenium miteinander in Kontakt stehen und in die Cellulose - und/oder Cellulose-Derivat - Fasern eingebettet und/oder zumindest teilweise von diesen umgeben sind. Das erfindungsgemäße Fasermaterial umfasst Regeneratfasern, die nicht nur antimikrobielle, sondern überraschender Weise auch desodorierende und/oder geruchsneutralisierende Eigenschaften aufweisen. Diese Eigenschaften des erfindungsgemäßen Fasermaterials (im Folgenden auch als "Hygienefasern" bezeichnet) beruhen nicht auf der Abgabe von Schwermetall-Ionen oder organischen Biozid-Wirkstoffen, zeigen aber überraschender Weise dennoch eine antimikrobielle Wirksamkeit, welche die in den einschlägigen Normen geforderten Werte deutlich übertrifft. Darüber hinaus haben die erfindungsgemäßen Fasermaterialien auch eine desodorierende und/oder geruchsneutralisierende Wirkung, die nicht allein auf eine Hemmung oder Abtötung von Mikroorganismen zurückzuführen ist, sondern in vorteilhafter Weise auch auf einer Neutralisierung (z.B. durch Abbau oder Umwandlung) organischer Substanzen (Geruchsstoffe bzw. -moleküle) basiert. Dabei ist insbesondere die Beständigkeit der Wirksamkeit der erfindungsgemäßen Hygienefasern überraschend. Sowohl nach 50 Waschungen als auch nach 100 Waschungen ist keine nennenswerte Verschlechterung der Wirksamkeit bzw. Reduzierung der antimikrobiellen, desodorierenden und/oder geruchsneutralisierenden Eigenschaften zu beobachten. Überraschend für den Fachmann ist auch, dass die antimikrobiellen, desodorierenden und/oder geruchsneutralisierenden Eigenschaften des erfindungsgemäßen Fasermaterials nicht von einer Präsenz oder Zugänglichkeit der Wirkstoffkomponente an der Oberfläche der Hygienefasern abhängen, sondern trotz der in den Faserquerschnitt der Cellulose - und/oder Cellulose-Derivat - Fasern eingebrachten Wirkstoffkomponente bei vollständigem und auswaschresistentem Einschluss in die Fasermatrix uneingeschränkt ausgeprägt sind. Ein besonderer Vorteil des erfindungsgemäßen Fasermaterials liegt ferner darin, dass es Eigenschaften besitzt, die mit denen unbehandelter Fasermaterialien, z.B. in Bezug auf mechanische Stabilität, Lebensdauer, Färbbarkeit, Wasseraufnahme-/Saugfähigkeit und Verarbeitbarkeit, vergleichbar sind.The object is achieved according to the invention by a fiber material of the type mentioned in which the active ingredient component comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in contact with one another and in the cellulose - and/or cellulose derivative - Fibers are embedded and / or at least partially surrounded by them. The fiber material according to the invention comprises regenerated fibers which not only have antimicrobial properties but, surprisingly, also have deodorizing and/or odor-neutralizing properties. These properties of the fiber material according to the invention (hereinafter also referred to as "hygiene fibers") are not based on the release of heavy metal ions or organic biocide active ingredients, but surprisingly still show an antimicrobial effectiveness that clearly exceeds the values required in the relevant standards. In addition, the fiber materials according to the invention also have a deodorizing and/or odor-neutralizing effect, which is not only due to the inhibition or killing of microorganisms, but also advantageously to a neutralization (e.g. by degradation or conversion) of organic substances (odorous substances or - molecules) based. The persistence of the effectiveness of the hygiene fibers according to the invention is particularly surprising. No significant deterioration in the effectiveness or reduction in the antimicrobial, deodorizing and/or odor-neutralizing properties can be observed either after 50 washes or after 100 washes. It is also surprising for the person skilled in the art that the antimicrobial, deodorizing and/or odor-neutralizing properties of the fiber material according to the invention do not depend on the presence or accessibility of the active ingredient component on the surface of the hygiene fibers, but despite the presence in the fiber cross-section of the cellulose - and/or cellulose derivative - fibers introduced active ingredient component with complete and wash-out resistant inclusion in the fiber matrix are fully pronounced. A particular advantage of the fiber material according to the invention is that it has properties that are comparable to those of untreated fiber materials, for example with regard to mechanical stability, durability, dyeability, water absorption/absorbency and processability.
Erfindungsgemäß umfasst die Wirkstoffkomponente metallisches Silber (Ag) und metallisches Ruthenium (Ru), wobei Silber und Ruthenium miteinander in elektrischem Kontakt stehen. Silber und Ruthenium weisen unterschiedliche elektrochemische Potentiale auf und bilden somit eine galvanische Zelle (d.h. ein "mikrogalvanisches Element"). Wird diese Zelle über eine wässrige Phase kurzgeschlossen, entsteht aufgrund der geringen Distanz (nm- oder µm-Bereich) zwischen den beiden sich kontaktierenden Metallen eine hohe elektrische Feldstärke. Diese trägt signifikant zur Keimabtötung bei. An beiden Elektroden des mikrogalvanischen Elements laufen dabei Redox-Reaktionen ab, die jede für sich zu einer Abtötung von Mikroorganismen führen. Am ersten Halbelement (Kathode) wird molekularer Sauerstoff zu Sauerstoffradikalen reduziert, die dann toxisch auf die Mikroorganismen wirken. Am zweiten Halbelement (Anode) werden Elektronen von den Mikroorganismen an den Silberhalbleiter abgegeben und diese dadurch oxidativ zerstört. Die erfindungsgemäße Wirkstoffkomponente aus Silber und Ruthenium, dessen antimikrobielle Wirksamkeit nicht auf der Abgabe von Bioziden oder Metallionen, sondern auf der katalytisch unterstützten Erzeugung von Sauerstoffradikalen beruht, verändert seine Zusammensetzung auch bei langzeitiger Anwendung nicht und benötigt im Gegensatz zu Bioziden oder oligodynamischen Metallen kein Depot oder die Biozid- bzw. Metallionenabgabe regulierende Vorrichtungen. Anders als bei Bioziden und oligodynamischen Metallen, die für ihre Wirksamkeit toxische Stoffe in die Umwelt abgeben müssen, entsteht bei der Verwendung der erfindungsgemäßen Wirkstoffkomponente aus den gebildeten Sauerstoffradikalen am Ende nur Wasser. Da es sich bei der Metallkombination Ag/Ru um ein katalytisch unterstütztes System handelt, ist deren antimikrobielle Wirkung in vorteilhafter Weise ausschließlich von der aktiven Oberfläche und nicht wie bei Bioziden oder den oligodynamischen Systemen (Silber, Kupfer und Zink bzw. deren Salze oder Verbindungen) von deren Menge und Auslaugungsgeschwindigkeit abhängig.According to the invention, the active substance component comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in electrical contact with one another. Silver and ruthenium have different electrochemical potentials and thus form a galvanic cell (ie a "microgalvanic element"). If this cell is short-circuited via an aqueous phase, a high electric field strength is created due to the small distance (nm or µm range) between the two metals that are in contact. This contributes significantly to killing germs. Redox reactions take place on both electrodes of the microgalvanic element, each of which leads to the killing of microorganisms. At the first half element (cathode), molecular oxygen is reduced to oxygen radicals, which then have a toxic effect on the microorganisms. At the second half-element (anode), electrons are given off by the microorganisms to the silver semiconductor and this is destroyed by oxidation. The active ingredient component of silver and ruthenium according to the invention, whose antimicrobial effectiveness is not based on the release of biocides or metal ions, but on the catalytically supported generation of oxygen radicals, does not change its composition even with long-term use and, in contrast to biocides or oligodynamic metals, does not require a depot or devices that regulate biocide or metal ion release. In contrast to biocides and oligodynamic metals, which have to release toxic substances into the environment in order to be effective, when the active ingredient component according to the invention is used only water is formed from the oxygen radicals formed. Since the Ag/Ru metal combination is a catalytically assisted system, its antimicrobial effect is advantageously exclusively due to the active surface and not, as is the case with biocides or the oligodynamic systems (Silver, copper and zinc or their salts or compounds) depending on their quantity and leaching rate.
Die beiden Metalle (Silber und Ruthenium) können beispielsweise als Schichtsystem auf der Oberfläche eines partikulären Trägers (Trägermaterial) aufgebracht sein, wobei die Schicht des einen Metalls zumindest teilweise über der des anderen Metalls liegt. Dabei kann die jeweils obere Schicht porös (insbesondere nanoporös) bzw. mikrorissig, insbesondere clusterförmig, auf das andere Metall aufgetragen bzw. auf diesem abgeschieden sein, so dass die wässrige Lösung bzw. die Feuchtigkeit Zugang zu beiden Halbelementen hat und das mikrogalvanische Element kurzgeschlossen wird. Alternativ oder zusätzlich können die beiden Metalle (Halbelemente) aber beispielsweise auch in Form einzelner Partikel auf der Oberfläche eines partikulären Trägers (Trägermaterial) aufgebracht sein. Grundsätzlich kann es sich beispielsweise um Bimetallpartikel, die beide Metalle umfassen, und/oder Metallpartikel, die jeweils nur eines der beiden Metalle umfassen, handeln. Letztere können sequenziell, d.h. erst Partikel des ersten Metalls und dann Partikel des zweiten Metalls (oder umgekehrt), oder gleichzeitig als Gemisch von Partikeln beider Metalle so auf ein Trägermaterial aufgebracht werden, dass sie in elektrisch leitendem Kontakt stehen. Die Partikel können einschichtig (nebeneinanderliegend) und/oder zumindest teilweise mehrschichtig (übereinanderliegend) auf dem Trägermaterial aufgebracht sein.The two metals (silver and ruthenium) can be applied, for example, as a layer system on the surface of a particulate carrier (carrier material), the layer of one metal lying at least partially over that of the other metal. The respective upper layer can be porous (particularly nanoporous) or microcracked, particularly cluster-shaped, applied to or deposited on the other metal, so that the aqueous solution or moisture has access to both half-cells and the microgalvanic element is short-circuited . Alternatively or additionally, however, the two metals (half elements) can also be applied in the form of individual particles to the surface of a particulate carrier (carrier material). In principle, it can be, for example, bimetal particles that include both metals and/or metal particles that each include only one of the two metals. The latter can be applied sequentially, i.e. first particles of the first metal and then particles of the second metal (or vice versa), or simultaneously as a mixture of particles of both metals onto a carrier material in such a way that they are in electrically conductive contact. The particles can be applied to the carrier material in a single layer (lying next to one another) and/or at least partially in multiple layers (lying on top of one another).
In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass Silber und Ruthenium zumindest teilweise in partikulärer Form homogen verteilt in die Cellulose- und/oder Cellulose-Derivat - Fasern eingebettet und/oder zumindest teilweise von diesen umgeben sind. Die homogene Verteilung einzelner Partikel innerhalb der Fasern bzw. im Faserquerschnitt gewährleistet eine gleichmäßige antimikrobielle, desodorierende und/oder geruchsneutralisierende Wirkung der Wirkstoffkomponente innerhalb und an der gesamten Oberfläche der Fasern.In an advantageous embodiment of the invention, it is provided that silver and ruthenium are at least partially embedded in particulate form and homogeneously distributed in the cellulose and/or cellulose derivative fibers and/or are at least partially surrounded by them. The homogeneous distribution of individual particles within the fibers or in the fiber cross section ensures a uniform antimicrobial, deodorizing and/or odor-neutralizing effect of the active component within and on the entire surface of the fibers.
