[go: up one dir, main page]

EP4127468A1 - Bobinage inducteur pour moteur a plasma stationnaire - Google Patents

Bobinage inducteur pour moteur a plasma stationnaire

Info

Publication number
EP4127468A1
EP4127468A1 EP21732367.4A EP21732367A EP4127468A1 EP 4127468 A1 EP4127468 A1 EP 4127468A1 EP 21732367 A EP21732367 A EP 21732367A EP 4127468 A1 EP4127468 A1 EP 4127468A1
Authority
EP
European Patent Office
Prior art keywords
cable
core
winding
coil
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21732367.4A
Other languages
German (de)
English (en)
Inventor
Julien Pierre Alain VAUDOLON
Laurent Alexandre René GODARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Spacecraft Propulsion
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4127468A1 publication Critical patent/EP4127468A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/54Protection against radiation
    • B64G1/546Protection against radiation shielding electronic equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0018Arrangements or adaptations of power supply systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings

Definitions

  • TITLE Inductor winding for stationary plasma motor.
  • the invention relates to an inductor winding, in particular for a plasma satellite motor operating according to the hall effect.
  • a stationary plasma engine is a type of plasma thruster that uses an electric field to accelerate ions. It is said to have a hall effect because it uses a magnetic field to trap the electrons which are used to ionize a gas. The ions are then accelerated and produce a thrust.
  • the gases used can be of different types. Xenon is the most commonly used gas, but it is also possible to use Krypton, Bismuth, Argon, Iodine, Magnesium, and Zinc.
  • Such an engine is capable of accelerating the gas to a speed of between 10 km / s and 80 km / s, for impulses of the order of a few thousand seconds.
  • the thrust that can be produced by such a motor varies as a function of the electric power supplied to it.
  • the applications of such engines are mainly the control of the orientation and the position of satellites in orbit, and also for the main motorization of medium-sized space robots.
  • inductor coils or windings are used.
  • Such coils are subjected to a harsh environment, in particular due to the presence of micrometeorites in the environment in which the satellite operates. These micrometeorites can damage the insulation of the wires of the coils and therefore short-circuit the coils, with the effect of reducing the number of turns and altering the magnetic field produced by these coils.
  • these coils are subjected to high temperatures and it is necessary to protect them from any exaggerated rise in temperature.
  • Such an engine is for example described in document JP-2007.257842-A. It is therefore necessary to take special care in the manufacture of these coils and to use conductors with reinforced insulation for the production of the coils.
  • the wires used are generally inorganically insulated cables, the insulation of which is made of a ceramic material.
  • this ceramic material is relatively fragile and it is necessary to provide it with additional protection.
  • the invention proposes to provide this protection by impregnating the cable used for making the field coils using a silicone coating resistant to high temperatures.
  • the invention proposes an inductor coil, in particular for a plasma satellite motor operating according to the Hall effect, this inductor coil comprising a core on which a conductor is wound, characterized in that this conductor comprises a Inorganically insulated cable impregnated with a silicone coating resistant to high temperatures up to 15,593 ° C.
  • the inorganically insulated cable has a rigid core made of copper and nickel alloy covered with a ceramic insulator,
  • the silicone coating is suitable for use temperatures between -70 ° C and 400 ° C, is electrically insulating, has a drying temperature of less than 300 ° C, a thermal conductivity of more than 1W / m / ° C and a
  • the core has a radius of curvature at least equal to at least five times the diameter of the inorganic insulation cable.
  • the invention also relates to a tool for the manufacture of an inductor coil of the type described above, characterized in that it comprises:
  • a reel receiving a coil of the inorganic insulation cable; - an impregnation tank, receiving the silicone compound dissolved in a solvent, crossed by said inorganic insulation cable, and comprising at least one roller inside the tank configured to ensure the guiding of said inorganic insulation cable during its passage through said tank , and at least one sponge placed at an outlet of said tank through which the cable passes in order to mop up said cable,
  • a core of the coil mounted in rotation, and intended to receive in winding the cable impregnated with silicone compound.
  • a path of said cable in said tool between the reel and the core has radii of curvature which are all at least equal to at least five times a diameter of the cable with inorganic insulation, and which do not s 'do not reverse between the wire feeder and the core.
  • the invention also relates to a method of manufacturing an inductor coil using a tool of the type described above, characterized in that it comprises at least: - a first step of supplying a core of the coil and placing said core in said tool;
  • the invention also relates to a method of manufacturing an alternating field coil, characterized in that it comprises at least:
  • the invention is applicable to a plasma satellite motor operating according to the Hall effect and comprising at least one field coil of the type described above.
  • Figure 1 is a perspective view of an inorganically insulated cable used for the manufacture of a conductor of a coil according to the invention
  • Figure 2 is a sectional view of a conductor according to the invention
  • Figure 3 is a schematic sectional view of a satellite motor comprising a coil according to the invention.
  • Figure 4 is a perspective view of a coil according to the invention.
  • Figure 5 is an overall perspective view of a tool for manufacturing the coil according to the invention.
  • Figure 6 is a first perspective detail view of the tooling of Figure 5;
  • Figure 7 is a second perspective detail view of the tooling of Figure 5;
  • Figure 8 is a block diagram illustrating the steps of a first method of manufacturing a coil according to the invention.
  • Figure 9 is a block diagram illustrating the steps of a second method of manufacturing a coil according to the invention.
