[go: up one dir, main page]

EP4184109B1 - Échangeur de chaleur à noyau variable avec régulation de débit - Google Patents

Échangeur de chaleur à noyau variable avec régulation de débit Download PDF

Info

Publication number
EP4184109B1
EP4184109B1 EP22208349.5A EP22208349A EP4184109B1 EP 4184109 B1 EP4184109 B1 EP 4184109B1 EP 22208349 A EP22208349 A EP 22208349A EP 4184109 B1 EP4184109 B1 EP 4184109B1
Authority
EP
European Patent Office
Prior art keywords
primary fluid
header
inlet
layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22208349.5A
Other languages
German (de)
English (en)
Other versions
EP4184109A1 (fr
Inventor
Andrew W. SOLOMON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of EP4184109A1 publication Critical patent/EP4184109A1/fr
Application granted granted Critical
Publication of EP4184109B1 publication Critical patent/EP4184109B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0021Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for aircrafts or cosmonautics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/106Particular pattern of flow of the heat exchange media with cross flow

Definitions

  • the present disclosure relates to heat exchangers, and in particular to headers for heat exchangers.
  • Heat exchangers are often used to transfer heat between two fluids.
  • heat exchangers are used to transfer heat between a relatively hot air source, e.g., bleed air from a gas turbine engine, and a relatively cool air source, e.g., ram air.
  • a relatively hot air source e.g., bleed air from a gas turbine engine
  • a relatively cool air source e.g., ram air.
  • US2006162706A1 which can be considered as the closest prior art, relates to an exhaust gas heat exchanger.
  • a heat exchanger as claimed in claim 1, which includes a core.
  • the core includes a first side, a second side opposite the first side, a third side extending from the first side to the second side, a fourth side opposite the third side and extending from the first side to the second side.
  • the core also includes a first layer and a second layer.
  • the first layer includes a first plurality of primary fluid inlets on the first side of the core and a first plurality of primary fluid outlets on the second side of the core.
  • a first plurality of primary fluid passages extends from the first plurality of primary fluid inlets to the first plurality of primary fluid outlets.
  • a first plurality of secondary fluid passages extends from the first plurality of secondary fluid inlets to the first plurality of secondary fluid outlets.
  • the second layer includes a second plurality of primary fluid inlets on the first side of the core and a second plurality of primary fluid outlets on the second side of the core.
  • a second plurality of primary fluid passages extends from the second plurality of primary fluid inlets to the second plurality of primary fluid outlets.
  • the second layer also includes a second plurality of secondary fluid inlets on the third side of the core and a second plurality of secondary fluid outlets on the fourth side of the core.
  • a second plurality of secondary fluid passages extends from the second plurality of secondary fluid inlets to the second plurality of secondary fluid outlets.
  • the heat exchanger also includes a primary fluid header attached to the first side of the core.
  • the primary fluid header includes an inlet, a plenum, and a flow control mechanism within the plenum.
  • the flow control mechanism selectively directs fluid through the first layer, through the second layer, or through both the first layer and the second layer.
  • a secondary fluid header is attached to the third side of the core, wherein the secondary fluid header comprises an inlet; a plenum; and a flow control mechanism within the plenum, wherein the flow control mechanism of the secondary fluid header selectively directs fluid through the first layer, through the second layer, or through both the first layer and second layer.
  • This disclosure relates to a heat exchanger with a first layer, a second layer, and a header.
  • the first layer is configured to have a higher heat transfer rate than the second layer.
  • the second layer is configured to have less pressure loss and greater efficiency than the first layer.
  • the header includes a flow control mechanism that directs the fluid within the header to the first layer, the second layer, or both the first and second layer. The flow control mechanism enables the heat exchanger to provide a higher rate of heat exchange by directing the flow through the first layer during modes of operation that require high rates of heat exchange, i.e., during the take-off of an aircraft.
  • the flow control mechanism also enables the heat exchanger to provide a higher efficiency heat exchanger by directing the fluid through the second layer during modes of operation that do not require as much heat exchange, i.e., during cruising speeds of an aircraft.
  • the heat exchanger with the flow control mechanism within the header will be discussed with reference to FIGS. 1-4C below.
  • FIG. 1 is a schematic of a perspective view of heat exchanger 10.
  • Heat exchanger 10 includes core 12, primary fluid header 60 (shown in phantom), and secondary fluid header 80 (shown in phantom).
  • Core 12 includes first side 14, second side 16, third side 18, fourth side 20, first layer 22, and second layer 42.
  • First layer 22 includes first plurality of primary fluid inlets 24 (hereinafter “primary fluid inlets 24"), first plurality of primary fluid outlets 26 (hereinafter “primary fluid outlets 26”), first plurality of primary fluid passages 28 (hereinafter “primary fluid passages 28"), first plurality of secondary fluid inlets 30 (hereinafter “secondary fluid inlets 30"), first plurality of secondary fluid outlets 32 (hereinafter “secondary fluid outlets 32”), and first plurality of secondary fluid passages 34 (hereinafter “secondary fluid passages 34").