In weiterer vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass Silber und Ruthenium zumindest teilweise in Form von Silber-/Ruthenium-Bimetall-Partikeln vorliegen. Die Silber-/Ruthenium-Bimetall-Partikel können beispielsweise Silberpartikel umfassen, die teilweise mit Ruthenium beschichtet sind. Zusätzlich oder alternativ können die Silber-/Ruthenium-Bimetall-Partikel Partikel aus Cellulose und/oder Cellulose-Derivaten umfassen, die mit Silber und Ruthenium beschichtet sind.In a further advantageous embodiment of the invention, it is provided that silver and ruthenium are present at least partially in the form of silver/ruthenium bimetallic particles. The silver/ruthenium bimetallic particles can, for example, comprise silver particles which are partially coated with ruthenium. Additionally or alternatively, the silver/ruthenium bimetallic particles may comprise particles of cellulose and/or cellulose derivatives coated with silver and ruthenium.
In weiterer vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass das Silber und/oder das Ruthenium teilweise in Form einer Metallverbindung vorliegt/vorliegen. Dabei kann die Metallverbindung beispielsweise mindestens ein Metalloxid, Metalloxyhydrat, Metallhydroxid, Metalloxyhydroxid, Metallhalogenid und/oder mindestens ein Metallsulfid umfassen. Die vorliegende Erfindung umfasst somit in vorteilhafter Weise beispielsweise auch eine Wirkstoffkomponente, die eine halbleitende, katalytisch aktive Ruthenium-Verbindung (Halbelement I eines galvanischen Elementes) und eine halbleitende, schwer lösliche Silberverbindung (z. B. Silberoxid, Silberhydroxid, Silbersulfid, Silber-Halogen-Verbindungen oder Kombinationen daraus; Halbelement II des galvanischen Elementes) umfasst. Ruthenium ist ein Edelmetall, das mehrere Oxidationszustände besitzt und aufgrund seiner unterschiedlichen Wertigkeiten in der Lage ist, beispielsweise unterschiedliche Ruthenium-Oxide zu bilden. Oberflächen-Redox-Übergänge wie Ru(VIII)/Ru(VI), Ru(VI)/Ru(IV), Ru(IV)/Ru(III) und möglicherweise Ru(III)/Ru(II) sind die Ursache für die hohe katalytische Aktivität der Ruthenium-Mischverbindungen und deren guten elektrischen Leitfähigkeiten. Die ungewöhnlich ausgeprägten katalytischen und elektrokatalytischen Eigenschaften der Ruthenium-Verbindungen hängen dabei von der Variation der Oxidationsstufen ab. Die antimikrobielle Wirkung ist beispielsweise besonders hoch bei erfindungsgemäßen Wirkstoffkomponenten, die im ersten Halbelement Ruthenium(VI)-Oxid umfassen. Die hohe katalytische Aktivität solcher Halbelemente für die Sauerstoffreduktion ist dabei auf den leichten Wechsel der Oxidationsstufen sowie den leichten Sauerstoffaustausch zurückzuführen, die an den aktiven Zentren der Halbleiteroberfläche bevorzugt stattfinden. Dabei wird das Ruthenium nur in seiner Wertigkeit verändert, wodurch die eigentliche Redox-Reaktion entsteht. Deshalb wird keine Ruthenium-Verbindung verbraucht oder gebildet, sondern nur die Oxidationsstufen verändert. Die Ruthenium-Verbindung bindet den molekularen Sauerstoff, wodurch dieser katalytisch reduziert werden kann. Deshalb ist das Vorhandensein von mehreren Wertigkeiten Voraussetzung für die katalytische Wirkung und die Redox-Reaktion. Es muss also keine Ruthenium-Verbindung gebildet werden. Schwer lösliche Silberverbindungen weisen katalytische Eigenschaften, eine elektrische Leitfähigkeit und eine hohe Stabilität in Wasser auf. Die Wirkstoffkomponente kann also beispielsweise zusätzlich zum metallischen Ruthenium und metallischen Silber auch ein halbleitendes, katalytisch aktives Rutheniumoxid bzw. Rutheniumsulfid (Halbelement I des galvanischen Elementes) und eine halbleitende, schwer lösliche Silberverbindung (Silberoxid, Silberhydroxid, Silbersulfid, Silber-Halogen-Verbindungen oder Kombinationen daraus; Halbelement II des galvanischen Elementes) umfassen.In a further advantageous embodiment of the invention, it is provided that the silver and/or the ruthenium is/are partially present in the form of a metal compound. The metal compound can include, for example, at least one metal oxide, metal oxyhydrate, metal hydroxide, metal oxyhydroxide, metal halide and/or at least one metal sulfide. The present invention thus advantageously also includes, for example, an active ingredient component which is a semiconducting, catalytically active ruthenium compound (half element I of a galvanic element) and a semiconducting, sparingly soluble silver compound (e.g. silver oxide, silver hydroxide, silver sulfide, silver halogen -Compounds or combinations thereof; half-element II of the galvanic element). Ruthenium is a noble metal that has several oxidation states and, due to its different valences, is able to form different ruthenium oxides, for example. Surface redox transitions such as Ru(VIII)/Ru(VI), Ru(VI)/Ru(IV), Ru(IV)/Ru(III) and possibly Ru(III)/Ru(II) are the cause of the high catalytic activity of the ruthenium mixed compounds and their good electrical conductivity. The unusually pronounced catalytic and electrocatalytic properties of the ruthenium compounds depend on the variation of the oxidation states. The antimicrobial effect is, for example, particularly high in the case of active substance components according to the invention which comprise ruthenium(VI) oxide in the first half element. The high catalytic activity of such half-elements for the reduction of oxygen can be attributed to the easy change in the oxidation state and the easy exchange of oxygen, which preferably take place at the active centers of the semiconductor surface. The ruthenium is only changed in terms of its value, which causes the actual redox reaction to occur. Therefore, no ruthenium compound is consumed or formed, only the oxidation states are changed. The ruthenium compound binds the molecular oxygen, allowing it to be catalytically reduced. Therefore, the presence of several valences is a prerequisite for the catalytic effect and the redox reaction. So it doesn't have to be a ruthenium compound are formed. Poorly soluble silver compounds have catalytic properties, electrical conductivity and high stability in water. The active ingredient component can, for example, in addition to metallic ruthenium and metallic silver, also contain a semiconducting, catalytically active ruthenium oxide or ruthenium sulfide (half element I of the galvanic element) and a semiconducting, poorly soluble silver compound (silver oxide, silver hydroxide, silver sulfide, silver-halogen compounds or combinations from it; half-element II of the galvanic element).
Das erfindungsgemäße Fasermaterial kann beispielsweise in Form von antimikrobiellen Fasern als Bestandteil von Faserverbunden, Garnen und/oder textilen Flächengebilden verwendet werden (Hygienefaserverbunde, Hygienegarne bzw. textile Hygieneflächengebilde), so dass diese über ihren gesamten textilen Lebenszyklus anhaltende antimikrobielle, desodorierende und geruchsneutralisierende Eigenschaften aufweisen.The fiber material according to the invention can be used, for example, in the form of antimicrobial fibers as a component of fiber composites, yarns and/or textile fabrics (hygiene fiber composites, hygiene yarns or textile hygiene fabrics), so that they have antimicrobial, deodorizing and odor-neutralizing properties that last over their entire textile life cycle.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Herstellung eines Fasermaterials mit antimikrobieller Wirkung, insbesondere des oben beschriebenen Fasermaterials, gelöst, welches die folgenden Schritte umfasst:
- a) Bereitstellen von Zellstoff, der Cellulose und/oder Cellulose-Derivate umfasst,
- b) Optional Herstellen eines Lösungsmittelsystems, das mindestens ein Lösungsmittel und Wasser umfasst,
- c) Mischen des Zellstoffs mit mindestens einem Lösungsmittel und Wasser, oder optional mit dem Lösungsmittelsystem gemäß b), zur Herstellung einer Pulpe,
- d) Lösen der Cellulose und/oder Cellulose-Derivate in der Pulpe zur Herstellung einer Spinnlösung;
- e) Pressen der Spinnlösung durch Spinndüsen und
- f) Regenerieren der Cellulose und/oder Cellulose-Derivate zur Erzeugung modifizierter Cellulose - und/oder Cellulose-Derivat - Fasern,
- a) providing pulp comprising cellulose and/or cellulose derivatives,
- b) optionally preparing a solvent system comprising at least one solvent and water,
- c) mixing the pulp with at least one solvent and water, or optionally with the solvent system according to b), to produce a pulp,
- d) dissolving the cellulose and/or cellulose derivatives in the pulp to produce a spinning solution;
- e) pressing the spinning solution through spinnerets and
- f) regenerating the cellulose and/or cellulose derivatives to produce modified cellulose and/or cellulose derivative fibers,
Erfindungsgemäß wird die antimikrobielle Wirkstoffkomponente also während der Faserherstellung, z.B. im Lyocell-, Viskose- oder Carbamat-Prozess, zugegeben. Das bewirkt, dass die Wirkstoffkomponente bzw. Silber und Ruthenium vollständig in die Fasern eingebettet werden können und/oder zumindest teilweise von diesen umgeben bzw. umschlungen wird. Dabei wurde selbst für den Fachmann in unerwarteter Weise festgestellt, dass die Zugabe der Silber-Ruthenium-Wirkstoffkomponente keine Absenkung der on-set-Temperatur oder andere nachteiliger Beeinträchtigungen des Herstellprozesses zur Folge hatte. So konnte die Faserherstellung auch bei Hinzugabe dieser Wirkstoffkomponente ohne Qualitätsverlust auf den Standardanlagen und mit den Standardprozessen durchgeführt werden. Für den Fachmann ebenfalls überraschend ist, dass die antimikrobielle, desodorierende und/oder geruchsneutralisierende Wirkung des erfindungsgemäß hergestellten Fasermaterials, das beispielsweise nach dem Trocken-Nass-Spinnverfahren gefertigt und bereits im Formgebungsprozess mit partikulären, flüssigen oder schmelz- bzw. verdampfbaren Wirkstoffkomponenten versehen wird, nicht auf der Abgabe von Schwermetall-Ionen oder organischen Biozid-Wirkstoffen basiert und dennoch eine antimikrobielle Wirksamkeit zeigt, welche die in den einschlägigen Normen geforderten Werte deutlich übertrifft. Des Weiteren ist für den Fachmann die Beständigkeit der Wirksamkeit des erfindungsgemäß hergestellten Fasermaterials überraschend. Sowohl nach 50 Waschungen wie auch nach 100 Waschungen ist keine nennenswerte Verschlechterung der Wirksamkeit zu beobachten. So zeigen beispielsweise erfindungsgemäße Fasermaterialien auch nach 100 Waschzyklen in Anlehnung an die Prüfnorm DIN EN ISO 6330 "Textilien - Nichtgewerbliche Wasch- und Trocknungsverfahren zur Prüfung von Textilien" noch immer eine starke Wirksamkeit bei der antibakteriellen Prüfung in Anlehnung an DIN EN ISO 20743:2013 (Absorptionsverfahren) sowohl gegenüber dem grampositiven Testkeim Staphylococcus aureus als auch gegenüber dem gramnegativen Testkeim Klebsiella pneunomiae und bei der antiviralen Prüfung in Anlehnung an ISO 18184 (Testvirus: phi 6 DSM 21518, Wirtsbakterium: Pseudomonas sp. DSM 21482) noch immer eine vollständige antivirale Wirksamkeit innerhalb von 2 Stunden.According to the invention, the antimicrobial active ingredient component is therefore added during fiber production, for example in the