[go: up one dir, main page]

EP4117978A1 - Chariot transpalette a chenilles motorisées - Google Patents

Chariot transpalette a chenilles motorisées

Info

Publication number
EP4117978A1
EP4117978A1 EP21718162.7A EP21718162A EP4117978A1 EP 4117978 A1 EP4117978 A1 EP 4117978A1 EP 21718162 A EP21718162 A EP 21718162A EP 4117978 A1 EP4117978 A1 EP 4117978A1
Authority
EP
European Patent Office
Prior art keywords
frame
module
modules
wheel
trolley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21718162.7A
Other languages
German (de)
English (en)
Inventor
Joseph COLLIBAULT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RSA Concept
Original Assignee
RSA Concept
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RSA Concept filed Critical RSA Concept
Publication of EP4117978A1 publication Critical patent/EP4117978A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/02Accessories or details specially adapted for hand carts providing for travelling up or down a flight of stairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B1/00Hand carts having only one axis carrying one or more transport wheels; Equipment therefor
    • B62B1/10Hand carts having only one axis carrying one or more transport wheels; Equipment therefor in which the load is intended to be transferred totally to the wheels
    • B62B1/16Hand carts having only one axis carrying one or more transport wheels; Equipment therefor in which the load is intended to be transferred totally to the wheels involving tiltably-mounted containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/02Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor involving parts being adjustable, collapsible, attachable, detachable or convertible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/08Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor involving tiltably-mounted containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0026Propulsion aids
    • B62B5/0033Electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B2301/00Wheel arrangements; Steering; Stability; Wheel suspension
    • B62B2301/25Wheel arrangements; Steering; Stability; Wheel suspension characterised by the ground engaging elements, e.g. wheel type
    • B62B2301/256Wheel arrangements; Steering; Stability; Wheel suspension characterised by the ground engaging elements, e.g. wheel type by using endless belts

