EP4168616B1 - Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board - Google Patents
Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board Download PDFInfo
- Publication number
- EP4168616B1 EP4168616B1 EP21736967.7A EP21736967A EP4168616B1 EP 4168616 B1 EP4168616 B1 EP 4168616B1 EP 21736967 A EP21736967 A EP 21736967A EP 4168616 B1 EP4168616 B1 EP 4168616B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- nonwoven fabric
- air
- conveyor belts
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 24
- 238000010924 continuous production Methods 0.000 title description 3
- 239000000835 fiber Substances 0.000 claims description 152
- 238000001816 cooling Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 238000009960 carding Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 241000251730 Chondrichthyes Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000004750 melt-blown nonwoven Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 229920013754 low-melting plastic Polymers 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/732—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/558—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/74—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
Definitions
- the invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.
- a non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.
- the fiber fleeces differ in their structure depending on the requirements.
- nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers.
- a special version of these is meltblown nonwovens.
- the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit.
- the fibers swirled by the air flow are deposited on a sieve belt.
- the deposition process can produce a fine nonwoven made of entangled polymer fibers.
- Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.
- Nonwovens for thermal insulation are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.
- nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress.
- Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.
- the fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.
- nonwovens are those that are produced using carding or carding or using airlay processes.
- the carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.
- Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.
- fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.
- Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.
- thermoplastics in the form of low-melting plastic, preferably in fiber form.
- binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.
- the publication EN 10 2010 034 159 A1 discloses a discontinuous solution for the production of nonwoven components with fibers oriented perpendicular to the surface, in which the fibers are transported into a mold provided with flow openings via an air stream wherein the mold is divided and is moved apart before filling, after filling the fiber material is compressed by closing the mold and then the fiber material is heated by hot air until the fibers have bonded together, wherein the fibers in the mold are oriented perpendicular to the feed direction and in the direction of the air flowing out of the mold before compression.
- a textile lapping machine having an inclined comb which deposits a vertically sloping fibrous web onto a wire belt of a continuous conveyor passing through a furnace.
- the reciprocating pusher bar pushes the folds formed by the comb into a shark unit which extends across the width of the mesh belt.
- the unit has a toothed plate which initially slows down the folded web and longitudinal fingers which overlie the conveyor forming a flat overlap zone.
- a textile card feeds the fibrous web to the lapping zone and the furnace fuses any low melting synthetic fibres in the web to the surrounding fibres to give a web having a density of 80-2000 g/m 2.
- the comb web direction remains constant and the pusher bar and shark unit are moved towards and away from the comb.
- the drives to the comb and pusher are independent.
- the publication further discloses WO 00/66824 A1 an airy nonwoven material comprising a nonwoven web having a plurality of substantially continuous fibers oriented in a z direction of the nonwoven web, and a method of making the airy nonwoven material from the materials described in z -Direction shaped fibers.
- the Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.
- nonwovens which have different densities and fiber orientations over the fleece thickness, with the fibers in the surface areas being plane-parallel in the central area, largely perpendicular to it, which in turn makes later deformation of the nonwoven into a three-dimensional component more difficult .
- Fleece manufactured using a well-known airlay process ( WO 2009056745 A1 , US20040097155 A1 and Comatex) always have fibres lying parallel to the surface due to the manufacturing process, which has a negative impact on three-dimensional deformation.
- the present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.
- the orientation of the fibers in the front area of the belts running parallel to each other can be controlled.
- the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer.
- the ratio of parallel to vertical fibers can be controlled.
- the air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.
- the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.
- the density can be varied across the length of the fleece.
- the density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased.
- density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.
- the fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands.
- the fleece can be pre-compressed by changing the band gap.
- the fleece is preferably heated using hot air.
- the fleece can be heated using short-wave rays.
- the heating and cooling process differs.
- the fleece is heated so that all binding fibers are activated and the maximum mechanical properties are achieved when cold.
- the optimal parameters can be determined through preliminary tests.
- the fleece is then cooled with air and cut to size according to the subsequent use.
- Fig. 8 shows the compression hardness versus heating time for a 50 mm thick fleece.
- the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In picture 3, the first heating time would be sufficient for this fleece. Here, too, the fleece is then cooled and cut to size according to the subsequent use.
- the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.
- the fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts.
- the band gap can be changed via automatic or manual control.
- a conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.
- a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.
- tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.
- the two conveyor belts run parallel.
- the distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.
- the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.
- the air extraction area is divided across its width into individual, separately controllable areas.
- the control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.
- the fleece leaves the belt in a cooled state without being transferred to another transport system.
- the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.
- the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.
- the heat source can be designed, for example, in the form of a hot air stream.
- the fleece is heated using short-wave rays.
- the cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.
- the fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).
- Fig. 1 is a schematic representation of an embodiment with vertically oriented fibers 3 between two parallel, air-permeable conveyor belts 4, 4'.
- Fig. 2 shows a schematic representation of an embodiment of a nonwoven fabric board 2 having vertically oriented fibers 3.
- Fig. 3 shows a schematic representation of an embodiment of a nonwoven fabric production arrangement 1 with separate feed arrangements 5, 5' of carrier fibers and binding fibers, separate fiber openers 6, 6 ⁇ , common mixing system 7 and air-permeable conveyor belts 4, 4 ⁇ running parallel at the top and bottom.
- the fibers are each fed from the feed arrangement 5, 5' into a fiber opener 6, 6'.
- the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
- Fig. 4 shows a front view of a schematic representation of an exemplary embodiment of a fiber fleece production arrangement 1 with separate feed arrangements 5, 5 'of carrier fibers and binding fibers, separate fiber openers 6, 6', common mixing system 7 and air-permeable conveyor belts 4, 4' running parallel at the top and bottom.
- the fibers are each guided from the feed arrangement 5, 5' into a fiber opener 6, 6'.