  • FIG. 3 shows a propellant 10 of the stationary plasma type operating according to the Hall effect.
  • a propellant is based on the principle of ionizing a neutral gas such as, for example, Xenon, Krypton, Bismuth, Argon, Iodine, Magnesium, or Zinc.
  • the ions thus obtained are accelerated by a strong axial electric field E which provides the impetus necessary for the propulsion. More particularly, the neutral gas G is injected into a hollow cathode 12 and into the zone of the discharge 14 through an anode 16. The internal pressure in the hollow cathode 12 is a few.
  • Cathode 12 is initially heated to initiate discharge. A voltage in the order of a few hundred volts, between 150 and 800 volts, is applied between anode 16 and cathode 12. Electrons from cathode 12 ionize neutral gas. The i ions are then accelerated by an axial electric field E between the anode 16 and the cathode 12. At the outlet of the propellant, the io ions are neutralized by the cathode 18, which rejects electrons e in equal quantity, creating a zero charge plasma.
  • a radial magnetic field M, perpendicular to the direction of discharge of the electric field E, of about 100 to 300 gauss (0.01-0.03 T) is used to confine electrons, where the combination of radial and electric magnetic fields axial has the consequence of moving the electrons according to the Hall current, from which the name of the device comes.
  • such a motor 10 uses two inductor coaxial windings 18, 20, respectively inside and outside.
  • These coils 18, 20 are subjected to high thermal stresses and to radiation, and, as regards the outer coil 20, to potential mechanical attacks from the micrometeorites to which the satellite which carries the motor 10 may be subjected.
  • a coil 18 or 20 comprises, as illustrated in FIG. 4, a core 22 on which a conductor 24 is wound.
  • the latter comprises a cable 26 with inorganic insulation impregnated with a silicone coating resistant to high temperatures.
  • FIG. 1 shows a cable 26 with inorganic insulation.
  • the cable 26 comprises a core 28 made of a copper and nickel alloy covered with a ceramic insulator 30.
  • the cable 26 has a diameter d.
  • Such a ceramic insulator 30 offers excellent performance with regard to resistance to high temperatures. However, it is particularly rigid and brittle and can therefore be subject to the risk of cracking and peeling if exposed to too high temperatures or to shocks. It is therefore for this purpose that the invention advantageously proposes to impregnate the cable 26 using a silicone coating 32, as shown in FIG. 2.
  • Such a coating is resistant to high temperatures, up to 593 ° C.
  • the silicone coating 32 is a coating deposited by soaking the cable 26 in a silicone compound dissolved in a solvent and then by evaporation of said solvent.
  • the silicone coating 32 is also suitable for use temperatures between -70 ° C and 400 ° C, therefore lower than the maximum allowable temperature of 593 ° C, is electrically insulating, has a drying temperature of less than 300 ° C, a thermal conductivity greater than 1W / m / ° C and a coefficient of thermal expansion greater than 5.10 6 / K.
  • the core 22 has a radius of curvature p, shown in Figure 4, which is at least equal at least five times a diameter d of the inorganically insulated cable 26.
  • a first method consists in impregnating the cable 26 as it is wound on the core 22.
  • a second method consists in winding the cable 26 on the core 22 and then in impregnating the entire coil 18, 20 thus obtained.
  • FIG. 5 represents a tool 34 making it possible to implement the first method.
  • This tool 34 comprises a reel 36 receiving a coil 38 of the cable 26 with inorganic insulation.
  • This reel 36 supplies cable 26 to an impregnation tank 40 containing the silicone compound dissolved in a solvent. The reel 36 is therefore crossed by the cable 26 with inorganic insulation.
  • the tool 34 comprises a core 22 of the coil, rotatably mounted on a mandrel 42, which is intended to receive in winding the cable 26 impregnated with silicone compound.
  • the tank 40 comprises at least one roller 44 inside the tank 40 which is configured to ensure the guiding of the insulated cable 26 during its passage through the tank 40.
  • the roller 44 has a groove 46. which is intended to allow the guiding of the cable 26.
  • the tank 40 can also include a sponge 48, placed at an outlet of the tank 40, which is crossed by the cable 26 to mop up the cable 26, in order to avoid deposits of silicone compound. excess on the cable 26.
  • the first method of manufacturing the inductor coil 18, 20 comprises, as illustrated in FIG. 8, a first step ET1 of supplying a core 22 of the coil and of placing this core 22 in the mandrel 42 of the coil. tools 34.
  • the inorganically insulated cable 26 is impregnated with the silicone compound by making it pass through the tank 40 and it is wound on the core 22.
  • the silicone coating 32 is deposited during the soaking of the. cable 26 in the silicone compound dissolved in a solvent and then by evaporation of said solvent.
  • the coil 18, 20 consisting of the core 22 provided with the impregnated cable 26 is allowed to dry at room temperature for several days.
  • the coil 18, 20 is baked in an oven so as to vulcanize the silicone coating.
  • This firing involves a gradual rise in temperature to a firing temperature from room temperature, in order to prevent bubbling of the silicone coating.
  • the second previously mentioned manufacturing method similarly comprises a first step ET1 of supplying the core 22 of the coil 18,20. Then, during a second step ET2, the coil 18.20 is produced by winding said cable 26 with inorganic insulation directly on the core 22. A third step ET3 then occurs during which the coil 18.20 is immersed in a bath of silicone compound dissolved in a solvent. The silicone coating 32 is deposited during the soaking of the coil 18, 20 in the silicone compound dissolved in a solvent and then by evaporation of said solvent. B
  • the coil 18, 20 is allowed to dry at room temperature for several days.
  • the coil 18 20 is baked in the same way as 5 previously, that is to say by carrying out baking comprising a gradual rise in temperature until at a cooking temperature from room temperature.
  • the invention therefore makes it possible to produce, in a simple and efficient manner, a winding 18, 20 for a stationary plasma motor 10 used for positioning satellites.
  • the outer coil 20 could for example be additionally protected by a cover making it possible to protect it from micrometeorites.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