lyocell, viscose or carbamate process. The effect of this is that the active substance component or silver and ruthenium can be completely embedded in the fibers and/or is at least partially surrounded or entwined by them. Unexpectedly, even for a person skilled in the art, it was found that the addition of the silver-ruthenium active substance component did not result in a reduction in the on-set temperature or any other disadvantageous impairment of the production process. In this way, the fiber production could be carried out on the standard systems and with the standard processes without any loss of quality, even with the addition of this active ingredient component. It is also surprising for the person skilled in the art that the antimicrobial, deodorizing and/or odor-neutralizing effect of the fiber material produced according to the invention, which is produced, for example, using the dry-wet spinning process and is already provided with particulate, liquid or meltable or vaporizable active ingredient components during the shaping process, not based on the release of heavy metal ions or organic biocide active substances and nevertheless shows an antimicrobial effectiveness that clearly exceeds the values required in the relevant standards. Furthermore, the persistence of the effectiveness of the fiber material produced according to the invention is surprising for the person skilled in the art. No appreciable deterioration in effectiveness can be observed either after 50 washes or after 100 washes. For example, fiber materials according to the invention still show a high level of effectiveness in the antibacterial test based on DIN EN ISO 20743:2013 ( absorption method) both against the gram-positive test germ Staphylococcus aureus and against the gram-negative test germ Klebsiella pneunomiae and in the antiviral test based on ISO 18184 (test virus: phi 6
Überraschend für den Fachmann ist auch, dass keine oberflächliche Beschichtung der Cellulose - und/oder Cellulose-Derivat - Fasern erforderlich ist, um die antimikrobielle, desodorierende und/oder geruchsneutralisierende Wirksamkeit des erfindungsgemäßen Fasermaterials zu erzeugen. Vielmehr ist die in den Faserquerschnitt der Fasern eingebrachte Wirkstoffkomponente im Gegensatz zum Stand der Technik auch bei einem vollständigen, homogenen und auswaschresistenten Einschluss in die Fasermatrix uneingeschränkt, auch an der Faseroberfläche, wirksam. Ein besonderer Vorteil des gemäß dem erfindungsgemäßen Verfahren hergestellten Fasermaterials liegt ferner darin, dass es Eigenschaften besitzt, die mit denen unbehandelter Fasermaterialien, z.B. in Bezug auf mechanische Stabilität, Lebensdauer, Färbbarkeit, Wasseraufnahme-/Saugfähigkeit und Verarbeitbarkeit, vergleichbar sind.It is also surprising for the person skilled in the art that no superficial coating of the cellulose - and/or cellulose derivative - fibers is required in order to produce the antimicrobial, deodorizing and/or odor-neutralizing effectiveness of the fiber material according to the invention. In contrast to the prior art, the active ingredient component introduced into the fiber cross-section of the fibers is fully effective, even on the fiber surface, even if it is completely, homogeneously and wash-out-resistantly included in the fiber matrix. A particular advantage of the fiber material produced according to the method according to the invention is that it has properties that are comparable to those of untreated fiber materials, e.g. in terms of mechanical stability, durability, dyeability, water absorption/absorbency and processability.
In vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die antimikrobielle Wirkstoffkomponente in fester Form, insbesondere als Pulver, zugegeben und in der Pulpe und/oder der Spinnlösung und/oder optional dem Lösungsmittelsystem dispergiert wird.In an advantageous embodiment of the method according to the invention, it is provided that the antimicrobial active component is added in solid form, in particular as a powder, and dispersed in the pulp and/or the spinning solution and/or optionally the solvent system.
In vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist ferner vorgesehen, dass die antimikrobielle Wirkstoffkomponente in fester Form, insbesondere als Pulver, zunächst in dem Lösungsmittelsystem dispergiert wird und die dadurch hergestellte Dispersion anschließend der Pulpe zugegeben wird.In an advantageous embodiment of the method according to the invention, it is further provided that the antimicrobial active ingredient component in solid form, in particular as a powder, is first dispersed in the solvent system and the dispersion produced in this way is then added to the pulp.
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Pulpe nach Zugabe der antimikrobiellen Wirkstoffkomponente homogenisiert wird.In a further advantageous embodiment of the method according to the invention, it is provided that the pulp is homogenized after the addition of the antimicrobial active ingredient component.
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass Silber und Ruthenium zumindest teilweise in Form von Silbermetallpartikeln, die teilweise mit metallischem Ruthenium beschichtet sind, zugegeben werden.In a further advantageous embodiment of the method according to the invention, it is provided that silver and ruthenium are added at least partially in the form of silver metal particles which are partially coated with metallic ruthenium.
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass Silber und Ruthenium zumindest teilweise in Form von Partikeln zugegeben werden, die ein Trägermaterial umfassen, auf dem metallisches Silber und metallisches Ruthenium aufgebracht sind. Dabei ist das Trägermaterial vorzugsweise derart ausgewählt, dass es sich unter den in Schritt d) zum Lösen der Cellulose und/oder Cellulose-Derivate erforderlichen Bedingungen ebenfalls löst oder zumindest vom Silber und Ruthenium trennt. Insbesondere kann das Trägermaterial Cellulose und/oder mindestens ein Cellulose-Derivat umfassen. Beispielsweise kann in vorteilhafter Weise mit einer solchen Cellulose-Silber-Ruthenium-Partikel-Variante der Wirkstoffkomponente mit Hilfe der Lyocell-Technologie ein antimikrobielles Fasermaterial mittels des erfindungsgemäßen Verfahrens hergestellt werden, da die Cellulose-Silber-Ruthenium-Partikel trotz ihrer katalytischen Aktivität keinen negativen Einfluss auf die Zersetzungstemperatur (on-set-Temperatur) des im Lyocell-Prozess verwendeten Lösungsmittels N-Methylmorpholin-N-oxid (NMMO) haben und somit in dem Lyocell-Prozess verarbeitet werden können. Im Lyocell-Prozess löst sich das Trägermaterial Cellulose im NMMO auf und setzt die auf dem Trägermaterial abgeschiedenen Silber-Ruthenium-Partikel in dem Cellulose-haltigen Lösungsmittel gleichmäßig verteilt frei, so dass daraus antimikrobielle Lyocell-Regeneratfasern für die Textilindustrie, aber auch für Vliesstoffe (Non-wovens) und weitere technische Anwendungen wie Folien, z. B. für Verpackungen, hergestellt werden können.In a further advantageous embodiment of the method according to the invention, it is provided that silver and ruthenium are at least partially in the form of particles are added, which comprise a support material on which metallic silver and metallic ruthenium are applied. The carrier material is preferably selected in such a way that it also dissolves or at least separates from the silver and ruthenium under the conditions required in step d) for dissolving the cellulose and/or cellulose derivatives. In particular, the carrier material can comprise cellulose and/or at least one cellulose derivative. For example, an antimicrobial fiber material can advantageously be produced using the method according to the invention with such a cellulose-silver-ruthenium particle variant of the active component using lyocell technology, since the cellulose-silver-ruthenium particles, despite their catalytic activity, have no negative have an influence on the decomposition temperature (on-set temperature) of the solvent N-methylmorpholine-N-oxide (NMMO) used in the lyocell process and can therefore be processed in the lyocell process. In the Lyocell process, the carrier material cellulose dissolves in the NMMO and releases the silver-ruthenium particles deposited on the carrier material evenly distributed in the cellulose-containing solvent, so that antimicrobial regenerated Lyocell fibers for the textile industry, but also for nonwovens ( Non-wovens) and other technical applications such as foils, e.g. B. for packaging can be produced.
Bei diesen Partikeln handelt es sich nicht um Nanopartikel, sondern vielmehr um Partikel, die eine Länge, einen Durchmesser und/oder einen Umfang größer als 100 Nanometer (nm) aufweisen.These particles are not nanoparticles but rather particles that have a length, diameter and/or circumference greater than 100 nanometers (nm).
Das Trägermaterial kann beispielsweise mindestens ein Material umfassen, das aus der Gruppe bestehend aus Cellulose, Glas, Zeolith, Silikat, Metall oder einer Metalllegierung, Metalloxid (z.B. TiO2), Keramik, Graphit und einem Polymer ausgewählt ist. Die Wirkstoffkomponente kann somit durch die Wahl des Trägermaterials hinsichtlich der Integrationsanforderungen in die Cellulose - und/oder Cellulose-Derivat - Fasern der spezifischen Gebrauchsanwendungen gezielt eingestellt werden. Beispielsweise in Bezug auf Wasseraufnahme-/Saugfähigkeit (z. B. Cellulose als Trägermaterial), für Produktions-Anwendungen in Apparaturen, aus denen die Partikelentfernung nur von außerhalb mit einem Magneten möglich ist (magnetische Partikel wie z.B. Eisenpartikel als Trägermaterial), Cellulose-Integration bei der Herstellung von Regeneratfasern, bei dem die mit der erfindungsgemäßen Wirkstoffkomponente dotierte Cellulose sich in der organischen Cellulose-Lösung auflöst und die Wirkstoffkomponente fein in der Pulpe verteilt, aus dem dann Cellulose-Fäden gesponnen werden können, oder die Farbgestaltung (z. B. weiße Farbe: Cellulose als Trägermaterial).The carrier material can, for example, comprise at least one material selected from the group consisting of cellulose, glass, zeolite, silicate, metal or a metal alloy, metal oxide (eg TiO2), ceramic, graphite and a polymer. The active ingredient component can thus be adjusted in a targeted manner by the choice of the carrier material with regard to the integration requirements in the cellulose and/or cellulose derivative fibers of the specific application. For example, in relation to water absorption/absorbency (e.g. cellulose as a carrier material), for production applications in equipment from which particles can only be removed from the outside with a Magnets is possible (magnetic particles such as iron particles as carrier material), cellulose integration in the production of regenerated fibers, in which the cellulose doped with the active ingredient component according to the invention dissolves in the organic cellulose solution and the active ingredient component is finely distributed in the pulp, from which then cellulose threads can be spun, or the color design (e.g. white color: cellulose as the carrier material).