Definitions

  • the present invention relates to a forklift truck type having a frame with a backrest receiving the load and a handle terminated by a handle and a control box, the frame resting on two track modules as well as a means. drive of the crawler modules, controlled by a control box, the crawler modules being connected to the frame by an articulation to pivot independently of one another on the side of the frame opposite to that of the receiving backrest load.
  • the carriage according to this state of the art comprises modules forming a support polygon either for movement on a hard, smooth surface S, or for passing obstacles in motion with the driver, on the module side, in front of the carriage.
  • the modules are folded up to take the steps.
  • the carriage (FIGS. 8A, 8B) circulates resting on the two drive wheels of the modules in the folded position on hard surfaces which do not require caterpillars.
  • the trolley can also circulate on its tracks deployed so as not to be on loose surfaces.
  • the trolley is either driven by the driver walking behind the trolley (figure 8A) and in this case, although the two modules form a support polygon, the center of gravity is located beyond this support polygon and a non-negligible fraction of the weight of the load must be taken up by the driver.
  • the support polygon is variable depending on whether each module is only supported on its driving wheel, or that part of the track is in support at two points and thus forms a very limited support polygon which creates abrupt changes in the force required of the driver who is himself in reverse. This chaotic movement can confuse the driver. This adds to the risk of stumbling and tipping of the loaded trolley down if the center of gravity passes beyond the vertical plane of the transverse line of support of the trolley on the step.
  • FIGS. 8A-8B show the case of a handling trolley 200 according to the state of the art with tracked modules, retractable, that is to say which are blocked either in a rolling position, deployed. at a fixed angle between the frame and the module, or in the folded position.
  • Figure 8A shows the cart 200 in the deployed position moving up steps with the driver behind the cart.
  • Figure 8B shows the trolley in the folded position of the crawler modules passing the staircase steps with the driver in front of the trolley.
  • the object of the present invention is to develop a trolley-type handling trolley as described above making it possible to pass more easily and simply over obstacles in safety, in particular staircase steps, without risking rearward tilting, towards the bottom of the stairs.
  • the invention relates to a forklift truck type having a frame with a backrest receiving the load and a handle terminated by a handle and a control box, the frame resting on two tracked modules as well. that a means of driving the tracked modules, controlled by the control box, these modules being connected to the frame by an articulation to pivot independently of one another, on the side of the frame opposite to that of the backrest receiving the load, this handling trolley being characterized in that each crawler module is connected to the frame by an articulation and an extension spring creating a force opposing the folding of the module against the frame, the range of pivoting of the driven crawler module being limited between a folded position against the frame and a deployed position defined sant the upright position of the frame.
  • the trolley according to the invention has the advantage of easily passing obstacles such as small random obstacles encountered on the circulation surface of the trolley, either steps or a set of steps.
  • the elastically variable inclination of the module (s) with respect to the inclination of the chassis kept constant according to the choice of the driver, prevents the lifting of the module (s) causing a reaction on the inclination of the chassis and modifies this when the angle between the modules and the frame of the carriage is fixedly blocked, when the tracks constitute the support polygons.
  • This flexibility of passage is particularly important for the wise step of steps and the ascent or descent of a staircase since the driver will be able to maintain the handle of the trolley, in a "constant" manner without having to react to a push in the direction of the staircase. tilting towards the rear of the chassis as is the case with handling trolleys of the state of the art.
  • the crawler module is a driven crawler module composed of a drive wheel on the articulation axis connecting the module to the frame and at least one idler wheel over which the track passes.
  • the extension spring (50) is chosen from the group comprising: a coupling spring, one end of which is connected to a fixing point of the frame and the other to a fixing point of the module, a tension spring on the articulation axis and one end of which is connected to an attachment point of the frame and the articulation of which is connected to an attachment point of the crawler module.
  • This embodiment of the extension spring as a coil spring or as a two-branch spring installed on the articulation axis constitutes a particularly flexible and effective solution.
  • the crawler module comprises an auxiliary wheel between the driving wheel and the return wheel, forming a the front a ramp with the return wheel and with the driving wheel and a support surface.
  • This form of the crawler module which addresses obstacles is of interest for the regularity of the maneuver of the trolley.
  • the ramp makes it possible to absorb easily and almost continuously without slowing down the speed of movement, the passage of the tracked module (s). In the case of the passage of a step this also facilitates the rise by foot of the module along the counter step since the return wheel at the front of the carriage has a much smaller diameter than the diameter of the wheel. driving given the interposition of the intermediate wheel.
  • the backrest is formed of a folded or welded sheet metal box comprising a backrest having two sides folded at the square and a underside to receive in the lower part a motor unit (40) with an electric motor connected. by a differential with two output axes connected respectively to a driving wheel of each module.
  • This embodiment makes it possible to adapt the load receiving accessories to the backrest such as shovels, claws, forks which are very variable and which can be adapted to particular applications of the trolley if the latter is used for several loads of the type. particular, requiring for their grip and their maintenance of accessories adapted to their shape.
  • the driving wheel of the crawler module is chosen from the group comprising: a driving wheel incorporating an electric motor controlled to form the differential with the electric motor of the other module and managed by a controlled electric differential system by the common box, a driving wheel connected to an electric motor installed in the chassis and whose output axis is connected to the axis of the driving wheel, the two motors being coupled in differential, a driving wheel connected to a motor group formed of an electric motor connected at the output to a differential, the two output shafts of which are respectively connected to a driving wheel of one of the two crawler modules.
  • the handling carriage comprises a locking device controlled to block the angle of inclination between the frame and the two modules 30, integral in this inclination, this locking device being disengageable.
  • This locking device ensures the pairing of the two modules and locks them in the deployed position corresponding to the upright position of the frame or to an intermediate position depending on the developments of the locking device.
  • actuating means for example, mechanical can be actuated with the driver's foot so that the latter can activate or neutralize the locking device of the two modules without having to let go of the handle.
  • Such blocking of the angle of inclination of the chassis relative to the module can be useful for traversing certain segments of the route with the industrial truck loaded. At the end of the blocking necessary to facilitate the passage of this path segment, the driver releases the blocking again so that only the extension spring of each module ensures the suspension of the module as has been explained above. above.
  • the locking device is chosen from the group comprising:
  • a telescopic rod connecting the frame to each module and is locked on command in the tilting position of the frame in relation to the two modules, or else
  • a double strut pivotally carried by the frame, being movable between a retracted position and a locking position pressed against a stop of each module.
  • FIG. 1 very general block diagram of the industrial truck of the invention
  • FIG. 2 general diagram of the industrial trolley according to the invention and a practical variant of this trolley
  • FIG. 3A diagram of the industrial truck in front of the steps
  • FIG. 3B Position of the carriage of figure 3A approaching the first step
  • FIG. 3C industrial trolley of FIG. 3A in the step-up position
  • FIG. 4 perspective view, front side, of an embodiment of an industrial truck according to the invention
  • FIG. 5 perspective view, rear side, of the industrial truck of figure 4
  • FIG. 6 side perspective view of the handling trolley of fi gure 4
  • FIG. 7 side perspective view of the handling trolley of FIG. 1 in the folded position.
  • FIG. 8A diagram of a trolley according to the state of the art presented on stair treads in the pushed position
  • FIG. 9 another embodiment of an industrial trolley with blocking of the inclination angle of the chassis with respect to the modules
  • FIG. 10 diagram of a variant of the industrial trolley in figure
  • FIG. 11 diagram of another variant of the industrial truck in Figure 9
  • FIG. 12 diagram of another variant of the forklift in Figure 9 DESCRIPTION OF AN EMBODIMENT
  • Figure 1 is a very simplified block diagram of a motorized crawler truck 100, of the devil type, composed of a frame 10 with a shovel 11 and a handle 20 terminated by a handle 21, with a control 22 to manage the operation of the truck.
  • the frame 10 is carried by a pair of motorized modules 30 with a pin, each connected by a hinge pin 31 to the frame 10.
  • Each crawler module 30 pivots independently of the other with respect to the frame 10 around the articulation axis 31 while being connected to the frame by an extension spring 50 fixed to a point 51 of the frame 10 and to a point 52 crawler module 30.
  • the direction DC of the frame 10 with its extension formed by the handle 20 forms an angle (Q) with respect to the direction H of the flat surface S on which the carriage 100 travels.
  • the module 30 makes a variable angle (a) between a DM direction linked to module 30 and DC direction of chassis 10.
  • angles (Q) and (a) are defined with respect to a reference direction which is the horizontal direction H for the angle (Q) and a direction DM attached to each module 30 and passing through the articulation axis 31 of each module; thus it is simpler to measure the angle (Q) with respect to the horizontal H passing through the axis 31 which facilitates the comparison of the variable angle (a) with respect to the angle (Q) which is a priori constant according to the attitude of the driver of the carriage 100 because, by hypothesis, it can be assumed that the driver operates the carriage 100 by pulling it on the supposedly flat surface S while holding the handle 21 at the same height so that l 'angle (Q) remains constant.
  • the direction of orientation chosen by convention in the present description is the front AV located on the side of the driver holding the handle 21 and the rear AR which is the side of the load CH.
  • the angle (a) is also constant, equal to the angle (Q) up to a constant (according to the reference direction DM assigned to the module 30).
  • the motorized tracked modules 30 consist very schematically of a drive wheel 32 and at least one return wheel 33 over which the track 35 passes.
  • the drive wheel 32 is driven in the direction of forward travel AV of the carriage or in reverse AR or in the opposite direction for the other drive wheel to describe a curve.