L'invention concerne un bobinage inducteur (18, 20), en particulier pour un moteur de satellite à plasma fonctionnant selon l'effet hall, ce bobinage inducteur (18, 20) comportant un noyau (22) sur lequel est enroulé un conducteur (24), caractérisé en ce que ce conducteur comporte un câble (26) à isolation inorganique imprégné avec un revêtement silicone (32) résistant aux hautes températures.

Description

DESCRIPTION
TITRE : Bobinage inducteur pour moteur à plasma stationnaire.
Domaine technique de l'invention
L’invention concerne un bobinage inducteur, en particulier pour un moteur de satellite à plasma fonctionnant selon l’effet hall.
Arrière-plan technique
Les récents développements en termes de propulsion spatiale conduisent à envisager l’utilisation de plus en plus fréquente de propulseurs à effet hall, aussi appelés moteurs à plasma stationnaire, fonctionnant selon l’effet hall pour la motorisation de satellites, par exemple pour des opérations en orbite basse. Un moteur à plasma stationnaire est un type de propulseurs à plasma qui utilise un champ électrique pour accélérer des ions. Il est dit à effet hall car il utilise un champ magnétique pour piéger les électrons qui servent à ioniser un gaz. Les ions sont alors accélérés et produisent une poussée. Les gaz utilisés peuvent être de différents types. Le Xénon est le gaz le plus couramment utilisé mais il est également possible d’utiliser du Krypton, du Bismuth, de l’Argon, de l’Iode, du Magnésium, et du Zinc.
Un tel moteur est capable d’accélérer les gaz à une vitesse comprise entre 10 km/s et 80 km/s, pour des impulsions de l’ordre de quelques milliers de secondes. La poussée pouvant être produite par un tel moteur varie en fonction de la puissance électrique qui lui est fournie. Les applications de tels moteurs sont principalement le contrôle de l’orientation et de la position des satellites en orbite, et également pour la motorisation principale de robots spatiaux de taille moyenne.
Les moteurs à plasma stationnaire nécessitent la génération d’un champ magnétique. Pour ce faire on utilise des bobines ou bobinages inducteurs. De telles bobines sont soumises à un environnement sévère, notamment du fait de la présence de micrométéorites dans l’environnement dans lequel évolue le satellite. Ces micrométéorites peuvent endommager l’isolant des fils des bobines et par conséquent court-circuiter les bobinages, avec pour effet une réduction du nombre de spires et une altération du champ magnétique produit par ces bobines. De plus, ces bobines sont soumises à des températures élevées et il est nécessaire de les protéger de toute élévation exagérée de température. Un tel moteur est par exemple décrit dans le document JP-2007.257842-A. II est donc nécessaire d’apporter un soin tout particulier à la fabrication de ces bobines et d’utiliser pour la réalisation des bobinages des conducteurs comportant une isolation renforcée.
Les fils utilisés sont généralement des câbles à isolation inorganique, dont l’isolation est réalisée en un matériau céramique. Or, ce matériau céramique est relativement fragile et il est nécessaire de lui apporter une protection supplémentaire.
De tels fils revêtus d’un revêtement supplémentaire sont divulgués dans les documents US-5.636.434-A1 , US- 2017/0011820, US-9.508.4614-B2. Toutefois, ils n’ont pas été appliqués à la fabrication de bobinages de moteurs à plasma stationnaire, avec les contraintes que cela implique. B
WO 2021/191563 PCT/FR2021/050509
Résumé de l'invention
5 L’invention propose d’assurer cette protection en réalisant une imprégnation du câble utilisé pour la réalisation des bobinages inducteurs à l’aide d’un revêtement silicone résistant aux hautes températures.
Dans ce but, l’invention propose un bobinage inducteur, en 10 particulier pour un moteur de satellite à plasma fonctionnant selon l’effet hall, ce bobinage inducteur comportant un noyau sur lequel est enroulé un conducteur, caractérisé en ce que ce conducteur comporte un câble à isolation inorganique imprégné avec un revêtement silicone résistant à des températures élevées jusqu’à 15 593°C.
Selon d’autres caractéristiques du bobinage :
- le câble à isolation inorganique comporte une âme rigide en 20 alliage de cuivre et de nickel recouverte d’un isolant céramique,
- le revêtement silicone est adapté à des températures d’utilisation comprises entre -70°C et 400°C, est isolant électriquement, présente une température de séchage inférieure à 300 °C, une conductivité thermique supérieure à 1W/m/°C et un