Überraschenderweise hat sich also bezüglich des erfindungsmäßigen Verfahrens durch die Auswahl von Cellulose als Trägermaterial für Silber und Ruthenium eine neue Herstellungsmöglichkeit von antimikrobiellen Regeneratfasern ergeben. Beispielsweise kann als Trägermaterial Cellulose (C)- oder deren Derivate als mikrokristallines (MCC) oder nanokristallines Cellulose-Pulver (NCC) verwendet werden, die eine Reihe inhärenter Eigenschaften mitbringen, welche die antimikrobielle, desodorierende und/oder geruchsneutralisierende Wirkung des erfindungsgemäßen Fasermaterials unterstützen, wie z. B. ihre Hydrophilie und eine hohe Wasserbindungskapazität, die im trockenen Zustand noch etwa 5-8 % beträgt. Die erfindungsgemäß hergestellten Regeneratfasern können nicht nur in der Faserlänge, sondern auch im Faserquerschnitt variiert werden, wodurch die Faseroberfläche erheblich vergrößert werden kann. So stehen neben der im Querschnitt wolkenförmigen "Standardcellulose" auch Fasern mit stern- (Trilobal)- oder Buchstaben-ähnlichen (Umberto)- Querschnitten zur Verfügung. Die Cellulose-Trägeroberfläche kann auch durch sogenannte Bakterielle Cellulose (BC) aufgrund ihrer gewebeähnlichen, feinen Netzwerkstruktur deutlich vergrößert werden. BC besitzt darüber hinaus eine erhöhte Wasseraufnahmekapazität und wird deshalb gern in medizinischen Anwendungen eingesetzt.Surprisingly, with regard to the process according to the invention, a new possibility of producing antimicrobial regenerated fibers has resulted from the selection of cellulose as the carrier material for silver and ruthenium. For example, cellulose (C) or its derivatives can be used as a carrier material as microcrystalline (MCC) or nanocrystalline cellulose powder (NCC), which have a number of inherent properties that support the antimicrobial, deodorizing and/or odor-neutralizing effect of the fiber material according to the invention. such as B. their hydrophilicity and a high water-binding capacity, which is still about 5-8% in the dry state. The regenerated fibers produced according to the invention can be varied not only in fiber length but also in fiber cross-section, as a result of which the fiber surface can be increased considerably. In addition to the "standard cellulose" with a cloud-shaped cross section, fibers with star (Trilobal) or letter-like (Umberto) cross sections are also available. The cellulose carrier surface can also be significantly enlarged by so-called bacterial cellulose (BC) due to its tissue-like, fine network structure. BC also has an increased water absorption capacity and is therefore often used in medical applications.
Die Wirkstoffkomponente kann im Sinne der Erfindung zusätzlich zu metallischem Silber und metallischem Ruthenium auch noch weitere Substanzen umfassen, die oberflächenaktive Wirkungen (beispielsweise Tenside), lipophile Eigenschaften (beispielsweise Öle oder Fette) und/oder hydrophile Eigenschaften (beispielsweise Silikat-Partikel) besitzen.In addition to metallic silver and metallic ruthenium, the active ingredient component can also include other substances that have surface-active effects (e.g. surfactants), lipophilic properties (e.g. oils or fats) and/or hydrophilic properties (e.g. silicate particles).
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass das Lösungsmittel N-Methylmorpholin-N-oxid (NMMO) ist, das häufig bei der Herstellung von Regeneratfasern Anwendung findet. Alternativ können aber auch andere geeignete Lösungsmittel bzw. Lösungsmittelsysteme, wie beispielsweise N,N-Dimethylbenzylamin-N-oxid oder Natronlauge/ Schwefelkohlenstoff (NaOH/CS2), als Lösungsmittel für die Cellulose bzw. Cellolose-Derivate im Herstellungsprozess verwendet werden.In a further advantageous embodiment of the method according to the invention, it is provided that the solvent is N-methylmorpholine-N-oxide (NMMO), which often used in the production of regenerated fibers. Alternatively, however, other suitable solvents or solvent systems, such as N,N-dimethylbenzylamine-N-oxide or sodium hydroxide/carbon disulfide (NaOH/CS2), can also be used as solvents for the cellulose or cellolose derivatives in the manufacturing process.
Die Aufgabe wird erfindungsgemäß ferner durch ein Fasermaterial gelöst, das mittels des oben beschriebenen Verfahrens hergestellt wurde. Dieses erfindungsgemäße Fasermaterial zeichnet sich durch eine über seine gesamte Lebensdauer anhaltende antimikrobielle, desodorierende und/oder geruchsneutralisierende Wirkung aus und hat sonstige Eigenschaften, die mit denen unbehandelter Fasermaterialien, z.B. in Bezug auf mechanische Stabilität, Lebensdauer, Färbbarkeit, Wasseraufnahme-/Saugfähigkeit und Verarbeitbarkeit, vergleichbar sind.The object is also achieved according to the invention by a fiber material that was produced by means of the method described above. This fiber material according to the invention is characterized by an antimicrobial, deodorizing and/or odor-neutralizing effect that lasts over its entire service life and has other properties that are comparable to those of untreated fiber materials, e.g. in terms of mechanical stability, service life, dyeability, water absorption/absorbency and processability. are comparable.
Die Aufgabe wird erfindungsgemäß darüber hinaus auch durch die Verwendung einer antimikrobiellen Wirkstoffkomponente, die metallisches Silber (Ag) und metallisches Ruthenium (Ru) umfasst, als Mittel zur Reduzierung oder Vermeidung von Gerüchen in textilen Fasermaterialien gelöst. Mit dieser antimikrobiellen Wirkstoffkomponente dotierte Fasern sowie daraus gefertigte Faserverbunde, Garne und textile Flächengebilde weisen nicht nur eine über den gesamten Lebenszyklus der textilen Strukturen anhaltende antimikrobielle Wirkung auf, sondern wirken in überraschender und vorteilhafter Weise auch desodorierend und/oder geruchsneutralisierend. Dabei hat sich herausgestellt, dass diese zusätzliche Wirkung nicht allein auf die Hemmung oder Abtötung von Mikroorganismen zurückzuführen ist, sondern insbesondere auch auf einer Neutralisierung (z.B. durch Abbau oder Umwandlung) organischer Substanzen basiert. In olfaktometrischen Untersuchungen zum Abklingverhalten von Geruchskontaminationen (Set-up: Test zu Long-Iasting-Effekten von Gerüchen und Düften) konnte nachgewiesen werden, dass typische, schlechte bzw. üble Gerüche verursachende, organische Verbindungen wie beispielsweise iso-Valeriansäure (3-Methylbutansäure) oder 3-Hydroxy-3-Methlylhexansäure an Fasermaterialien, die mit der erfindungsgemäßen antimikrobiellen Wirkstoffkomponente dotiert waren, nach einer einheitlichen Beladungszeit von 180 Minuten bereits nach 60 Minuten nicht mehr wahrgenommen werden konnten. Weitere organische Stoffe, die für schlechte Gerüche von textilen Fasermaterialien verantwortlich sein können, sind beispielsweise 3-Methyl-2-Hexensäure, Thioalkohol, Androstenon, Buttersäure, n-Valeriansäure, n-Hexansäure und n-Octansäure. Auch diese und viele weitere Geruchsstoffe können durch die erfindungsgemäße Verwendung der antimikrobiellen Ag/Ru-Wirkstoffkomponente effektiv und über den gesamten textilen Lebenszyklus anhaltend neutralisiert werden.The object is also achieved according to the invention through the use of an antimicrobial active ingredient component which comprises metallic silver (Ag) and metallic ruthenium (Ru) as an agent for reducing or preventing odors in textile fiber materials. Fibers doped with this antimicrobial active ingredient component and fiber composites, yarns and textile fabrics made from them not only have an antimicrobial effect that lasts over the entire life cycle of the textile structures, but also surprisingly and advantageously have a deodorizing and/or odor-neutralizing effect. It turned out that this additional effect is not solely due to the inhibition or killing of microorganisms, but is also based in particular on a neutralization (eg through degradation or conversion) of organic substances. In olfactometric studies on the decay behavior of odor contamination (set-up: test on the long-lasting effects of odors and scents), it was demonstrated that typical organic compounds that cause bad or foul odors, such as iso-valeric acid (3-methylbutanoic acid) or 3-hydroxy-3-methylhexanoic acid on fiber materials which were doped with the antimicrobial active component according to the invention after a uniform loading time of 180 minutes after just 60 minutes could no longer be perceived. Other organic substances that can be responsible for bad smells from textile fiber materials are, for example, 3-methyl-2-hexenoic acid, thioalcohol, androstenone, butyric acid, n- valeric acid, n -hexanoic acid and n -octanoic acid. These and many other odorous substances can also be neutralized effectively and over the entire textile life cycle by using the antimicrobial Ag/Ru active ingredient component according to the invention.
Aus dem erfindungsgemäßen Fasermaterial hergestellte Garne, Gewirke, Gestricke oder Gewebe eignen sich aufgrund der genannten Eigenschaften hervorragend als Sport-, Freizeit- oder Outdoor-Textilien, als Heimtextilien sowie als Medizintextilien für die Wundversorgung oder -heilung. Aus dem erfindungsgemäßen Fasermaterial gefertigte Gewebe oder Vliesstoffe können beispielhaft auch als dauerhaft antimikrobielle Reinigungstücher (u.a. in der Küche), kunststoffumhüllte Vliesstücke in Geschirrspülern oder zur Unterstützung der Waschwirkung in der Waschmaschine eingesetzt werden. Gegenstand der Erfindung sind auch daraus gefertigte Hygienefaserverbunde, Hygienegarne und textile Hygieneflächengebilde sowie daraus konfektionierte Textilien.Because of the properties mentioned, yarns, knitted fabrics or woven fabrics made from the fiber material according to the invention are outstandingly suitable as sports, leisure or outdoor textiles, as home textiles and as medical textiles for wound care or healing. Woven or nonwoven fabrics made from the fiber material according to the invention can also be used, for example, as permanently antimicrobial cleaning cloths (e.g. in the kitchen), plastic-coated nonwoven pieces in dishwashers or to support the washing effect in the washing machine. The invention also relates to hygiene fiber composites made from them, hygiene yarns and textile hygiene fabrics and textiles made up from them.