  • the caterpillar 35 is driven directly or indirectly by a controlled electric motor 36, with a differential drive of the two drive wheels 32 of the two modules 30.
  • the drive wheel 32 directly integrates an electric motor. It can also be connected to a electric motor 36 associated with the driving wheel 32 but installed on the chassis 10 or else by a motor common to the two driving wheels, connected to the driving wheels by a differential. In these two cases, the movement is transmitted directly via the pivot axis which becomes the transmission axis or else via an axis passing through the articulation axis 31.
  • the forward movement of the module 30 is indicated by the arrow d-AV.
  • the module 30 is stopped by the counter step CM1 so that the caterpillar 35 loses its caterpillar function c ' that is to say that of a fixed surface with respect to the surface S and on which the wheels 31, 33 of the module 30 roll.
  • the cord then becomes a ribbon driven in the direction of movement mvo shown by the arrow.
  • the caterpillar 35 rubs on the surface of the counter step CM 1 which generates an FM reaction which lifts the return wheel 33 from its position 33-0 to an ascending position 33-1.
  • This pivoting movement (Da) is made possible by the articulation of the module 30 around the axis 31 with compression of the extension spring 50.
  • the FM reaction only has to overcome a fraction of the weight of the load CH since this weight remains resting on the ground S via the wheel 31 and by the handle 21 held by the driver.
  • the pivoting movement of the module 30 is shown schematically from its initial position, by the axis 31 and the return wheel 33 (position 31-0, 33- 0) and an intermediate position (31-1, 33-1) until wheel 33 reaches the top of step M 1.
  • the angle (Q) remains a priori constant depending on the attitude adopted by the driver.
  • FIG. 2 shows by comparison with the general presentation of the industrial truck 100 of FIG. 1, an embodiment which differs in the structure of the front of the module 30.
  • the module completes the return wheel 33 with an intermediate wheel 34 so as to form at the front, a ramp 37 facilitating the passage of small obstacles while maintaining the efficiency of the passage of large obstacles, similar to steps and implementing the dynamic reaction generated by the stop that constitutes the obstacle to the advance of the module 30.
  • Figures 3A-3C show the passage of the carriage on the steps M1- M3 of a staircase showing the variation of the inclination (a) of the modules 30 with respect to the angle (Q) of the frame 10 carrying the load CH.
  • the driver holds the handle 20 and thus the backrest 111 at an arbitrary angle (Q) depending on the position of the driver in the front AV who "pulls" the carriage 100 with a CG center of gravity load.
  • the frame 10 with the handle 20 up to the handle 21 constitutes a lever whose point of support is the driving wheel 32.
  • the weight of the load is distributed according to the lever arms between, on the one hand, the point of support and the center of gravity CG of the load and on the other hand between the fulcrum and the handle 30.
  • the crawler modules 30 can pivot freely around their pivot axis against the action of the extension spring 50, when the front end of the module 30 arrives on an obstacle, by reaction, the front of the module rises up the face. of the obstacle by pivoting the module 30 independently of the angle (Q) of the DC direction which can be kept constant as a function of the driver's attitude alone.
  • Figures 4-7 show an embodiment of a handling trolley 100 according to the general diagram of Figure 1 and its schematic embodiment of Figure 2 for the structure of the track modules 30.
  • the handling trolley 100 is composed of a frame 10 provided with a handle 20 with a guide and control handle and two crawler modules 30 connected to the frame 10 by an articulation pin 31. and by an extension spring 50 pushing the module 30 in the direction of the opening of the angle (a) between the DC direction of the frame / handle and the bearing surface of each crawler module 30.
  • the pivoting movement of the module 30 is free against the thrust of the extension spring 50 between two extreme pivoting positions corresponding to the standing position of the handling trolley (FIG. 4) and the position of the module 30 folded against the frame 10.
  • the extreme or end-of-travel positions are materialized by stops, not shown.
  • the frame 10 is composed of a parcelepipedal body in folded sheet metal forming a bearing surface or backrest 111 for the load CH to be transported and provided with two sides 112 and a underside 113 formed by parts folded square.
  • the frame 10 houses a motor unit 40 formed of an electric motor 41 connected to a differential 42, the two output shafts 43 of which carry the driving wheels 32 of the two crawler module 30 passing through the bearings 321 in the sides 112 of the frame and the sides 301, 302 of each module 30.
  • the motor group 40 can also consist of two electric motors, the respective output of which is connected to the driving wheel 32 of the associated module 30, the two electric motors being controlled by an electronic differential constituting the slow equivalent of a mechanical differential.
  • the battery 44 is housed in the lower part of the frame 10 above the motor unit 40.
  • the back of the frame 10 is covered by a cover, not shown.
  • the backrest 111 of the frame 10 receives the load support accessories, not shown, such as a shovel like that of a hand truck or a specialized accessory depending on the shape of the load to be transported if the truck is intended for a dedicated application.
  • the load support accessories not shown, such as a shovel like that of a hand truck or a specialized accessory depending on the shape of the load to be transported if the truck is intended for a dedicated application.
  • the handle 20 is integrated into the frame 10 in which it can be escalated to reduce its bulk for storage.
  • the end of the handle 20 is provided with a handle 21 for guiding and steering the trolley and with a control box 22.
  • the box 22 is provided with various control members, not detailed, of the motor unit such as the direction of rotation of the motor, the speed and, if applicable, the differential lock. It also features a display for operating parameters such as battery charge status 44.
  • the two tracked modules 30 are symmetrical and have identical structures, except for the elements of symmetry.
  • Each module 30 is formed on two sides 301, 302 with the bearings 321, 331, 341 receiving the axis of the drive wheel 32, that of the return wheel 33 and that of the intermediate wheel on which pass the pin 35.
  • the modules 30 have a structure identical to that of the modules 30 of FIG. 2, of which the driving wheel 32, the return wheel 33 and the intermediate wheel 34 are hidden by the sides 301, 302 and of which only the bearings 321, 331, 341 carried by the sides 301, 302 appear.
  • the sides 301, 302 are optionally joined together by cross members.
  • the front of the module has a ramp 37 formed by the track 35 passing over the wheels 33, 34 as shown in Figure 2.
  • the front FR of the truck 100 is the side where the driver stands and the rear RE is the side of the backrest 111 and the load.
  • the carriage 100 can travel in both directions AV, AR, although on routes with possible obstacles, in particular up stairs, the direction of movement is preferably that of forward travel.
  • the two modules 30 are carried, free to pivot, by their respective drive axis; this connection is completed by the tension spring 50, one end of which is connected to the interior side 302 of the modules 30 and the other is fixed to the side 112 of the frame 10.
  • the extension spring 50 is provided with two stops. limit switch, one to limit the folded position, close to its alignment with the frame 10 (his backrest 111) and the other so that the angle (a) is close to 90 ° but that the center of gravity CG of the empty carriage 100 remains slightly on the front side AV.
  • the wheels of the module 30 form with the track at the front, a ramp 37 between the intermediate zone and the return wheel 33 as well as a traffic surface between the drive wheel 32 and the intermediate wheel 34.
  • the module 30 supports the weight of the carriage 100 and that of the load CH on the driving wheel 32 due to the freedom of pivoting of each module against the action of the extension spring 50.
  • the carriage has no support polygon when loaded. It has only one vacuum support polygon for example to stand as it appears in Figures 4 and 5, the two extension springs 50 exerting a sufficient torque to maintain the frame 10 in the raised position, close to vertical and against the end stop as has already been described.
  • FIG. 9 shows another embodiment of the handling trolley 100 equipped with a device 60 for blocking the angle of inclination a of the frame with respect to the two modules 30.
  • the controlled blocking device 60 is connected by one end 61 to the frame 10 and by the other end 62 to the two modules 30 so as to block the angle of inclination a as appropriate in any angular position a or when the frame 10 is straightened (angle aq) in its usual maneuvering position.
  • This upright position aq can be adapted to the use, the nature of the CH loads to be transported and the nature of the journeys to be made.
  • the locking device 60 is controlled by the operator to be activated on a path or a path segment of the carriage and then it is released again.
  • the locking device 60 is an electromechanical device or a mechanical device.
  • the blocking device 60a is an electromechanical device combined directly with the extension spring 50 of each module in order to block the latter.
  • the blocking is done either in the precise position of the angle of inclination aq corresponding to the upright position of the carriage, or in the chosen position, corresponding to the angle a at the time of the control of the block. cage.
  • the control is carried out, preferably, from a control button 63 provided on the handle 21 so that the driver can activate the positive locking device 60 without having to let go of the handle 21, which, in so far as the locking of the tilt angle is done immediately and not in a timed manner, can only be done if the frame 10 is tilted precisely according to this angle aq.
  • This inclination of the frame 10 is, for example, its inclination end-of-travel position.
  • FIG. 11 shows another variant of the blocking device 60b in which this device is not combined with the extension spring 50 of each module, but is a separate device, associated with the frame 10 and with each module 30.
  • This variant is in the form of a telescopic rod 60b connected by a pivot 61b to the frame 10 and by a stop 62b to each module 30: it is provided with a mechanical blocking member 64b or electromechanical to block the length of the rod 60b according to the angle a of the carriage 10 in the upright position, or in an intermediate position, chosen by the driver.
  • This locking member 64b in the form of a lock can be controlled from the handle 21 if it is electromechanical or by a cable, or even directly with the driver's foot so that the latter does not have to let go of the handle 21.
  • FIG. 12 shows another variant of the locking device 60c, mechanical.
  • This device is formed of a double strut 60c as associated with the two modules 30; this double strut is connected by the pivot 61c to the frame 10.
  • the strut 60c is kept escalated against the frame 10 in the rest position. It frees itself from this position to block the angle aq and come into abutment against a support 62c of each module 30.
  • This double strut has, for example, a structure of H lying with two rods articulated by one end 61c to the frame. 10 and connected by a cross which secures them.
  • This strut 60c is released from the foot to unhook from its rest position and come into the active locking position. Unlocking is done in the opposite way, also at the foot so as not to have to let go of the handle during the maneuver.
  • NOMENCLATURE OF THE MAIN ELEMENTS NOMENCLATURE OF THE MAIN ELEMENTS