25 coefficient d’expansion thermique supérieur à 5.10 6/K.
- le noyau présente un rayon de courbure au moins égal à au moins cinq fois le diamètre du câble à isolation inorganique.
L’invention concerne aussi un outillage pour la fabrication 30 d’un bobinage inducteur du type décrit précédemment, caractérisé en ce qu’il comporte :
- un dévidoir recevant une bobine du câble à isolation inorganique ; - un bac d’imprégnation, recevant le composé silicone dissous dans un solvant, traversé par ledit câble à isolation inorganique, et comportant au moins une roulette intérieure au bac configurée pour assurer le guidage dudit câble à isolation inorganique au cours de sa traversée dudit bac, et au moins une éponge placée en une sortie dudit bac traversée par le câble pour éponger ledit câble,
- un noyau du bobinage, monté en rotation, et destiné à recevoir en enroulement le câble imprégné de composé silicone.
Selon une autre caractéristique de l’outillage, un trajet dudit câble dans ledit outillage entre le dévidoir et le noyau présente des rayons de courbure qui sont tous au minimum égaux à au moins cinq fois un diamètre du câble à isolation inorganique, et qui ne s’inversent pas entre le dévidoir et le noyau.
L’invention concerne aussi un procédé de fabrication d’un bobinage inducteur à l’aide d’un outillage du type décrit précédemment, caractérisé en ce qu’il comporte au moins : - une première étape de fourniture d’un noyau du bobinage et de mise en place dudit noyau dans ledit outillage ;
- une deuxième étape au cours de laquelle on imprègne ledit câble à isolation inorganique avec ledit composé silicone et au cours de laquelle on l’enroule sur le noyau, le revêtement silicone se déposant lors du trempage du câble dans le composé silicone dissous dans un solvant puis par évaporation dudit solvant,
- une troisième étape au cours de laquelle on laisse sécher à température ambiante le bobinage constitué du noyau muni du câble imprégné pendant plusieurs jours, - une quatrième étape de cuisson en étuve du bobinage, ladite cuisson comportant une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante. B
WO 2021/191563 PCT/FR2021/050509
5
L’invention concerne aussi un procédé de fabrication d’un bobinage inducteur en variante, caractérisé en ce qu’il comporte au moins :
5 - une première étape de fourniture d’un noyau du bobinage,
- une deuxième étape au cours de laquelle on réalise le bobinage en enroulant ledit câble à isolation inorganique sur le noyau,
- une troisième étape au cours de laquelle on plonge ledit îo bobinage dans un bain de composé silicone dissous dans un solvant, le revêtement silicone se déposant lors du trempage du bobinage dans le composé silicone dissous dans un solvant puis par évaporation dudit solvant,
- une quatrième étape au cours de laquelle on laisse sécher 15 à température ambiante le bobinage pendant plusieurs jours,
- une cinquième étape de cuisson en étuve du bobinage, ladite cuisson comportant une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante.
20
L’invention trouve à s’appliquer à un moteur de satellite à plasma fonctionnant selon l’effet hall et comportant au moins un bobinage inducteur du type décrit précédemment.
25 Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux 30 dessins annexés dans lesquels :
[Fig. 1 ] La figure 1 est une vue en perspective d’un câble à isolation inorganique utilisé pour la fabrication d’un conducteur d’un bobinage selon l’invention ; [Fig. 2] La figure 2 est une vue en coupe d’un conducteur selon l’invention ;
[Fig. 3] La figure 3 est une vue schématique en coupe d’un moteur de satellite comportant un bobinage selon l’invention ;
[Fig. 4] La figure 4 est une vue en perspective d’un bobinage selon l’invention ;
[Fig. 5] La figure 5 est une vue d’ensemble en perspective d’un outillage pour la fabrication du bobinage selon l’invention ;
[Fig. 6] La figure 6 est une première vue de détail en perspective de l’outillage de la figure 5 ;
[Fig. 7] La figure 7 est une deuxième vue de détail en perspective de l’outillage de la figure 5 ;
[Fig. 8] La figure 8 est un diagramme-bloc illustrant les étapes d’un premier procédé de fabrication d’un bobinage selon l’invention ;
[Fig. 9] La figure 9 est un diagramme-bloc illustrant les étapes d’un second procédé de fabrication d’un bobinage selon l’invention ;