Hygienegarne lassen sich im Rahmen des Sekundärspinnprozesses in Mischung von 1 bis 99 % des erfindungsgemäßen Fasermaterials mit vielen textil verwendeten Mischfasern (Natur- und Chemiefasern wie beispielsweise Baumwolle, Leinen, Hanf, Wolle, Viskose, Modal, Lyocell, Polyester, Polyacrylnitril, Polyamid, Polypropylen) bilden. Hygienefasern und/oder daraus gefertigte Hygienegarne lassen sich zudem mit den textilüblichen Flächenbildungsprozessen (incl. Vliesstofffertigung) zu Flächengebilden mit 0,05 bis 90 % Wirkstoffgehalt verarbeiten. In einer besonderen Ausführungsform können Garne, Flächengebilde oder Textilien in einem der genannten Verarbeitungsprozesse oder speziellen Veredelungsschritten zusätzlich auch nachträglich mit der antimikrobiellen Wirkstoffkomponente beschichtet werden. Neben einer einfachen Beschichtung mittels Wirkstoffdispersionen und nachfolgender Wirkstofffixierung durch beispielsweise Trocknung ist auch eine Beschichtung unter Zuhilfenahme spezieller Techniken wie beispielsweise Ultraschallimprägnierung o.ä. möglich.Hygienic yarns can be mixed as part of the secondary spinning process from 1 to 99% of the fiber material according to the invention with many mixed fibers used in textiles (natural and chemical fibers such as cotton, linen, hemp, wool, viscose, modal, lyocell, polyester, polyacrylonitrile, polyamide, polypropylene ) form. Hygiene fibers and/or hygiene yarns made from them can also be processed into fabrics with an active ingredient content of 0.05 to 90% using the usual textile fabric formation processes (including nonwoven fabric manufacture). In a particular embodiment, yarns, fabrics or textiles can also be subsequently coated with the antimicrobial active component in one of the processing processes mentioned or special finishing steps. In addition to a simple coating using active ingredient dispersions and subsequent fixing of the active ingredient by drying, for example, coating using special techniques such as ultrasonic impregnation or the like is also possible.
"Regeneratfasern" im Sinne der Erfindung bezeichnet Chemiefasern aus regenerierter Cellulose und/oder Cellulosederivaten, die mittels eines chemischen Verfahrens aus Zellstoff (Zellstoff ist eine beim chemischen Aufschluss von Pflanzenfasern entstehende faserige Masse, die vorwiegend aus Cellulose bzw. Cellulosederivaten (Holz) besteht) hergestellt werden. Regeneratfasern sind beispielsweise Viskose, Modal, Lyocell und Cupro."Regenerate fibers" within the meaning of the invention refers to man-made fibers made from regenerated cellulose and/or cellulose derivatives, which are produced from cellulose (pulp is a fibrous mass produced during the chemical digestion of plant fibers, which consists mainly of cellulose or cellulose derivatives (wood)) by means of a chemical process become. Examples of regenerated fibers are viscose, modal, lyocell and cupro.
"Antimikrobielle Wirkung" im Sinne der Erfindung bezeichnet die Eigenschaft eines Stoffs, einer Stoffkombination, eines Materials, Materialverbunds und/oder einer Oberfläche derselben Mikroorganismen abzutöten, deren Wachstum zu hemmen und/oder eine mikrobielle Besiedelung bzw. Anheftung zu verhindern oder zu erschweren.“Antimicrobial effect” within the meaning of the invention refers to the property of a substance, a substance combination, a material, material composite and/or a surface of the same to kill microorganisms, to inhibit their growth and/or to prevent or impede microbial colonization or attachment.
"Mikroorganismen" im Sinne der Erfindung bezeichnet dabei ein- oder wenigzellige, mikroskopisch kleine Organismen oder Partikel, die ausgewählt sind aus der Gruppe bestehend aus Bakterien, Pilzen, Algen, Protozoen und Viren."Microorganisms" within the meaning of the invention refers to unicellular or few-celled, microscopically small organisms or particles that are selected from the group consisting of bacteria, fungi, algae, protozoa and viruses.
"Pulpe" im Sinne der Erfindung bezeichnet eine bis zur Einzelfaser aufgelöste Zellstoffdispersion in wässriger Lösung."Pulp" in the sense of the invention refers to a cellulose dispersion dissolved down to the individual fibers in an aqueous solution.
"Partikel", "partikelförmig" oder "partikulär" im Sinne der Erfindung bezeichnet einzelne teilchenförmige Körper, die als Ganzes gegenüber anderen Partikeln und ihrer Umgebung abgegrenzt sind. Dabei sind im Rahmen der Erfindung alle möglichen Partikelformen und -größen, unabhängig von Geometrie und Masse, eingeschlossen."Particles", "particulate" or "particulate" within the meaning of the invention designates individual particulate bodies which as a whole are delimited from other particles and their surroundings. All possible particle shapes and sizes, regardless of geometry and mass, are included within the scope of the invention.
"Halbelement" im Sinne der Erfindung bezeichnet einen Teil eines galvanischen Elements, der dieses in Verbindung mit mindestens einem weiteren Halbelement bildet. Ein Halbelement umfasst dabei eine Metallelektrode, die sich zumindest teilweise in einem Elektrolyten befindet."Half-element" in the sense of the invention refers to a part of a galvanic element that forms this in conjunction with at least one other half-element. A half-element comprises a metal electrode, which is at least partially in an electrolyte.
"Galvanische Zelle", "galvanisches Element" oder "mikrogalvanisches Element" im Sinne der Erfindung bezeichnet die Kombination von zwei unterschiedlichen Metallen, die in einem gemeinsamen Elektrolyten jeweils eine Elektrode (Anode bzw. Kathode) bilden. Stehen die beiden Metallelektroden miteinander in direktem Kontakt oder sind sie über einen Elektronenleiter elektrisch leitend miteinander verbunden, gibt das unedlere Metall mit dem niedrigeren Redoxpotential (Elektronendonator, Anode) Elektronen an das edlere Metall mit dem höheren Redoxpotential (Elektronenakzeptor, Kathode) ab und setzt in Folge die Redoxprozesse an den Elektroden in Gang."Galvanic cell", "galvanic element" or "microgalvanic element" in the context of the invention refers to the combination of two different metals, each of which has an electrode (anode or cathode). If the two metal electrodes are in direct contact with each other or if they are electrically conductively connected to one another via an electron conductor, the less noble metal with the lower redox potential (electron donor, anode) gives electrons to the more noble metal with the higher redox potential (electron acceptor, cathode) and sets in Follow the redox processes at the electrodes.
"Elektrolyt" im Sinne der Erfindung bezeichnet einen Stoff (z. B. Ionen in wässriger Lösung), der unter dem Einfluss eines elektrischen Feldes durch die gerichtete Bewegung von Ionen elektrischen Strom leitet."Electrolyte" within the meaning of the invention denotes a substance (e.g. ions in an aqueous solution) which, under the influence of an electric field, conducts electric current through the directed movement of ions.
"Metall" im Sinne der Erfindung bezeichnet Atome eines chemischen Elements des Periodensystems der Elemente (alle Elemente, die keine Nichtmetalle sind), die mittels metallischer Bindungen ein Metallgitter und dadurch ein makroskopisch homogenes Material bilden, das sich u.a. durch eine hohe elektrische Leitfähigkeit und eine hohe Wärmeleitfähigkeit auszeichnet. Der Begriff "Metall" umfasst auch Legierungen, die mindestens zwei unterschiedliche Metalle umfassen, Metallverbindungen wie z.B. Metalloxide, Metalloxyhydrate, Metallhydroxide, Metalloxyhydroxide, Metallhalogenide und Metallsulfide, sowie Kombinationen von Metallen und entsprechenden Metallverbindungen."Metal" within the meaning of the invention refers to atoms of a chemical element of the periodic table of elements (all elements that are not non-metals), which form a metal lattice by means of metallic bonds and thus a macroscopically homogeneous material, which is characterized, among other things, by high electrical conductivity and a high thermal conductivity. The term "metal" also includes alloys comprising at least two different metals, metal compounds such as metal oxides, metal oxyhydrates, metal hydroxides, metal oxyhydroxides, metal halides and metal sulfides, and combinations of metals and corresponding metal compounds.
Die Erfindung wird im Weiteren anhand der folgenden Abbildungen und Beispiele exemplarisch näher erläutert.The invention is explained in more detail below with reference to the following figures and examples.
-
Figur 1 zeigt eine fotografische Abbildung zur antimikrobiellen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Hemmhoftest zur Wirksamkeit des erfindungsgemäß hergestellten Fadenmaterials gegen E. coli (DSM 498).figure 1 shows a photograph of the antimicrobial effectiveness of a cellulose thread produced by means of a lyocell process: zone of inhibition test for the effectiveness of the thread material produced according to the invention against E. coli (DSM 498). -
Figur 2 zeigt ein Balkendiagramm zur antibakteriellen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Staphylococcus aureus (DSM 799).figure 2 shows a bar chart of the antibacterial effectiveness of a cellulose thread produced using a lyocell process: Effect of a particulate cellulose-based silver-ruthenium hybrid against Staphylococcus aureus (DSM 799). -
Figur 3 zeigt ein Balkendiagramm zur antibakteriellen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Klebsiella pneumoniae (DSM 789).figure 3 shows a bar chart of the antibacterial effectiveness of a cellulose thread produced by means of a lyocell process: effect of a particulate cellulose-based silver-ruthenium hybrid against Klebsiella pneumoniae (DSM 789). -
Figur 4 zeigt ein Balkendiagramm zur antiviralen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Bakteriophagen phi6 (DSM 21518).figure 4 shows a bar chart of the antiviral effectiveness of a cellulose thread produced by means of a lyocell process: effect of a particulate cellulose-based silver-ruthenium hybrid against bacteriophage phi6 (DSM 21518). -
Figur 5 zeigt ein Balkendiagramm zur antibakteriellen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Staphylococcus aureus (DSM 799).figure 5 shows a bar chart of the antibacterial effectiveness of a cellulose thread produced by means of a lyocell process: effect of a particulate cellulose-based silver-ruthenium hybrid against Staphylococcus aureus (DSM 799). -
Figur 6 zeigt ein Balkendiagramm zur antibakteriellen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Klebsiella pneumoniae (DSM 789).figure 6 shows a bar chart of the antibacterial effectiveness of a cellulose thread produced by means of a lyocell process: effect of a particulate cellulose-based silver-ruthenium hybrid against Klebsiella pneumoniae (DSM 789). -
Figur 7 zeigt ein Balkendiagramm zur antiviralen Wirksamkeit eines mittels eines Lyocell-Prozesses hergestellten Cellulose-Fadens: Wirkung eines partikulären Cellulose-basierten Silber-Ruthenium-Hybrids gegen Bakteriophagen phi6 (DSM 21518).figure 7 shows a bar chart of the antiviral effectiveness of a cellulose thread produced by means of a lyocell process: effect of a particulate cellulose-based silver-ruthenium hybrid against bacteriophage phi6 (DSM 21518). -
Figur 8 zeigt ein Balkendiagramm einer analytischen Geruchsuntersuchung zur Eignung von Textilien zur Reduktion von Schweißgeruch, die durch die Hohenstein Laboratories, Bönnigheim durchgeführt wurde:- Interne Kontrolle: Schweißgeruchsimulat ohne Textil
- Probe Nr. 18.8.4.0126-1: Silber und Ruthenium beschichtetes Polyesterfaservlies
- Probe Nr. 18.8.4.0126-2: Polyesterfaservlies (Referenz)
figure 8 shows a bar chart of an analytical odor test on the suitability of textiles for reducing sweat odor, which was carried out by Hohenstein Laboratories, Bönnigheim:- Internal control: sweat odor simulation without textile
- Sample No. 18.8.4.0126-1 : Silver and ruthenium coated polyester fiber fleece
- Sample No. 18.8.4.0126-2 : polyester fiber fleece (reference)
Sowohl nach 0, nach 50 als auch nach 100 Wäschen konnten die hergestellten Nassvliese mit einem Ag/Ru-Funktionsfaser-Anteil von 30 % bei den getesteten Prüfkeimen folgende Bewertung erhalten:
- Staphylococcus aureus - gram positiv; stark wirksam
- Klebsiella pneunomiae - gram negativ; stark wirksam
- Staphylococcus aureus - gram positive; strong effective
- Klebsiella pneunomiae - gram negative; strong effective
Bei der Prüfung in Anlehnung an ISO 18184 wurde eine vollständige antivirale Wirksamkeit nach 2 Stunden festgestellt.In the test based on
Weder parallel gewaschene, unmodifizierte Cellulosefasern, eine PET-Kontrolle noch eine ebenfalls parallel gewaschene Biobaumwolle zeigen eine antibakterielle oder eine antivirale Wirkung. Daraus ergibt sich, dass die festgestellte antimikrobielle Wirkung der getesteten Cellulose-Ag/Ru-Gewebe auf der Einbindung von metallischem Silber (Ag) und metallischem Ruthenium (Ru) in die modifizierten Fasern beruht. Die zahlenmäßigen Änderungen der absoluten Werte können dabei als innerhalb der Schwankungsbreite der angewandten Prüfmethode liegend betrachtet werden.Neither unmodified cellulose fibers washed in parallel, a PET control nor an organic cotton also washed in parallel show an antibacterial effect or an antiviral effect. This shows that the antimicrobial effect found in the tested cellulose Ag/Ru fabrics is based on the incorporation of metallic silver (Ag) and metallic ruthenium (Ru) in the modified fibers. The numerical changes in the absolute values can be regarded as being within the range of variation of the test method used.
