[go: up one dir, main page]

EP4107534B1 - Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment - Google Patents

Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment Download PDF

Info

Publication number
EP4107534B1
EP4107534B1 EP21705512.8A EP21705512A EP4107534B1 EP 4107534 B1 EP4107534 B1 EP 4107534B1 EP 21705512 A EP21705512 A EP 21705512A EP 4107534 B1 EP4107534 B1 EP 4107534B1
Authority
EP
European Patent Office
Prior art keywords
propagation time
frequency
detected
signal propagation
operating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21705512.8A
Other languages
German (de)
French (fr)
Other versions
EP4107534A1 (en
Inventor
Christoph ENGELEN
Fabian ÖTTL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omicron Electronics GmbH
Original Assignee
Omicron Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omicron Electronics GmbH filed Critical Omicron Electronics GmbH
Publication of EP4107534A1 publication Critical patent/EP4107534A1/en
Application granted granted Critical
Publication of EP4107534B1 publication Critical patent/EP4107534B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings

Definitions

  • the present invention relates to devices and methods for locating partial discharges in medium or high voltage equipment.
  • the present invention relates to such devices and methods that can be used to locate partial discharges in medium or high voltage equipment with complex winding structures.
  • Electromagnetic methods for example, scan a winding using a sensor, such as a coil with a ferrite core, and record a PD-related voltage swing in the mV range. It is also possible to subject PD-related electrical impulses to a signal propagation time analysis in power cables. Other electromagnetic methods analyze PD-related radio waves.
  • acoustic methods scan a winding, and in particular a winding head, using sound measurements. Surface-near phenomena are easier to detect than defects in the winding. For example, acoustic signals can be triangulated in oil-filled equipment.
  • Optical methods subject a winding to a light measurement, since TE emits not only noise but also light, which can be separated from daylight using appropriate filters. In this case, only surface phenomena are detected.
  • a device for locating a partial discharge in a medium or high voltage equipment according to the preamble of claim 1 and a corresponding method according to the preamble of claim 10 are known from the document EP 2 360 486 A1 known.
  • a first aspect of the invention relates to a device for locating partial discharges in medium or high voltage equipment.
  • the device comprises a signal detection device for detecting an electrical signal quantity of the equipment; a filter device for low-pass filtering the detected electrical signal quantity as a function of a filter cut-off frequency; a time detection device for detecting a signal propagation time of the low-pass filtered electrical signal quantity; and a comparison device for comparing the signal propagation time detected as a function of the filter cut-off frequency with a reference propagation time for charge pulses conducted through the equipment.
  • the location of the respective partial discharge in the equipment can be determined on the basis of this comparison.
  • the filter device is arranged to gradually reduce the filter cutoff frequency starting from an initial filter cutoff frequency until a signal propagation time detected at the reduced filter cutoff frequency exceeds a predetermined absolute signal propagation time threshold or exceeds a signal propagation time duration detected at the initial filter cutoff frequency by a predetermined relative signal propagation time ratio.
  • a step size when reducing the filter cutoff frequency can be at least 0.1 kHz, preferably 1 kHz and more preferably 10 kHz.
  • the predetermined relative signal propagation time ratio can be at least 2, preferably 5 and particularly preferably 10.
  • the filter cutoff frequency may be at most 1 MHz, preferably at most 100 kHz, and particularly preferably at most 50 kHz.
  • the device may further comprise a charge calibrator for conducting a charge pulse through the operating means in a conductive manner in order to determine the reference propagation time for this charge pulse.
  • the invention can preferably be implemented digitally.
  • the detected electrical signal quantity can therefore comprise digital voltage values
  • the signal detection device can comprise a voltmeter providing digital voltage values.
  • the filter device can comprise a digital low-pass filter.
  • the time detection device can comprise a timer providing digital time values.
  • the comparison device can comprise an arithmetic or calculation unit providing a comparison result of the detected signal propagation time with the reference propagation time.
  • a second aspect of the invention relates to a method for locating partial discharges in medium or high voltage equipment.
  • the method comprises detecting an electrical signal quantity of the equipment; low-pass filtering the detected electrical signal quantity as a function of a filter cut-off frequency; detecting a signal propagation time of the low-pass filtered electrical signal quantity; and comparing the signal propagation time detected as a function of the filter cut-off frequency with a reference propagation time for charge pulses conducted through the entire equipment in a conductive manner.
  • the method further comprises gradually reducing the filter cutoff frequency starting from an initial filter cutoff frequency until a signal propagation time detected at the reduced filter cutoff frequency exceeds a predetermined absolute signal propagation time threshold or exceeds a signal propagation time duration detected at the initial filter cutoff frequency by a predetermined relative signal propagation time ratio.
  • the method may further comprise conducting a charge pulse through equipment or along equipment to determine the reference propagation time prior to localizing the partial discharge.
  • the method may also include determining a frequency range of the electrical signal quantity in which a low-frequency component of the partial discharge dominates over a high-frequency component of the partial discharge.
  • the signal propagation time of the electrical signal quantity is determined and compared with the reference propagation time in order to determine the location of the partial discharge in the equipment depending on the comparison result.
  • the method according to the invention can be carried out in an automated or computer-aided manner using the device according to the invention according to one of the embodiments described herein.
  • Fig. 1 illustrates a device 10 for locating partial discharges in medium or high voltage equipment 20 according to an embodiment.
  • a medium or high voltage equipment within the meaning of this application can be understood as equipment that can be used at the voltage levels of the high voltage network or the medium voltage network. These can in particular have complex winding structures. Examples of these include electrical rotating machines, power transformers and voltage converters. The invention can also be used for machines in industrial applications.
  • a partial discharge or pre-discharge within the meaning of this application can be understood as locally occurring, incomplete electrical breakdowns of the insulation of conductor structures in medium- or high-voltage equipment, especially when subjected to alternating voltages.
  • the in Fig. 1 The device 10 shown on the left comprises a signal detection device 101 for detecting 301 an electrical signal quantity of the Fig. 1 on the right side of the equipment 20. How Fig. 1 illustrated are the outputs from the equipment 20 and in Fig. 1 The terminals of the equipment 20, designated “P(hase)" and “N(eu-tral)", can be electrically connected to the signal detection device 101.
  • An electrical signal quantity within the meaning of this application can be understood as an electrical current or in particular an electrical voltage (potential difference).
  • the signal detection device 101 may comprise a voltmeter providing digital voltage values, and the detected electrical signal quantity may accordingly comprise digital voltage values.
  • the device 10 further comprises a filter device 102 for low-pass filtering 302 the detected electrical signal quantity as a function of a filter cutoff frequency fc.
  • a filter cutoff frequency, bend frequency or corner frequency within the meaning of this application can be understood as those frequencies at which an amplitude response of a filtered electrical signal quantity is reduced to a value of 1 / ⁇ 2 ⁇ 70,7 % sinks.
  • An amplitude response within the meaning of this application can be understood as a frequency-dependent relationship between the amplitudes of an input variable and an output variable of a linear time-invariant system, in particular a filter, in the case of sinusoidal excitation.
  • a signal propagation of PD-related electromagnetic signals/pulses occurs depending on their frequency.
  • the signals can be transmitted through the insulation (high frequency) or via a cable through the copper tracks (low frequency).
  • High-frequency components are therefore radiated, are not connected to a cable and arrive at the signal detection device 101 via the shortest path.
  • Low-frequency components are connected to a cable and follow the winding geometry.
  • Fig. 2 illustrates a dependence of an amplitude response of a filter device 102 for low-pass filtering 302 of a detected electrical signal variable on a filter cutoff frequency fc.
  • the low-pass filter 302 removes the high-frequency components, such as Fig. 2 illustrated by way of example.
  • the amplitude response of the same filter device 102 is shown at ten different filter cut-off frequencies fc from 0.1 MHz to 1 MHz. In a respective passband, the amplitude response of the filtered electrical signal quantity is above the value of 1 / ⁇ 2 ⁇ 70,7 % , which indicates the respective filter cutoff frequency fc, and in a stop band below it.
  • a step-by-step reduction 303 of the filter cutoff frequency fc therefore results in the passband being successively reduced at lower frequencies and the stopband being successively increased at higher frequencies.
  • Fig. 3 illustrates a dependence of a signal propagation time t(fc) on the filter cutoff frequency fc.
  • the exemplary signal propagation time t(fc) of a TE-related electromagnetic pulse to the signal detection device 101 is shown as a function of a filter cutoff frequency fc that is successively reduced from 1 MHz to approximately 0.1 MHz.
  • the high-frequency component of the signal may initially dominate, such as Fig. 3 This is illustrated by way of example. This spreads out by radiation and arrives at the signal detection device 101 via the shortest path.
  • the filter device 102 can be configured to gradually reduce 303 the filter cutoff frequency f c starting from an initial filter cutoff frequency f C,0 until a signal propagation time t detected at the reduced filter cutoff frequency f c exceeds a predetermined absolute signal propagation time threshold value trn or exceeds a signal propagation time duration t 0 detected at the initial filter cutoff frequency f C,0 by a predetermined relative signal propagation time ratio N.
  • the filter cutoff frequency f C of a test object where a low-frequency, line-based signal propagation dominates, is known, this can be set or configured directly without requiring a step-by-step reduction 303 of the filter cutoff frequency f C in the field.
  • the step-by-step reduction 303 of the filter cutoff frequency f C data storage for test object-specific filter cutoff frequencies f C is therefore unnecessary and the test process is automated.
  • the low-pass filter 302 eliminates the multipath propagation of the signals through the insulation, which then allows a runtime analysis to be carried out, as is known from power cables. If the winding geometry and the total runtime through the winding are known, a conclusion can be drawn about the location of the PD.
  • the filter device 102 can in particular comprise a digital low-pass filter.
  • the device 10 further comprises a time detection device 104 for detecting 304 a signal propagation time t of the low-pass filtered electrical signal quantity.
  • the time recording device 103 may comprise a timer providing digital time values.
  • the device 10 further comprises a comparison device 105 for comparing 305 the signal propagation time t ( f C ) detected as a function of the filter cutoff frequency f C with a reference propagation time t ref for charge pulses conducted in a conductive manner through the entire operating means 20.
  • the comparison device 105 may comprise an arithmetic unit providing a comparison result of the detected signal propagation time t with the reference propagation time t ref .
  • the reference propagation time t ref for charge pulses conducted through the entire equipment 20 can be recorded, for example, during production or before commissioning of the equipment 20 with the aid of a charge calibrator 106 (see below). An artificially generated charge pulse is conducted through the entire equipment 20.
  • the reference propagation time t ref determined in this way corresponds to a total length L of the conducted signal propagation path between the connections of the equipment 20. A partial discharge in the equipment 20 occurs between these connections.
  • partial discharges in a winding of the equipment 20 can be localized at a length position x between the terminals of the equipment 20 without having direct access to the relevant winding of the equipment 20, since the underlying Measurements can be made at the connections of the equipment 20.
  • an exact spatial localization of the point of origin of the PD can also be carried out.
  • the device 10 may further comprise a charge calibrator 106 for conducting 306 a charge pulse through the entire equipment 20.
  • the running time t ref of this pulse serves as a reference for the running time that a pulse requires to run through the entire winding (total running time).
  • the transit time t of a real PD pulse is specified relative to this reference in order to indicate the relative position of the origin of the PD within the winding.
  • the charge calibrator 106 can alternatively be connected to the "P(h)ase" connection, while the signal acquisition then takes place via the "N(eutral)" connection.
  • Fig. 4 illustrates a method 30 for locating partial discharges in medium or high voltage equipment 20 according to an embodiment.
  • the method 30 can be carried out with the device 10 according to various embodiments.
  • the signal detection device 101 of the device 10 is as in Fig. 1 shown to be electrically connected to the near and far terminals of the equipment 20.
  • the method 30 comprises low-pass filtering of the detected electrical signal quantity by means of a filter device 102 of the apparatus 10 as a function of a filter cutoff frequency f C of the filter device 102.
  • the filter cutoff frequency f C may be no more than 1 MHz, preferably no more than 100 kHz, and more preferably no more than 50 kHz.
  • the method 30 may further comprise gradually reducing the filter cutoff frequency fc starting from an initial filter cutoff frequency f C,0 until a signal propagation time t detected at the reduced filter cutoff frequency f C exceeds a predetermined absolute signal propagation time threshold t th or exceeds a signal propagation time duration t 0 detected at the initial filter cutoff frequency f C,0 by a predetermined relative signal propagation time ratio N.
  • a step size when reducing 303 the filter cutoff frequency f C can be at least 0.1 kHz, preferably 1 kHz and even more preferably 10 kHz.
  • the predetermined relative signal propagation time ratio N can be at least 2, preferably 5 and particularly preferably 10.
  • step 304 the method 30 comprises detecting a signal propagation time t of the low-pass filtered electrical signal quantity by means of a time detection device 104 of the device 10.
  • the method 30 comprises comparing the signal propagation time t detected as a function of the filter cutoff frequency f C with a reference propagation time t ref for charge pulses conducted through the entire equipment 20 by means of a comparison device 105.
  • the method 30 may further comprise, in step 306, conducting a charge pulse through the entire operating means 20 by means of a charge calibrator 106 of the device 10, wherein the step 306 in Fig. 4 and the charge calibrator 106 in Fig. 1 are indicated as optional by line patterns.
  • the charge calibrator 106 is to be electrically connected to the remote terminal of the equipment 20 in order to introduce an artificially generated TE pulse there and, based thereon, to record a reference propagation time t ref for charge pulses conducted through the entire equipment 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Relating To Insulation (AREA)