  • Primary fluid passages 28 (shown in phantom) and secondary fluid passages 34 (shown in phantom) can include flow restriction elements 36.
  • Second layer 42 includes second plurality of primary fluid inlets 44 (hereinafter “primary fluid inlets 44”), second plurality of primary fluid outlets 46 (hereinafter “primary fluid outlets 46”), second plurality of primary fluid passages 48 (hereinafter “primary fluid passages 48"), second plurality of secondary fluid inlets 50 (hereinafter “secondary fluid inlets 50”), second plurality of secondary fluid outlets 52 (hereinafter “secondary fluid outlets 52”), and second plurality of secondary fluid passages 54 (shown in phantom and hereinafter “secondary fluid passages 54").
  • Primary fluid header 60 includes inlet 62, plenum 64, outlet 66, and flow control mechanism 68.
  • Secondary fluid header 80 includes inlet 82, plenum 84, outlet 86, and flow control mechanism 68.
  • Second side 16 is opposite of first side 14.
  • Third side 18 extends from first side 14 to second side 16.
  • Fourth side 20 is opposite of third side 18 and extends from first side 14 to second side 16.
  • Primary fluid inlets 24 are on first side 14 and primary fluid outlets 26 are on second side 16.
  • Primary fluid passages 28 extend from primary fluid inlets 24 to primary fluid outlets 26.
  • Secondary fluid inlets 30 are on third side 18 and secondary fluid outlets 32 are on fourth side 20.
  • Secondary fluid passages 34 extend from secondary fluid inlets 30 to secondary fluid outlets 32.
  • Primary fluid inlets 44 are on first side 14 in second layer 42 and primary fluid outlets 46 are on second side 16 in second layer 42.
  • Primary fluid passages 48 extend from primary fluid inlets 44 to primary fluid outlets 46.
  • Secondary fluid inlets 50 are on third side 18 and secondary fluid outlets 52 are on fourth side 20.
  • Secondary fluid passages 54 extend from secondary fluid inlets 50 to secondary fluid outlets 52.
  • First layer 22 has a higher heat transfer rate than second layer 42.
  • primary fluid passages 28 of first layer 22 includes a sinusoidal profile as primary fluid passages 28 extend from primary fluid inlets 24 to primary fluid outlets 26.
  • secondary fluid passages 34 include a sinusoidal profile as secondary fluid passages 34 extend from secondary fluid inlets 30 to secondary fluid outlets 32.
  • the sinusoidal profiles of primary fluid passages 28 and secondary fluid passages 34 increase the surface area between primary fluid passages 28 and secondary fluid passages 34.
  • the increased surface area between primary fluid passages 28 and secondary fluid passages 34 increases the heat transfer between the fluid within primary fluid passages 28 and the fluid within secondary fluid passages 34.
  • primary fluid passages 28 and secondary fluid passages 34 of first layer 42 include flow restriction elements 36 which add resistance to flow through primary fluid passages 28 and secondary fluid passages 34 to increase turbulent flow within primary fluid passages 28 and secondary fluid passages 34.
  • flow restriction elements 36 can be protrusions that increase the surface area and increase the restriction to flow through primary fluid passages 28 and secondary fluid passages 34.
  • flow restriction elements 36 can be fins, airfoils, columns, or any other shape that increases the surface area and restricts flow through primary fluid passages 28 and secondary fluid passages 34, and/or a combination thereof any of the suggested shapes.
  • primary fluid passages 48 in second layer 42 are rectangular as primary fluid passages 48 extend from primary fluid inlets 44 to primary fluid outlets 46 and secondary fluid passages 54 are tubes that extend from secondary fluid inlets 50 to secondary fluid outlets 52 through primary fluid passages 48.
  • the design of primary fluid passages 48 and secondary fluid passages 54 in second layer 42 minimizes pressure loss within second layer 42 while exchanging heat between the fluid within primary fluid passages 48 and secondary fluid passages 54. Therefore, first layer 22 has a higher heat transfer rate than second layer 42 while second layer 42 has a lower pressure loss than first layer 22.
  • Primary fluid header 60 is attached to first side 14 of core 12.
  • Plenum 64 is between inlet 62 and first side 14 of core 12.
  • Plenum 64 includes flow control mechanism 68 to direct primary fluid PF through first layer 22, through second layer 42, or through both first layer 22 and second layer 42.
  • Secondary fluid header 80 is attached to third side 18 of core 12.
  • Plenum 84 is between inlet 82 and third side 18 of core 12.
  • Plenum 84 also includes flow control mechanism 68 to direct secondary fluid SF through first layer 22, second layer 42, and through both first layer 22 and second layer 42.
  • Primary fluid PF enters primary fluid header 60 at a first temperature and secondary fluid SF enters secondary fluid header 80 at a second temperature higher or lower than the first temperature.
  • FIGS. 2A-2C show a schematic diagram of primary fluid header 60, plenum 64, flow control mechanism 68, first layer 22, and second layer 42.
  • flow control mechanism 68 comprises three-way valve 90.
  • FIG. 2A shows three-way valve 90 in a first position.
  • FIG. 2B shows three-way valve 90 in a second position.
  • FIG. 2C shows three-way valve 90 in a third position.
  • Three-way valve 90 includes plate 92, torsional actuator 100, and flow separator 102.
  • Plate 92 includes first side 94, second side 96, and window 98.
  • three-way valve 90 is located within plenum 64 between inlet 62 of primary fluid header 60 and first side 14 of core 12 and controls the flow of primary fluid PF through primary fluid header 60.