- the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
- An air extraction system 8, 8', 81 - 8.10 on the outside of the air-permeable conveyor belts 4, 4' extracts air across the width of the fleece at different rates and at different times, and the fibers condense perpendicular to the surface of the conveyor belts at different densities.
- the start of the air extraction system 81 - 8.10 is at the beginning of the conveyor belts and the end of the air extraction system 82 is directly in front of the thermal bonding system area.
- a heat source 9 and a cooling source 10 are connected in series for thermal bonding.
- the finished fiber fleece is then further processed in subsequent production steps.
- FIG. 5 is a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, and a cooling source 10 and a subsequent conveyor belt 11 with cutting device 12.
- the finished fiber fleece boards 2 are collected in a product collection container 13.
- the end of the air extraction 82 is directly in front of the system area for thermal solidification with heat source 9 and cooling source 10.
- Fig. 6 shows a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, a subsequent conveyor belt 11 with cutting device 12 and three-dimensional molded parts 14.
- the lower half of a three-dimensional molded part 14 is moved along under the warm and therefore easily formable fiber fleece boards 2.
- the conveyor belt 11 ends the sections are placed individually on the lower three-dimensional molded part halves.
- the upper molding halves are then pressed with a fixed pressure onto the lower molding halves, each filled with a fiber fleece board 2, and the fiber fleece board 2 is thus formed.
- the heated fiber fleece blanks formed in the three-dimensional molded parts 14 are cooled in the lower halves of the three-dimensional molded parts 14 before being transferred to a product collection container 13. A fully formed fiber fleece product is obtained.
- Fig. 7 shows a possible density distribution for floor insulation in a passenger car.
- the density is higher for this example at 70 kg/m 3 , in the tunnel and under the seats at 30 kg/m 3 .
- Fig. 8 the compression hardness depending on the heating time.
- Fig. 9 the suction of the fibers in two belts running at the same speed in such a way that the fibers are sucked in parallel to the belts is shown.
- Fig. 12 shows the arrangement of the suction with spatially different suction along the belts on the top and bottom and the arrangement of the fibers in the belts.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
Description
Die Erfindung betrifft ein kontinuierliches Faservlies-Herstellungsverfahren sowie die zugehörige Faservlies-Herstellungsanordnung und Faservliesplatine aus Fasergemischen von Trägerfasern und Bindefasern.The invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.
Ein Faservlies ist eine Struktur aus Fasern begrenzter Länge, Filamenten oder geschnittenen Garnen. Da für Faservliese eine Vielzahl an Rohstoffen genutzt werden können und es eine Vielzahl an Herstellungsverfahren gibt, können Faservliese einem breiten Spektrum von Anwendungsanforderungen gezielt angepasst werden.A non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.
So gibt es Faservliese mit mehreren Kilogramm Gewicht pro Quadratmeter für Isolationenp und auch Vliese mit weniger als einem Gramm Gewicht pro Quadratmeter, sogenannte Nanovliese.There are fiber fleeces with a weight of several kilograms per square meter for insulation and also fleeces with a weight of less than one gram per square meter, so-called nanofleeces.
Entsprechend den Anforderungen unterscheiden sich die Faservliese in ihrem Aufbau.The fiber fleeces differ in their structure depending on the requirements.
Faservliese mit hoher Absorption beispielsweise sind dicht, haben einen hohen Strömungswiderstand und bestehen aus dünnen oder sehr dünnen Fasern. Eine spezielle Ausführung davon sind Meltblow Faservliese. Im Meltblown Verfahren wird der aus der Düse austretende Polymerstrang unmittelbar durch heiße, in Austrittsrichtung der Filamente strömende Luft verstreckt. Die durch den Luftstrom verwirbelten Fasern werden auf einem Siebband abgelegt. Durch die Ablage kann ein feines Vlies aus verschlauften Polymerfasern erzeugt werden.For example, nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers. A special version of these is meltblown nonwovens. In the meltblown process, the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit. The fibers swirled by the air flow are deposited on a sieve belt. The deposition process can produce a fine nonwoven made of entangled polymer fibers.
Elektrostatisch gebildete Vliese entstehen durch die Bildung und Ablage von Fasern aus Polymerlösungen oder -schmelzen unter Einwirkung eines elektrischen Felds.Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.
Faservliese zur Wärmeisolation hingegen sind voluminöser. Bekannt sind auch Kopplungen von Meltblowvliesen mit Stapelfasern um eine voluminöse Struktur zu erzeugen.Nonwovens for thermal insulation, on the other hand, are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.
Wenn Faservliese einer mechanischen Belastung unterliegen und elastische Eigenschaften aufweisen, so haben sie bevorzugt in Belastungsrichtung ausgerichtete Fasern. Solche Vliesisolationen werden beispielsweise in Fahrzeugen unter dem Teppich oder hinter der Stirnwand eingesetzt oder auch für die Herstellung von luftdurchlässigen Matratzen verwendet.If nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress. Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.
Die Fasern können im Faservlies unterschiedlich orientiert sein. Üblicherweise liegen sie mehr oder weniger parallel zur Oberfläche. Es wird zwischen orientierten Vliesen, bei denen die Fasern sehr stark in eine Richtung orientiert sind, Kreuzlage-Vliesen, bei denen durch ein Übereinanderlegen von einzelnen Faserfloren oder Vliesen mit einer Längsorientierung der Fasern zum Gesamtvlies mittels Kreuzlegern die Fasern vorzugsweise in zwei Richtungen orientiert sind und Wirrlage-Vliesen, bei denen die Fasern beziehungsweise die Filamente jede beliebige Richtung einnehmen können, unterschieden.The fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.