In einem Rührbehälter aus Edelstahl werden 399 g Zellstoff (Typ MODO, DP: 590, Feststoffgehalt: 95,5%) mit 3.486 g 80 %-iger, wässriger NMMO-Lösung gemischt.399 g of cellulose (type MODO, DP: 590, solids content: 95.5%) are mixed with 3,486 g of 80% aqueous NMMO solution in a stirred tank made of stainless steel.
Dem Gemisch werden 2,4 g Gallussäurepropylester (0,63 % bezogen auf das Zellstofftrockengewicht) zugegeben und alles gemeinsam für 15 Minuten mit einem Ultra-Turrax bei 10.000 min-1 gut durchmischt. Anschließend wird das Gemisch in ein doppelwandiges Rührgefäß überführt und unter Rühren bei 95 °C und einem Vakuum von 20 mbar das überschüssige Wasser abdestilliert. Die entstandene Celluloselösung, deren onset-Temperatur (Temperatur des Zersetzungsbeginns des Lösungsmittels NMMO), die beispielsweise nach [Knorr 2006] mittels Miniautoklav als zeitabhängige Druckänderung (dp/dT)max zu 153 °C bestimmt wurde, wird manuell in ein Vorratsgefäß überführt und bei 80 °C entgast.2.4 g of propyl gallate (0.63% based on the dry weight of pulp) are added to the mixture, and everything is thoroughly mixed together for 15 minutes using an Ultra-Turrax at 10,000 rpm . The mixture is then transferred to a double-walled stirred vessel and the excess water is distilled off with stirring at 95° C. and a vacuum of 20 mbar. The resulting cellulose solution, whose onset temperature (temperature of the start of decomposition of the solvent NMMO), which was determined for example according to [Knorr 2006] using a mini-autoclave as a time-dependent pressure change (dp/dT) max. 153 °C, is manually transferred to a storage vessel and at 80 °C degassed.
Unter schwacher N2-Druckbeaufschlagung wird die so vorbereitete Spinnlösung mittels Zahnradspinnpumpe durch Düsenlöcher mit einem Durchmesser von 90 µm extrudiert und die entstandenen Spinnkapillaren im Luftspalt verzogen, beim Passieren der Spinnbadoberfläche regeneriert und erschöpfend mit dem im Gegenstrom geführten Spinnbad vom NMMO befreit.The spinning solution prepared in this way is extruded with a gear spinning pump through nozzle holes with a diameter of 90 µm under weak N 2 pressure and the resulting spinning capillaries are distorted in the air gap, regenerated when passing the spinning bath surface and exhaustively freed from NMMO with the spinning bath in countercurrent.
Die zu Stapelfasern mit einer Stapellänge von 38 mm geschnittenen Fasern besitzen nach der Trocknung bei 60 °C eine Endfeinheit (gemäß DIN EN ISO 1973 1995-12) von 1,62 dtex. Ihre feinheitsbezogene Festigkeit (gemäß DIN EN ISO 5079 1996-2) beträgt 43,60 cN/tex, ihre Dehnung (ebenfalls bestimmt nach DIN EN ISO 5079:1996-2) 12,8 % und die feinheitsbezogene Schlingenreißkraft (gemäß DIN 53843-2:1988-03) wurde zu 15,10 cN/tex bestimmt.After drying at 60° C., the fibers cut into staple fibers with a staple length of 38 mm have a final fineness (according to DIN EN ISO 1973 1995-12) of 1.62 dtex. Its tenacity (according to DIN EN ISO 5079 1996-2) is 43.60 cN/tex, its elongation (also determined according to DIN EN ISO 5079:1996-2) is 12.8% and its loop tearing strength (according to DIN 53843-2). :1988-03) was determined to be 15.10 cN/tex.
Die antibakterielle Wirkung (in Anlehnung an DIN EN ISO 20743:2013-Absorptionsverfahren, vgl. Beispiele 4-6) sowohl gegenüber gram-positiven (Staphylococcus aureus) als auch gegenüber gram-negativen (Klebsiella pneumoniae) Teststämmen wurde jeweils als nicht wirksam bestimmt. Auch die Bestimmung der antiviralen Wirksamkeit (in Anlehnung an ISO 18184, Testvirus: phi6) ergab keine Reduktion der Virenlast über 2 Stunden Bestimmungszeit. (A. Knorr: "Anwendung der TRAS 410 auf die sicherheitstechnische Beurteilung einer Perestersynthese", Dissertation TU Berlin, 2006, S. 34 ff)The antibacterial effect (based on DIN EN ISO 20743:2013 absorption method, cf. Examples 4-6) both against gram-positive ( Staphylococcus aureus ) and against gram-negative ( Klebsiella pneumoniae ) test strains was determined to be ineffective in each case. The determination of the antiviral effectiveness (based on
In einem Edelstahlbehälter werden 36 g eines fein gemahlenen Ionenaustauscherharzes (schwach vernetzter Kationenaustauscher auf Basis eines vernetzten Copolymerisates aus Acrylsäure und Natriumacrylat mit einer Korngröße D90 ≤ 8 µm) wird mittels eines Ultra-Turrax Hochleistungsdispergierers in 1 l wässrigem NMMO (60 %, w/w) homogen verteilt und nach einer Standzeit von 30 Minuten einer Pulpe aus 377 g Zellstoff (MoDo, DP: 590, Feststoffgehalt: 95,5%) und 3.372 g NMMO zugegeben. Die modifizierte Pulpe wird nochmals für 15 Minuten bei 10.000 min-1 homogenisiert. Der Pulpe werden zudem 2,4 g Gallulssäure als Stabilisator hinzugefügt, das Gemisch in einen doppelwandigen Rührbehälter überführt. Ihre onset-Temperatur betrug 145 °C. Das überschüssige Wasser wird unter Rühren bei 100 °C und einem Vakuum von 25 mbar bis zur homogenen Auflösung der Cellulose entfernt. Nach Überführung der so zubereiteten Spinnlösung werden bei 90 °C Spinntemperatur und 30 m/min Spinngeschwindigkeit Stapelfasern mit einer Länge von 60 mm, einem Titer von 6,7 dtex, einer feinheitsbezogenen Reißkraft von 25,7 cN/tex, einer Maximaldehnung von 14,8 % und einer feinheitsbezogenen Schlingenreißfestigkeit von 8,2 cN/tex gebildet. Die vollständig vom Lösungsmittel befreiten, aber noch initialfeuchten Stapelfasern werden mit einer 0,1 molaren Silbernitratlösung pro Kilogramm Stapelfasermaterial beladen, abgepresst und danach einmal mit Natriumchloridlösung gewaschen.In a stainless steel container, 36 g of a finely ground ion exchange resin (weakly crosslinked cation exchanger based on a crosslinked copolymer of acrylic acid and sodium acrylate with a particle size D 90 ≤ 8 μm) is dissolved in 1 l using an Ultra-Turrax high-performance disperser aqueous NMMO (60%, w/w) and, after a standing time of 30 minutes, added to a pulp made from 377 g of cellulose (MoDo, DP: 590, solids content: 95.5%) and 3,372 g of NMMO. The modified pulp is again homogenized for 15 minutes at 10,000 rpm . In addition, 2.4 g of gallic acid are added to the pulp as a stabilizer, and the mixture is transferred to a double-walled stirred tank. Its onset temperature was 145 °C. The excess water is removed with stirring at 100° C. and a vacuum of 25 mbar until the cellulose is homogeneously dissolved. After transfer of the spinning solution prepared in this way, staple fibers with a length of 60 mm, a linear density of 6.7 dtex, a tensile strength of 25.7 cN/tex, a maximum elongation of 14 8% and a loop tensile strength related to the fineness of 8.2 cN/tex. The staple fibers, which have been completely freed from solvent but are still initially moist, are loaded with a 0.1 molar silver nitrate solution per kilogram of staple fiber material, pressed and then washed once with sodium chloride solution.
Die beladenen Stapelfasern werden abschließend bei 80 °C bis zur Gleichgewichtsfeuchte getrocknet. Der Silbergehalt der auf diese Art gefertigten Fasern beträgt ca. 6 Prozent.Finally, the loaded staple fibers are dried at 80 °C until they reach equilibrium moisture content. The silver content of the fibers manufactured in this way is around 6 percent.
Einer analog nach Beispiel 1 hergestellten Zellstoffpulpe wird ein homogenes Gemisch aus 36 g einer ZnO/ZnS-Mischung (1:2, w/w, jeweils D99 ≤ 2 µm) und 0,5 l 60 %-igem NMMO (w/w) und 0,63 % (bezogen auf die eingesetzte Cellulosemenge) Gallussäurepropylester zugefügt. Die Mischung wird bei 10.000 min.-1 über 15 Minuten homogenisiert und danach analog vorangegangener Beispiele 1 oder 2 zu Stapelfasern mit einer Länge von 40 mm, einer Feinheit von 1,5 dtex, einer feinheitsbezogenen Reißkraft von 35, 4 cN/tex, einer Reißdehnung von 14,2 % und einer feinheitsbezogenen Schlingenreißkraft von 9,8 cN/tex verformt. Der Gehalt an Zink beträgt 9 %.A homogeneous mixture of 36 g of a ZnO/ZnS mixture (1:2, w/w, each D 99 ≤ 2 µm) and 0.5 l of 60% NMMO (w/w ) and 0.63% (based on the amount of cellulose used) gallic acid propyl ester added. The mixture is homogenized at 10,000 rpm for 15 minutes and then, analogously to previous examples 1 or 2, to staple fibers with a length of 40 mm, a fineness of 1.5 dtex, a tensile strength of 35.4 cN/tex, one Elongation at break of 14.2% and a loop tearing strength related to the fineness of 9.8 cN/tex. The zinc content is 9%.