  • First side 94 of plate 92 faces inlet 62 of primary fluid header 60 and second side 96 of plate 92 faces first side 14 of core 12.
  • Window 98 extends through first side 94 and through second side 96.
  • plate 92 is circular and window 98 is a hole through plate 92 that is non-concentric with plate 92.
  • Torsional actuator 100 is attached to second side 96 of plate 92 and is integrated into flow separator 102. Torsional actuator 100 rotates plate 92 of flow control mechanism 68 between the first position, the second position, and the third position.
  • Flow separator 102 extends from second side 96 of plate 92 to first side 14 of core 12 between first layer 22 and second layer 42.
  • Flow separator 102 forms a first channel and a second channel inside primary fluid header 60 downstream from plate 92.
  • the first channel extends from plate 92 to primary fluid inlets 24 of first layer 22.
  • the second channel extends from plate 92 to primary fluid inlets 44 of second layer 42.
  • window 98 is positioned over the first channel such that plate 92 and window 98 of flow control mechanism 68 fluidically connect inlet 62 of primary fluid header 60 and primary fluid inlets 24 of first layer 22 while closing the second channel and thereby blocking fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 44 of second layer 42.
  • window 98 is positioned over the second channel such that plate 92 and window 98 of flow control mechanism 68 fluidically connect inlet 62 of primary fluid header 60 and primary fluid inlets 44 of second layer 42 while blocking fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 24 of first layer 22.
  • the third position as shown in FIG.
  • window 98 is positioned partially over the first channel and partially over the second channel such that plate 92 and window 98 of flow control mechanism 68 fluidically connect inlet 62 of primary fluid header 60 to both primary fluid inlets 24 of first layer 22 and primary fluid inlets 44 of second layer 42.
  • Flow control mechanism 68 in secondary fluid header 80 can have a configuration similar to primary fluid header 60.
  • flow control mechanism 68 of secondary fluid header 80 includes three-way valve 90 within plenum 84 between inlet 82 and third side 18 of core 12 to control secondary fluid SF.
  • First side 94 of plate 92 faces inlet 82 of secondary fluid header 80 and second side 96 of plate 92 faces third side 18 of core 12.
  • Window 98 extends through first side 94 and through second side 96.
  • plate 92 is circular and window 98 is a hole through plate 92 that is non-concentric with plate 92.
  • Torsional actuator 100 is attached to second side 96 of plate 92 and is integrated into flow separator 102. Torsional actuator 100 rotates plate 92 of flow control mechanism 68 between the first position, the second position, and the third position.
  • Flow separator 102 extends from second side 96 of plate 92 to third side 18 of core 12 between first layer 22 and second layer 42.
  • Flow separator 102 forms a first channel and a second channel inside secondary fluid header 80 downstream from plate 92.
  • the first channel extends from plate 92 to secondary fluid inlets 30 of first layer 22.
  • the second channel extends from plate 92 to secondary fluid inlets 50 of second layer 42.
  • window 98 is positioned over the first channel such that plate 92 and window 98 of three-way valve 90 fluidically connect inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22 while closing the second channel and thereby blocking fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42.
  • window 98 is positioned over the second channel such that plate 92 and window 98 of three-way valve 90 fluidically connect inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42 while blocking fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22.
  • the third position as shown in FIG.
  • window 98 is positioned partially over the first channel and partially over the second channel such that plate 92 and window 98 of three-way valve 90 fluidically connect inlet 82 of secondary fluid header 80 to both secondary fluid inlets 30 of first layer 22 and secondary fluid inlets 50 of second layer 42.
  • FIGS. 3A-3C show a schematic diagram of primary fluid header 60, plenum 64, flow control mechanism 68, first layer 22, and second layer 42.
  • flow control mechanism 68 comprises baffle assembly 110.
  • FIG. 3A shows baffle assembly 110 in a first position.
  • FIG. 3B shows baffle assembly 110 in a second position.
  • FIG. 3C shows baffle assembly 110 in a third position.
  • Baffle assembly 110 includes plate 112, linear actuator 120, and hinge 130.
  • Plate 112 includes base end 114 and distal end 116.
  • Linear actuator 120 includes rod 122 and linkage arm 124.
  • baffle assembly is located within plenum 64 between inlet 62 of primary fluid header 60 and first side 14 of core 12 and controls the flow of primary fluid PF through primary fluid header 60.
  • Plate 112 extends from base end 114 to distal end 116.
  • Base end 114 of plate 112 is connected to first side 14 of core 12 such that plate 112 extends inside plenum 64 from first side 14 of core 12 toward inlet 62 of primary fluid header 60.
  • Base end 114 of plate 112 is attached to first side 14 of core 12 between first layer 22 and second layer 42 by hinge 130.
  • Rod 122 is connected to linear actuator 120 and is driven linearly by linear actuator 120.
  • Linkage arm 124 is attached to rod 122 of linear actuator 120 by a first joint and is attached to distal end 116 of plate 112 by a second joint. As rod 122 of linear actuator 120 extends and retracts within linear actuator 120, linkage arm 124 rotates plate 112 about hinge 130 to position baffle assembly 110 into the first position, the second position, or the third position.