Im Stand der Technik wird bei der Herstellung von Faservliesen aus Stapelfasern zwischen verschiedenen Herstellungsverfahren unterschieden. Mechanisch gebildete Vliese sind solche, die mittels Karde oder Krempeln oder in Airlayverfahren hergestellt werden. Beim Karde- oder Krempelverfahren handelt es sich um ein trockenes Herstellungsverfahren bei dem mehrere Lagen Vliese übereinandergelegt werden. Die Fasern liegen zumeist flächig, parallel zur Oberfläche. Es entstehen je nach Ablageart der Vliese orientierte Vliese oder Kreuzlagevliese. Werden spezielle Krempel verwendet, so können auch Wirrlagevliese gebildet werden.In the prior art, a distinction is made between different manufacturing processes in the production of nonwovens from staple fibers. Mechanically formed nonwovens are those that are produced using carding or carding or using airlay processes. The carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.
Aerodynamisch gebildete Vliese sind solche, die aus Fasern mittels eines Luftstroms auf einer luftdurchlässigen Unterlage gebildet werden. Werden die Vliese über Airlayanlagen hergestellt, so werden die Fasern auf ein luftdurchlässiges Band abgesaugt und liegen in der Fläche orientiert. Je nach Ablage und Bandtransportgeschwindigkeit entsprechend können die Fasern bis zu einem Winkel zwischen 70° und 80° zur Oberfläche aufgestellt werden ohne dabei jedoch vollständig senkrecht zu stehen. Hierbei nehmen die Fasern an beiden Oberflächen einen entgegengesetzten Winkel ein, was eine starke Krümmung der Fasern bewirkt.Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.
Bei hydrodynamisch gebildeten Vliesen werden Fasern in Wasser aufgeschwemmt und auf einer wasserdurchlässigen Unterlage abgelegt. Dieses Verfahren wird auch als Nassverfahren bezeichnet.In hydrodynamically formed nonwovens, fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.
Senkrecht zur Oberfläche stehende Fasern können mit dem Struto-Verfahren, welches auch als Wavemacker- oder V-Lap-Verfahren bezeichnet wird, erhalten werden. Es handelt sich hierbei um ein Verfahren bei dem aus einem gekardeten Vlies mit horizontaler Faserlage ein flächiges Vlies mit senkrechten Falten erzeugt wird.Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.
Als Verfahren zur anschließenden Verfestigung der auf oben beschriebene Weise entstandenen Vliese sind unterschiedliche Möglichkeiten bekannt, wie die Möglichkeit eines Reibschlusses oder der Kombination eines Reib- und eines Formschlusses auf mechanische Art und Weise oder die Möglichkeit eines Stoffschlusses, welcher sowohl chemisch durch Zugabe eines Bindemittels als auch thermisch über den Einsatz von Thermoplasten erzielt werden kann. Das meistangewandte Verfahren für die Verfestigung ist der Einsatz von Thermoplasten in Form von niedrig schmelzendem Kunststoff, bevorzugt in Faserform. Diese sogenannten Bindefasern haben einen Schmelzbereich von 100 - 200 °C und liegen bevorzugt als Kompaktfaser oder als Bikomponentenfaser vor.Various options are known as methods for the subsequent solidification of the nonwovens created in the manner described above, such as the possibility of a frictional connection or the combination of a frictional and a positive connection in a mechanical manner or the possibility of a material connection, which is achieved both chemically by adding a binder and can also be achieved thermally through the use of thermoplastics. The most commonly used method for solidification is the use of thermoplastics in the form of low-melting plastic, preferably in fiber form. These so-called binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.
Die Druckschrift
Ferner ist aus der Druckschrift
In der Druckschrift
In der Druckschrift
Weiter offenbart die Druckschrift
Von der Firma Cormatex ist eine Anlage bekannt die die Fasern in einen Kanal ablegt und auch seitlich absaugt.The Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.
Die Probleme im Stand der Technik sind, dass alle Verfahren zur Herstellung von Faservliesplatinen aus Stapelfasern mit senkrecht zur Oberfläche orientierten Fasern im Rahmen der Streuung eine gleiche Dichte längs und quer der Platine haben.The problems in the prior art are that all processes for producing nonwoven fiber boards from staple fibers with fibers oriented perpendicular to the surface have an equal density along and across the board during scattering.
Weitere Nachteile bestehen in der offenbarten Technologie der Druckschrift
In den Offenbarungen der Druckschriften
Die Verfahren, die zur Herstellung von Faservliesplatinen nach dem Airlay Prinzip arbeiten, (
Nachteilig für alle diese Verfahren mit gleicher Dichte über die Breite und die Länge, ist, dass nach einer Formgebung mit unterschiedlichen Dicken, in den dünnen Bereichen die Dichte deutlich höher als im Ausgangsmaterial ist. Dies führt zum einen zu einem höheren Gewicht und zum anderen werden die dünnen Bereiche steifer und oft weniger akustisch wirksam.The disadvantage of all of these processes with the same density across the width and length is that after shaping with different thicknesses, the density in the thin areas is significantly higher than in the starting material. On the one hand, this leads to a higher weight and, on the other hand, the thin areas become stiffer and often less acoustically effective.
Vlies nach einem bekannten Airlay-Verfahren hergestellt (
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfaches und effizientes, wirtschaftliches, kontinuierliches, aerodynamisches Herstellungsverfahren sowie eine Anordnung zur Produktion von Faservliesen mit senkrecht zur Oberfläche orientierten Fasern und definierter Faserorientierung und bevorzugt auch Dichteverteilung über die Länge und Breite des Faservlieses und ein entsprechendes Vlies hierzu bereitzustellen.The present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.