Description détaillée de l'invention
On a représenté à la figure 3 un propulseur 10 de type à plasma stationnaire fonctionnant selon l’effet de Hall. De manière connue, le fonctionnement d’un tel propulseur est basé sur le principe consistant à ioniser un gaz neutre tel que par exemple du Xénon, du Krypton, du Bismuth, de l’Argon, de l’Iode, du Magnésium, ou du Zinc.
Les ions ainsi obtenus sont accélérés par un fort champ électrique axial E qui fournit l’impulsion nécessaire à la propulsion. Plus particulièrement, le gaz neutre G est injecté dans une cathode creuse 12 et dans la zone de la décharge 14 à travers une anode 16. La pression interne dans la cathode creuse 12 est de quelques B
WO 2021/191563 PCT/FR2021/050509
7 centaines de Pascals. A l’ouverture extérieure du propulseur 10, c’est-à-dire dans la zone de décharge 14, le gaz neutre est ionisé par des électrons e- fournis par la cathode 12.
La cathode 12 est initialement chauffée afin d’initier la 5 décharge. Une tension de l’ordre de quelques centaines de volts, entre 150 et 800 volts, est appliquée entre l’anode 16 et la cathode 12. Les électrons provenant de la cathode 12 ionisent le gaz neutre. Les ions i sont alors accélérés par un champ électrique axial E entre l'anode 16 et la cathode 12. À la sortie du propulseur, les ions îo i sont neutralisés par la cathode 18, qui rejette des électrons e en quantité égale, créant un plasma à charge nulle. Un champ magnétique radial M, perpendiculaire la direction de décharge du champ électrique E, d'environ 100 à 300 gauss (0,01 -0,03 T) est utilisé pour confiner les électrons, où la combinaison des champs 15 magnétique radial et électrique axial a pour conséquence de mouvoir les électrons selon le courant de Hall, d'où provient le nom de l'appareil.
Pour former le champ magnétique radial M, un tel moteur 10 utilise deux bobinages inducteurs 18, 20 coaxiaux respectivement 20 intérieur et extérieur.
Ces bobinages 18, 20 sont soumis à des contraintes thermiques élevées et aux radiations, et, en ce qui concerne le bobinage extérieur 20, à de potentielles agressions mécaniques de la part des micrométéorites auxquelles le satellite qui porte le 25 moteur 10 peut être soumis.
Il importe donc d’apporter un soin tout particulier au conducteur formant ces bobinages, car toute perte d’isolation entre deux spires d’un bobinage réduirait l’intensité du champ magnétique produit par celui-ci et altérerait les performances du 30 moteur 10, voire mener à la fin de vie du moteur 10.
D’une manière générale, un bobinage 18 ou 20 comporte, comme l’illustre la figure 4, un noyau 22 sur lequel est enroulé un conducteur 24. Conformément à l’invention, pour assurer une protection optimale du conducteur 24, celui-ci comporte un câble 26 à isolation inorganique imprégné avec un revêtement silicone résistant aux hautes températures. On a représenté à la figure 1 un câble 26 à isolation inorganique. Par exemple, le câble 26 comporte une âme 28 en alliage de cuivre et de nickel recouverte d’un isolant céramique 30. Le câble 26 présent un diamètre d.
Un tel isolant céramique 30 offres d’excellentes performances en ce qui concerne la résistance aux hautes températures. Toutefois, il est particulièrement rigide et cassant et peut donc être soumis à des risques de fissuration et d’écaillement s’il est exposé à des températures trop élevées ou à des chocs. C’est donc à cet effet que l’invention propose avantageusement d’imprégner le câble 26 à l’aide d’un revêtement silicone 32, comme représenté à la figure 2.
Un tel revêtement résiste à des températures élevées, jusqu’à 593°C.
Avantageusement, le revêtement silicone 32 est un revêtement déposé par trempage du câble 26 dans un composé silicone dissous dans un solvant puis par évaporation dudit solvant.
Le revêtement silicone 32 est par ailleurs adapté à des températures d’utilisation comprises entre -70°C et 400°C, inférieures par conséqueant à la température maximum admissible de 593°C, est isolant électriquement, présente une température de séchage inférieure à 300°C, une conductivité thermique supérieure à 1W/m/°C et un coefficient d’expansion thermique supérieur à 5.10 6/K.
Pour éviter que la couche d’isolant céramique 30 du câble 26 ne se rompe lors de l’enroulement du câble 26 autour du noyau 22, le noyau 22 présente un rayon de courbure p, représenté à la figure 4, qui est au moins égal à au moins cinq fois un diamètre d du câble 26 à isolation inorganique. B