Description

Die vorliegende Erfindung betrifft Vorrichtungen und Verfahren zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln. Insbesondere betrifft die vorliegende Erfindung derartige Vorrichtungen und Verfahren, die zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln mit komplexen Wicklungsstrukturen einsetzbar sind.The present invention relates to devices and methods for locating partial discharges in medium or high voltage equipment. In particular, the present invention relates to such devices and methods that can be used to locate partial discharges in medium or high voltage equipment with complex winding structures.

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION

Mittel- oder Hochspannungsbetriebsmittel können bei Beschädigung ihrer Leiterisolierung kurzschlussbedingt ausfallen. Erste Anzeichen dieser Beschädigungen zeigen sich oft durch Teilentladungsmessung. Neben dem der Fragestellung, ob Teilentladungen (TE) aktiv sind, ist eine Lokalisierung des Entstehungsorts der TE entscheidend.Medium or high voltage equipment can fail due to a short circuit if its conductor insulation is damaged. The first signs of this damage are often revealed by partial discharge measurements. In addition to determining whether partial discharges (PD) are active, it is crucial to localize the location where the PD originates.

Je nach Betriebsmittel existieren verschiedene Verfahren, um eine TE zu lokalisieren.Depending on the equipment, there are different methods to locate a PD.

Elektromagnetische Verfahren tasten beispielsweise eine Wicklung mit Hilfe eines Sensors, etwa einer Spule mit Ferritkern, ab und erfassen einen Ausschlag einer TE-bedingten Spannung im mV-Bereich. Ferner ist es in Energiekabeln möglich, TE-bedingte elektrische Impulse einer Signalausbreitungszeitanalyse zu unterziehen. Andere elektromagnetische Verfahren analysieren TE-bedingte Funkwellen.Electromagnetic methods, for example, scan a winding using a sensor, such as a coil with a ferrite core, and record a PD-related voltage swing in the mV range. It is also possible to subject PD-related electrical impulses to a signal propagation time analysis in power cables. Other electromagnetic methods analyze PD-related radio waves.

Akustische Verfahren tasten eine Wicklung, und insbesondere einen Wickelkopf, mit Hilfe von Schallmessungen ab. Dabei sind oberflächennahe Erscheinungen besser detektierbar als Defekte in der Wicklung. Beispielsweise kann eine Triangulation akustischer Signale in ölgefüllten Betriebsmitteln erfolgen.Acoustic methods scan a winding, and in particular a winding head, using sound measurements. Surface-near phenomena are easier to detect than defects in the winding. For example, acoustic signals can be triangulated in oil-filled equipment.

Optische Verfahren unterziehen eine Wicklung einer Lichtmessung, da TE neben Geräuschen auch Licht emittieren, welches mit entsprechenden Filtern vom Tageslicht getrennt werden kann. Hierbei werden nur Oberflächenerscheinungen erkannt.Optical methods subject a winding to a light measurement, since TE emits not only noise but also light, which can be separated from daylight using appropriate filters. In this case, only surface phenomena are detected.