Gelöst wird diese Aufgabe mit einem kontinuierlichen Faservlies-Herstellungsverfahren aus Fasergemischen von Trägerfasern und Bindefasern gemäß Hauptanspruch sowie einer zugehörigen Faservlies-Herstellungsanordnung und Faservliesplatine gemäß nebengeordneten Ansprüchen. Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.This object is achieved with a continuous nonwoven fabric production process from fiber mixtures of carrier fibers and binding fibers according to the main claim and an associated nonwoven fabric production arrangement and nonwoven fabric board according to the independent claims. Further advantageous embodiments can be found in the subclaims.
Das kontinuierliche Faservlies-Herstellungsverfahren aus Fasergemischen von Trägerfasern und Bindefasern umfasst die Schritte:
- a. Zuführen von Fasern;
- b. Auflösen / -kämmen und Öffnen der Fasern;
- c. Mischen der Fasern;
- d. Einsaugen der Fasern zwischen zwei sich gegenüberliegenden, mit gleicher Geschwindigkeit laufenden, luftdurchlässigen Transportbändern, in der Art, dass die Luft von außen im vorderen Abschnitt der Transportbänder, so abgesaugt wird, dass der Luftstrom durch zeitliche und über die Breite örtlich unterschiedliche Luftabsaugung immer durch das abgelegte Vliesmaterial parallel zu den Transportbändern abgesaugt wird, und damit das Faservlies senkrecht zur Oberfläche der Transportbänder angelagert ist;
- e. thermisches Verfestigen des entstandenen Faservlieses durch Erwärmen mittels Heißluft oder kurzwelliger Strahlung und Kühlen.
- a. Addition of fibres;
- b. dissolving/combing and opening the fibres;
- c. Mixing the fibres;
- d. Suction of the fibres between two opposing, at the same speed running, air-permeable conveyor belts, in such a way that the air is sucked out from outside in the front section of the conveyor belts in such a way that the air flow is always sucked out through the laid down nonwoven material parallel to the conveyor belts by means of air suction that varies over time and across the width, and so that the fiber fleece is deposited perpendicular to the surface of the conveyor belts;
- e. thermal consolidation of the resulting nonwoven fabric by heating with hot air or short-wave radiation and cooling.
Je nach Luftführung kann die Orientierung der Fasern im vorderen Bereich der parallel zueinander laufenden Bänder gesteuert werden. Bei einem Absaugen der Fasern direkt am Anfang der Bänder lagern sich die Fasern bevorzugt parallel zu den Bändern an und bilden eine Schicht. Je nach Menge der abgesaugten Luft kann das Verhältnis von parallel liegenden zu senkrecht liegenden Fasern gesteuert werden.Depending on the air flow, the orientation of the fibers in the front area of the belts running parallel to each other can be controlled. When the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer. Depending on the amount of air extracted, the ratio of parallel to vertical fibers can be controlled.
Die Luftabsaugung kann im vorderen Bereich der Transportbänder, vom Anfang der Transportbänder entlang der Bänder verschoben werden. Damit ist es möglich, die Orientierung der Fasern von parallel zu den Transportbändern zu einer senkrechten Ausrichtung der Fasern zu den Transportbändern zu verändern.The air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.
Wenn auf beiden Seiten der Transportbänder der Saugbereich entlang der Bänder unterschiedlich ist, können Platinen mit einer Schicht parallel zu den Bändern liegende Fasern erzeugt werden.If the suction area along the belts is different on both sides of the conveyor belts, boards with a layer of fibers lying parallel to the belts can be produced.
Um ein flächiges Ablegen der Fasern auf den Bändern zu verhindern, wird die Füllmenge und die Bandgeschwindigkeit so gesteuert, dass die Faserkondensation immer direkt am Anfang der Bänder liegt.In order to prevent the fibers from being deposited flat on the belts, the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.
Über die Steuerung des Prozesses beim Anfahren kann die Parallellagerung der Fasern an den Bändern verhindert werden, was deutliche Vorteile bei der Verformung des Vlieses bringt.By controlling the process during start-up, the parallel positioning of the fibers on the belts can be prevented, which brings significant advantages when forming the fleece.
Im Anfahrprozess wird der Vliesaufbau gestoppt bis das Band gefüllt ist und dann der Prozess kontinuierlich fortgeführt (vgl. auch
Mit einer zeitlich variierenden Saugleistung kann über die Vlieslänge die Dichte variiert werden. Über die Bandgeschwindigkeit der Transportbänder können die Dichte und damit die Eigenschaften des entstehenden Faservlieses mit eingestellt werden. Werden Saugleistung und Bandgeschwindigkeit gekoppelt wird der zu erzielende Effekt der gewünschten Dichte und Eigenschaftsänderung verstärkt. Durch eine örtlich und zeitlich unterschiedliche Intensität der Saugleitung über die Breite des Faservlieses ist eine Dichteverteilung auch über die Breite möglich. Damit können Vlies mit örtlich begrenzten Dichteunterschieden längs und quer innerhalb einer Platine hergestellt werden.With a suction power that varies over time, the density can be varied across the length of the fleece. The density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased. By varying the intensity of the suction line locally and over time across the width of the fiber fleece, density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.
Durch einen definiert einstellbaren Abstand der Bänder zueinander kann die Vliesdicke im Bereich von 5 mm bis 100 mm eingestellt werden. Über eine Veränderung des Bandabstandes kann das Vlies vorkomprimiert werden.The fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands. The fleece can be pre-compressed by changing the band gap.
Die Erwärmung des Vlieses erfolgt bevorzugt mittels Heißluft. In einer Variante kann die Erwärmung des Vlieses über kurzwellige Strahlen erfolgen.The fleece is preferably heated using hot air. In one variant, the fleece can be heated using short-wave rays.
Je nach weiterer Verwendung des Vlieses unterscheidet sich der Durchwärmungs- und Abkühlungsprozess.Depending on the further use of the fleece, the heating and cooling process differs.