  • plate 112 In the first position, as shown in FIG. 3A , plate 112 is rotated counterclockwise about hinge 130 until distal end 116 of plate 112 contacts the inside wall of primary fluid header 60 to block second layer 42 from inlet 62 of primary fluid header 60. In this the first position, plate 112 leaves open primary fluid inlets 24 to fluidically connect inlet 62 of primary fluid header 60 and primary fluid inlets 24 of first layer 22 while plate 112 blocks fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 44 of second layer 42. In the second position, as shown in FIG. 3B , plate 112 is rotated clockwise about hinge 130 until distal end 116 of plate 112 contacts the inside wall of primary fluid header 60 to block first layer 22 from inlet 62 of primary fluid header.
  • plate 112 leaves open primary fluid inlets 44 to fluidically connect inlet 62 of primary fluid header 60 and primary fluid inlets 44 of second layer 42 while plate 112 blocks fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 24 of first layer 22.
  • plate 112 is rotated normal to first side 14 of core 12 to fluidically connect inlet 62 of primary fluid header 60 to primary fluid inlets 24 of first layer 22 and primary fluid inlets 44 of second layer 42.
  • Flow control mechanism 68 in secondary fluid header 80 can have a configuration similar to the example of primary fluid header 60 in FIGS. 3A-3C .
  • flow control mechanism 68 of secondary fluid header 80 includes baffle assembly 110 within plenum 84 between inlet 82 and third side 18 of core 12 to control secondary fluid SF.
  • Baffle assembly 110 includes plate 112, linear actuator 120, and hinge 130.
  • Plate 112 includes base end 114 and distal end 116.
  • Linear actuator 120 includes rod 122 and linkage arm 124. Plate 112 extends from base end 114 to distal end 116.
  • Base end 114 of plate 112 is connected to third side 18 of core 12 such that plate 112 extends inside plenum 64 from third side 18 of core 12 toward inlet 82 of secondary fluid header 80.
  • Base end 114 of plate 112 is attached to third side 18 of core 12 between first layer 22 and second layer 42 by hinge 130.
  • Rod 122 is connected to linear actuator 120 and is driven linearly by linear actuator 120.
  • Linkage arm 124 is attached to rod 122 of linear actuator 120 by a first joint and is attached to distal end 116 of plate 112 by a second joint. As rod 122 of linear actuator 120 extends and retracts within linear actuator 120, linkage arm 124 rotates plate 112 about hinge 130 to position baffle assembly 110 into the first position, the second position, or the third position.
  • plate 112 In the first position, as shown in FIG. 3A , plate 112 is rotated counterclockwise about hinge 130 until distal end 116 of plate 112 contacts the inside wall of secondary fluid header 80 to block second layer 42 from inlet 82 of secondary fluid header 80. In this the first position, plate 112 leaves open secondary fluid inlets 30 to fluidically connect inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22 while plate 112 blocks fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42. In the second position, as shown in FIG. 3B , plate 112 is rotated clockwise about hinge 130 until distal end 116 of plate 112 contacts the inside wall of secondary fluid header 80 to block first layer 22 from inlet 82 of secondary fluid header 80.
  • plate 112 leaves open secondary fluid inlets 50 to fluidically connect inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42 while plate 112 blocks fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22.
  • plate 112 is rotated normal to third side 18 of core 12 to fluidically connect inlet 82 of secondary fluid header 80 to secondary fluid inlets 30 of first layer 22 and secondary fluid inlets 50 of second layer 42.
  • FIGS. 4A-4C show a schematic diagram of primary fluid header 60, plenum 64, flow control mechanism 68, first layer 22, and second layer 42.
  • flow control mechanism 68 comprises plate assembly 140.
  • FIG. 4A shows plate assembly 140 in a first position.
  • FIG. 4B shows plate assembly 140 in a second position.
  • FIG. 4C shows plate assembly 140 in a third position.
  • Plate assembly 140 includes plate 142 and linear actuator 144.
  • Linear actuator 144 includes rod 146.
  • plate assembly 140 is located within plenum 64 between inlet 62 of primary fluid header 60 and first side 14 of core 12 and controls the flow of primary fluid PF through primary fluid header 60.
  • Plate 142 extends perpendicular first side 14 of core 12.
  • Linear actuator 144 extends and retracts rod 146.
  • Rod 146 is attached to plate 142 and connects plate 142 to linear actuator 144 to move plate 142 and put plate assembly 140 in the first position, the second position, or the third position.
  • linear actuator 144 retracts rod 146 to position plate 142 in front of primary fluid inlets 44 of second layer 42 and block fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 44 while allowing fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 24 of first layer 22.
  • linear actuator 144 extends rod 146 to position plate 142 in front of primary fluid inlets 24 of first layer 22 and block fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 24 while allowing fluidic communication between inlet 62 of primary fluid header 60 and primary fluid inlets 44 of second layer 42.
  • third position as shown in FIG.
  • linear actuator 144 moves rod 146 to position plate 142 between first layer 22 and second layer 42.
  • inlet 62 of primary fluid header 60 can fluidically communicate with both primary fluid inlets 24 of first layer 22 and primary fluid inlets 44 of second layer 42.
  • Flow control mechanism 68 in secondary fluid header 80 can have a configuration similar to primary fluid header 60.
  • flow control mechanism 68 of secondary fluid header 80 includes plate assembly 140 located within plenum 84 between inlet 82 and third side 18 of core 12 to control secondary fluid SF.