Hinsichtlich rotierender elektrischer Maschinen lassen sich diese Verfahren jedoch nicht anwenden: Aufgrund der komplexen Wicklungsstruktur ergeben sich parallele Ausbreitungspfade für elektrische Impulse, wodurch eine Signalausbreitungszeitanalyse nicht durchgeführt werden kann. Eine akustische Ortung ist bedingt durch die Feststoffisolation und die mangelnde Zugänglichkeit der Wicklung ebenfalls nicht einsetzbar.However, these methods cannot be used for rotating electrical machines: Due to the complex winding structure, parallel propagation paths for electrical impulses arise, which means that a signal propagation time analysis cannot be carried out. Acoustic location cannot be used either due to the solid insulation and the lack of accessibility of the winding.

Den bekannten Verfahren ist gemein, dass es keine Zuordnung der TE zum elektrisch gemessenen Impuls an den Anschlüssen und deshalb keine Zuordnung zu der scheinbaren Ladung gibt (vgl. phasenaufgelöste TE, engl. PRPD). Letztere wäre erforderlich für eine belastbare Aussage, wie energiereich die Teilentladung an ihrem Entstehungsort sein kann. Ferner steigt der Aufwand hinsichtlich Sensorik und Messaufwand, da eine Reihe von Messungen durchgeführt werden muss, um den Entstehungsort der TE bestimmen zu können. Ferner muss ggf. die Wicklung zugänglich gemacht werden, was den Messaufwand nochmals deutlich erhöht.The known methods have in common that there is no assignment of the partial discharge to the electrically measured pulse at the connections and therefore no assignment to the apparent charge (cf. phase-resolved partial discharge, PRPD). The latter would be necessary for a reliable statement as to how energetic the partial discharge can be at its origin. Furthermore, the effort in terms of sensors and measurement increases, since a series of measurements must be carried out in order to be able to determine the origin of the partial discharge. Furthermore, the winding may have to be made accessible, which significantly increases the measurement effort again.

Eine Vorrichtung zum Lokalisieren einer Teilentladung in einem Mittel- oder Hochspannungsbetriebsmittel gemäß dem Oberbegriff des Anspruchs 1 und ein entsprechendes Verfahren gemäß dem Oberbegriff des Anspruchs 10 sind aus der Druckschrift EP 2 360 486 A1 bekannt.A device for locating a partial discharge in a medium or high voltage equipment according to the preamble of claim 1 and a corresponding method according to the preamble of claim 10 are known from the document EP 2 360 486 A1 known.

Des Weiteren ist aus der Druckschrift " A Review of Online Partial Discharge Measurement of Large Generators", Luo Yuanlin et al, ENERGIES, Bd. 10, Nr. 11, 25. Oktober 2017, Seite 1694, XP055804886 im Zusammenhang mit der Lokalisierung von Teilentladungen für ein Windungssystem wie einen Generator oder Motor bekannt, dass es für Teilentladungen zwei verschiedene Ausbreitungsmodi gibt, nämlich einen langsamen kabelgebundenen Ausbreitungsmodus niedrigerer Frequenz entlang des vorgesehenen Leitungspfads und einen schnellen Ausbreitungsmodus höherer Frequenz außerhalb des vorgesehenen Leitungspfads.Furthermore, the publication " A Review of Online Partial Discharge Measurement of Large Generators", Luo Yuanlin et al, ENERGIES, Vol. 10, No. 11, October 25, 2017, page 1694, XP055804886 In the context of localizing partial discharges for a winding system such as a generator or motor, it is known that there are two different propagation modes for partial discharges, namely a slow, lower frequency, wired propagation mode along the intended conduction path and a fast, higher frequency propagation mode outside the intended conduction path.

ZUSAMMENFASSUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Es besteht ein Bedarf an verbesserten Vorrichtungen und Verfahren zum Lokalisieren/Orten von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln, insbesondere in Betriebsmitteln mit komplexen Wicklungsanordnung (z.B. elektrische rotierende Maschinen).There is a need for improved devices and methods for locating partial discharges in medium or high voltage equipment, especially in equipment with complex winding arrangements (e.g. electrical rotating machines).

Diese Aufgabe wird durch die Merkmale der unabhängigen Patentansprüche gelöst. Die Merkmale der abhängigen Patentansprüche definieren bevorzugte oder vorteilhafte Ausführungsformen.This object is achieved by the features of the independent patent claims. The features of the dependent patent claims define preferred or advantageous embodiments.

Ein erster Aspekt der Erfindung betrifft eine Vorrichtung zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln. Die Vorrichtung umfasst eine Signalerfassungseinrichtung zum Erfassen einer elektrischen Signalgröße des Betriebsmittels; eine Filtereinrichtung zum Tiefpassfiltern der erfassten elektrischen Signalgröße in Abhängigkeit von einer Filtergrenzfrequenz; eine Zeiterfassungseinrichtung zum Erfassen einer Signalausbreitungszeit der tiefpassgefilterten elektrischen Signalgröße; und eine Vergleichseinrichtung zum Vergleichen der in Abhängigkeit von der Filtergrenzfrequenz erfassten Signalausbreitungszeit mit einer Referenzausbreitungszeit für leitungsgebunden durch das Betriebsmittel geleitete Ladungsimpulse. Auf Grundlage dieses Vergleichs kann schließlich der Ort der jeweiligen Teilentladung in dem Betriebsmittel bestimmt werden.A first aspect of the invention relates to a device for locating partial discharges in medium or high voltage equipment. The device comprises a signal detection device for detecting an electrical signal quantity of the equipment; a filter device for low-pass filtering the detected electrical signal quantity as a function of a filter cut-off frequency; a time detection device for detecting a signal propagation time of the low-pass filtered electrical signal quantity; and a comparison device for comparing the signal propagation time detected as a function of the filter cut-off frequency with a reference propagation time for charge pulses conducted through the equipment. Finally, the location of the respective partial discharge in the equipment can be determined on the basis of this comparison.

Die Filtereinrichtung ist zum von einer anfänglichen Filtergrenzfrequenz ausgehenden, schrittweisen Reduzieren der Filtergrenzfrequenz eingerichtet, bis eine bei der reduzierten Filtergrenzfrequenz erfasste Signalausbreitungszeit einen vorgegebenen absoluten Signalausbreitungszeitschwellwert übersteigt oder eine bei der anfänglichen Filtergrenzfrequenz erfasste Signalausbreitungszeitdauer um ein vorgegebenes relatives Signalausbreitungszeitverhältnis übersteigt.The filter device is arranged to gradually reduce the filter cutoff frequency starting from an initial filter cutoff frequency until a signal propagation time detected at the reduced filter cutoff frequency exceeds a predetermined absolute signal propagation time threshold or exceeds a signal propagation time duration detected at the initial filter cutoff frequency by a predetermined relative signal propagation time ratio.

Eine Schrittweite beim Reduzieren der Filtergrenzfrequenz kann mindestens 0.1 kHz, bevorzugt 1 kHz und weiter bevorzugt 10 kHz betragen.A step size when reducing the filter cutoff frequency can be at least 0.1 kHz, preferably 1 kHz and more preferably 10 kHz.

Das vorgegebene relative Signalausbreitungszeitverhältnis kann mindestens 2, bevorzugt 5 und besonders bevorzugt 10 betragen.The predetermined relative signal propagation time ratio can be at least 2, preferably 5 and particularly preferably 10.

Die Filtergrenzfrequenz kann höchstens 1 MHz, bevorzugt höchstens 100 kHz, und besonders bevorzugt höchstens 50 kHz betragen.The filter cutoff frequency may be at most 1 MHz, preferably at most 100 kHz, and particularly preferably at most 50 kHz.

Die Vorrichtung kann ferner einen Ladungskalibrator zum leitungsgebundenen Leiten eines Ladungsimpulses durch das Betriebsmittel umfassen, um für diesen Ladungsimpuls die Referenzausbreitungszeit zu bestimmen.The device may further comprise a charge calibrator for conducting a charge pulse through the operating means in a conductive manner in order to determine the reference propagation time for this charge pulse.

Die Erfindung kann vorzugsweise digital implementiert sein. Die erfasste elektrische Signalgröße kann demzufolge digitale Spannungswerte umfassen, und die Signalerfassungseinrichtung kann einen digitale Spannungswerte bereitstellenden Spannungsmesser umfassen. Die Filtereinrichtung kann ein digitales Tiefpassfilter umfassen. Die Zeiterfassungseinrichtung kann einen digitale Zeitwerte bereitstellenden Zeitmesser umfassen. Die Vergleichseinrichtung kann eine ein Vergleichsergebnis der erfassten Signalausbreitungszeit mit der Referenzausbreitungszeit bereitstellende Arithmetik- oder Recheneinheit umfassen.The invention can preferably be implemented digitally. The detected electrical signal quantity can therefore comprise digital voltage values, and the signal detection device can comprise a voltmeter providing digital voltage values. The filter device can comprise a digital low-pass filter. The time detection device can comprise a timer providing digital time values. The comparison device can comprise an arithmetic or calculation unit providing a comparison result of the detected signal propagation time with the reference propagation time.

Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln. Das Verfahren umfasst ein Erfassen einer elektrischen Signalgröße des Betriebsmittels; ein Tiefpassfiltern der erfassten elektrischen Signalgröße in Abhängigkeit von einer Filtergrenzfrequenz; ein Erfassen einer Signalausbreitungszeit der tiefpassgefilterten elektrischen Signalgröße; und ein Vergleichen der in Abhängigkeit von der Filtergrenzfrequenz erfassten Signalausbreitungszeit mit einer Referenzausbreitungszeit für leitungsgebunden durch das gesamte Betriebsmittel geleitete Ladungsimpulse.A second aspect of the invention relates to a method for locating partial discharges in medium or high voltage equipment. The method comprises detecting an electrical signal quantity of the equipment; low-pass filtering the detected electrical signal quantity as a function of a filter cut-off frequency; detecting a signal propagation time of the low-pass filtered electrical signal quantity; and comparing the signal propagation time detected as a function of the filter cut-off frequency with a reference propagation time for charge pulses conducted through the entire equipment in a conductive manner.

Das Verfahren umfasst ferner ein von einer anfänglichen Filtergrenzfrequenz ausgehendes, schrittweises Reduzieren der Filtergrenzfrequenz, bis eine bei der reduzierten Filtergrenzfrequenz erfasste Signalausbreitungszeit einen vorgegebenen absoluten Signalausbreitungszeitschwellwert übersteigt oder eine bei der anfänglichen Filtergrenzfrequenz erfasste Signalausbreitungszeitdauer um ein vorgegebenes relatives Signalausbreitungszeitverhältnis übersteigt.The method further comprises gradually reducing the filter cutoff frequency starting from an initial filter cutoff frequency until a signal propagation time detected at the reduced filter cutoff frequency exceeds a predetermined absolute signal propagation time threshold or exceeds a signal propagation time duration detected at the initial filter cutoff frequency by a predetermined relative signal propagation time ratio.

Das Verfahren kann ferner vor Lokalisierung der Teilentladung ein leitungsgebundenes Leiten eines Ladungsimpulses durch Betriebsmittel oder entlang des Betriebsmittels zum Bestimmen der Referenzausbreitungszeit umfassen.The method may further comprise conducting a charge pulse through equipment or along equipment to determine the reference propagation time prior to localizing the partial discharge.

Das Verfahren kann zudem umfassen, dass ein Frequenzbereich der elektrischen Signalgröße, in dem eine niederfrequente Komponente der Teilentladung gegenüber einer hochfrequenten Komponente der Teilentladung dominiert, bestimmt wird. In dem erfassten Frequenzbereich wird die Signalausbreitungszeit der elektrischen Signalgröße bestimmt und mit der Referenzausbreitungszeit verglichen, um in Abhängigkeit von dem Vergleichsergebnis den Ort der Teilentladung in dem Betriebsmittel zu bestimmen.The method may also include determining a frequency range of the electrical signal quantity in which a low-frequency component of the partial discharge dominates over a high-frequency component of the partial discharge. In the detected frequency range, the signal propagation time of the electrical signal quantity is determined and compared with the reference propagation time in order to determine the location of the partial discharge in the equipment depending on the comparison result.

Allgemein kann das erfindungsgemäße Verfahren mit der erfindungsgemäßen Vorrichtung nach einem der hierin beschriebenen Ausführungsformen automatisiert bzw. rechnergestützt durchgeführt werden.In general, the method according to the invention can be carried out in an automated or computer-aided manner using the device according to the invention according to one of the embodiments described herein.

KURZE BESCHREIBUNG DER FIGURENSHORT DESCRIPTION OF THE CHARACTERS

Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen und unter Bezugnahme auf die Zeichnungen kurz erläutert, wobei gleiche Bezugszeichen gleiche oder ähnliche Elemente bezeichnen.

  • Fig. 1 veranschaulicht eine Vorrichtung zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln nach einem Ausführungsbeispiel.
  • Fig. 2 veranschaulicht eine Abhängigkeit eines Amplitudenganges einer Filtereinrichtung zum Tiefpassfiltern einer erfassten elektrischen Signalgröße von einer Filtergrenzfrequenz.
  • Fig. 3 veranschaulicht eine Abhängigkeit einer Signalausbreitungszeit einer Teilentladung in dem Betriebsmittel von der Filtergrenzfrequenz.
  • Fig. 4 veranschaulicht ein Verfahren zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln nach einem Ausführungsbeispiel.
The invention is briefly explained below using preferred embodiments and with reference to the drawings, wherein like reference numerals designate like or similar elements.
  • Fig. 1 illustrates a device for locating partial discharges in medium or high voltage equipment according to an embodiment.
  • Fig. 2 illustrates a dependence of an amplitude response of a filter device for low-pass filtering a detected electrical signal quantity on a filter cutoff frequency.
  • Fig. 3 illustrates a dependence of a signal propagation time of a partial discharge in the equipment on the filter cutoff frequency.
  • Fig. 4 illustrates a method for locating partial discharges in medium or high voltage equipment according to one embodiment.

DETAILLIERTE BESCHREIBUNG VON AUSFÜHRUNGSBEISPIELENDETAILED DESCRIPTION OF EMBODIMENTS

Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen und unter Bezugnahme auf die Zeichnungen näher erläutert.The invention is explained in more detail below using preferred embodiments and with reference to the drawings.

Eine Beschreibung von Ausführungsbeispielen in spezifischen Anwendungsfeldern bedeutet keine Einschränkung auf diese Anwendungsfelder.A description of embodiments in specific fields of application does not imply a restriction to these fields of application.

Elemente schematischer Darstellungen sind nicht notwendigerweise maßstabsgetreu wiedergegeben, sondern vielmehr derart, dass Fachleuten ihre Funktion und ihr Zweck verständlich werden.Elements of schematic representations are not necessarily reproduced to scale, but rather in such a way that their function and purpose can be understood by persons skilled in the art.

Soweit nicht ausdrücklich anders angegeben sind die Merkmale der verschiedenen Ausführungsformen miteinander kombinierbar.Unless expressly stated otherwise, the features of the various embodiments can be combined with one another.

Fig. 1 veranschaulicht eine Vorrichtung 10 zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln 20 nach einem Ausführungsbeispiel. Fig. 1 illustrates a device 10 for locating partial discharges in medium or high voltage equipment 20 according to an embodiment.

Unter einem Mittel- bzw. Hochspannungsbetriebsmittel im Sinne dieser Anmeldung können Betriebsmittel verstanden werden, welche auf den Spannungsniveaus des Hochspannungsnetzes oder des Mittelspannungsnetzes einsetzbar sind. Diese können insbesondere komplexe Wicklungsstrukturen aufweisen. Beispiele hierfür umfassen etwa elektrische rotierende Maschinen, Leistungstransformatoren und Spannungswandler. Ebenso ist die Erfindung auch für Maschinen in Industrieanwendungen einsetzbar.A medium or high voltage equipment within the meaning of this application can be understood as equipment that can be used at the voltage levels of the high voltage network or the medium voltage network. These can in particular have complex winding structures. Examples of these include electrical rotating machines, power transformers and voltage converters. The invention can also be used for machines in industrial applications.

Unter einer Teilentladung oder Vorentladung im Sinne dieser Anmeldung können vor allem bei Beanspruchung mit Wechselspannungen örtlich auftretende, unvollkommene elektrische Durchschläge einer Isolierung von Leiterstrukturen in Mittel- oder Hochspannungsbetriebsmitteln verstanden werden.A partial discharge or pre-discharge within the meaning of this application can be understood as locally occurring, incomplete electrical breakdowns of the insulation of conductor structures in medium- or high-voltage equipment, especially when subjected to alternating voltages.

Die in Fig. 1 auf der linken Seite abgebildete Vorrichtung 10 umfasst eine Signalerfassungseinrichtung 101 zum Erfassen 301 einer elektrischen Signalgröße des in Fig. 1 auf der rechten Seite abgebildeten Betriebsmittels 20. Wie Fig. 1 veranschaulicht sind die aus dem Betriebsmittel 20 herausgeführten und in Fig. 1 mit "P(hase)" und "N(eu-tral)" bezeichneten Anschlüsse des Betriebsmittels 20 elektrisch leitend an die Signalerfassungseinrichtung 101 anschließbar.The in Fig. 1 The device 10 shown on the left comprises a signal detection device 101 for detecting 301 an electrical signal quantity of the Fig. 1 on the right side of the equipment 20. How Fig. 1 illustrated are the outputs from the equipment 20 and in Fig. 1 The terminals of the equipment 20, designated "P(hase)" and "N(eu-tral)", can be electrically connected to the signal detection device 101.