In einer ersten Ausführung wird das Vlies so durchgewärmt, dass alle Bindefasern aktiviert wurden und im kalten Zustand die maximalen mechanischen Eigenschaften erreicht werden. Durch Vorversuche können die optimalen Parameter bestimmt werden. Im nachfolgenden wird das Vlies mit Luft gekühlt und entsprechend dar nachfolgenden Verwendung auf Maß geschnitten.
In einer weiteren Ausführung, wird das Vlies nur kurzzeitig erwärmt, die Vliesfestigkeit ist dann so eingestellt, dass das Vlies transportier und stapelbar ist. Im Bild 3 würden für dieses Vlies die erste Heizzeit reichen. Auch hier wird das Vlies anschließend gekühlt und entsprechend der nachfolgenden Verwendung auf Maß geschnitten.In another version, the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In
In einer weiteren speziellen Ausführung wird das Vlies vollständig erwärmt und im durchgewärmten Zustand direkt in eine Endform zum Verformen und Kühlen abgelegt und so ein fertiges Bauteil produziert.In another special version, the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.
Die Faservlies-Herstellungsanordnung weist eine Zufuhranordnung für Trägerfasern, eine Zufuhranordnung für Bindefasern, wenigstens eine Auflöse- / -kämmanordnung oder einen Faseröffner zum Aufkämmen, Vereinzeln, Lockern und Lösen der Träger- und / oder Bindefasern, wenigstens ein Mischsystem zum Durchmischen der gelösten Fasern, sowie weiter ein Transportsystem mit Luftabsaugung im vorderen Abschnitt des Transportsystems zur Ausrichtung und Ablage der Fasern bestehend aus Luftleitkanälen und Drucksteuerdüsen und mit einer Wärmequelle im hinteren Abschnitt des Transportsystems mit nachfolgender Kühlquelle zur thermischen Verfestigung des entstandenen Faservlieses; wobei der vordere Abschnitt des Transportsystems mit Luftabsaugung aus sich gegenüberliegenden, mit gleicher Geschwindigkeit laufenden, luftdurchlässigen Transportbändern besteht und die gelösten und gemischten Fasern zwischen den sich gegenüberliegenden Transportbändern eingesaugt werden und sich die Fasern aufgrund der Luftabsaugung in unterschiedlicher Dichte über die Breite und Länge des Faservlieses von außen an den Transportbändern senkrecht zu den Transportbändern anordnen. Über eine automatische oder manuelle Steuerung kann der Bandabstand verändert werden.The fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts. The band gap can be changed via automatic or manual control.
Nachfolgend kann an das Transportsystem mit Luftabsaugung und Wärmequelle ein Förderband zum Abtransport des Faservlieses angeordnet sein.A conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.
Weiter kann an dem Förderband eine Schneidevorrichtung zum Längs- und Querschneiden gekoppelt sein.Furthermore, a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.
Weiter können nachfolgend an das Förderband und die Schneidevorrichtung Werkzeuge mit dreidimensionaler Kontur zur Herstellung von Formteilen angeordnet sein.Furthermore, tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.
Bevorzugt laufen die beiden Transportbänder parallel. Gezielt kann der Abstand der luftdurchlässigen Transportbänder geändert und damit die Vliesdicke eingestellt werden.Preferably, the two conveyor belts run parallel. The distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.
In einer weiteren Ausführung kann der Abstand der Bänder zueinander über ihre Länge verringert und somit das Vlies vorkomprimiert werden.In a further embodiment, the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.
Der Luftabzugsbereich ist über die Breite in einzelne getrennt ansteuerbare Bereiche unterteilt. Die Steuerung kann dabei über Querschnittsänderungen bei gleiche Saugdruck oder über eine Änderung des Saugdrucks erfolgen.The air extraction area is divided across its width into individual, separately controllable areas. The control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.
In Koppelung mit der Bandgeschwindigkeit und des zentralen Saugdrucks können Vlies mit definiert örtlich unterschiedlichen Dichten erzielt werden.In conjunction with the belt speed and the central suction pressure, fleece with defined, locally different densities can be achieved.
In einer ersten Ausführung verlässt das Vlies ohne Übergabe in ein anderes Transportsystem das Band im erkalteten Zustand.In a first embodiment, the fleece leaves the belt in a cooled state without being transferred to another transport system.
In einer anderen Ausführung wird das erwärmte Vlies in Platinenabschnitte geschnitten, in die untere Hälfte eines 3 - D Formwerkzeuges, welche unten entlanggefahren wird abgelegt, das Werkzeug mit der Werkzeugoberhälfte geschlossen, das Produkt in die Endform verpresst und das dreidimensionale geformte Produkt abgekühlt.In another embodiment, the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.
Weiter kann die Kühlquelle für die thermische Verfestigung nachfolgend an die Wärmequelle im hinteren Abschnitt des Transportsystems oder den Inhalt des dreidimensionalen Formteils kühlend angeordnet sein.Furthermore, the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.
Als Wärmequelle und auch Kühlquelle für die thermische Verfestigung können verschiedene Ansätze gewählt werden. Die Wärmequelle kann beispielsweise in Form eines Heißluft-Luftstromes ausgebildet sein. In einer besonderen Ausführung wird das Vlies mittels kurzwelliger Strahlen erwärmt.Various approaches can be chosen as a heat source and also a cooling source for thermal solidification. The heat source can be designed, for example, in the form of a hot air stream. In a special version, the fleece is heated using short-wave rays.
Die Kühlung das Vlieses kann über Kaltluft oder über Kontakt, bevorzugt im 3-D Formwerkzeug erfolgen.The cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.