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Handcart (AREA)

Abstract

Chariot (100) ayant un châssis (10) avec un dossier (111) recevant la charge (CH) et un manche (20) terminé par une poignée (21) et un boîtier de commande (22), le châssis (10) s'appuie sur deux modules à chenille (30) reliés au châssis (10) par une articulation (31) pour pivoter indépen- damment l'un de l'autre, du côté du châssis (10) à l'opposé de celui du dossier (111). Chaque module à chenille (30) est relié au châssis (10) par une articula- tion (31) et un ressort d'extension (50) créant une force s'opposant au re- pliement du module (30) contre le châssis (10), la plage de pivotement du module à chenille entraîné (30) étant limitée entre une position repliée contre le châssis (10) et une position déployée définissant la position redressée du châssis (10).

Description

DESCRIPTION
Titre : « CHARIOT TRANSPALETTE A CHENILLES MOTORISEES
DOMAINE DE L’INVENTION
La présente invention se rapporte à un chariot de manutention de type diable ayant un châssis avec un dossier recevant la charge et un manche terminé par une poignée et un boîtier de commande, le châssis s’appuyant sur deux modules à chenille ainsi qu’un moyen d’entraîne ment des modules à chenille, commandé par une boîte de commande, les modules à chenille étant reliés au châssis par une articulation pour pivoter indépendamment l’un de l’autre du côté du châssis à l’opposé de celui du dossier recevant la charge.
ETAT DE LA TECHNIQUE
On connaît déjà un tel chariot de manutention selon le document FR 1755475.
Le chariot selon cet état de la technique comprend des modules formant un polygone de sustentation soit pour la circulation sur une surface dure S, lisse, soit pour passer des obstacles en marche avec le conduc teur, côté modules, devant le chariot. Lorsque le conducteur est en marche devant le chariot les modules sont repliés pour passer les marches.
Le chariot (figures 8A, 8B) circule en appui sur les deux roues motrices des modules en position repliée sur les surfaces dures ne nécessitant pas de chenilles.
Le chariot peut également circuler sur ses chenilles déployées pour pas ser sur des surfaces meubles.
Pour le passage de marches, le chariot est soit conduit par le conduc teur marchant derrière le chariot (figure 8A) et dans ce cas, bien que les deux modules forment un polygone de sustentation, le centre de gravité se situe au-delà de ce polygone de sustentation et une fraction non né gligeable du poids de la charge doit être reprise par le conducteur.
Si le conducteur marche devant le chariot (figure 8B) en étant normale ment retourné pour faire face de la charge, le polygone de sustentation est variable selon que chaque module est seulement appuyé sur sa roue motrice, soit qu’une partie de la chenille est en appui en deux points et forme ainsi un polygone de sustentation très limité ce qui crée des changements brusques de l’effort demandé au conducteur qui est lui- même en marche arrière. Ce mouvement chaotique peut perturber le conducteur. Cela s’ajoute le risque de faux pas et de basculement du chariot chargé vers le bas si le centre de gravité passe au-delà du plan vertical de la ligne transversale d’appui du chariot sur la marche.
Les schémas des figures 8A-8B montrent le cas d’un chariot de manu tention 200 selon l’état de la technique avec des modules à chenilles, escamotables c’est-à-dire qui sont bloqués soit dans une position de roulement, déployées selon un angle fixe entre le châssis et le module, soit en position repliée.
La figure 8A montre le chariot 200 en position déployée passer des marches, le conducteur étant derrière le chariot.
La figure 8B montre le chariot en position repliée des modules à chenille passant les marches d’escalier, le conducteur étant devant le chariot.
BUT DE L’INVENTION
La présente invention a pour but de développer un chariot de manuten tion de type diable tel que décrit ci-dessus permettant de passer de ma nière plus facile et simple des obstacles en sécurité en particulier des marches d’escalier sans risquer le basculement arrière, vers le bas des marches.
EXPOSE ET AVANTAGES DE L’INVENTION
A cet effet, l’invention a pour objet un chariot de manutention de type diable ayant un châssis avec un dossier recevant la charge et un manche terminé par une poignée et un boîtier de commande, le châssis s’appuyant sur deux modules à chenille ainsi qu’un moyen d’entraîne ment des modules à chenille, commandé par le boîtier de commande, ces modules étant reliés au châssis par une articulation pour pivoter in dépendamment l’un de l’autre, du côté du châssis à l’opposé de celui du dossier recevant la charge, ce chariot de manutention étant caractérisé en ce que chaque module à chenille est relié au châssis par une articulation et un ressort d’extension créant une force s’opposant au repliement du mo dule contre le châssis, la plage de pivotement du module à chenille entraîné étant limitée entre une position repliée contre le châssis et une position déployée définis sant la position redressée du châssis. Le chariot selon l’invention a l’avantage de passer facilement les obs tacles tels que de petits obstacles aléatoires rencontrés sur la surface de circulation du chariot soit des marches ou un ensemble de marches. Dans tous les cas, l’inclinaison variable élastiquement du ou des mo dules par rapport à l’inclinaison du châssis, maintenu constante selon le choix du conducteur, évite que le soulèvement du ou des modules provoque une réaction sur l’inclinaison du châssis et modifie celle-ci, lorsque l’angle entre les modules et le châssis du chariot est bloqué de manière fixe, lorsque les chenilles constituent les polygones de susten tation.
Cette souplesse de passage est particulièrement importante pour le pas sage de marches et la montée ou la descente d’un escalier puisque le conducteur pourra maintenir la poignée du chariot, de façon « cons tante » sans avoir à réagir à une poussée dans le sens du basculement vers l’arrière du châssis comme cela est le cas des chariots de manuten tion de l’état de la technique.
En d’autres termes, cette absence de polygone de sustentation, du fait de la suppression du blocage de l’angle entre le châssis et la surface d’appui des modules à chenille et l’indépendance du débattement des deux modules facilite et sécurise considérablement la circulation du chariot chargé, sur une surface irrégulière avec des obstacles et aussi le passage de marches ou/ et la montée d’escaliers tant en montée qu’en descente.
Suivant une autre caractéristique, le module à chenille est un module à chenille entraîné composé d’une roue motrice sur l’axe d’articulation re liant le module au châssis et d’au moins une roue de renvoi sur les quelles passe la chenille.
Suivant une autre caractéristique, le ressort d’extension (50) est choisi dans le groupe comprenant : un ressort de couplage dont une extrémité est reliée à un point de fixa tion du châssis et l’autre à un point de fixation du module, un ressort de tension sur l’axe d’articulation et dont une extrémité est reliée à un point de fixation du châssis et dont l’articulation est relié à un point de fixation du module à chenille.
Ce mode de réalisation du ressort d’extension comme ressort hélicoïdal ou comme ressort à deux branches installé sur l’axe d’articulation cons titue une solution particulièrement souple et efficace.
Suivant une autre caractéristique, le module à chenille comporte une roue auxiliaire entre la roue motrice et la roue de renvoi, formant à l’avant une rampe avec la roue de renvoi et avec la roue motrice et une surface d’appui.