  • Plate assembly 140 includes plate 142 and linear actuator 144.
  • Linear actuator 144 includes rod 146.
  • Plate 142 extends perpendicular third side 18 of core 12.
  • linear actuator 144 retracts rod 146 to position plate 142 in front of secondary fluid inlets 50 of second layer 42 to block fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42 while allowing fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22.
  • linear actuator 144 extends rod 146 to position plate 142 in front of secondary fluid inlets 30 of first layer 22 and block fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 30 of first layer 22 while allowing fluidic communication between inlet 82 of secondary fluid header 80 and secondary fluid inlets 50 of second layer 42.
  • third position as shown in FIG.
  • linear actuator 144 moves rod 146 to position plate 142 between first layer 22 and second layer 42.
  • inlet 82 of secondary fluid header 80 can fluidically communicate with both secondary fluid inlets 30 of first layer 22 and secondary fluid inlets 50 of second layer 42.
  • flow control mechanism 68 within primary fluid header 60 can be three-way valve 90 and flow control mechanism 68 within secondary fluid header 80 can be baffle assembly 110 or plate assembly 140.
  • flow control mechanism 68 within primary fluid header 60 and flow control mechanism 68 within secondary fluid header 80 can be any combination of three-way valve 90, baffle assembly 110, and/or plate assembly 140.
  • heat exchanger 10 can include flow control mechanism 68 within only within primary fluid header 60. In contrast, heat exchanger 10 can include flow control mechanism 68 within only secondary fluid header 80.
  • a heat exchanger includes a core.
  • the core includes a first side, a second side opposite the first side, a third side extending from the first side to the second side, a fourth side opposite the third side and extending from the first side to the second side.
  • the core also includes a first layer and a second layer.
  • the first layer includes a first plurality of primary fluid inlets on the first side of the core and a first plurality of primary fluid outlets on the second side of the core.
  • a first plurality of primary fluid passages extends from the first plurality of primary fluid inlets to the first plurality of primary fluid outlets.
  • a first plurality of secondary fluid passages extends from the first plurality of secondary fluid inlets to the first plurality of secondary fluid outlets.
  • the second layer includes a second plurality of primary fluid inlets on the first side of the core and a second plurality of primary fluid outlets on the second side of the core.
  • a second plurality of primary fluid passages extends from the second plurality of primary fluid inlets to the second plurality of primary fluid outlets.
  • the second layer also includes a second plurality of secondary fluid inlets on the third side of the core and a second plurality of secondary fluid outlets on the fourth side of the core.
  • a second plurality of secondary fluid passages extends from the second plurality of secondary fluid inlets to the second plurality of secondary fluid outlets.
  • the heat exchanger also includes a primary fluid header attached to the first side of the core.
  • the primary fluid header includes an inlet, a plenum, and a flow control mechanism within the plenum. The flow control mechanism selectively directs fluid through the first layer, through the second layer, or through both the
  • the heat exchanger of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
  • a heat exchanger includes a core.
  • the core includes a first layer and a second layer.
  • the first layer includes a first plurality of primary fluid inlets, a first plurality of primary fluid outlets, and a first plurality of primary fluid passages extending from the first plurality of primary fluid inlets to the first plurality of primary fluid outlets.
  • the first layer also includes a first plurality of secondary fluid inlets, a first plurality of secondary fluid outlets, and a first plurality of secondary fluid passages extending from the first plurality of secondary fluid inlets to the first plurality of secondary fluid outlets.
  • the first plurality of secondary fluid passages extends transverse the first plurality of primary fluid passages.
  • the second layer includes a second plurality of primary fluid inlets, a second plurality of primary fluid outlets, and a second plurality of primary fluid passages extending from the second plurality of primary fluid inlets to the second plurality of primary fluid outlets.
  • the second plurality of primary fluid passages extends adjacent the first plurality of primary fluid passages.
  • the second layer also includes a second plurality of secondary fluid inlets, a second plurality of secondary fluid outlets, and a second plurality of secondary fluid passages extending from the second plurality of secondary fluid inlets to the second plurality of secondary fluid outlets.
  • the second plurality of secondary fluid passages extends transverse the second plurality of primary fluid passages.
  • the heat exchanger also includes a primary fluid header attached to the core adjacent the first plurality of primary fluid inlets and the second plurality of primary fluid inlets.
  • the primary fluid header includes an inlet, an outlet, a plenum between the inlet and the outlet, and a flow control mechanism within the plenum.
  • the flow control mechanism selectively directs fluid through the first plurality of primary fluid inlets, through the second plurality of primary fluid inlets, or through both the first plurality of primary fluid inlets and the second plurality of primary fluid inlets.
  • the heat exchanger of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (14)