WO 2021/191563 PCT/FR2021/050509
9
La fabrication d’un bobinage inducteur 18, 20 peut être réalisée de deux manières différentes. Une première méthode consiste à imprégner le câble 26 au fur et à mesure de son enroulement sur le noyau 22. Une deuxième méthode consiste à 5 enrouler le câble 26 sur le noyau 22 puis à imprégner l’ensemble du bobinage 18, 20 ainsi obtenu.
La figure 5 représente un outillage 34 permettant de mettre en œuvre la première méthode.
Cet outillage 34 comporte un dévidoir 36 recevant une bobine îo 38 du câble 26 à isolation inorganique. Ce dévidoir 36 alimente en câble 26 un bac d’imprégnation 40 contenant le composé silicone dissous dans un solvant. Le dévidoir 36 est donc traversé par le câble 26 à isolation inorganique. Puis, l’outillage 34 comporte un noyau 22 du bobinage, monté en rotation sur un mandrin 42, qui 15 est destiné à recevoir en enroulement le câble 26 imprégné de composé silicone.
Comme l’illustre la figure 6, le bac 40 comporte au moins une roulette 44 intérieure au bac 40 qui est configurée pour assurer le guidage du câble 26 à isolation au cours de sa traversée du bac 20 40. La roulette 44 comporte une gorge 46 qui est destinée à permettre le guidage du câble 26.
Comme l’illustre la figure 7, le bac 40 peut aussi comporter une éponge 48, placée en une sortie du bac 40, qui est traversée par le câble 26 pour éponger le câble 26, ceci afin d’éviter des 25 dépôts de composé silicone excédentaires sur le câble 26.
Il sera compris que toutes les règles relatives à l’utilisation du câble 26 s’appliquent aussi bien pour son bobinage sur le noyau 22 que pour son trajet au travers de l’outillage 34. C’est pourquoi, au cours de l’enroulement du câble 26, le trajet du câble 26 dans 30 l’outillage entre le dévidoir 36 et le noyau 22 présente des rayons de courbure qui sont tous au minimum égaux à au moins cinq fois le diamètre d du câble 26 à isolation inorganique. Par ailleurs, ces rayons de courbure ne s’inversent pas entre le dévidoir 36 et le noyau 22, de manière à ne pas risquer de détériorer l’isolant céramique 30.
Ainsi, le premier procédé de fabrication du bobinage inducteur 18, 20 comporte, comme l’illustre la figure 8, une première étape ET1 de fourniture d’un noyau 22 du bobinage et de mise en place de ce noyau 22 dans le mandrin 42 de l’outillage 34.
Puis, au cours d’une deuxième étape ET2, on imprègne le câble 26 à isolation inorganique avec le composé silicone en lui faisant traverser le bac 40 et on l’enroule sur le noyau 22. Le revêtement silicone 32 se dépose lors du trempage du câble 26 dans le composé silicone dissous dans un solvant puis par évaporation dudit solvant.
Puis au cours d’une troisième étape ET3, on laisse sécher à température ambiante le bobinage 18, 20 constitué du noyau 22 muni du câble 26 imprégné pendant plusieurs jours.
Puis, au cours d’une quatrième étape ET4, on cuit le bobinage 18,20 en étuve de manière à faire vulcaniser le revêtement silicone. Cette cuisson comporte une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante, afin d’éviter le bullage du revêtement silicone.
Selon le deuxième procédé de fabrication précédemment évoqué, celui-ci comporte de manière similaire une première étape ET1 de fourniture du noyau 22 du bobinage 18,20. Puis, au cours d’une deuxième étape ET2, on réalise le bobinage 18,20 en enroulant ledit câble 26 à isolation inorganique directement sur le noyau 22. Survient alors une troisième étape ET3 au cours de laquelle on plonge le bobinage 18,20 dans un bain de composé silicone dissous dans un solvant. Le revêtement silicone 32 se dépose lors du trempage du bobinage 18, 20 dans le composé silicone dissous dans un solvant puis par évaporation dudit solvant. B
WO 2021/191563 PCT/FR2021/050509
11
Puis, au cours d’une quatrième étape ET4, on laisse sécher à température ambiante le bobinage 18,20 pendant plusieurs jours. Enfin, au cours d’une cinquième étape ET5 de cuisson en étuve du bobinage, on cuit le bobinage 18 20 de la même façon que 5 précédemment, c’est-à-dire en réalisant une cuisson comportant une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante.
L’invention permet donc de réaliser de manière simple et efficace un bobinage 18,20 pour un moteur 10 à plasma îo stationnaire utilisé pour le positionnement de satellites. Le bobinage extérieur 20 pourra par exemple être protégé de surcroît par un capot permettant de le protéger des micrométéorites.