Die Faservliesplatine besitzt insbesondere, wenn sie entsprechend hergestellt wurde (mittels des erfindungsgemäßen Verfahrens und/oder mittels der Anordnung) eine definierte Dichteverteilung über die Länge und die Breite.The fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der beiliegenden Zeichnungen in der Abbildungsbeschreibung detailliert beschrieben, wobei diese die Erfindung erläutern sollen und nicht zwingend beschränkend zu werten sind:
Es zeigen:
- Abb. 1
- eine schematische Darstellung eines Ausführungsbeispiels der senkrechten Ausrichtung der Fasern zwischen zwei parallel verlaufenden, luftdurchlässigen Transportbändern;
- Abb. 2
- eine schematische Darstellung eines Ausführungsbeispiels einer Faservliesplatine;
- Abb. 3
- eine schematische Darstellung eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung mit getrennten Zufuhranordnungen von Trägerfasern und Bindefasern, gemeinsamen Mischsystem und parallel verlaufenden, luftdurchlässigen Transportbändern;
- Abb. 4
- eine schematische Darstellung einer über die Breite differenzierte Luftführung und -saugung;
- Abb.5
- eine schematische Darstellung eines Ausführungsbeispiels des hinteren Abschnittes einer Faservlies-Herstellungsanordnung mit parallel verlaufenden, luftdurchlässigen Transportbändern, einer Wärmequelle, einer Kühlquelle und einer Zerschneidevorrichtung;
- Abb. 6
- eine schematische Darstellung eines Ausführungsbeispiels des hinteren Abschnittes einer Faservlies-Herstellungsanordnung mit parallel verlaufenden, luftdurchlässigen Transportbändern, einer Wärmequelle, einer Zerschneidevorrichtung und einem dreidimensionalen Formteil;
- Abb. 7
- eine mögliche Dichteverteilung für eine Bodenisolation eines Personenkraftwagens;
- Abb. 8
- die Stauchhärte in Abhängigkeit von der Durchwärmzeit;
- Abb. 9
- das Einsaugen der Fasern in zwei mit gleicher Geschwindigkeit laufenden Bändern in der Art, dass die Fasern parallel zu den Bändern eingesaugt werden;
- Abb. 10
- die Steuerung der Faser-Füllung bei Produktionsbeginn;
- Abb. 11
- die Faseranordnung in den Bändern bei kontinuierlicher Produktion und
- Abb. 12
- die Faseranordnung in den Bändern bei räumlich unterschiedlicher Faserabsaugung entlang der Bänder im vorderen Bereich.
Show it:
- Fig. 1
- a schematic representation of an embodiment of the vertical alignment of the fibers between two parallel, air-permeable conveyor belts;
- Fig. 2
- a schematic representation of an embodiment of a nonwoven fabric board;
- Fig. 3
- a schematic representation of an embodiment of a nonwoven fabric production arrangement with separate feed arrangements for carrier fibers and binding fibers, a common mixing system and parallel, air-permeable conveyor belts;
- Fig. 4
- a schematic representation of air flow and suction differentiated across the width;
- Fig.5
- a schematic representation of an embodiment of the rear section of a nonwoven fabric production arrangement with parallel, air-permeable conveyor belts, a heat source, a cooling source and a cutting device;
- Fig. 6
- a schematic representation of an embodiment of the rear section of a nonwoven fabric production arrangement with parallel, air-permeable conveyor belts, a heat source, a cutting device and a three-dimensional molded part;
- Fig. 7
- a possible density distribution for floor insulation of a passenger car;
- Fig. 8
- the compression hardness as a function of the heating time;
- Fig. 9
- the suction of the fibres in two belts running at the same speed in such a way that the fibres are sucked in parallel to the belts;
- Fig. 10
- controlling the fiber filling at the start of production;
- Fig. 11
- the fiber arrangement in the ribbons during continuous production and
- Fig. 12
- the fiber arrangement in the bands with spatially different fiber suction along the bands in the front area.
An dieser Stelle soll darauf hingewiesen werden, das funktionsgleiche Bauteile mit einheitlichen Bezugszeichen versehen sind.At this point it should be noted that components with the same function are provided with the same reference symbols.
In
Über ein System aus mehreren Ventilatoren 15-1 - 15-4 wird der Luft-, Faserstrom über einen Umlenkkanal 16 in die zwei parallelen, luftdurchlässigen Transportbändern 4, 4` geführt.Using a system consisting of several fans 15-1 - 15-4, the air and fiber flow is guided via a
Über eine Luftabsaugung 8, 8' ,81 - 8.10 von außen an den luftdurchlässigen Transportbändern 4, 4` wird über die Vliesbreite mit unterschiedlicher Stärke auch zeitlich veränderlich abgesaugt und die Fasern kondensieren senkrecht zur Oberfläche der Transportbänder in unterschiedlicher Dichte. Der Start der Luftabsaugung 81- 8.10 ist am Anfang der Transportbänder ausgeführt und das Ende der Luftabsaugung 82 liegt direkt vor dem Anlagenbereich für die thermische Verfestigung. Für die thermische Verfestigung sind eine Wärmequelle 9 und eine Kühlquelle 10 hintereinandergeschaltet. Anschließend wird das fertige Faservlies in nachfolgenden Produktionsschritten weiterverarbeitet.An
In
In
Weiter ist in der
- 11
- Faservlies-HerstellungsanordnungNonwoven fabric manufacturing arrangement
- 22
- FaservliesplatineFiber fleece board
- 33
- Senkrecht orientierte FasernVertically oriented fibers
- 4, 4'4, 4'
- luftdurchlässiges Transportbandair-permeable conveyor belt
- 5, 5`5, 5`
- ZufuhranordnungFeed arrangement
- 6, 6`6, 6`
- FaseröffnerFiber opener
- 7, 7`7, 7`
- MischsystemMixing system
- 8, 8`8, 8`
- Luftabsaugung 8-1 - 8-10Air extraction 8-1 - 8-10
- 8181
- Start LuftabsaugungStart air extraction
- 8282
- Ende LuftabsaugungEnd of air extraction
- 99
- Wärmequelleheat source
- 1010
- KühlquelleCooling source
- 1111
- FörderbandConveyor belt
- 1212
- Schneidevorrichtungcutting device
- 1313
- ProduktsammelbehälterProduct collection container
- 1414
- Dreidimensionales FormteilThree-dimensional molded part