3,6 g Silber/Ruthenium-Pulver wird in 0,5 l wässrigem NMMO (60 %, w/w) mittels eines Turrax Hochleistungs-Dispergiergerätes fein verteilt. Die Dispersion wird danach einer Pulpe aus 377 g Cellulose (analog Beispiel 2) und 3.872 g NMMO zugegeben und alles gemeinsam nochmals bei 10.000 min-1 für 15 Minuten homogenisiert. Als Stabilisator wurde Gallussäurepropylester in einer Konzentration von 0,63 % (bezogen auf die eingesetzte Cellulose) verwendet. Die Bestimmung thermischen Stabilität der analog Beispiel 1 hergestellten Spinnlösung erfolgt mittels onset-Temperatur-Messung und zeigt mit 150 °C einen sicherheits-technisch unbedenklichen Wert. Die analog Beispiel 1 gesponnenen und nachbehandelten Fasern besitzen eine Endfeinheit von 1,76 dtex, eine feinheitsbezogene Reißkraft von 42 cN/tex, eine Reißdehnung von 13,6 % und eine feinheitsbezogene Schlingenfestigkeit von 14,4 cN/tex und sind damit den Fasern aus Beispiel 1 völlig gleichwertig.3.6 g silver/ruthenium powder is finely distributed in 0.5 l aqueous NMMO (60%, w/w) using a Turrax high-performance dispersing device. The dispersion will then added to a pulp of 377 g of cellulose (analogously to Example 2) and 3,872 g of NMMO and everything was homogenized together again at 10,000 rpm for 15 minutes. Gallic acid propyl ester was used as a stabilizer in a concentration of 0.63% (based on the cellulose used). The thermal stability of the spinning solution prepared analogously to Example 1 is determined by means of onset temperature measurement and at 150° C. shows a value that is unobjectionable from a safety point of view. The fibers spun and post-treated analogously to Example 1 have a final fineness of 1.76 dtex, a tensile strength of 42 cN/tex, an elongation at break of 13.6% and a loop strength of 14.4 cN/tex, and are therefore the fibers Example 1 completely equivalent.
Die antibakterielle Wirksamkeit (in Anlehnung an DIN EN ISO 20743:2013-Absorptionsverfahren) wurde sowohl gegenüber gram-positiven (Staphylococcus aureus) als auch gegenüber gram-negativen (Klebsiella pneumoniae) Teststämmen bestimmt. Sie wurde als Differenz der Ig-Reduktion einer parallel geprüften Kontrolle (Tula-Baumwolle) und der Ig-Reduktion einer Kurzfaservliesprobe über jeweils 24 Stunden berechnet. Werte über 3 gelten als stark antibakteriell wirksam.The antibacterial effectiveness (based on DIN EN ISO 20743:2013 absorption method) was determined against both gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pneumoniae) test strains. It was calculated as the difference between the Ig reduction of a control tested in parallel (Tula cotton) and the Ig reduction of a short fiber fleece sample over 24 hours in each case. Values above 3 are considered to have a strong antibacterial effect.
Zur Bestimmung der antiviralen Wirksamkeit (in Anlehnung an ISO 18184, Testvirus: phi6) wurde die Reduktion der Virenlast einer parallel geprüften Referenz (meist PET) und einer Probe über 2 Stunden erfasst. Sie wird aus der Differenz der dekadischen Logarithmen der mittleren Phagentiter der Referenz und der Probe nach 2 Stunden Kontakt berechnet.To determine the antiviral effectiveness (based on
Eine nach Beispiel 1 gefertigte Faserprobe erwies sich weder gegenüber gram-positiven noch gegenüber gram-negativen Testkeimen als antibakteriell wirksam. Die Untersuchung ergab auch keine Reduktion der Virenlast über 2 Stunden Bestimmungszeit. Auch nach 50 bzw. nach 100 Waschzyklen zeigten diese Proben keine oder nur sehr geringe, unspezifische antibakterielle und keine antiviralen Wirksamkeiten, die sich aus der sehr glatten Fasermorphologie ergeben können (vgl. Tabelle 1).A fiber sample produced according to Example 1 proved to be antibacterial against neither gram-positive nor gram-negative test germs. The investigation also revealed no reduction in viral load over a 2-hour determination time. Even after 50 or 100 wash cycles, these samples showed no or only very low, non-specific antibacterial and no antiviral activities, which can result from the very smooth fiber morphology (cf. Table 1).
Die Lyocellfasern, die man analog Beispiel 2 oder Beispiel 3 ersponnen hatte, wurden beispielhaft zu Stapelfasergarnen und nachfolgend zu Mischgeweben mit einem Funktionsfaseranteil von insgesamt ca. 30 % verarbeitet. Repräsentative Gewebestücke wurden den in Beispiel 6 genannten antibakteriellen und antiviralen Untersuchungen unterzogen. Ungewaschene Mischgewebe zeigten eine Ig-Reduktion Δlog von 4,0 (Beispiel 2) bzw. 3,4 (Beispiel 3) gegenüber Staphylococcus aureus und 3,8 (Beispiel2) bzw. 3,1 (Beispiel 3) gegenüber Klebsiella pneumoniae. Die Reduktion der Virenlast nach 2 Stunden betrug 3,1 (Beispiel 2) bzw. 3,0 (Beispiel 3). Nach 30 Wäschen in Anlehnung an DIN EN ISO 6330 waren die antibakterielle Ig-Reduktion Δlog gegenüber Staphylococcus areus auf 2,9 (Beispiel 2) bzw. 2,0 (Beispiel 3) und gegenüber Klebsiella pneumoniae auf 2,4 (Beispiel 2) bzw. 1,8 (Beispiel 3) gesunken. Die Reduktion der Virenlast nach 2 Stunden sank bei beiden Mustern in die geringe antivirale Wirksamkeit ab, und betrug 2,4 (Beispiel 2) und 2,1 (Beispiel 3). Aufgrund der erhaltenen Werte wurde keine größere Zahl an Waschzyklen untersucht.The lyocell fibers, which had been spun analogously to Example 2 or Example 3, were processed into staple fiber yarns and subsequently into blended fabrics with a total functional fiber content of approx. 30%. Representative pieces of tissue were subjected to the antibacterial and antiviral studies referred to in Example 6. Unwashed mixed fabrics showed an Ig reduction Δlog of 4.0 (Example 2) or 3.4 (Example 3) compared to Staphylococcus aureus and 3.8 (Example 2) or 3.1 (Example 3) compared to Klebsiella pneumoniae. The reduction in viral load after 2 hours was 3.1 (Example 2) and 3.0 (Example 3), respectively. After 30 washes based on DIN EN ISO 6330, the antibacterial Ig reduction Δlog compared to Staphylococcus areus was 2.9 (Example 2) or 2.0 (Example 3) and compared to Klebsiella pneumoniae to 2.4 (Example 2) or 1.8 (Example 3) dropped. The reduction in viral load at 2 hours declined into the low antiviral potency for both samples, and was 2.4 (Example 2) and 2.1 (Example 3). Based on the values obtained, no larger number of wash cycles was examined.
Analog Beispiel 1 und Beispiel 4 gefertigte Fasern wurden vor der Fasertrocknung zu Kurzstapelfasern mit Stapellängen ≤ 5 mm geschnitten. Die bis zur Gleichgewichtsfeuchte getrockneten Stapelfasern wurden mit Hilfe eines Blattbildners vom Typ Rapid-Köthen zu kreisrunden Nassvliesstücken mit einem Trockengewicht von ca. 150 g/m2 verarbeitet. Zur Bestimmung ihrer antimikrobiellen Wirkung kamen neben vollständig unmodifizierten auch Kurzfaservliese aus 70 % reiner Lyocellfaser (entsprechend Beispiel 1 gefertigt) und 30 % Fasern mit 1 % Silber/Ruthenium-Zusatz (entsprechend Beispiel 4 gefertigt) zum Einsatz. Analog zum Beispiel 4 wurden auch hier gegen die dort genannten Testkeime geprüft. Unmodifizierte Fasern wurden als Referenz nach 0 und 100 Wäschen sowie 70/30-Kurzfaservliese als Probe nach 0, 50 und 100 Wäschen untersucht. Die Waschversuche aller Nassvliese wurden in Anlehnung an DIN EN ISO 6330 ausgeführt. Die gewaschenen Vliese wurden nach Ende der Waschversuche jeweils separat geöffnet, in entionisiertem Wasser redispergiert und mittels Rapid Köthen Blattbildner erneut zum Kurzfaservlies gelegt.Fibers produced analogously to example 1 and example 4 were cut into short staple fibers with staple lengths of ≦5 mm before the fibers were dried. The staple fibers, dried to equilibrium moisture content, were processed with the aid of a Rapid-Kothen type sheet former to form circular wet fleece pieces with a dry weight of about 150 g/m 2 . To determine their antimicrobial effect, both completely unmodified and short-fiber nonwovens made of 70% pure lyocell fibers (manufactured according to example 1) and 30% fibers with 1% silver/ruthenium additive (manufactured according to example 4) were used. Similar to Example 4, the test germs mentioned there were also tested here. Unmodified fibers were tested as a reference after 0 and 100 washes, and 70/30 short fiber batts as a sample after 0, 50 and 100 washes. The washing tests of all wet nonwovens were carried out based on DIN EN ISO 6330. After the end of the washing test, the washed nonwovens were each opened separately, redispersed in deionized water and placed back into the short-fiber nonwoven using Rapid Köthen sheet formers.
Tabelle 1 zeigt die Ergebnisse der unabhängig voneinander ausgeführten antimikrobiellen Untersuchungen.