Cette forme du module à chenille qui aborde les obstacles est intéres sante pour la régularité de la manoeuvre du chariot. La rampe permet d’absorber facilement et de manière quasi continu sans ralentissement la vitesse de circulation, le passage du ou des modules à chenille. Dans le cas du passage d’une marche cela facilite également la montée par pi votement du module le long de la contre-marche puisque la roue de re tour à l’avant du chariot a un diamètre beaucoup plus faible que le diamètre de la roue motrice étant donné l’interposition de la roue inter médiaire.
Suivant une autre caractéristique avantageuse, le dossier est formé d’un caisson en tôle pliée ou soudée comprenant un dossier ayant deux côtés repliés à l’équerre et un dessous pour rece voir en partie basse un groupe moteur (40) avec un moteur électrique relié par un différentiel à deux axes de sortie reliés respectivement à une roue motrice de chaque module.
Cette forme de réalisation permet d’adapter au dossier les accessoires de réception de charge tel que des pelles, des griffes, des fourches très variables et qui peuvent être adaptées à des applications particulières du chariot si celui-ci est utilisé pour plusieurs charges de type particu lier, nécessitant pour leur prise et leur maintien des accessoires adap tés à leur forme.
Suivant une autre caractéristique, la roue motrice du module à chenille est choisie dans le groupe comprenant : une roue motrice intégrant un moteur électrique commandé pour for mer le différentiel avec le moteur électrique de l’autre module et géré par un système de différentiel électrique commandé par le boîtier com mun, une roue motrice reliée à un moteur électrique installé dans le châssis et dont l’axe de sortie est relié à l’axe de la roue motrice, les deux mo teurs étant couplés en différentiel, une roue motrice reliée à un groupe moteur formé d’un moteur élec trique relié en sortie à un différentiel dont les deux axes de sortie sont reliés respectivement à une roue motrice de l’un des deux modules à chenille.
Suivant une autre caractéristique avantageuse, le chariot de manuten tion comporte un dispositif de blocage commandé pour bloquer l’angle d’inclinaison entre le châssis et les deux modules 30, solidaires dans cette inclinaison, ce dispositif de blocage étant débrayable. Ce dispositif de blocage assure le jumelage des deux modules et bloque ceux-ci en position déployée correspondant à la position redressée du châssis ou à une position intermédiaire selon les développements du dispositif de blocage.
Ces moyens d’actionnement, par exemple, mécaniques peuvent s’action ner avec le pied du conducteur pour que celui-ci puisse activer ou neu traliser le dispositif de blocage des deux modules sans avoir à lâcher la poignée. Un tel blocage de l’angle d’inclinaison du châssis par rapport au module peut être intéressant pour parcourir certains segments du trajet avec le chariot de manutention chargé. A la fin du blocage néces saire pour faciliter le passage de ce segment de trajet, le conducteur li bère de nouveau le blocage de sorte que seul le ressort d’extension de chaque module assure la suspension du module comme cela a été ex posé ci-dessus.
Suivant une autre caractéristique avantageuse, le dispositif de blocage est choisi dans le groupe comprenant :
- un organe de blocage électromécanique associé au ressort d’extension de chaque module ou encore
- une tige télescopique reliant le châssis à chaque module et se blo quant sur commande dans la position d’inclinaison du châssis par rap port aux deux modules, ou encore
- une double jambe de force portée de façon pivotante par le châssis, en étant mobile entre une position escamotée et une position de blocage appuyée contre une butée de chaque module.
Ces variantes du dispositif de blocage sont adaptées aux différentes uti lisations du chariot. Elles améliorent la fonctionnalité du chariot et son utilisation dans les passages difficiles sur un trajet avec le chariot de manutention chargé.
BREVE DESCRIPTION DES DESSINS
La présente invention sera décrite ci-après de manière plus détaillée à l’aide de modes de réalisation représentés dans les dessins annexés dans lesquels :
[Fig. 1] schéma de principe très général du chariot de manutention de l’invention
[Fig. IA] détail explicatif du schéma de la figure 1
[Fig. 2] schéma général du chariot de manutention selon l’invention et d’une variante pratique de ce chariot
[Fig. 3A] schéma du chariot de manutention devant des marches [Fig. 3B] Position du chariot de la figure 3A abordant la première marche [Fig. 3C] chariot de manutention de la figure 3A en position de passage de marches
[Fig. 4] vue en perspective, côté avant, d’un mode de réalisation d’un chariot de manutention selon l’invention
[Fig. 5] vue en perspective, côté arrière, du chariot de manutention de la figure 4
[Fig. 6] vue en perspective de côté du chariot de manutention de la fi gure 4
[Fig. 7] vue en perspective de côté du chariot de manutention de la fi gure 1 en position repliée.
[Fig. 8A] schéma d’un chariot selon l’état de la technique présenté sur des marches d’escalier en position poussée
[Fig. 8B] schéma explicatif du passage de marches avec le chariot de l’état de la technique en position tirée
[Fig. 9] autre mode de réalisation d’un chariot de manutention avec blo cage de l’angle d’inclinaison du châssis par rapport aux modules,
[Fig. 10] schéma d’une variante du chariot de manutention de la figure
9,
[Fig. 11] schéma d’une autre variante du chariot de manutention de la figure 9,
[Fig. 12] schéma d’une autre variante du chariot élévateur de la figure 9 DESCRIPTION D’UN MODE DE REALISATION
La figure 1 est un schéma de principe très simplifié d’un chariot de ma nutention à chenilles motorisées 100, de type diable, composé d’un châssis 10 avec une pelle 11 et un manche 20 terminé par une poignée 21, avec une commande 22 pour gérer le fonctionnement du chariot.
Le châssis 10 est porté par une paire de modules motorisés 30 à che nille, reliés chacun par un axe d’articulation 31 au châssis 10.
Chaque module à chenille 30 pivote indépendamment de l’autre par rapport au châssis 10 autour de l’axe d’articulation 31 en étant relié au châssis par un ressort d’extension 50 fixé à un point 51 du châssis 10 et à un point 52 du module à chenille 30.
La direction DC du châssis 10 avec son prolongement constitué par le manche 20 forme un angle (Q) par rapport à la direction H de la surface plane S sur laquelle circule le chariot 100. Le module 30 fait un angle variable (a) entre une direction DM liée au module 30 et la direction DC du châssis 10.
Les angles (Q) et (a) sont définis par rapport à une direction de référence qui est la direction horizontale H pour l’angle (Q) et une direction DM attachée à chaque module 30 et passant par l’axe d’articulation 31 de chaque module ; ainsi il est plus simple de mesurer l’angle (Q) par rap port à l’horizontale H passant par l’axe 31 ce qui facilite la comparaison de l’angle variable (a) par rapport à l’angle (Q) qui est à priori constant selon l’attitude du conducteur du chariot 100 car par hypothèse, on peut supposer que le conducteur manœuvre le chariot 100 en le tirant sur la surface S supposée plane en tenant la poignée 21 à la même hau teur de sorte que l’angle (Q) reste constant.
Le sens d’orientation choisi par convention dans la présente description est l’avant AV situé du côté du conducteur tenant la poignée 21 et l’ar rière AR qui est le côté de la charge CH.
En circulation sur une surface S plane, l’angle (a) est lui aussi constant, égal, à l’angle (Q) à une constante près (selon la direction de référence DM affectée au module 30).
Mais lorsque le module motorisé à chenille 30 passe sur un obstacle, l’angle (a) de l’un ou des deux modules 30 change au cours du passage sur l’obstacle alors que le module 30 qui ne rencontre pas l’obstacle, reste avec un angle (a) constant.
Dans le cas de la montée de marches abordées en parallèle par les deux modules à chenille 30, l’inclinaison (a) des deux modules varie sensible ment de la même manière et l’axe d’articulation 31 des deux modules reste horizontal.