Claims

REVENDICATIONS
1. Bobinage inducteur (18, 20) pour un moteur de satellite (10) à plasma fonctionnant selon l’effet hall, ce bobinage inducteur (18, 20) comportant un noyau (22) sur lequel est enroulé un conducteur (24), caractérisé en ce que ce conducteur comporte un câble (26) à isolation inorganique imprégné avec un revêtement silicone (32) résistant à des températures élevées jusqu’à 593°C.
2. Bobinage inducteur (18, 20) selon la revendication précédente, caractérisé en ce que le câble (26) à isolation inorganique comporte une âme (28) rigide en alliage de cuivre et de nickel recouverte d’un isolant céramique (30).
3. Bobinage inducteur (18, 20) selon l’une des revendications précédentes, caractérisé en ce que le revêtement silicone (32) est adapté à des températures d’utilisation comprises entre -70°C et 400°C, est isolant électriquement, présente une température de séchage inférieure à 300 °C, une conductivité thermique supérieure à 1W/m/°C et un coefficient d’expansion thermique supérieur à 5.10 6/K.
4. Bobinage inducteur (18, 20) selon l’une des revendications précédentes, caractérisé en ce que le noyau (22) présente un rayon de courbure (p) supérieur ou égale à cinq fois un diamètre (d) du câble (26) à isolation inorganique.
5. Outillage (34) pour la fabrication d’un bobinage inducteur (18,20) selon l’une des revendications précédentes, caractérisé en ce qu’il comporte :
- un dévidoir (36) recevant une bobine (38) du câble (26) à isolation inorganique ;
- un bac d’imprégnation (40), recevant le composé silicone dissous dans un solvant, traversé par ledit câble (26) à isolation inorganique, et comportant au moins une roulette (44) intérieure au bac (40) configurée pour assurer le guidage dudit câble (26) à isolation inorganique au cours de sa traversée dudit bac (40), et au B
WO 2021/191563 PCT/FR2021/050509
13 moins une éponge (48) placée en une sortie dudit bac (40) traversée par le câble (26) pour éponger ledit câble (26),
- un noyau (22) du bobinage (18, 20), monté en rotation, et destiné à recevoir en enroulement le câble (26) imprégné de
5 composé silicone, et en ce qu’un trajet dudit câble (26) dans ledit outillage (34) entre le dévidoir (36) et le noyau (22) présente des rayons de courbure qui sont supérieurs ou égaux à cinq fois un diamètre (d) du câble (26) à isolation inorganique, et qui ne s’inversent pas entre le dévidoir (36) et le noyau (22). îo
6. Procédé de fabrication d’un bobinage inducteur (18, 20) à l’aide d’un outillage (34) selon la revendication 5, caractérisé en ce qu’il comporte au moins :
- une première étape (ET1 ) de fourniture d’un noyau (22) du bobinage (18, 20) et de mise en place dudit noyau (22) dans ledit
15 outillage (34) ;
- une deuxième étape (ET2) au cours de laquelle on imprègne ledit câble (26) à isolation inorganique avec ledit composé silicone et au cours de laquelle on l’enroule sur le noyau (22), le revêtement silicone (32) se déposant lors du trempage du câble (26) dans le
20 composé silicone dissous dans un solvant puis par évaporation dudit solvant,
- une troisième étape (ET3) au cours de laquelle on laisse sécher à température ambiante le bobinage (18, 20) constitué du noyau (22) muni du câble (26) imprégné pendant plusieurs jours,
25 - une quatrième étape (ET4) de cuisson en étuve du bobinage
(18, 20), ladite cuisson comportant une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante.
7. Procédé de fabrication d’un bobinage inducteur selon l’une
30 des revendications 1 à 4, caractérisé en ce qu’il comporte au moins :
- une première étape (ET1 ) de fourniture d’un noyau (22) du bobinage (18, 20), - une deuxième étape (ET2) au cours de laquelle on réalise le bobinage (18, 20) en enroulant ledit câble (26) à isolation inorganique sur le noyau (22),
- une troisième étape (ET3) au cours de laquelle on plonge ledit bobinage (18, 20) dans un bain de composé silicone dissous dans un solvant, le revêtement silicone (32) se déposant lors du trempage du bobinage (18, 20) dans le composé silicone dissous dans un solvant puis par évaporation dudit solvant,
- une quatrième étape (ET4) au cours de laquelle on laisse sécher à température ambiante le bobinage (18, 20) pendant plusieurs jours,
- une cinquième étape (ET5) de cuisson en étuve du bobinage (18, 20), ladite cuisson comportant une montée en température progressive jusqu’à une température de cuisson à partir de la température ambiante.
8. Moteur (10) de satellite à plasma fonctionnant selon l’effet hall, comportant au moins un bobinage (18, 20) inducteur selon l’une des revendications 1 à 4.
EP21732367.4A 2020-03-24 2021-03-24 Bobinage inducteur pour moteur a plasma stationnaire Pending EP4127468A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002881A FR3108686B1 (fr) 2020-03-24 2020-03-24 Bobinage inducteur pour moteur à plasma stationnaire.
PCT/FR2021/050509 WO2021191563A1 (fr) 2020-03-24 2021-03-24 Bobinage inducteur pour moteur a plasma stationnaire