** antivirale Wirksamkeit, MV = Ig VR - Ig VC , wobei VR = Mittelwert des Logarithmus der Phagentiter nach 2 h Kontakt mit der Referenzprobe VC = Mittelwert des Logarithmus der Phagentiter nach 2 h Kontakt mit der antiviralen Probe
Δlog ≥ 3 = stark wirksam; 3 > Δlog > 2 = signifikant wirksam; 2 > Δlog ≥ 0,5 = schwach wirksam, Δlog < 0,5 nicht wirksam Mv ≥ 3 = vollständige antivirale Wirksamkeit; 3,0 > Mv > 2,0 = geringe antivirale Wirksamkeit
- = nicht bestimmt; SA = Staphylococcus aureus (gram-positiv); KP = Klebsiella pneumoniae (gram-negativ), Phi 6 = phi 6 DSM 21518 (Bakteriophage)
** Antiviral potency, M V = Ig V R - Ig V C , where V R = mean logarithm of phage titers after 2 h exposure to the reference sample V C = mean logarithm of phage titers after 2 h exposure to the antiviral sample
Δlog ≥ 3 = highly effective; 3 > Δlog > 2 = significantly effective; 2 > Δlog ≥ 0.5 = weakly active, Δlog < 0.5 not active M v ≥ 3 = full antiviral efficacy; 3.0 > M v > 2.0 = low antiviral efficacy
- = not determined; SA = Staphylococcus aureus (gram positive); KP = Klebsiella pneumoniae (gram negative), Phi 6 = phi 6 DSM 21518 (bacteriophage)
Claims (18)
dadurch gekennzeichnet,
dass die Wirkstoffkomponente metallisches Silber (Ag) und metallisches Ruthenium (Ru) umfasst, wobei Silber und Ruthenium miteinander in Kontakt stehen und in die Cellulose - und/oder Cellulose-Derivat - Fasern eingebettet und/oder zumindest teilweise von diesen umgeben sind.Fibrous material with an antimicrobial effect, which comprises fibers made from regenerated cellulose and/or regenerated cellulose derivatives and at least one antimicrobial active ingredient component,
characterized,
that the active substance component comprises metallic silver (Ag) and metallic ruthenium (Ru), silver and ruthenium being in contact with one another and in the cellulose - and/or cellulose derivative - fibers being embedded and/or at least partially surrounded by them.
dass der Pulpe und/oder der Spinnlösung und/oder optional dem Lösungsmittelsystem mindestens eine antimikrobielle Wirkstoffkomponente zugegeben wird, die metallisches Silber (Ag) und metallisches Ruthenium (Ru) umfasst.Method for producing a fiber material with an antimicrobial effect, in particular the fiber material according to one of Claims 1 to 7, which comprises the following steps:
that at least one antimicrobial agent component comprising metallic silver (Ag) and metallic ruthenium (Ru) is added to the pulp and/or the spinning solution and/or optionally to the solvent system.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21210621.5A EP4187004A1 (en) | 2021-11-25 | 2021-11-25 | Fibre material with antimicrobial and odour-neutralising effect |
US18/713,056 US20240417888A1 (en) | 2021-11-25 | 2022-11-25 | Fibre material having an antimicrobial and odour-neutralising effect |
PCT/EP2022/083266 WO2023094586A1 (en) | 2021-11-25 | 2022-11-25 | Fibre material having an antimicrobial and odour-neutralising effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21210621.5A EP4187004A1 (en) | 2021-11-25 | 2021-11-25 | Fibre material with antimicrobial and odour-neutralising effect |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4187004A1 true EP4187004A1 (en) | 2023-05-31 |
Family
ID=79024381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21210621.5A Pending EP4187004A1 (en) | 2021-11-25 | 2021-11-25 | Fibre material with antimicrobial and odour-neutralising effect |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240417888A1 (en) |
EP (1) | EP4187004A1 (en) |
WO (1) | WO2023094586A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023118574A1 (en) | 2023-07-13 | 2025-01-16 | Giesecke+Devrient Currency Technology Gmbh | CATALYTIC ANTIMICROBIAL CLEANING OF A VALUABLE DOCUMENT |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0677989B1 (en) | 1991-08-09 | 1998-09-16 | E.I. Du Pont De Nemours And Company | Antimicrobial compositions, process for preparing the same and use |
DE60305172T2 (en) | 2002-03-27 | 2007-05-10 | Cc Technology Investment Co., Ltd. | ANTIMICROBIAL YARN WITH NANOSILIC PARTICLES AND METHOD FOR THE PRODUCTION THEREOF |
DE102006056977B3 (en) | 2006-11-30 | 2008-05-08 | Smart Fiber Ag | Use of an antimicrobial textile composite as a holder to cause a bacteriostatic effect on the objects and materials to be cleaned in the interior of a washing machine or dishwasher, where the holder comprises fibers with cellulose matrix |
JP2008202159A (en) * | 2007-02-19 | 2008-09-04 | Bando Chem Ind Ltd | Fiber covered with metal colloid and method for producing the same |
DE102007019768A1 (en) | 2007-04-25 | 2008-11-13 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | A process for producing a high whiteness bioactive cellulosic fiber |
DE102008045290A1 (en) | 2008-09-02 | 2010-03-04 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Functional Cellulosic Moldings |
US8367089B2 (en) | 2006-04-24 | 2013-02-05 | Axcelon Biopolymers Corporation | Nanosilver coated bacterial cellulose |
DE102012215674A1 (en) * | 2012-09-04 | 2013-06-06 | Henkel Ag & Co. Kgaa | Composition, useful to reduce and/or regulate perspiration, comprises deodorant/antiperspirant active ingredient, oil (liquid under normal conditions) and silver-containing particles with surface partly coated or doped with ruthenium |
EP2949325A1 (en) * | 2014-05-28 | 2015-12-02 | AGXX Intellectual Property Holding GmbH | Use of an antimicrobial composition |
CN108903226A (en) * | 2018-05-31 | 2018-11-30 | 代明 | A kind of anti-bacterial bristles containing silver zinc copper germanium Nanoalloy |
US20190136415A1 (en) * | 2016-06-09 | 2019-05-09 | Board Of Regents, The University Of Texas System | Functional regenerated cellulose fibers |
EP3915376A1 (en) * | 2020-05-26 | 2021-12-01 | AGXX Intellectual Property Holding GmbH | Particulate antimicrobial hybrid system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3281695A1 (en) * | 2016-08-11 | 2018-02-14 | Freie Universität Berlin | Filtration device |
-
2021
- 2021-11-25 EP EP21210621.5A patent/EP4187004A1/en active Pending
-
2022
- 2022-11-25 WO PCT/EP2022/083266 patent/WO2023094586A1/en active Application Filing
- 2022-11-25 US US18/713,056 patent/US20240417888A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0677989B1 (en) | 1991-08-09 | 1998-09-16 | E.I. Du Pont De Nemours And Company | Antimicrobial compositions, process for preparing the same and use |
DE60305172T2 (en) | 2002-03-27 | 2007-05-10 | Cc Technology Investment Co., Ltd. | ANTIMICROBIAL YARN WITH NANOSILIC PARTICLES AND METHOD FOR THE PRODUCTION THEREOF |
US8367089B2 (en) | 2006-04-24 | 2013-02-05 | Axcelon Biopolymers Corporation | Nanosilver coated bacterial cellulose |
DE102006056977B3 (en) | 2006-11-30 | 2008-05-08 | Smart Fiber Ag | Use of an antimicrobial textile composite as a holder to cause a bacteriostatic effect on the objects and materials to be cleaned in the interior of a washing machine or dishwasher, where the holder comprises fibers with cellulose matrix |
JP2008202159A (en) * | 2007-02-19 | 2008-09-04 | Bando Chem Ind Ltd | Fiber covered with metal colloid and method for producing the same |
DE102007019768A1 (en) | 2007-04-25 | 2008-11-13 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | A process for producing a high whiteness bioactive cellulosic fiber |
DE102008045290A1 (en) | 2008-09-02 | 2010-03-04 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Functional Cellulosic Moldings |
DE102012215674A1 (en) * | 2012-09-04 | 2013-06-06 | Henkel Ag & Co. Kgaa | Composition, useful to reduce and/or regulate perspiration, comprises deodorant/antiperspirant active ingredient, oil (liquid under normal conditions) and silver-containing particles with surface partly coated or doped with ruthenium |
EP2949325A1 (en) * | 2014-05-28 | 2015-12-02 | AGXX Intellectual Property Holding GmbH | Use of an antimicrobial composition |
US20190136415A1 (en) * | 2016-06-09 | 2019-05-09 | Board Of Regents, The University Of Texas System | Functional regenerated cellulose fibers |
CN108903226A (en) * | 2018-05-31 | 2018-11-30 | 代明 | A kind of anti-bacterial bristles containing silver zinc copper germanium Nanoalloy |
EP3915376A1 (en) * | 2020-05-26 | 2021-12-01 | AGXX Intellectual Property Holding GmbH | Particulate antimicrobial hybrid system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023118574A1 (en) | 2023-07-13 | 2025-01-16 | Giesecke+Devrient Currency Technology Gmbh | CATALYTIC ANTIMICROBIAL CLEANING OF A VALUABLE DOCUMENT |
Also Published As
Publication number | Publication date |
---|---|
WO2023094586A1 (en) | 2023-06-01 |
US20240417888A1 (en) | 2024-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60305172T2 (en) | ANTIMICROBIAL YARN WITH NANOSILIC PARTICLES AND METHOD FOR THE PRODUCTION THEREOF | |
EP2515660B1 (en) | Formulations with silver nanoparticles | |
DE69633817T2 (en) | Process for producing fibers containing fine metal particles | |
DE60013755T2 (en) | Antibacterial properties imparting glass composition, antibacterial fiber, antibacterial twist and antibacterial fabric | |
DE60016590T2 (en) | ANTIMICROBIAL CLOTH OF ULTRA MICROFIBERS | |
DE60119150T2 (en) | polysaccharide | |
DE102007019768A1 (en) | A process for producing a high whiteness bioactive cellulosic fiber | |
EP1418996A1 (en) | Method for removing heavy metals from media containing heavy metals by means of a lyocell moulded body, cellulosed moulded body comprising adsorbed heavy metals, and the use of the same | |
EP4051004B1 (en) | Particulate antimicrobial hybrid system | |
DE2742907A1 (en) | ANTIBACTERIAL TEXTILE TREATMENT BASED ON ZIRCONYL ACETATE COMPLEXES OF INORGANIC PEROXIDES | |
DE112013007131T5 (en) | Process for treating textiles during wet washing | |
DE112005002676T5 (en) | Fiber fabric with VOC removal function | |
EP3949736A1 (en) | Particulate antimicrobial hybrid system | |
DE60311324T2 (en) | METHOD OF MANUFACTURING MODIFIED CELLULOSE FIBERS | |
EP1852497A1 (en) | Antimicrobial layer and use thereof | |
DE2923218A1 (en) | METHOD FOR THE PRODUCTION OF WATER-INSOLUBLEABLE ZINC-ACETATE-PEROXIDE COMPLEXES AND BACTERIOSTATIC IRON-FREE COTTON FABRIC AND FOR BACTERIOSTATICALLY MAKING CELLULOSE-CONTAINING AND / OR POLYESTER-CONTAINING AND BACTERIUM AMOUNTING | |
EP1968891A1 (en) | Nanoscalar particles based on sio2 and mixed oxides thereof, their preparation and use for treating textile materials | |
EP2217296B1 (en) | Surgical suture material | |
EP4187004A1 (en) | Fibre material with antimicrobial and odour-neutralising effect | |
WO2001009229A1 (en) | Method of producing antimicrobial synthetic bodies with improved long-term behavior | |
EP2756846A1 (en) | Antimicrobial cellulose material and process of its production | |
DE102022109459A1 (en) | Wash-permanent bioactive cellulose fiber with antibacterial and antiviral properties | |
WO2010072288A2 (en) | Suspension for treating filters or filter materials, method for treating filters or filter materials, and filters or filter materials having a biocidal coating | |
DE102005031711A1 (en) | Antimicrobial textile material containing metallic silver nano-particles, used for production of, e.g. underwear, towels, cleaning cloths, awnings, bandages and work clothing for medicine or the food industry | |
KR100803176B1 (en) | Nano silver-clay composite colloid, manufacturing method thereof, and composition for fiber antimicrobial processing comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231130 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20250124 |