Cette description suppose que le conducteur marche devant le chariot 100 avec sa charge CH ce qui est le cas habituel pour la circulation sur une surface non parfaitement plane ou pour le passage de marches pour que les obstacles soient abordés par l’avant des modules à l’op posé de l’arrière des modules correspondant à l’axe d’articulation 31.
Les modules motorisés à chenilles 30 se composent très schématique ment d’une roue motrice 32 et d’au moins une roue de renvoi 33 sur lesquelles passe la chenille 35.
La roue motrice 32 est entraînée dans le sens de la marche avant AV du chariot ou de la marche arrière AR ou encore en sens opposé pour l’autre roue motrice pour décrire une courbe.
La chenille 35 est entraînée directement ou indirectement par un mo teur électrique 36 commandé, avec un entraînement différentiel des deux roues motrices 32 des deux modules 30. La roue motrice 32 in tègre directement un moteur électrique. Elle peut aussi être reliée à un moteur électrique 36 associé à la roue motrice 32 mais installé sur le châssis 10 ou encore par un moteur commun aux deux roues motrices, relié aux roues motrices par un différentiel. Dans ces deux cas, la transmission du mouvement se fait directement par l’axe de pivotement qui devient l’axe de transmission ou encore par un axe passant dans l’axe d’articulation 31.
Le passage d’un obstacle tel qu’une marche Ml sera décrit à l’aide de la vue de détail de la figure IA.
Le mouvement de marche avant du module 30 est indiqué par la flèche d-AV. Lorsque l’avant du module 30 qui correspond à la roue de renvoi 33 arrive contre un obstacle figuré par la marche M 1 , le module 30 est arrêté par la contre-marche CM1 de sorte que la chenille 35 perd sa fonction de chenille c’est-à-dire celle de surface fixe par rapport à la surface S et sur laquelle roulent les roues 31, 33 du module 30. La che nille devient alors un ruban entraîné dans la direction du mouvement mvo figuré par la flèche. La chenille 35 frotte sur la surface de la contre marche CM 1 ce qui génère une réaction FM qui soulève la roue de ren voi 33 de sa position 33-0 vers une position ascendante 33-1. Ce mou vement de pivotement (Da) est rendu possible par l’articulation du module 30 autour de l’axe 31 avec compression du ressort d’extension 50.
La réaction FM n’a à vaincre qu’une fraction du poids de la charge CH puisque ce poids reste en appui sur le sol S par l’intermédiaire de la roue 31 et par de la poignée 21 tenue par le conducteur.
Le mouvement de pivotement du module 30 est schématisé à partir de sa position initiale, par l’axe 31 et la roue de renvoi 33 (position 31-0, 33- 0) et une position intermédiaire (31-1, 33-1) jusqu’à que la roue 33 arrive sur le dessus de la marche M 1.
Le mouvement pour le passage des marches suivantes se déroule de la même manière.
Au cours de ces différents mouvements, l’angle (Q) reste à priori cons tant selon l’attitude adoptée par le conducteur.
La figure 2 montre par comparaison avec la présentation générale du chariot de manutention 100 de la figure 1 , une réalisation qui diffère par la structure de l’avant du module 30. Pour ne pas compliquer la description, les références numériques de la figure 1 ont été conservées pour décrire cette variante de la figure 2; le module complète la roue de renvoi 33 par une roue intermédiaire 34 de manière à former à l’avant, une rampe 37 facilitant le passage de petits obstacles tout en conservant l’efficacité du passage d’obstacles importants, assimilables à des marches et mettant en œuvre la réaction dynamique générée par la butée que constitue l’obstacle à l’avancée du module 30.
Le pivotement du module 30 contre la poussée du ressort d’extension 50 facilite considérablement le passage en souplesse des petits obs tacles sans que ce passage ne ralentisse le mouvement du module 30 seul ou des deux modules 30 selon la largeur de l’obstacle à franchir.
Les figures 3A-3C montrent le passage du chariot sur les marches Ml- M3 d’un escalier mettant en évidence la variation de l’inclinaison (a) des modules 30 par rapport à l’angle (Q) du châssis 10 portant la charge CH.
Les figures sont présentées avec le mode de réalisation pratique du mo dule 30 de la figure 2 avec une rampe 37 qui met en œuvre le principe de libre basculement du module 30 décrit de façon générale à l’aide de la figure 1.
Pour aborder un obstacle tel que des marches M1-M3, le conducteur tient le manche 20 et ainsi le dossier 111 selon un angle arbitraire (Q) fonction de la position du conducteur à l’avant AV qui « tire » le chariot 100 avec une charge de centre de gravité CG. Le châssis 10 avec le manche 20 jusqu’à la poignée 21 constitue un levier dont le point d’ap pui est la roue motrice 32. Le poids de la charge se répartit selon les bras de levier entre d’une part le point d’appui et le centre de gravité CG de la charge et d’autre part entre le point d’appui et la poignée 30.
Comme les modules à chenille 30 peuvent pivoter librement autour de leur axe de pivotement contre l’action du ressort d’extension 50, lorsque l’extrémité avant du module 30 arrive sur un obstacle, par réaction, l’avant du module remonte la face de l’obstacle en pivotant le module 30 indépendamment de l’angle (Q) de la direction DC qui peut être mainte nue constante en fonction de la seule attitude du conducteur.
Réciproquement cela signifie que le conducteur peut tenir la poignée 21 de la façon la plus efficace et confortable et surtout sans avoir à se bais ser et se courber comme cela serait le cas si les modules 30 étaient dans leur position repliée, fixe, ou encore risquer de voir le centre de gravité CG de la charge passer au-delà de la verticale de l’axe 31 du mo dule 30 et ainsi basculer vers le bas de la pente de l’escalier comme cela peut être le cas d’un chariot de manutention dont les modules à che nille définissent un polygone de sustentation. L’indépendance de l’inclinaison (a) du module à chenille 30 et de la di rection du châssis 10 permet le passage particulièrement efficace d’obs tacles occasionnels ou répétés comme des marches, voire un escalier, tant en montée qu’en descente.
Les figures 4-7 montrent un mode de réalisation d’un chariot de manu tention 100 selon le schéma général de la figure 1 et de sa réalisation schématique de la figure 2 pour la structure des modules à chenille 30.
Le chariot de manutention 100 selon l’invention est composé d’un châs sis 10 muni d’un manche 20 avec une poignée de guidage et de com mande et de deux modules à chenille 30 reliés au châssis 10 par un axe d’articulation 31 et par un ressort d’extension 50 repoussant le module 30 dans le sens de l’ouverture de l’angle (a) entre la direction DC du châssis/ manche et la surface d’appui de chaque module à chenille 30.
Le mouvement de pivotement du module 30 est libre contre la poussée du ressort d’extension 50 entre deux positions extrêmes de pivotement correspondant à la position debout du chariot de manutention (figure 4) et la position du module 30 replié contre le châssis 10. Les positions ex trêmes ou de fin de course sont matérialisées par des butées non repré sentées.
Selon ce mode de réalisation, le châssis 10 est composé d’un corps pa rallélépipédique en tôle pliée formant une surface d’appui ou dossier 111 pour la charge CH à transporter et muni de deux côtés 112 et d’un dessous 113 constitués par des parties repliées à l’équerre. En partie basse le châssis 10 loge un groupe moteur 40 formé d’un moteur élec trique 41 relié à un différentiel 42 dont les deux axes de sortie 43 por tent les roues motrices 32 des deux module à chenille 30 en passant dans les paliers 321 dans les côtés 112 du châssis et les côtés 301, 302 de chaque module 30. Le groupe moteur 40 peut également se compo ser de deux moteurs électriques dont la sortie respective est reliée à la roue motrice 32 du module 30 associé, les deux moteurs électriques étant commandés par un différentiel électronique constituant l’équiva lent d’un différentiel mécanique.