Unter einer elektrischen Signalgröße im Sinne dieser Anmeldung können eine elektrische Stromstärke oder insbesondere eine elektrische Spannung (Potentialdifferenz) verstanden werden.An electrical signal quantity within the meaning of this application can be understood as an electrical current or in particular an electrical voltage (potential difference).

Die Signalerfassungseinrichtung 101 kann einen digitale Spannungswerte bereitstellenden Spannungsmesser umfassen, und die erfasste elektrische Signalgröße kann demzufolge digitale Spannungswerte umfassen.The signal detection device 101 may comprise a voltmeter providing digital voltage values, and the detected electrical signal quantity may accordingly comprise digital voltage values.

Dies vereinfacht einen Schaltungsaufwand und eine nachfolgende Signalverarbeitung erheblich.This considerably simplifies circuitry and subsequent signal processing.

Die Vorrichtung 10 umfasst ferner eine Filtereinrichtung 102 zum Tiefpassfiltern 302 der erfassten elektrischen Signalgröße in Abhängigkeit von einer Filtergrenzfrequenz fc. The device 10 further comprises a filter device 102 for low-pass filtering 302 the detected electrical signal quantity as a function of a filter cutoff frequency fc.

Unter einer Filtergrenzfrequenz, Knickfrequenz oder Eckfrequenz im Sinne dieser Anmeldung können jene Frequenzen verstanden werden, bei welchen ein Amplitudengang einer gefilterten elektrischen Signalgröße auf einen Wert von 1 / 2 70,7 %

Figure imgb0001
absinkt.A filter cutoff frequency, bend frequency or corner frequency within the meaning of this application can be understood as those frequencies at which an amplitude response of a filtered electrical signal quantity is reduced to a value of 1 / 2 70,7 %
Figure imgb0001
sinks.

Unter einem Amplitudengang im Sinne dieser Anmeldung kann ein frequenzabhängiges Verhältnis zwischen den Amplituden einer Eingangsgröße und einer Ausgangsgröße eines linearen zeitinvarianten Systems, insbesondere eines Filters, bei sinusförmiger Anregung verstanden werden.An amplitude response within the meaning of this application can be understood as a frequency-dependent relationship between the amplitudes of an input variable and an output variable of a linear time-invariant system, in particular a filter, in the case of sinusoidal excitation.

Eine Signalausbreitung TE-bedingter elektromagnetischer Signale/Impulse erfolgt in Abhängigkeit ihrer Frequenz. Dabei können die Signale durch die Isolierung (hochfrequent) oder leitungsgebunden durch die Kupferbahnen (niederfrequent) übertragen werden. Hochfrequente Anteile werden also abgestrahlt, sind leitungsungebunden und treffen auf kürzestem Weg an der Signalerfassungseinrichtung 101 ein. Niederfrequente Anteile sind dagegen leitungsgebunden und folgen der Wicklungsgeometrie.A signal propagation of PD-related electromagnetic signals/pulses occurs depending on their frequency. The signals can be transmitted through the insulation (high frequency) or via a cable through the copper tracks (low frequency). High-frequency components are therefore radiated, are not connected to a cable and arrive at the signal detection device 101 via the shortest path. Low-frequency components, on the other hand, are connected to a cable and follow the winding geometry.

Fig. 2 veranschaulicht eine Abhängigkeit eines Amplitudenganges einer Filtereinrichtung 102 zum Tiefpassfiltern 302 einer erfassten elektrischen Signalgröße von einer Filtergrenzfrequenz fc. Fig. 2 illustrates a dependence of an amplitude response of a filter device 102 for low-pass filtering 302 of a detected electrical signal variable on a filter cutoff frequency fc.

Das Tiefpassfiltern 302 entfernt die hochfrequenten Anteile, wie Fig. 2 beispielhaft veranschaulicht. Dargestellt ist der Amplitudengang derselben Filtereinrichtung 102 bei zehn verschiedenen Filtergrenzfrequenzen fc von 0,1 MHz bis 1 MHz. In einem jeweiligen Durchlassbereich liegt der Amplitudengang der gefilterten elektrischen Signalgröße über dem Wert von 1 / 2 70,7 %

Figure imgb0002
, der die jeweilige Filtergrenzfrequenz fc kennzeichnet, und in einem Sperrbereich darunter.The low-pass filter 302 removes the high-frequency components, such as Fig. 2 illustrated by way of example. The amplitude response of the same filter device 102 is shown at ten different filter cut-off frequencies fc from 0.1 MHz to 1 MHz. In a respective passband, the amplitude response of the filtered electrical signal quantity is above the value of 1 / 2 70,7 %
Figure imgb0002
, which indicates the respective filter cutoff frequency fc, and in a stop band below it.

Ein schrittweises Reduzieren 303 der Filtergrenzfrequenz fc hat demnach zur Folge, dass sich der Durchlassbereich bei niedrigeren Frequenzen sukzessive verringert und der Sperrbereich bei höheren Frequenzen sukzessive vergrößert.A step-by-step reduction 303 of the filter cutoff frequency fc therefore results in the passband being successively reduced at lower frequencies and the stopband being successively increased at higher frequencies.

Fig. 3 veranschaulicht eine Abhängigkeit einer Signalausbreitungszeit t(fc) von der Filtergrenzfrequenz fc. Dargestellt ist die beispielhafte Signalausbreitungszeit t(fc) eines TE-bedingten elektromagnetischen Impulses bis zur Signalerfassungseinrichtung 101 in Abhängigkeit von einer sukzessive von 1 MHz bis etwa 0,1 MHz reduzierten 303 Filtergrenzfrequenz fc. Fig. 3 illustrates a dependence of a signal propagation time t(fc) on the filter cutoff frequency fc. The exemplary signal propagation time t(fc) of a TE-related electromagnetic pulse to the signal detection device 101 is shown as a function of a filter cutoff frequency fc that is successively reduced from 1 MHz to approximately 0.1 MHz.

Je nach Filtergrenzfrequenz fc kann zunächst die hochfrequente Komponente des Signals dominieren, wie Fig. 3 beispielhaft veranschaulicht. Diese breitet sich durch Abstrahlung aus und trifft auf kürzestem Weg bei der Signalerfassungseinrichtung 101 ein.Depending on the filter cutoff frequency fc, the high-frequency component of the signal may initially dominate, such as Fig. 3 This is illustrated by way of example. This spreads out by radiation and arrives at the signal detection device 101 via the shortest path.

Die Filtereinrichtung 102 kann zu einem von einer anfänglichen Filtergrenzfrequenz fC,0 ausgehenden, schrittweisen Reduzieren 303 der Filtergrenzfrequenz fc eingerichtet sein, bis eine bei der reduzierten Filtergrenzfrequenz fc erfasste Signalausbreitungszeit t einen vorgegebenen absoluten Signalausbreitungszeitschwellwert trn übersteigt oder eine bei der anfänglichen Filtergrenzfrequenz fC,0 erfasste Signalausbreitungszeitdauer t0 um ein vorgegebenes relatives Signalausbreitungszeitverhältnis N übersteigt.The filter device 102 can be configured to gradually reduce 303 the filter cutoff frequency f c starting from an initial filter cutoff frequency f C,0 until a signal propagation time t detected at the reduced filter cutoff frequency f c exceeds a predetermined absolute signal propagation time threshold value trn or exceeds a signal propagation time duration t 0 detected at the initial filter cutoff frequency f C,0 by a predetermined relative signal propagation time ratio N.

Bei schrittweisem Reduzieren 303 der Filtergrenzfrequenz fc zeigt sich bei etwa 0,35 MHz ein sprunghafter Anstieg der Signalausbreitungszeit t. Dieser Sprung wird als Übergang betrachtet, bei dem die niederfrequente, leitungsgebundene Komponente der erfassten elektrischen Signalgröße dominiert, und variiert je nach Prüfobjekt und wurde insbesondere im Bereich < 1 MHz beobachtet. Das schrittweise Reduzieren 303 kann auch bis in den unteren MHz-Bereich (z.B. < 10 kHz) ausgedehnt werden. Die aussagekräftigsten Ergebnisse werden bei Filterfrequenzen von < 100 kHz, noch besser 10 - 50 kHz, erzielt.When the filter cutoff frequency fc is gradually reduced 303, a sudden increase in the signal propagation time t is observed at around 0.35 MHz. This jump is considered a transition in which the low-frequency, conducted component of the detected electrical signal quantity dominates and varies depending on the test object and has been observed in particular in the range < 1 MHz. The gradual reduction 303 can also be extended into the lower MHz range (eg < 10 kHz). The most meaningful results are achieved at filter frequencies of < 100 kHz, even better 10 - 50 kHz.