  1. Échangeur de chaleur (10) comprenant :
    un noyau (12), dans lequel le noyau comprend :
    un premier côté (14) ;
    un deuxième côté (16) opposé au premier côté ;
    un troisième côté (18) s'étendant du premier côté au deuxième côté ;
    un quatrième côté (20) opposé au troisième côté et s'étendant du premier côté au deuxième côté ;
    une première couche (22) comprenant :
    une première pluralité d'entrées de fluide primaire (24) sur le premier côté du noyau ; et
    une première pluralité de sorties de fluide primaire (26) sur le deuxième côté du noyau ;
    une première pluralité de passages de fluide primaire (28) s'étendant de la première pluralité d'entrées de fluide primaire à la première pluralité de sorties de fluide primaire ;
    une première pluralité d'entrées de fluide secondaire (30) sur le troisième côté du noyau ;
    une première pluralité de sorties de fluide secondaire (32) sur le quatrième côté du noyau ; et
    une première pluralité de passages de fluide secondaire (34) s'étendant de la première pluralité d'entrées de fluide secondaire à la première pluralité de sorties de fluide secondaire ; et
    une seconde couche (42) comprenant :
    une seconde pluralité d'entrées de fluide primaire (44) sur le premier côté du noyau ;
    une seconde pluralité de sorties de fluide primaire (46) sur le deuxième côté du noyau ;
    une seconde pluralité de passages de fluide primaire (48) s'étendant de la seconde pluralité d'entrées de fluide primaire à la seconde pluralité de sorties de fluide primaire ;
    une seconde pluralité d'entrées de fluide secondaire (50) sur le troisième côté du noyau ; et
    une seconde pluralité de sorties de fluide secondaire (52) sur le quatrième côté du noyau ;
    une seconde pluralité de passages de fluide secondaire (54) s'étendant de la seconde pluralité d'entrées de fluide secondaire à la seconde pluralité de sorties de fluide secondaire ;
    un collecteur de fluide primaire (60) fixé au premier côté du noyau, dans lequel le collecteur de fluide primaire comprend :
    une entrée (62) ;
    un plénum (64) ;
    une sortie (66) ; et
    un mécanisme de régulation de débit (68) à l'intérieur du plénum, dans lequel le mécanisme de régulation de débit dirige sélectivement un fluide à travers la première couche, à travers la seconde couche, ou à travers à la fois la première couche et la seconde couche ; et caractérisé par
    un collecteur de fluide secondaire (80) fixé au troisième côté (18) du noyau, dans lequel le collecteur de fluide secondaire comprend :
    une entrée (82) ;
    un plénum (84) ; et
    un mécanisme de régulation de débit (68) à l'intérieur du plénum, dans lequel le mécanisme de régulation de débit du collecteur de fluide secondaire dirige sélectivement un fluide à travers la première couche, à travers la seconde couche, ou à travers à la fois la première couche et la seconde couche.
  2. Échangeur de chaleur (10) selon la revendication 1, dans lequel la première couche (22) a un taux de transfert de chaleur plus élevé que la seconde couche (42).
  3. Échangeur de chaleur (10) selon les revendications 1 et 2, dans lequel le mécanisme de régulation de débit (68) est une vanne à trois voies (90) fonctionnant entre une première position, une deuxième position et une troisième position.
  4. Échangeur de chaleur selon la revendication 3, dans lequel la vanne à trois voies dans la première position connecte fluidiquement l'entrée du collecteur de fluide primaire (60) à la première pluralité d'entrées de fluide primaire (24) tout en bloquant la communication fluidique entre l'entrée du collecteur de fluide primaire et la seconde pluralité d'entrées de fluide primaire (26), la vanne à trois voies dans la deuxième position connecte fluidiquement l'entrée du collecteur de fluide primaire à la seconde pluralité d'entrées de fluide primaire tout en bloquant la communication fluidique entre l'entrée du collecteur de fluide primaire et la première pluralité d'entrées de fluide primaire, et la vanne à trois voies dans la troisième position connecte fluidiquement l'entrée du collecteur de fluide primaire à la première pluralité d'entrées de fluide primaire de la première couche et à la seconde pluralité d'entrées de fluide primaire.
  5. Échangeur de chaleur selon la revendication 3 ou 4, dans lequel la vanne à trois voies (90) comprend en outre :
    une plaque (92), dans lequel la plaque comprend :
    un premier côté (94) faisant face à l'entrée du collecteur de fluide primaire (60) ;
    un deuxième côté (96) faisant face à la sortie du collecteur de fluide primaire ; et
    une fenêtre (98), dans lequel la fenêtre s'étend à travers le premier côté et le deuxième côté de la plaque ; et
    un actionneur de torsion (100) couplé mécaniquement au deuxième côté de la plaque, dans lequel l'actionneur de torsion fait tourner la plaque pour placer la vanne à trois voies dans la première position, la deuxième position et la troisième position, et dans lequel la fenêtre permet une communication fluidique entre l'entrée du collecteur de fluide primaire et la première pluralité d'entrées de fluide primaire et/ou la seconde pluralité d'entrées de fluide primaire.
  6. Échangeur de chaleur selon la revendication 5, comprenant en outre :
    un séparateur de débit (102) à l'intérieur du plénum du collecteur de fluide primaire (60) s'étendant entre le deuxième côté du mécanisme de régulation de débit (68) et le noyau (12), dans lequel le séparateur de débit forme un premier canal et un second canal à l'intérieur du collecteur de fluide primaire en aval de la plaque (92), dans lequel le premier canal s'étend de la plaque à la première pluralité d'entrées de fluide primaire (24), et dans lequel le second canal s'étend de la plaque à la seconde pluralité d'entrées de fluide primaire (26).
  7. Échangeur de chaleur selon la revendication 1 ou 2, dans lequel le mécanisme de régulation de débit (68) est un ensemble déflecteur (110), et dans lequel l'ensemble déflecteur comprend :
    un déflecteur s'étendant du premier côté (14) du noyau (12) entre la première couche (22) et la seconde couche (42) vers l'entrée (62) du collecteur de fluide primaire ; et
    un actionneur (120) fixé mécaniquement au déflecteur pour faire fonctionner le déflecteur entre une première position, une deuxième position et une troisième position.