- 15-1 -15 -415-1 -15 -4
- Ventilatoren zur LuftsteuerungFans for air control
- 1616
- Umlenkkanaldeflection channel
Claims (13)
- Method for the production of a continuous nonwoven fabric from fiber mixtures of carrier fibers and binding fibers,
comprising the steps of:a. Feeding fibers;b. Breaking up / combing and opening the fibers;c. Mixing of the fibers;d. Sucking in the fibers between two opposing air-permeable conveyor belts running at the identical speed, such that the air in the front section of the conveyor belts is sucked from the outside in such a way that the air flow is always sucked through the deposited nonwoven fabric parallel to the conveyor belts by temporally and locally varying air suction over the width, and thus the fibers are deposited perpendicular to the surfaces of the conveyor belts;e. Thermal bonding of the created nonwoven fiber by heating by means of hot air or short-wave radiation and cooling. - A nonwoven fabric manufacturing method according to claim 1,
characterized in that
the suction power at the opposing, air-permeable conveyor belts (4, 4') is identical in each case. - A nonwoven fabric manufacturing method according to claim 1,
characterized in that
the suction power along the conveyor belt is different at the opposing, air-permeable conveyor belts (4, 4'). - A nonwoven fabric production method according to any one of claims 1 to 3,
characterized in that
the suction power and/or the belt speed of the conveyor belts is adjusted over the production cycle according to a predetermined system, whereby a local and temporal variation can be realized. - A nonwoven fabric manufacturing method according to one of the preceding claims,
characterized in that
the belt speed of the conveyor belts and the suction power of the air extraction system are coupled to each other. - A nonwoven fabric manufacturing method according to any one of the preceding claims,
characterized in that
the distance between the belts is adjustable. - A nonwoven fabric manufacturing method according to one of the preceding claims,
characterized in that the
heating of the nonwoven is carried out via hot air and/or short-wave radiation. - A nonwoven fabric manufacturing apparatus (1) comprising:- a supply arrangement (5, 5') for carrier fibers;- a supply arrangement (5, 5') for binder fibers;- at least one opening arrangement or opening/loosening combing arrangement or at least one fiber opener (6, 6') for combing, separating, loosening and detaching the carrier fibers and/or binder fibers;- at least one mixing system (7, 7') for mixing the loosened or detached fibers;- a transport system- with air suction (8, 8') in the front section of the transport system for aligning and
depositing the fibers consisting of air guide channels and pressure control nozzles (15-1 - 15 - 4)
and- with a heat source (9) in the rear section of the transport system with subsequent cooling source (10) for thermal bonding of the resulting nonwoven fabric,whereinthe front section of the transport system with air suction (8, 8') consists of opposing airpermeable conveyor belts (4, 4') running at the same speed, and the loosened andmixed fibers are conveyed between the opposing conveyor belts, and the fibers are arranged in different density over the width and length of the nonwoven fabric on the transport belts perpendicular to the conveyor belts due to the air suction (8, 8') (8-1 -8-10) from the outside. - A nonwoven fabric manufacturing apparatus (1) according to the preceding claim,
characterized in that
a conveyor belt (11) for transporting away the nonwoven fiber is arranged downstream of the transport system with air suction (8, 8') and heat source (9). - A nonwoven fabric manufacturing apparatus (1) according to one of the two preceding claims,
characterized in that a
cutting device (12) for dividing the nonwoven fabric into sections / nonwoven fiber sheets or blanks is located on the conveyor belt (11). - A nonwoven fabric manufacturing apparatus (1) according to one of the three preceding claims,
characterized in that
three-dimensional moldings (14) are arranged downstream of the conveyor belt (11) and the cutting device (12). - A nonwoven fabric manufacturing apparatus (1) according to any one of the four preceding claims,
characterized in that
the cooling source (10) for thermal bonding and consolidation is arranged- downstream of the heat source (9) in the rear section of the transport system
or- for cooling the content of the three-dimensional molded part (14). - A nonwoven fabric sheet or board produced by means of a nonwoven fabric production method according to one of claims 1 to 7 or produced by means of a nonwoven fabric manufacturing apparatus (1) according to one of the five preceding claims,
characterized in that
the nonwoven fabric sheet has a defined density distribution over the length and the width.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020116315.0A DE102020116315A1 (en) | 2020-06-19 | 2020-06-19 | Continuous fiber fleece manufacturing process as well as associated fiber fleece manufacturing arrangement and fiber fleece board |
PCT/DE2021/100511 WO2021254565A1 (en) | 2020-06-19 | 2021-06-15 | Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4168616A1 EP4168616A1 (en) | 2023-04-26 |
EP4168616C0 EP4168616C0 (en) | 2024-04-03 |
EP4168616B1 true EP4168616B1 (en) | 2024-04-03 |
Family
ID=76744573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21736967.7A Active EP4168616B1 (en) | 2020-06-19 | 2021-06-15 | Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230228018A1 (en) |
EP (1) | EP4168616B1 (en) |
KR (1) | KR20230024992A (en) |
CN (1) | CN116134190A (en) |
DE (1) | DE102020116315A1 (en) |
WO (1) | WO2021254565A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023104422A1 (en) | 2023-02-23 | 2024-08-29 | Adler Pelzer Holding Gmbh | Process for producing sound insulation |