Publications (1)

Publication Number Publication Date
EP4127468A1 true EP4127468A1 (fr) 2023-02-08

Family

ID=72560656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21732367.4A Pending EP4127468A1 (fr) 2020-03-24 2021-03-24 Bobinage inducteur pour moteur a plasma stationnaire

Country Status (5)

Country Link
US (1) US20230117913A1 (fr)
EP (1) EP4127468A1 (fr)
CN (1) CN115427682A (fr)
FR (1) FR3108686B1 (fr)
WO (1) WO2021191563A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027925B2 (en) 2022-08-30 2024-07-02 Honeywell International Inc. Method of assembling a high-temperature electromagnetic machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611240A (ja) * 1984-06-13 1986-01-07 Pioneer Electronic Corp 偏平空芯コイル用線材の製造方法
US5636434A (en) * 1995-02-14 1997-06-10 Sundstrand Corporation Method of fabricating an electrical coil having an inorganic insulation system
JP4816179B2 (ja) * 2006-03-20 2011-11-16 三菱電機株式会社 ホールスラスタ
US9508461B2 (en) * 2012-10-18 2016-11-29 Ford Global Technologies, Llc Polymeric overcoated anodized wire
US20170011820A1 (en) * 2015-07-10 2017-01-12 General Electric Company Insulated windings and methods of making thereof

Also Published As

Publication number Publication date
WO2021191563A1 (fr) 2021-09-30
FR3108686A1 (fr) 2021-10-01
US20230117913A1 (en) 2023-04-20
CN115427682A (zh) 2022-12-02
FR3108686B1 (fr) 2022-03-04

Similar Documents

Publication Publication Date Title
EP2812571B1 (fr) Propulseur a effet hall
EP1941522B1 (fr) Transformateur tournant
EP3900170B1 (fr) Machine électrique avec dispositif de démagnétisation forcée des aimants permanents
EP4127468A1 (fr) Bobinage inducteur pour moteur a plasma stationnaire
EP0162766B1 (fr) Dispositif de stockage à haute tension et à haute énergie et générateur d'impulsions en comportant application
EP3928415A1 (fr) Bobinage de machine electrique a refroidissement ameliore
WO2021181049A1 (fr) Machine electrique tournante a elements supraconducteurs et enceintes cryogeniques
EP1520104B1 (fr) Propulseur plasmique a effet hall
CH634437A5 (fr) Resistance de decharge.
EP0248717B1 (fr) Bobine électromagnétique et dispositif d'allumage pour moteur à combustion interne comportant une telle bobine
WO2019097194A1 (fr) Procédé d'assemblage d'un inducteur magnétique et inducteur magnétique susceptible d'être obtenu avec un tel procédé
EP0235010B1 (fr) Dispositif d'allumage capacitif pour charge propulsive
EP0737988A1 (fr) Bobine fixe d'induction d'un lanceur à induction solénoidal, ainsi qu'un lanceur à induction solénoidal pourvu d'une telle bobine
EP0086119B1 (fr) Moto-réducteur électrique notamment destiné à déplacer des éléments mobiles d'un véhicule automobile
FR2511207A1 (fr) Bobine d'enroulement statorique pour alternateur a haute tension
WO2017085369A1 (fr) Contacteur electromagnetique de puissance muni d'au moins une bobine realisee en aluminium
EP0791998A1 (fr) Amenée de courant haute tension mixte
EP3911860A1 (fr) Bras aerodynamique de carter pour une turbomachine d'aeronef
FR2675966A1 (fr) Perfectionnements apportes aux machines electriques tournantes de detection de position angulaire absolue, du type sans balais.
EP4580948A1 (fr) Arrangement de câble électrique comprenant au moins un organe de pincement du câble
EP3341292A1 (fr) Dispositif d'alimentation pour un système d'actionnement électrique
FR3148215A1 (fr) Dispositif de stockage d’énergie, système de propulsion et aéronef associés
EP4515580A1 (fr) Transformateur tournant segmente à grand diamètre
FR3025356A1 (fr) Contacteur electromagnetique de puissance muni d'au moins une bobine a fil electrique lubrifie
WO2017178760A1 (fr) Demarreur de moteur thermique a performances ameliorees

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN SPACECRAFT PROPULSION