  8. Échangeur de chaleur selon la revendication 7, dans lequel le déflecteur comprend :
    une extrémité de base (114) ; et
    une extrémité distale (116) opposée à l'extrémité de base, dans lequel une charnière (130) fixe l'extrémité de base du déflecteur au premier côté (14) du noyau (12).
  9. Échangeur de chaleur selon la revendication 8, dans lequel l'actionneur comprend :
    une tige (122) ;
    au moins un bras de liaison (124) fixé à la tige (122) par une première articulation et fixé à l'extrémité distale (116) du déflecteur par une seconde articulation.
  10. Échangeur de chaleur selon la revendication 9, dans lequel le déflecteur dans la première position connecte fluidiquement l'entrée (62) du collecteur de fluide primaire (60) à la première pluralité d'entrées de fluide primaire (24) tout en bloquant la communication fluidique entre l'entrée du collecteur de fluide primaire et la seconde pluralité d'entrées de fluide primaire (26), le déflecteur dans la deuxième position connecte fluidiquement l'entrée du collecteur de fluide primaire à la seconde pluralité d'entrées de fluide primaire tout en bloquant la communication fluidique entre l'entrée du collecteur de fluide primaire et la première pluralité d'entrées de fluide primaire, et le déflecteur dans la troisième position connecte fluidiquement l'entrée du collecteur de fluide primaire à la première pluralité d'entrées de fluide primaire de la première couche et à la seconde pluralité d'entrées de fluide primaire.
  11. Échangeur de chaleur selon la revendication 1 ou 2, dans lequel le mécanisme de régulation de débit est un ensemble plaque (140), et dans lequel l'ensemble plaque comprend :
    une plaque (142) située entre l'entrée du collecteur de fluide primaire et le premier côté du noyau et s'étendant perpendiculairement à la première pluralité d'entrées de fluide primaire et à la seconde pluralité d'entrées de fluide primaire ; et
    un actionneur linéaire (144) qui déplace la plaque entre une première position, une deuxième position et une troisième position.
  12. Échangeur de chaleur selon la revendication 11, dans lequel la plaque (142) dans la première position bloque la communication fluidique entre l'entrée du collecteur de fluide primaire (60) et la seconde pluralité d'entrées de fluide primaire (50) tout en permettant la communication fluidique entre l'entrée (62) du collecteur de fluide primaire (60) et la première pluralité d'entrées de fluide primaire (24), la plaque dans la deuxième position bloque la communication fluidique entre l'entrée du collecteur de fluide primaire et la première pluralité d'entrées de fluide primaire tout en permettant la communication fluidique entre l'entrée du collecteur de fluide primaire et la seconde pluralité d'entrées de fluide primaire, et la plaque dans la troisième position permet à la première pluralité d'entrées de fluide primaire et à la seconde pluralité d'entrées de fluide primaire de communiquer fluidiquement avec l'entrée du collecteur de fluide primaire.
  13. Échangeur de chaleur selon la revendication 1 ou 2, dans lequel le mécanisme de régulation de débit (68) du collecteur de fluide secondaire comprend l'un des éléments suivants :
    une vanne à trois voies (90) comprenant :
    une plaque (92), dans lequel la plaque comprend :
    un premier côté (94) faisant face à l'entrée (62) du collecteur de fluide secondaire (60) ;
    un deuxième côté (96) faisant face au troisième côté du noyau ; et
    une fenêtre (98) s'étendant à travers le premier côté et le deuxième côté de la plaque ; et
    un actionneur de torsion (100) couplé mécaniquement au deuxième côté de la plaque, dans lequel l'actionneur de torsion fait tourner la plaque pour changer l'orientation de la fenêtre, et dans lequel la fenêtre permet une communication fluidique entre l'entrée du collecteur de fluide secondaire et la première pluralité d'entrées de fluide secondaire et/ou la seconde pluralité d'entrées de fluide secondaire ;
    un ensemble déflecteur comprenant :
    un déflecteur s'étendant du troisième côté du noyau entre la première couche et la seconde couche vers l'entrée du collecteur de fluide secondaire et un actionneur fixé mécaniquement au déflecteur pour actionner le déflecteur, dans lequel le déflecteur comprend une extrémité de base opposée à une extrémité distale, dans lequel une charnière fixe l'extrémité de base du déflecteur au premier côté du noyau, et dans lequel l'actionneur comprend au moins un bras de liaison fixé à l'extrémité distale du déflecteur ; et
    un ensemble plaque comprenant :
    une plaque située entre l'entrée du collecteur de fluide secondaire et le troisième côté du noyau s'étendant perpendiculairement à un troisième côté du noyau et un actionneur qui déplace la plaque,
    dans lequel le mécanisme de régulation de débit du collecteur de fluide secondaire fonctionne entre une première position, une deuxième position et une troisième position.
  14. Échangeur de chaleur selon la revendication 13, dans lequel le mécanisme de régulation de débit (68) du collecteur de fluide secondaire dans la première position connecte fluidiquement l'entrée du collecteur de fluide secondaire à la première pluralité d'entrées de fluide secondaire tout en bloquant la communication fluidique entre l'entrée du collecteur de fluide secondaire et la seconde pluralité d'entrées de fluide secondaire, le mécanisme de régulation de débit dans la deuxième position connecte fluidiquement l'entrée du collecteur de fluide secondaire à la seconde pluralité d'entrées de fluide secondaire et bloque la communication fluidique entre l'entrée du collecteur de fluide secondaire et la première pluralité d'entrées de fluide secondaire et le second mécanisme de commande dans la troisième position connecte fluidiquement l'entrée du collecteur de fluide primaire à la première pluralité d'entrées de fluide secondaire et à la seconde pluralité d'entrées de fluide secondaire.
EP22208349.5A 2021-11-19 2022-11-18 Échangeur de chaleur à noyau variable avec régulation de débit Active EP4184109B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/455,847 US20230160647A1 (en) 2021-11-19 2021-11-19 Variable core heat exchanger with flow control