La batterie 44 est logée en partie basse du châssis 10 au-dessus du groupe moteur 40.
Le dos du châssis 10 est couvert par un capot non représenté.
Le dossier 111 du châssis 10 reçoit les accessoires de support de charge, non représentés, tels qu’une pelle comme celle d’un diable ou un accessoire spécialisé en fonction de la forme de la charge à transpor ter si le chariot est destinée à une application dédiée.
Le manche 20 est intégré au châssis 10 dans lequel il peut être esca moté pour réduire son encombrement pour le rangement. L’extrémité du manche 20 est munie d’une poignée 21 servant au guidage et à la te nue du chariot et d’un boîtier de commande 22. Le boîtier 22 est muni de différents organes de commande, non détaillés, du groupe moteur tels que le sens de rotation du moteur, la vitesse et le cas échéant le blocage du différentiel. Il comporte également un affichage pour les pa ramètres de fonctionnement comme l’état de charge de la batterie 44.
Les deux modules à chenille 30 sont symétriques et de structures iden tiques, aux éléments de symétrie près.
Chaque module 30 est formé de deux côtés 301 , 302 avec les paliers 321, 331, 341 recevant l’axe de la roue motrice 32, celui de la roue de renvoi 33 et celui de la roue intermédiaire sur lesquelles passent la che nille 35.
Les modules 30 ont une structure identique à celle des modules 30 de la figure 2 dont la roue motrice 32, la roue de renvoi 33 et la roue inter médiaire 34 sont cachées par les côtés 301, 302 et dont seuls les paliers 321, 331, 341 portés par les côtés 301, 302 apparaissent.
Les côtés 301, 302 sont éventuellement solidarisés par des traverses.
L’avant du module a une rampe 37 formée par la chenille 35 passant sur les roues 33, 34 comme cela apparaît à la figure 2.
Par convention d’orientation, l’avant AV du chariot 100 est le côté où se tient le conducteur et l’arrière AR est le côté du dossier 111 et de la charge.
Le chariot 100 peut circuler dans les deux sens AV, AR bien que sur les parcours avec d’éventuels obstacles, en particulier la montée de marches, le sens de circulation est de préférence celui de la marche avant.
Les deux modules 30 sont portés, libres en pivotement, par leur axe d’entraînement respectif ; cette liaison est complétée par le ressort d’ex tension 50 dont une extrémité est reliée au côté intérieur 302 des mo dules 30 et l’autre est fixée au côté 112 du châssis 10. Le ressort d’extension 50 est muni de deux butées de fin de course, l’une pour li miter la position repliée, voisine de son alignement avec le châssis 10 (son dossier 111) et l’autre pour que l’angle (a) soit voisin de 90° mais que le centre de gravité CG du chariot vide 100 reste légèrement du côté avant AV.
Les roues du module 30 forment avec la chenille à l’avant, une rampe 37 entre la zone intermédiaire et la roue de renvoi 33 ainsi qu’une sur face de circulation entre la roue motrice 32 et la roue intermédiaire 34.
Le module 30 appuie le poids du chariot 100 et celui de la charge CH sur la roue motrice 32 du fait de la liberté du pivotement de chaque mo dule contre l’action du ressort d’extension 50. Ainsi le chariot n’a pas de polygone de sustentation lorsqu’il est chargé. Il n’a qu’un polygone de sustentation à vide par exemple pour se tenir comme cela parait aux fi gures 4 et 5, les deux ressorts d’extension 50 exerçant un couple suffi sant pour maintenir le châssis 10 en position relevée, proche de la verticale et contre la butée de fin de course comme cela a déjà été dé crit.
La figure 9 montre un autre mode de réalisation du chariot de manu tention 100 équipé d’un dispositif de blocage 60 de l’angle d’inclinaison a du châssis par rapport aux deux modules 30.
Le dispositif de blocage 60 commandé, est relié par une extrémité 61 au châssis 10 et par l’autre extrémité 62 aux deux modules 30 de manière à bloquer l’angle d’inclinaison a selon le cas dans une position angu laire a quelconque ou lorsque le châssis 10 est redressé (angle aq) dans sa position de manoeuvre habituelle. Cette position redressée aq peut être adaptée à l’utilisation, à la nature des charges CH à transporter et à la nature des trajets à effectuer.
Le dispositif de blocage 60 est commandé par l’opérateur pour être ac tivé sur un trajet ou un segment de trajet du chariot puis il est de nou veau débloqué.
Le dispositif de blocage 60 est un dispositif électromécanique ou un dis positif mécanique.
Selon la variante de la figure 10, le dispositif de blocage 60a est un dis positif électromécanique combiné directement au ressort d’extension 50 de chaque module pour bloquer celui-ci. Suivant le mode de réalisation, le blocage se fait soit dans la position précise de l’angle d’inclinaison aq correspondant à la position redressée du chariot, soit dans la position choisie, correspondant à l’angle a au moment de la commande du blo cage. La commande se fait, de préférence, à partir d’un bouton de commande 63 prévu sur la poignée 21 pour que le conducteur puisse activer le dis positif de blocage 60 sans avoir à lâcher la poignée 21 , ce qui, dans la mesure où le blocage de l’angle d’inclinaison se fait immédiatement et non de façon temporisée, ne peut se faire que si le châssis 10 est incliné précisément selon cet angle aq. Cette inclinaison du châssis 10 est, par exemple, sa position de fin de course d’inclinaison.
La figure 11 montre une autre variante du dispositif de blocage 60b dans laquelle ce dispositif n’est pas combiné au ressort d’extension 50 de chaque module, mais est un dispositif distinct, associé au châssis 10 et à chaque module 30. Cette variante est sous la forme d’une tige téles copique 60b reliée par un pivot 61b au châssis 10 et par une butée 62b à chaque module 30 : il est muni d’un organe de blocage mécanique 64b ou électromécanique pour bloquer la longueur de la tige 60b selon l’angle a du chariot 10 en position redressée, ou dans une position in termédiaire, choisie par le conducteur.
Cet organe de blocage 64b en forme de verrou peut être commandé de la poignée 21 s’il est électromécanique ou par un câble, ou encore directe ment avec le pied du conducteur pour que celui-ci n’ait pas à lâcher la poignée 21.
Le déverrouillage se fait dans les mêmes conditions.
La figure 12 montre une autre variante du dispositif de blocage 60c, mécanique. Ce dispositif est formé d’une double jambe de force 60c as sociée aux deux modules 30 ; cette double jambe de force est reliée par le pivot 61c au châssis 10. La jambe de force 60c est maintenue esca motée contre le châssis 10 en position de repos. Elle se libère de cette position pour bloquer l’angle aq et venir en butée contre un appui 62c de chaque module 30. Cette double jambe de force a, par exemple, une structure de H couché avec deux tiges articulées par une extrémité 61c au châssis 10 et reliées par une traverse qui les solidarise. Cette jambe de force 60c se libère du pied pour se décrocher de sa position de repos et venir en position active de blocage. Le déblocage se fait de manière inverse, également au pied pour ne pas avoir à lâcher la poignée pen dant la manœuvre. NOMENCLATURE DES ELEMENTS PRINCIPAUX
100 Chariot
10 Châssis
111 Dossier
112 Côtés
113 Dessous
20 Manche
21 Poignée
22 Boîtier de commande
30 Module à chenille
31 Axe d’articulation
32 Route motrice 321 Palier
33 Roue de renvoi 331 Axe de la roue d’envoi
34 Roue intermédiaire 341 Palier de la roue intermédiaire
35 chenille
36 Moteur
37 Rampe
40 Groupe moteur
41 Moteur électrique
42 Différentiel
43 Axes de sortie
44 Batterie
50 Ressort d’extension
51 Point de fixation du ressort au châssis
52 Point de fixation du ressort au module CH Charge CG Centre de gravité de la charge H Direction de référence DC Direction du chariot DM Direction du module (Q) Inclinaison du chariot
(a) Inclinaison du module
S Surface du sol
M1...M3 Marches