Bei Kenntnis der Filtergrenzfrequenz fC eines Prüfobjekts, bei der eine niederfrequente, leitungsgebundene Signalausbreitung dominiert, kann diese direkt eingestellt oder konfiguriert werden, ohne ein schrittweises Reduzieren 303 der Filtergrenzfrequenz fC im Feld zu erfordern. Mit dem schrittweisen Reduzieren 303 der Filtergrenzfrequenz fC erübrigt sich demzufolge eine Datenhaltung für prüfobjektspezifische Filtergrenzfrequenzen fC. und ergibt sich eine Automatisierung des Prüfvorgangs.If the filter cutoff frequency f C of a test object, where a low-frequency, line-based signal propagation dominates, is known, this can be set or configured directly without requiring a step-by-step reduction 303 of the filter cutoff frequency f C in the field. With the step-by-step reduction 303 of the filter cutoff frequency f C , data storage for test object-specific filter cutoff frequencies f C is therefore unnecessary and the test process is automated.

Durch das Tiefpassfiltern 302 wird die Mehrwegeausbreitung der Signale durch die Isolierung eliminiert, wodurch anschließend eine Laufzeitanalyse durchgeführt werden kann, wie sie von Energiekabeln bekannt ist. Bei Kenntnis von Wicklungsgeometrie und Gesamtlaufzeit durch die Wicklung kann so einen Rückschluss auf den Entstehungsort der TE erfolgen.The low-pass filter 302 eliminates the multipath propagation of the signals through the insulation, which then allows a runtime analysis to be carried out, as is known from power cables. If the winding geometry and the total runtime through the winding are known, a conclusion can be drawn about the location of the PD.

Die Filtereinrichtung 102 kann insbesondere ein digitales Tiefpassfilter umfassen.The filter device 102 can in particular comprise a digital low-pass filter.

Dies vereinfacht den Schaltungsaufwand und die nachfolgende Signalverarbeitung erheblich, insbesondere im Hinblick auf eine Einstellbarkeit der Filtergrenzfrequenz fc.This considerably simplifies the circuitry effort and the subsequent signal processing, especially with regard to the adjustability of the filter cutoff frequency fc.

Die Vorrichtung 10 umfasst ferner eine Zeiterfassungseinrichtung 104 zum Erfassen 304 einer Signalausbreitungszeit t der tiefpassgefilterten elektrischen Signalgröße. Die Zeiterfassungseinrichtung 103 kann einen digitale Zeitwerte bereitstellenden Zeitmesser umfassen.The device 10 further comprises a time detection device 104 for detecting 304 a signal propagation time t of the low-pass filtered electrical signal quantity. The time recording device 103 may comprise a timer providing digital time values.

Dies vereinfacht den Schaltungsaufwand und die nachfolgende Signalverarbeitung erheblich, insbesondere im Hinblick auf einer ggf. erforderlichen Speicherung und Verarbeitung einer Anzahl von Signalausbreitungszeitdauern für eine entsprechende Anzahl von verschiedenen Filtergrenzfrequenzen fC .This considerably simplifies the circuit complexity and the subsequent signal processing, in particular with regard to the possibly required storage and processing of a number of signal propagation times for a corresponding number of different filter cutoff frequencies f C .

Die Vorrichtung 10 umfasst ferner eine Vergleichseinrichtung 105 zum Vergleichen 305 der in Abhängigkeit von der Filtergrenzfrequenz fC erfassten Signalausbreitungszeit t(fC ) mit einer Referenzausbreitungszeit tref für leitungsgebunden durch das gesamte Betriebsmittel 20 geleitete Ladungsimpulse.The device 10 further comprises a comparison device 105 for comparing 305 the signal propagation time t ( f C ) detected as a function of the filter cutoff frequency f C with a reference propagation time t ref for charge pulses conducted in a conductive manner through the entire operating means 20.

Die Vergleichseinrichtung 105 kann eine ein Vergleichsergebnis der erfassten Signalausbreitungszeit t mit der Referenzausbreitungszeit tref bereitstellende Arithmetikeinheit umfassen.The comparison device 105 may comprise an arithmetic unit providing a comparison result of the detected signal propagation time t with the reference propagation time t ref .

Die Referenzausbreitungszeit tref für leitungsgebunden durch das gesamte Betriebsmittel 20 geleitete Ladungsimpulse kann beispielsweise bei Fertigung oder vor Inbetriebnahme des Betriebsmittels 20 unter Zuhilfenahme eines Ladungskalibrators 106 (s.u.) erfasst werden. Dabei wird ein künstlich erzeugter Ladungsimpuls durch das gesamte Betriebsmittel 20 geleitet. Die dadurch ermittelte Referenzausbreitungszeit tref entspricht einer Gesamtlänge L des leitungsgebundenen Signalausbreitungspfads zwischen den Anschlüssen des Betriebsmittels 20. Eine Teilentladung in dem Betriebsmittel 20 tritt zwischen diesen Anschlüssen auf. Die in Abhängigkeit von der Filtergrenzfrequenz fC erfasste leitungsgebundene Signalausbreitungszeit t(f C ) ist stets ein Bruchteil der Referenzausbreitungszeit tref und entspricht einem gleichen Bruchteil der Länge L des gesamten Signalausbreitungspfads: x L = t fc t ref

Figure imgb0003
The reference propagation time t ref for charge pulses conducted through the entire equipment 20 can be recorded, for example, during production or before commissioning of the equipment 20 with the aid of a charge calibrator 106 (see below). An artificially generated charge pulse is conducted through the entire equipment 20. The reference propagation time t ref determined in this way corresponds to a total length L of the conducted signal propagation path between the connections of the equipment 20. A partial discharge in the equipment 20 occurs between these connections. The conducted signal propagation time t (f C ) recorded as a function of the filter cutoff frequency f C is always a fraction of the reference propagation time t ref and corresponds to an equal fraction of the length L of the entire signal propagation path: x L = t fc t ref
Figure imgb0003

Durch das Vergleichen 305 der beiden Signalausbreitungszeiten lassen sich also Teilentladungen in einer Wicklung des Betriebsmittels 20 an einer Längenposition x zwischen den Anschlüssen des Betriebsmittels 20 lokalisieren, ohne über einen direkten Zugang zu der betreffenden Wicklung des Betriebsmittels 20 zu verfügen, da die zugrundeliegenden Messungen an den Anschlüssen des Betriebsmittels 20 vorgenommen werden können. Bei zusätzlicher Kenntnis der komplexen Wicklungsgeometrie des Betriebsmittels 20 lässt sich ferner eine exakte räumliche Lokalisierung des Entstehungsorts der TE vornehmen.By comparing 305 the two signal propagation times, partial discharges in a winding of the equipment 20 can be localized at a length position x between the terminals of the equipment 20 without having direct access to the relevant winding of the equipment 20, since the underlying Measurements can be made at the connections of the equipment 20. With additional knowledge of the complex winding geometry of the equipment 20, an exact spatial localization of the point of origin of the PD can also be carried out.

Die Vorrichtung 10 kann ferner einen Ladungskalibrator 106 zum leitungsgebundenen Leiten 306 eines Ladungsimpulses durch das gesamte Betriebsmittel 20 umfassen.The device 10 may further comprise a charge calibrator 106 for conducting 306 a charge pulse through the entire equipment 20.