Publications (2)

Publication Number Publication Date
EP4184109A1 EP4184109A1 (fr) 2023-05-24
EP4184109B1 true EP4184109B1 (fr) 2024-08-28

Family

ID=84360469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22208349.5A Active EP4184109B1 (fr) 2021-11-19 2022-11-18 Échangeur de chaleur à noyau variable avec régulation de débit

Country Status (2)

Country Link
US (1) US20230160647A1 (fr)
EP (1) EP4184109B1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177861A (en) * 1977-11-07 1979-12-11 Modine Manufacturing Company Recuperator structure
FR2661488A1 (fr) * 1990-04-25 1991-10-31 Vulcanic Sa Echangeur de chaleur tridimensionnel a alimentation electrique.
JP3201651B2 (ja) * 1992-06-18 2001-08-27 株式会社タクマ 温度制御装置付き管式熱交換器
DE10203003B4 (de) * 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
DE10321638A1 (de) * 2002-05-15 2004-01-08 Behr Gmbh & Co. Kg Schaltbarer Abgaswärmetauscher
JP3976326B2 (ja) * 2003-09-15 2007-09-19 漢拏空調株式会社 熱交換器
FR2907886B1 (fr) * 2006-10-27 2015-03-13 Valeo Sys Controle Moteur Sas Echangeur thermique a canal central pour fluide caloporteur.
US9377250B2 (en) * 2012-10-31 2016-06-28 The Boeing Company Cross-flow heat exchanger having graduated fin density

Also Published As

Publication number Publication date
US20230160647A1 (en) 2023-05-25
EP4184109A1 (fr) 2023-05-24

Similar Documents

Publication Publication Date Title
EP2084480B1 (fr) Echangeur de chaleur avec dérivation
JP6912144B2 (ja) 熱交換器
EP1894839B1 (fr) Soupape définissant des trajectoires de flux modulées et non modulées
EP3002539B1 (fr) Radiateur de chauffage
CN109838586B (zh) 流体管理组件及热管理系统
CN205747595U (zh) 热交换器以及制冷系统
EP4184109B1 (fr) Échangeur de chaleur à noyau variable avec régulation de débit
EP4324666A1 (fr) Appareil de gestion de fluide
US10126065B2 (en) Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
US20010018968A1 (en) Heat exchanger and heating or air conditioning unit of a motor vehicle containing said heat exchanger
EP3775746B1 (fr) Échangeur thermique tube-ailette
CN101776411A (zh) 扁管组件以及具有该扁管组件的热交换器
CN109728379B (zh) 板组件、电池组件和电池换热系统
JPH0379637B2 (fr)
CN116592675A (zh) 一种紧凑型无人机外置空液换热器及其制造方法
WO2009108238A2 (fr) Échangeur de chaleur à récupération et procédé de fonctionnement correspondant
KR100737160B1 (ko) 응축기와 라디에이터의 일체형 열교환기
EP3236188B1 (fr) Échangeurs thermiques
CN109728376B (zh) 板组件及电池组件
WO2019223612A1 (fr) Système de gestion thermique
JP7633573B1 (ja) 熱交換器ユニット、空調室内機、冷凍サイクル装置、熱交換器ユニットの製造方法
JP3054888U (ja) プレートフィン型熱交換器
CN219215375U (zh) 一种用于飞机热管理系统的散热器
CN214250219U (zh) 换热装置
WO2025069935A1 (fr) Unité d'échangeur de chaleur, unité intérieure de climatisation, dispositif à cycle de réfrigération, et procédé de fabrication d'unité d'échangeur de chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 7/02 20060101ALI20240313BHEP

Ipc: F28F 9/02 20060101ALI20240313BHEP

Ipc: F28F 27/02 20060101AFI20240313BHEP

INTG Intention to grant announced

Effective date: 20240408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022005686

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241022

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1718363

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241022

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241230

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241128

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240828