Claims

REVENDICATIONS
1. Chariot de manutention (100) de type diable ayant un châssis (10) avec un dossier (111) recevant la charge (CH) et un manche (20) terminé par une poignée (21) et un boîtier de commande (22), le châssis (10) s’appuyant sur deux modules à chenille (30) ainsi qu’un moyen d’en traînement des modules à chenille (30), commandé par le boîtier de commande (22), les modules (30) étant reliés au châssis (10) par une articulation (31) pour pivoter indépendamment l’un de l’autre, du côté du châssis (10) à l’opposé de celui du dossier (111) recevant la charge (CH), chariot de manutention caractérisé en ce que chaque module à chenille (30) est relié au châssis (10) par une articula tion (31) et un ressort d’extension (50) créant une force s’opposant au repliement du module (30) contre le châssis (10), la plage de pivotement du module à chenille, entraîné, (30) étant limitée entre une position repliée contre le châssis (10) et une position déployée définissant la position redressée du châssis (10).
2. Chariot de manutention (100) à chenilles entraînées selon la revendi cation 1, caractérisé en ce que le module à chenille (30) est un module à chenille, entraîné, composé d’une roue motrice (32) sur l’axe d’articulation (31) reliant le module (30) au châssis et d’au moins une roue de renvoi (33) sur lesquelles passe la chenille (35).
3. Chariot de manutention (100) selon la revendication 1, caractérisé en ce que le ressort d’extension (50) est choisi dans le groupe comprenant : un ressort de couplage dont une extrémité est reliée à un point de fixa tion (51) du châssis (10) et l’autre à un point de fixation (52) du module (30), un ressort de tension sur l’axe d’articulation (31) et dont une extrémité est reliée à un point de fixation (51) du châssis (10) et dont l’autre est reliée à un point de fixation (52) du module à chenille (30).
4. Chariot de manutention 100 selon les revendications 1 et 2, caractérisé en ce que le module à chenille (30) comporte une roue auxiliaire (34) entre la roue motrice (32) et la roue de renvoi (33), et formant à l’avant (AV) une rampe (37) avec la roue de renvoi (33) et avec la roue motrice (32) et une surface d’appui.
5. Chariot de manutention (100) selon les revendications 1 et 2, caractérisé en ce que le dossier (10) est formé d’un caisson en tôle pliée ou soudée compre nant un dossier (111) ayant deux côtés (112) repliés à l’équerre et un dessous (113) pour recevoir en partie basse un groupe moteur (40) avec un mo teur électrique (41) relié par un différentiel (42) à deux axes de sortie re liés respectivement à une roue motrice de chaque module (30).
6. Chariot de manutention (100) selon les revendications 1 et 2, caractérisé en ce que la roue motrice (32) du module à chenille (30) est choisie dans le groupe comprenant : une roue motrice (32) intégrant un moteur électrique (36) commandé pour former le différentiel avec le moteur électrique de l’autre module et géré par un système de différentiel électrique commandé par le boîtier commun,
- une roue motrice (32) reliée à un moteur électrique installé dans le châssis (10) et dont l’axe de sortie est relié à l’axe (31) de la roue motrice (32), les deux moteurs étant couplés en différentiel,
- une roue motrice (32) reliée à un groupe moteur (40) formé d’un mo teur électrique (41) relié en sortie à un différentiel (42) dont les deux axes de sortie (43) sont reliés respectivement à une roue motrice (32) de l’un des deux modules à chenille (30).
7°) Chariot de manutention (100) selon la revendication 1, caractérisé en ce qu’il comprend un dispositif de blocage commandé (60) pour bloquer l’angle d’inclinai son (a) entre le châssis (10) et ses deux modules (30), ce dispositif de blocage (60) étant débrayable.
8°) Chariot de manutention (100) selon la revendication 7, caractérisé en ce que le dispositif de blocage (60) est choisi dans le groupe comprenant :
- un dispositif de blocage électromécanique (60a), associé au ressort d’extension (50) de chaque module (30).
- une tige télescopique (60b) reliant le châssis (10) à chaque module (30) et se bloquant sur commande dans la position d’inclinaison (a) du châs sis par rapport aux deux modules (30),
- une double jambe de force (60c), portée de façon pivotante par le châs sis (10), mobile entre une position escamotée et une position de blocage, appuyée contre une butée de chaque module (30).
EP21718162.7A 2020-03-13 2021-03-11 Chariot transpalette a chenilles motorisées Pending EP4117978A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2002492A FR3108088B3 (fr) 2020-03-13 2020-03-13 « chariot transpalette à chenilles motorisées »
FR2102150A FR3108087A1 (fr) 2020-03-13 2021-03-05 chariot transpalette à chenilles motorisées
PCT/FR2021/050415 WO2021181047A1 (fr) 2020-03-13 2021-03-11 Chariot transpalette a chenilles motorisées

Publications (1)

Publication Number Publication Date
EP4117978A1 true EP4117978A1 (fr) 2023-01-18

Family

ID=76730632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21718162.7A Pending EP4117978A1 (fr) 2020-03-13 2021-03-11 Chariot transpalette a chenilles motorisées

Country Status (3)

Country Link
EP (1) EP4117978A1 (fr)
FR (2) FR3108088B3 (fr)
WO (1) WO2021181047A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121418A1 (fr) * 2022-03-25 2022-10-07 R.S..A. Concept Chariot de transport de charge
WO2022208026A1 (fr) * 2021-03-31 2022-10-06 R.S.A Concept Chariot de transport de charge
FR3121417A1 (fr) * 2021-12-23 2022-10-07 R.S.A. Concept Diable motorisé à double basculement
FR3146645A1 (fr) * 2023-03-13 2024-09-20 R.S.A. Concept Chariot de transport de charges

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604965B1 (fr) * 1986-10-09 1989-04-14 Levet Joannes Chariot articule, tous-terrains, type 2 roues, a traction manuelle utilisable dans les escaliers
US20140271095A1 (en) * 2013-03-15 2014-09-18 Ell Operations, Inc. Stair traversing delivery apparatus
CN106080724A (zh) * 2016-06-28 2016-11-09 河北工业大学 一种可爬楼梯助力搬运小车
US10479385B2 (en) * 2016-06-29 2019-11-19 R.S.A. Concept Motorized handling truck

Also Published As

Publication number Publication date
FR3108088A3 (fr) 2021-09-17
FR3108087A1 (fr) 2021-09-17
WO2021181047A1 (fr) 2021-09-16
FR3108088B3 (fr) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021181047A1 (fr) Chariot transpalette a chenilles motorisées
EP0740542B1 (fr) Siege roulant pour le transport ou l'assistance au deplacement d'au moins un utilisateur, notamment d'une personne handicapee
EP0305299B1 (fr) Véhicule articulé modulaire évoluant parmi des obstacles, et élément modulaire composant ce véhicule
WO2001053145A1 (fr) Vehicule pour terrain accidente
EP0755841B1 (fr) Chariot de manutention
FR2976892A1 (fr) Chariot de transport pourvu d'un moyen d'assistance a la manoeuvre
BE1025640A1 (fr) Chariot de manutention motorisé
WO2021190952A1 (fr) Systeme de propulsion electrique amovible pour un objet roulant avec un dispositif d'effacement du guidon
WO2023032409A1 (fr) Outil de transport
WO2019202228A2 (fr) Chariot transpalette motorise
FR3093916A1 (fr) Dispositif d’aide à la conduite de roue de système de propulsion électrique amovible pour un objet roulant
FR3121416A1 (fr) Chariot de transport de charge
FR2696199A1 (fr) Chariot à bras télescopique et à pelle excavatrice.
CA3175680A1 (fr) Systeme de propulsion electronique amovible pour un objet roulant avec un moyen de blocage directionnel automatique
EP2836413B1 (fr) Véhicule de transport ou porte-outil articule avec conduite au sol
FR3054995A3 (fr) Dispositif d'aide au franchissement
FR3052430A3 (fr) Dispositif d'aide au franchissement
WO2020178495A1 (fr) Véhicule motorisé a conducteur assis
WO2020187516A1 (fr) Dispositif de levage de roue de systeme de propulsion electrique amovible pour un objet roulant
WO2022208026A1 (fr) Chariot de transport de charge
FR3121417A1 (fr) Diable motorisé à double basculement
CA3177934A1 (fr) Systeme de propulsion electrique amovible pour un objet roulant avec un moyen de prehension et de levage combines et simultanes
EP4125763A1 (fr) Systeme de propulsion electrique amovible pour un objet roulant avec un dispositif d'effacement du guidon
FR3154693A1 (fr) Chariot électrique à chenilles à châssis réglable
FR3121418A1 (fr) Chariot de transport de charge

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20250430