DE102023118049A1 (en) | 2023-07-07 | 2025-01-09 | Adler Pelzer Holding Gmbh | Floor covering for motor vehicles and process for their manufacture |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5503782A (en) | 1993-01-28 | 1996-04-02 | Minnesota Mining And Manufacturing Company | Method of making sorbent articles |
CA2136273C (en) | 1994-11-21 | 2001-11-20 | Serge Cadieux | Fiber mat forming method, machine and product |
US6588080B1 (en) * | 1999-04-30 | 2003-07-08 | Kimberly-Clark Worldwide, Inc. | Controlled loft and density nonwoven webs and method for producing |
US7476632B2 (en) | 2002-11-15 | 2009-01-13 | 3M Innovative Properties Company | Fibrous nonwoven web |
DE10311439A1 (en) * | 2003-03-15 | 2004-09-23 | Saurer Gmbh & Co. Kg | Assembly to spin and lay bands of melt spun filaments, for the production of nonwovens, has a filament take-off and spaced guide rollers with continuous belt extensions, to gather the filaments on a sieve laying surface |
JP5065055B2 (en) | 2005-03-02 | 2012-10-31 | ヴィー−ラップ ピーティーワイ. エルティーディー. | Textile wrap equipment |
WO2007016879A1 (en) * | 2005-08-06 | 2007-02-15 | ERKO Trützschler GmbH | Device and method for blow-moulding a fibre moulding |
FR2922901B1 (en) | 2007-10-25 | 2010-03-26 | Elysees Balzac Financiere | METHOD AND DEVICE FOR CONTINUOUSLY MANUFACTURING 3D FIBROUS PATCHES; THESE TABLETS AND THEIR USES. |
DE102010034159A1 (en) | 2010-08-10 | 2012-02-16 | Grimm-Schirp Gs Technologie Gmbh | Apparatus, useful to produce molded fiber article (used e.g. as cushioning material), comprises pneumatic fiber supply device associated with heating device having a heat exchanger, and a mold provided with a flow passage hole on one side |
US20130137330A1 (en) * | 2010-08-10 | 2013-05-30 | Heinrich Grimm | Device and Method for Producing a Molding Pulp Part and Molding Pulp Part |
DE202016105337U1 (en) * | 2016-09-26 | 2018-01-17 | Autefa Solutions Germany Gmbh | Aerodynamic web forming device |
-
2020
- 2020-06-19 DE DE102020116315.0A patent/DE102020116315A1/en not_active Withdrawn
-
2021
- 2021-06-15 KR KR1020237001533A patent/KR20230024992A/en active Pending
- 2021-06-15 EP EP21736967.7A patent/EP4168616B1/en active Active
- 2021-06-15 US US18/010,047 patent/US20230228018A1/en active Pending
- 2021-06-15 CN CN202180060287.5A patent/CN116134190A/en active Pending
- 2021-06-15 WO PCT/DE2021/100511 patent/WO2021254565A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP4168616C0 (en) | 2024-04-03 |
KR20230024992A (en) | 2023-02-21 |
CN116134190A (en) | 2023-05-16 |
WO2021254565A1 (en) | 2021-12-23 |
DE102020116315A1 (en) | 2021-12-23 |
EP4168616A1 (en) | 2023-04-26 |
US20230228018A1 (en) | 2023-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2630287B1 (en) | Method and apparatus for producing a composite nonwoven | |
DE60030120T2 (en) | METHOD FOR THE PRODUCTION OF A NONWOVEN MATERIAL, APPARATUS FOR CARRYING OUT THIS METHOD, NONWOVEN MATERIAL MANUFACTURED | |
EP1726700B1 (en) | Process and device for making a nonwoven fabric | |
EP3118361B1 (en) | Installation and method for making a multi-layer nonwoven fabric from at least one loose fibre web | |
DE68915305T2 (en) | Nonwoven article made of heat-resistant material, process for producing the same and device for carrying out the process. | |
EP1930492A1 (en) | Method and apparatus for making a spunbonded nonwoven fabric | |
EP2128320B1 (en) | Method and device for the manufacture of nonwoven material from filaments | |
EP4168616B1 (en) | Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board | |
DE1157513B (en) | Process for the manufacture of a mat from endless threads or staple fibers | |
DE4244904C2 (en) | Bulky, nonwoven fleeces mfr., with stabilised surfaces | |
EP3110997B1 (en) | Carding apparatus and carding method | |
EP3061855B1 (en) | Roller card and method for fixing at least one fibre web | |
EP2480709B1 (en) | System and method for producing glass fiber fibrous non-woven fabric, and fibrous non-woven fabric produced using same | |
EP3450603B1 (en) | Method for forming a profiled non-woven fabric | |
EP2695980A1 (en) | Feeding device for fibers or flocks | |
DE10329648B4 (en) | Device for web formation | |
DE69312763T2 (en) | Method for corrugating and connecting or thermally connecting filler material and filler material produced thereby. | |
EP1057906A1 (en) | Web producing installation and method | |
EP2509759B1 (en) | Intermediate product and method for producing an intermediate product for a fiber composite component | |
WO2008074665A1 (en) | Method of, and apparatus for, producing a nonwoven | |
WO2001014623A2 (en) | Method and device for influencing the structure and position of fibres during the aerodynamic formation of non-wovens | |
EP3450604B1 (en) | Method for forming a profiled, solidified nonwoven fabric product | |
DE102016113721A1 (en) | Flannel-based web-shaped textile with unidirectionally increased strength | |
EP1726699A1 (en) | Process and device for making a nonwoven fabric | |
WO2023104365A1 (en) | System and method for producing a single-layer or multi-layer nonwoven |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D04H 1/542 20120101ALI20231006BHEP Ipc: D04H 1/54 20120101ALI20231006BHEP Ipc: D04H 1/74 20060101ALI20231006BHEP Ipc: D04H 1/732 20120101AFI20231006BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003226 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240418 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240425 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 4 Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240702 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240703 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240704 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021003226 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20250106 |