Der eigentlichen TE-Messung vorausgehend, und daher in Fig. 1 durch Strichmuster als optional angedeutet, kann mit einem Ladungskalibrator 106 ein künstlich erzeugter TE-Impuls durch die gesamte Wicklung geschickt werden. Der Ladungskalibrator 106 ist hierzu elektrisch leitend an dem fernen "N(eutral)"-Anschluss des Betriebsmittels 20 anzuschließen. Der dort durch den Ladungskalibrator 106 freigesetzte Ladungsimpuls pflanzt sich von dem fernen "N(eutral)"-Anschluss durch die gesamte zwischen den Anschlüssen des Betriebsmittels 20 vorgesehene Wicklung zum der Signalerfassungseinrichtung 101 nahen "P(hasen)"-Anschluss hin fort und führt nach einer Laufzeit tref zu einer Änderung der dort erfassten 301 elektrischen Signalgröße. Die Laufzeit tref dieses Impulses dient als Referenz für die Laufzeit, die ein Impuls benötigt, um die gesamte Wicklung zu durchlaufen (Gesamtlaufzeit). Die Laufzeit t eines realen TE-Impulses wird relativ zu dieser Referenz angegeben, um die relative Position des Entstehungsorts der TE innerhalb der Wicklung anzugeben. Selbstverständlich kann der Ladungskalibrator 106 alternativ auch an den "P(hasen)"-Anschluss angeschlossen sein, während die Signalerfassung dann über den "N(eutral)"-Anschluss erfolgt.Prior to the actual TE measurement, and therefore in Fig. 1 indicated as optional by a line pattern, an artificially generated TE pulse can be sent through the entire winding using a charge calibrator 106. For this purpose, the charge calibrator 106 is to be connected in an electrically conductive manner to the remote "N(eutral)" connection of the device 20. The charge pulse released there by the charge calibrator 106 propagates from the remote "N(eutral)" connection through the entire winding provided between the connections of the device 20 to the "P(phase)" connection close to the signal detection device 101 and, after a running time t ref , leads to a change in the 301 electrical signal quantity detected there. The running time t ref of this pulse serves as a reference for the running time that a pulse requires to run through the entire winding (total running time). The transit time t of a real PD pulse is specified relative to this reference in order to indicate the relative position of the origin of the PD within the winding. Of course, the charge calibrator 106 can alternatively be connected to the "P(h)ase" connection, while the signal acquisition then takes place via the "N(eutral)" connection.

Fig. 4 veranschaulicht ein Verfahren 30 zum Lokalisieren von Teilentladungen in Mittel- oder Hochspannungsbetriebsmitteln 20 nach einem Ausführungsbeispiel. Fig. 4 illustrates a method 30 for locating partial discharges in medium or high voltage equipment 20 according to an embodiment.

Das Verfahren 30 kann mit der Vorrichtung 10 nach verschiedenen Ausführungsbeispielen durchgeführt werden.The method 30 can be carried out with the device 10 according to various embodiments.

Demzufolge sind die oben genannten Vorrichtungsmerkmale und deren Vorteile in dem Verfahren analog nutzbar.Consequently, the above-mentioned device features and their advantages can be used analogously in the method.

Hierzu ist die Signalerfassungseinrichtung 101 der Vorrichtung 10 wie in Fig. 1 gezeigt elektrisch leitend mit den nahen und fernen Anschlüssen des Betriebsmittels 20 zu verbinden.For this purpose, the signal detection device 101 of the device 10 is as in Fig. 1 shown to be electrically connected to the near and far terminals of the equipment 20.

In Schritt 301 umfasst das Verfahren 30 ein Erfassen einer elektrischen Signalgröße des Betriebsmittels 20 mittels der Signalerfassungseinrichtung 101 der Vorrichtung 10.In step 301, the method 30 comprises detecting an electrical signal quantity of the operating means 20 by means of the signal detection device 101 of the apparatus 10.

In Schritt 302 umfasst das Verfahren 30 ein Tiefpassfiltern der erfassten elektrischen Signalgröße mittels einer Filtereinrichtung 102 der Vorrichtung 10 in Abhängigkeit von einer Filtergrenzfrequenz fC der Filtereinrichtung 102.In step 302, the method 30 comprises low-pass filtering of the detected electrical signal quantity by means of a filter device 102 of the apparatus 10 as a function of a filter cutoff frequency f C of the filter device 102.

Die Filtergrenzfrequenz fC kann höchstens 1 MHz, bevorzugt höchstens 100 kHz, und stärker bevorzugt höchstens 50 kHz betragen.The filter cutoff frequency f C may be no more than 1 MHz, preferably no more than 100 kHz, and more preferably no more than 50 kHz.

In Schritt 303 kann das Verfahren 30 ferner ein von einer anfänglichen Filtergrenzfrequenz fC,0 ausgehendes, schrittweises Reduzieren der Filtergrenzfrequenz fc umfassen, bis eine bei der reduzierten Filtergrenzfrequenz fC erfasste Signalausbreitungszeit t einen vorgegebenen absoluten Signalausbreitungszeitschwellwert tth übersteigt oder eine bei der anfänglichen Filtergrenzfrequenz fC,0 erfasste Signalausbreitungszeitdauer t0 um ein vorgegebenes relatives Signalausbreitungszeitverhältnis N übersteigt. t f C > t th oder t f C > N t f C , 0

Figure imgb0004
In step 303, the method 30 may further comprise gradually reducing the filter cutoff frequency fc starting from an initial filter cutoff frequency f C,0 until a signal propagation time t detected at the reduced filter cutoff frequency f C exceeds a predetermined absolute signal propagation time threshold t th or exceeds a signal propagation time duration t 0 detected at the initial filter cutoff frequency f C,0 by a predetermined relative signal propagation time ratio N. t f C > t th oder t f C > N t f C , 0
Figure imgb0004

Eine Schrittweite beim Reduzieren 303 der Filtergrenzfrequenz fC kann mindestens 0.1 kHz, bevorzugt 1 kHz und noch stärker bevorzugt 10 kHz betragen.A step size when reducing 303 the filter cutoff frequency f C can be at least 0.1 kHz, preferably 1 kHz and even more preferably 10 kHz.

Dies begrenzt eine Dauer einer TE-Untersuchung eines Prüfobjekts.This limits the duration of a TE examination of a test object.

Das vorgegebene relative Signalausbreitungszeitverhältnis N kann mindestens 2, bevorzugt 5 und besonders bevorzugt 10 betragen.The predetermined relative signal propagation time ratio N can be at least 2, preferably 5 and particularly preferably 10.

Dies ermöglicht zusätzlich oder alternativ eine relative Festlegung eines Schwellwerts zur Erkennung eines sprunghaften Anstiegs der Signalausbreitungszeit t beim schrittweisen Reduzieren 303 der Filtergrenzfrequenz fC. This additionally or alternatively enables a relative setting of a threshold value for detecting a sudden increase in the signal propagation time t when gradually reducing 303 the filter cutoff frequency f C .

In Schritt 304 umfasst das Verfahren 30 ein Erfassen einer Signalausbreitungszeit t der tiefpassgefilterten elektrischen Signalgröße mittels einer Zeiterfassungseinrichtung 104 der Vorrichtung 10.In step 304, the method 30 comprises detecting a signal propagation time t of the low-pass filtered electrical signal quantity by means of a time detection device 104 of the device 10.

In Schritt 305 umfasst das Verfahren 30 ein Vergleichen der in Abhängigkeit von der Filtergrenzfrequenz fC erfassten Signalausbreitungszeit t mit einer Referenzausbreitungszeit tref für leitungsgebunden durch das gesamte Betriebsmittel 20 geleitete Ladungsimpulse mittels einer Vergleichseinrichtung 105.In step 305, the method 30 comprises comparing the signal propagation time t detected as a function of the filter cutoff frequency f C with a reference propagation time t ref for charge pulses conducted through the entire equipment 20 by means of a comparison device 105.

Das Verfahren 30 kann in Schritt 306 ferner ein leitungsgebundenes Leiten eines Ladungsimpulses durch das gesamte Betriebsmittel 20 mittels eines Ladungskalibrators 106 der Vorrichtung 10 umfassen, wobei der Schritt 306 in Fig. 4 und der Ladungskalibrator 106 in Fig. 1 durch Strichmuster als optional angedeutet sind. Der Ladungskalibrator 106 ist elektrisch leitend mit dem fernen Anschluss des Betriebsmittels 20 zu verbinden, um dort einen künstlich erzeugten TE-Impuls einzuleiten und darauf beruhend eine Referenzausbreitungszeit tref für leitungsgebunden durch das gesamte Betriebsmittel 20 geleitete Ladungsimpulse zu erfassen.The method 30 may further comprise, in step 306, conducting a charge pulse through the entire operating means 20 by means of a charge calibrator 106 of the device 10, wherein the step 306 in Fig. 4 and the charge calibrator 106 in Fig. 1 are indicated as optional by line patterns. The charge calibrator 106 is to be electrically connected to the remote terminal of the equipment 20 in order to introduce an artificially generated TE pulse there and, based thereon, to record a reference propagation time t ref for charge pulses conducted through the entire equipment 20.

Claims (13)

  1. An apparatus (10) for locating a partial discharge in a medium- or high-voltage operating means (20), comprising
    a signal detection device (101) for detecting (301) an electrical signal variable of the operating means (20);
    a filter device (102) for low-pass filtering (302) of the detected electrical signal variable depending on a filter cut-off frequency (fc);
    a time detection device (104) for detecting (304) a signal propagation time (t) of the low-pass-filtered electrical signal variable; and
    a comparison device (105) for comparing (305) the detected signal propagation time (t) detected depending on the filter cut-off frequency (fc) with a reference propagation time (tref) for a charge pulse conducted through the operating means (20) in order to determine a location of the partial discharge in the operating means depending on the result of the comparison,
    characterized in
    that the filter device (102) is set up for stepwise reducing (303) the filter cut-off frequency (fc) starting from an initial filter cut-off frequency (fC,0) until a signal propagation time (t) detected at the reduced filter cut-off frequency (fc) exceeds a predefined absolute signal propagation time threshold value (tth) or exceeds a signal propagation time period (t0) detected at the initial filter cut-off frequency (fC,0) by a predefined relative signal propagation time ratio (N).
  2. The apparatus (10) of claim 1, wherein a step size when reducing the filter cut-off frequency (fc) is at least 10 kHz.
  3. The apparatus (10) of claim 1 or claim 2, wherein the predefined relative signal propagation time ratio (N) is at least 10.
  4. The apparatus (10) of any one of the preceding claims, wherein the filter cut-off frequency (fc) is at most 1 MHz, preferably at most 100 kHz, and more preferably at most 50 kHz.
  5. The apparatus (10) of any one of the preceding claims, further comprising a charge calibrator (106) for wired conduction (306) of a charge pulse through the operating means (20) for determining the reference propagation time (tref).
  6. The apparatus (10) of any one of the preceding claims, wherein the detected electrical signal variable comprises digital voltage values, and wherein the signal detection device (101) comprises a voltmeter that provides digital voltage values.
  7. The apparatus (10) of any one of the preceding claims, wherein the filter device (102) comprises a digital low-pass filter.
  8. The apparatus (10) of any one of the preceding claims, wherein the time detection device (103) comprises a timer that provides digital time values.
  9. The apparatus (10) of any one of the preceding claims, wherein the comparison device (105) comprises an arithmetic unit that provides a comparison result of the detected signal propagation time (t) with the reference propagation time (tref).
  10. A method (30) for locating a partial discharge in a medium- or high-voltage operating means (20), comprising
    detecting (301) an electrical signal variable of the operating means (20); low-pass filtering (302) of the detected electrical signal variable depending on a filter cut-off frequency (fc);
    detecting (304) a signal propagation time (t) of the low-pass-filtered electrical signal variable; and
    comparing (305) the detected signal propagation time (t) detected depending on the filter cut-off frequency (fc) with a reference propagation time (tref) for a charge pulse conducted through the operating means (20) in order to determine a location of the partial discharge in the operating means depending on the result of the comparison,
    characterized by
    stepwise reducing (303) the filter cut-off frequency (fc) starting from an initial filter cut-off frequency (fC,0) until a signal propagation time (t) detected at the reduced filter cut-off frequency (fc) exceeds a predefined absolute signal propagation time threshold value (tth) or exceeds a signal propagation period (t0) detected at the initial filter cut-off frequency (fC,0) by a predefined relative signal propagation time ratio (N).
  11. The method (30) of claim 10, further comprising:
    wired conducting (306) of a charge pulse through the operating means (20) for determining the reference propagation time (tref) based on a running time of the charge pulse through the operating means before locating the partial discharge.
  12. The method (30) of claim 10 or claim 11, further comprising:
    determining a frequency range of the electrical signal variable in which a low-frequency component of the partial discharge dominates over a highfrequency component of the partial discharge; and
    detecting (304) the signal propagation time (t) of the electrical signal variable in the determined frequency range.
  13. The method (30) of any one of claims 10-12, wherein the method (30) is carried out using the apparatus (10) of any one of claims 1-9.
EP21705512.8A 2020-02-18 2021-02-15 Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment Active EP4107534B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50115/2020A AT523550B1 (en) 2020-02-18 2020-02-18 Device and method for localizing partial discharges in medium and high voltage equipment
PCT/EP2021/053644 WO2021165202A1 (en) 2020-02-18 2021-02-15 Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment

Publications (2)

Publication Number Publication Date
EP4107534A1 EP4107534A1 (en) 2022-12-28
EP4107534B1 true EP4107534B1 (en) 2025-01-29

Family

ID=74626001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21705512.8A Active EP4107534B1 (en) 2020-02-18 2021-02-15 Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment

Country Status (6)

Country Link
US (1) US12025647B2 (en)
EP (1) EP4107534B1 (en)
KR (1) KR20220156529A (en)
AT (1) AT523550B1 (en)
BR (1) BR112022015732A2 (en)
WO (1) WO2021165202A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815167A (en) * 1981-07-21 1983-01-28 Hitachi Ltd Electric discharge position measuring device of winding of electric apparatus
NL1022026C2 (en) * 2002-11-29 2004-06-07 Kema Nv Method and device for locating a discharge in a stator of an electrical machine.
EP2360486B1 (en) * 2010-02-24 2018-09-05 Omicron electronics GmbH Method for calibrating a partial discharge measurement device
GB201116088D0 (en) * 2011-09-16 2011-11-02 High Voltage Partial Discharge Ltd Method and apparatus for measuring partial discharge
JP2013124913A (en) * 2011-12-14 2013-06-24 Toshiba Corp Partial discharge measurement method and method for manufacturing rotary electric machine
CN207232312U (en) * 2017-09-09 2018-04-13 广西电网有限责任公司电力科学研究院 A kind of partial discharge pulse's amplitude detection circuit based on multiple process

Also Published As

Publication number Publication date
AT523550B1 (en) 2021-12-15
BR112022015732A2 (en) 2022-09-27
WO2021165202A1 (en) 2021-08-26
AT523550A1 (en) 2021-09-15
KR20220156529A (en) 2022-11-25
US20220390500A1 (en) 2022-12-08
EP4107534A1 (en) 2022-12-28
US12025647B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
DE3888751T2 (en) Procedure for determining the insulation condition.
DE68922727T4 (en) Method and device for partial discharge detection.
AT511807B1 (en) METHOD AND DEVICE FOR ONLINE RECOGNITION OF STATE-OF-CHARGE INSULATION IN AN ELECTRICAL MACHINE
DE69024278T2 (en) Arrangement for monitoring the insulation deterioration of an electrical installation
EP0241764B1 (en) Process and devices for detecting and localizing damages in electrical installations
DE69119942T2 (en) Power supply device and method for locating a fault in a power supply device
EP2482089B1 (en) Method and system for locating a defect in a cable
EP1623240B1 (en) Measuring device, and method for locating a partial discharge
DE69919723T2 (en) Inductive magnetic sensor with several closely coupled windings
DE68907961T2 (en) Fault detection system for electrical utilities.
DE2404223C3 (en) Method for measuring the electrical charge of partial discharges and for locating faults in the insulation of insulated conductors
EP3338099B1 (en) Method and test setup for measuring partial discharges in plug connections and use for plug connections in a rail vehicle
EP2204660A1 (en) Method and device for determining partial discharges from an electric component
Rodrigo et al. Study of partial discharge charge evaluation and the associated uncertainty by means of high frequency current transformers
EP3658925B1 (en) Method and testing device for measuring partial discharge pulses of a shielded cable
WO1999056140A1 (en) Method and device for monitoring an electrode line of a bipolar high voltage direct current (hvdc) transmission system
Farag et al. On-line partial discharge calibration and monitoring for power transformers
EP3870983B1 (en) State analysis of an electrical operating resource
EP2863236B1 (en) Test system for high voltage components
EP4107534B1 (en) Apparatus and method for locating partial discharges in medium-voltage and high-voltage equipment
DE2856354C2 (en) Device for testing metal-enclosed high-voltage systems for partial discharges
DE102017216985A1 (en) Measuring station for determining the shielding attenuation of potential shielding products
DE102019211040A1 (en) Method for determining asymmetrical vibrations when operating an electrical device connected to a high-voltage network
DD214461B1 (en) MEASURING PROBE FOR THE ELECTRICAL DETECTION OF IMPULSE SOFT PARTIAL DISCHARGES
Hauschild et al. Partial discharge measurement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230324

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021006505

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN