[go: up one dir, main page]

EP4065543A1 - Electrochemical method for preparing vanillin or its derivatives - Google Patents

Electrochemical method for preparing vanillin or its derivatives

Info

Publication number
EP4065543A1
EP4065543A1 EP19954123.6A EP19954123A EP4065543A1 EP 4065543 A1 EP4065543 A1 EP 4065543A1 EP 19954123 A EP19954123 A EP 19954123A EP 4065543 A1 EP4065543 A1 EP 4065543A1
Authority
EP
European Patent Office
Prior art keywords
compound
mediator
formula
group
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19954123.6A
Other languages
German (de)
French (fr)
Inventor
Renate Schwiedernoch
Stephane Streiff
Pascal Metivier
Dominique Horbez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Specialty Operations France SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP4065543A1 publication Critical patent/EP4065543A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds

Definitions

  • the present invention relates to an electrochemical method for preparing vanillin or its derivatives.
  • Vanillin of chemical name 4-hydroxy-3-methoxybenzaldehyde, is one of the most important aromatic flavor compounds used in foods, beverages, fragrances, pharmaceuticals and polymers. Vanillin was historically extracted from Vanilla planifolia, Vanilla tahitiensis and Vanilla pompona pods. The demand getting higher today, less than 5%of worldwide vanillin production comes from natural vanilla pods. Currently, chemical synthesis is the most important process for producing vanillin.
  • Vanillin was first synthesized from eugenol, found in clove oil, in 1875. Less than 20 years after it was first identified and isolated. Vanillin was commercially produced from eugenol until the 1920s. Later it was synthesized from lignin-containing “brown liquor” , a byproduct of the sulfite process for making wood pulp. Counter-intuitively, even though it uses waste materials, the lignin process is no longer popular because of environmental concerns, and today most vanillin is produced from guaiacol. Several routes exist for synthesizing vanillin from guaiacol.
  • the present invention therefore pertains to an electrochemical method for converting a compound of formula (I) to a compound of formula (II) in the presence of a solvent and a compound generating a mediator in reduced form in the solvent,
  • - M p+ is a cation selected from group consisting of H + , NH 4 + and metal cation;
  • R 1 , R 2 , R 3 and R 4 independently from each other, are selected from the group consisting of: a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom, a haloalkyl group and a perhaloalkyl group;
  • R 5 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • the mediator can be recycled and reused without forming any salts, which makes the method more environmental-friendly. Furthermore, lower potentials are needed when the mediator is used by comparing to prior arts.
  • oxidative decarboxylation reactions are oxidation reactions in which a carboxylate or carboxylic acid group is removed, forming carbon dioxide.
  • anode means the electrode from which electrons migrate to the outside circuit and is the electrode where oxidation occurs.
  • cathode means the electrode to which electrons migrate from the outside circuit and is the electrode where reduction occurs.
  • Ratios, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
  • mediator is a redox substance that mediates electron transfer. In the present invention, this substance acts as electron shuttles between the oxidizing electrode and the compound of formula (I) .
  • the mediator is not particularly limited as long as it can shoulder the responsibility for transferring the electron between the oxidizing electrode and the compound of formula (I) .
  • Examples of the compound generating a mediator in reduced form in the solvent are:
  • Alkali metal bromides such as lithium bromide (LiBr) , sodium bromide (NaBr) and potassium bromide (KBr) ;
  • Alkali metal chlorides such as lithium chloride (LiCl) , sodium chloride (NaCl) and potassium chloride (KCl) ;
  • LiI lithium iodide
  • NaI sodium iodide
  • KI potassium iodide
  • Iron salts such as iron (II) sulphate (FeSO 4 ) , iron (II) bromide (FeBr 2 ) , iron (II) chloride (FeCl 2 ) , iron (II) iodide (FeI 2 ) , iron (II) nitrite (Fe (NO 3 ) 2 ) , iron (II) acetate ( (C 2 H 3 O 2 ) 2 Fe) , potassium ferricyanide (II) K 4 [Fe (CN) 6 ] and ferrocene;
  • iron (II) sulphate (FeSO 4 ) iron (II) bromide (FeBr 2 ) , iron (II) chloride (FeCl 2 ) , iron (II) iodide (FeI 2 ) , iron (II) nitrite (Fe (NO 3 ) 2 ) , iron (II) acetate ( (C
  • Cerium salts such as cerium (III) sulfate Ce 2 (SO 4 ) 3 ;
  • Manganese salts such as manganese (II) sulfate (MnSO 4 ) ;
  • Copper salts such as copper (II) sulfate (CuSO 4 ) , copper (II) bromide (CuBr 2 ) , copper (II) chloride (CuCl 2 ) , copper (II) iodide (CuI 2 ) , copper (II) nitrite (Cu (NO 3 ) 2 ) and copper (II) acetate ( (C 2 H 3 O 2 ) 2 Cu) ;
  • Copper salts such as copper (II) sulfate (CuSO 4 ) , copper (II) bromide (CuBr 2 ) , copper (II) chloride (CuCl 2 ) , copper (II) iodide (CuI 2 ) , copper (II) nitrite (Cu (NO 3 ) 2 ) and copper (II) acetate ( (C 2 H 3 O 2 ) 2 Cu) ;
  • Cobalt salts such as cobalt (II) sulfate (CoSO 4 ) , cobalt (II) bromide (CoBr 2 ) , cobalt (II) chloride (CoCl 2 ) , cobalt (II) iodide (CoI 2 ) , cobalt (II) nitrite (Co ( (NO 3 ) 2 ) and cobalt (II) acetate ( (C 2 H 3 O 2 ) 2 Co) ;
  • cobalt salts such as cobalt (II) sulfate (CoSO 4 ) , cobalt (II) bromide (CoBr 2 ) , cobalt (II) chloride (CoCl 2 ) , cobalt (II) iodide (CoI 2 ) , cobalt (II) nitrite (Co ( (NO 3 ) 2 ) and cobalt (II) acetate ( (C
  • Chromium salts such as chromium (III) sulfate (Cr 2 (SO 4 ) 3 ) , chromium (III) bromide (CrBr 3 ) , chromium (III) chloride (CrCl 3 ) , chromium (III) iodide (CrI 3 ) , chromium (III) nitrite (Cr (NO 3 ) 3 ) and chromium (III) acetate ( (C 2 H 3 O 2 ) 3 Cr) .
  • chromium salts such as chromium (III) sulfate (Cr 2 (SO 4 ) 3 ) , chromium (III) bromide (CrBr 3 ) , chromium (III) chloride (CrCl 3 ) , chromium (III) iodide (CrI 3 ) , chromium (III) nitrite (Cr (NO
  • sodium bromide (NaBr) or ammonium bromide (NH 4 Br) can be preferably used.
  • environmental-friendly compound such as iron salts can be preferably used.
  • iron (II) sulphate (FeSO 4 ) is more preferable.
  • a mediator in reduced form is obtained when the compound above mentioned is dissolved in a solvent.
  • the mediator in reduced form is oxidized at the anode so as to obtain a mediator in oxidized form when the current is passed to the reactor.
  • the mediator in oxidized form then oxidizes the compound of formula (I) and simultaneously forms a mediator in reduced form, which can be same as or different from the mediator reduced form obtained when the compound is dissolved.
  • Halogen ions such as Br - , Cl - and I - ;
  • Metal ions such as Fe 2+ , Fe (CN) 6 4- , Mn 2+ , MnO 4 2- , Ce 3+ , Cr 3+ and Co 2+ .
  • hypobromite OBr -
  • hypochloride OCl -
  • hypoiodite OI -
  • Metal ions such as Fe 3+ , Fe (CN) 6 3- , MnO 4 2- , MnO 4 - , Ce 4+ , HCrO 4 - and Co 3+ .
  • M p+ can be a metal cation.
  • p is 1 or 2.
  • Examples of the metal cation are: K + , Li + , Na + and Mg 2+ .
  • M p+ is H + .
  • R 1 , R 2 , R 3 and R 4 independently from each other, are selected from the group consisting of: a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom, a haloalkyl group and a perhaloalkyl group.
  • R 1 , R 2 , R 3 and R 4 independently from one another, may be a hydrogen atom or a C 1 -C 6 alkyl group. More preferably, R 1 , R 2 , R 3 and R 4 , independently from one another, are selected from the group consisting of: a hydrogen atom, methyl, ethyl, propyl and isopropyl.
  • R 1 or R 3 may be an alkoxy group, which is selected from the group consisting of methoxy, ethoxy, propoxy and butoxy.
  • R 2 or R 4 may be a hydrogen atom.
  • R 5 is a hydrogen atom or an alkyl group.
  • the compound of formula (I) can be notably 4-hydroxy-3-methoxy mandelic acid or4-hydroxy-3-ethoxy mandelic acid.
  • the compound of formula (II) can be notably 4-hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-ethoxybenzaldehyde.
  • the solvent shall have good solubility for both the compound of formula (I) and the compound generating the mediator in reduced form so that they can have sufficient contact in the solution.
  • Such solvent can be alcohol, water or their combination.
  • the solvent is water.
  • pH value of the solution comprising the compound of formula (I) and the compound generating a mediator in reduced form depends on the mediator and is optionally adjusted by the skilled person.
  • pH value of the solution comprising compound of formula (I) and an iron salt shall be adjusted to below 4 and preferably below 3 to prevent the formation of iron (II) / (III) hydroxide.
  • pH value of the solution comprising compound of formula (I) and an alkali metal bromide shall be adjusted to an acidic or slight basic solution to prevent the formation of the toxic Br 2 gas.
  • the method according to the present invention is carried out in such a preferred reactor comprising both an anode and a cathode.
  • the anode and/or the cathode preferably comprises a catalyst.
  • the catalyst for the anode or the cathode may comprise metal element, which can be in the form of elemental metal, metal alloy, metal oxide or metal complex.
  • the anode catalyst may preferably comprise element selected from the group consisting of elements of Groups IIIA, IVA, VA of Periodic Table and Transition metals.
  • metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals.
  • This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Rfto Cn) .
  • Examples of the anode catalyst are notably:
  • Elemental metal comprise element selected from the group consisting of Pd, Pt, Ru, Au, Rh, Ir, Bi, Sn, B and any combination thereof.
  • Metal alloy such as Pd-Au, Pd-B and Pt-Ru.
  • the anode catalyst is Pt.
  • the cathode catalyst may preferably comprise element selected from the group consisting of elements of Groups IA, IIA, IIIA, IVA, VA, VIA, VIIA of Periodic Table, Transition metals and Lanthanides.
  • cathode catalyst examples include:
  • Elemental metal comprise element selected from the group consisting of Pt, Ni, Cu, C and any combination thereof.
  • the cathode catalyst is Ni or Cu and more preferably Cu.
  • the catalyst for the anode or the cathode mention above can be loaded on a support.
  • the support is not particularly limited. Typical examples of support are carbon, alumina and silica.
  • the anode or the cathode may comprise a catalyst mentioned above and a substrate.
  • the anode and the cathode can be made with porous substrate structures.
  • the anode substrates can include, for example, stainless steel net, nickel foam, sintered nickel powder, etched aluminum-nickel mixtures, carbon fibers, and carbon cloth.
  • carbon materials and stainless steel are used as an anode substrate.
  • the cathode substrates can include stainless steel, nickel foam, sintered nickel powder, etched aluminum-nickel mixtures, metal screens, carbon fibers, and carbon cloth.
  • Methods for applying the anode catalyst to the anode substrate, and the cathode catalyst to the cathode substrate include, for example, spreading, wet spraying, powder deposition, electro-deposition, evaporative deposition, dry spraying, decaling, painting, sputtering, low pressure vapor deposition, electrochemical vapor deposition, tape casting, screen printing, hot pressing and other methods.
  • preferred range of the catalyst loading may be comprised between 0.01 mg/cm -2 and 500 mg/cm -2 . More preferably, the catalyst loading amount may be comprised between 1 mg/cm -2 and 20 mg/cm -2 .
  • the electrochemical reactor used according to the invention has two independent compartments.
  • the anode and the cathode reside in these two compartments separately.
  • a membrane can be placed between the two compartments.
  • Said membrane can be neutral or ion-exchange membrane.
  • the membrane is a nafion (a sulfonated tetrafluoroethylene based fluoropolymer-copolymer) cation exchange membrane.
  • the distance between the anode and the cathode is in the range of 1 mm to 10 cm and preferably 3 mm to 1 cm.
  • the method according to the present invention comprises following steps:
  • the concentration of the compound generating a mediator in reduced form in the solution can be in the range of 0.05 M to 2 M and preferably0.1 M to 0.5 M.
  • the reaction temperature can be from 0°C to 100°C and more preferably from 10°C to 30°C and most preferably room temperature.
  • room temperature is between 15°C and 25°C.
  • the reaction can be run for 1 h to 144 h and more preferably2 h to 50 h.
  • the reaction can be run at a current density ranging from 0.1 mA/cm 2 to 100 mA/cm 2 and more preferably from 0.5 mA/cm 2 to 15 mA/cm 2 .
  • the reaction can be run at a potential ranging from 0.0001 V to 10 V and more preferably from 1.5 V to 4 V.
  • the molar ratio of the compound of formula (I) in this step to the compound generating a mediator in reduced form in step (i) can be equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  • the reaction temperature can be from 0°C to 100°C and more preferably from 10°C to 30°C and most preferably room temperature.
  • room temperature is between 15°C and 25°C.
  • the method according to the present invention carried out in an electrochemical reactor comprising both an anode and a cathode has following steps:
  • the molar ratio of the compound of formula (I) to the compound generating a mediator in reduced form can be equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  • the concentration of the compound generating a mediator in reduced form in Solution A can be in the range of 0.01 M to 1 M and preferably 0.05 M to 0.2 M.
  • the concentration of the compound of formula (I) in Solution A can be in the range of 0.1 M to 1 M and preferably 0.1 M to 0.3 M.
  • the concentration of the compound generating a mediator in reduced form in Solution B can be in the range of 0.01 M to 1 M and preferably 0.05 M to 0.2 M.
  • step a) and step b) may be reversed, or performed simultaneously.
  • the reaction temperature in this embodiment can be from 0°C to 100°C and more preferably from 10°C to 30°C and most preferably room temperature.
  • the reaction in this embodiment can be run at a current density ranging from 0.1 mA/cm 2 to 100 mA/cm 2 and more preferably 1 mA/cm 2 to 15 mA/cm 2 .
  • the reaction can be run at a potential ranging from 0.0001 V to 10 V and more preferably 1.5 V to 4 V.
  • the reaction can be run for 1 h to 144 h.
  • the Cu electrode is placed for 15 min in 2M HCl solution in ultrasonic bath, then rinsed with deionized water and placed another 15 min in the ultrasonic bath in ethanol.
  • the Cu plate is rinsed with ethyl acetate and air dried.
  • a 20 ml H-cell with a nafion cation exchange membrane is used as reactor. After the membrane is placed between the cells, water is filled in both sides in order to check the sealing.
  • NaBr (0.1672 g, 0.1 M) and mandelic acid (0.7109 g, 0.3 M) is dissolved in 12 ml water and transferred into the anode chamber.
  • the pH resulted in about 2.
  • the cathode solution consists of NaBr (0.1644 g, 0.1 M) in 12 ml water.
  • a 50 ml H-cell with a nafion cation exchange membrane is used as reactor. After the membrane is placed between the cells, water is filled in both sides in order to check the sealing.
  • ⁇ FeSO 4 (0.8361 g, 0.1 M) and mandelic acid derivative (1.7839 g, 0.3 M) is dissolved in 20 ml water and 10 ml 1M H 2 SO 4 and transferred into the anode chamber.
  • the pH resulted in about 0.
  • the cathode solution consists of 0.1 M FeSO 4 (0.8356g) solution in 10m ml 1M H 2 SO 4 and 20 ml water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrochemical method for preparing vanillin or its derivatives in the presence ofa mediator. The mediator can be recycled and reused and therefore no salt is formedby the end of the reaction, which makes the method more environmental-friendly. Furthermore, lower potentials are needed when the mediator is used by comparing to prior arts.

Description

    [Title established by the ISA under Rule 37.2] ELECTROCHEMICAL METHOD FOR PREPARING VANILLIN OR ITS DERIVATIVES TECHNICAL FIELD
  • The present invention relates to an electrochemical method for preparing vanillin or its derivatives.
  • BACKGROUND
  • Vanillin, of chemical name 4-hydroxy-3-methoxybenzaldehyde, is one of the most important aromatic flavor compounds used in foods, beverages, fragrances, pharmaceuticals and polymers. Vanillin was historically extracted from Vanilla planifolia, Vanilla tahitiensis and Vanilla pompona pods. The demand getting higher today, less than 5%of worldwide vanillin production comes from natural vanilla pods. Currently, chemical synthesis is the most important process for producing vanillin.
  • Vanillin was first synthesized from eugenol, found in clove oil, in 1875. Less than 20 years after it was first identified and isolated. Vanillin was commercially produced from eugenol until the 1920s. Later it was synthesized from lignin-containing “brown liquor” , a byproduct of the sulfite process for making wood pulp. Counter-intuitively, even though it uses waste materials, the lignin process is no longer popular because of environmental concerns, and today most vanillin is produced from guaiacol. Several routes exist for synthesizing vanillin from guaiacol.
  • At present, the most significant of these is the two-step process, in which guaiacol reacts with glyoxylic acid by electrophilic aromatic substitution. The resulting vanillylmandelic acid is then converted via 4-hydroxy-3-methoxyphenylglyoxylic acid to vanillin by oxidative decarboxylation. For example, J. Am. Chem. Soc. 1998, 120, 3332-3339 illustrates an industrial process for the synthesis of vanillin performed in two steps involving an electrophilic aromatic substitution of glyoxylic acid on guaiacol followed by an oxidative decarboxylation. Disadvantageously, a lot of salt produced by using this process when the reaction of oxidative decarboxylation was performed with periodinate NaIO 4.
  • Shenyang Huagong Daxue Xuebao (2010) , 24 (4) , 289-293 teaches a method for preparing vanillin by electrochemical oxidation from 3-methoxy-4-hydroxymandelic acid. However, such reaction must be carried out in the presence of a base compound, such as sodium hydroxide. Hydrochloric acid was  used to remove the base compound after the reaction. Similarly, salt was still formed by using this method. Furthermore, the reaction used high temperature ranging from 55-60℃. It is also well known for the skilled person that high potential is always needed for this reaction.
  • There is still a need to develop a more environmental-friendly process to prepare vanillin or its derivatives under milder reaction conditions, which can overcome the drawbacks in prior arts.
  • SUMMARY OF THE INVENTION
  • The present invention therefore pertains to an electrochemical method for converting a compound of formula (I) to a compound of formula (II) in the presence of a solvent and a compound generating a mediator in reduced form in the solvent,
  • wherein:
  • - M p+is a cation selected from group consisting of H +, NH 4 +and metal cation;
  • - p is the valence of M;
  • - R 1, R 2, R 3and R 4, independently from each other, are selected from the group consisting of: a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom, a haloalkyl group and a perhaloalkyl group;
  • - R 5 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • Advantageously, the mediator can be recycled and reused without forming any salts, which makes the method more environmental-friendly. Furthermore, lower potentials are needed when the mediator is used by comparing to prior arts.
  • DEFINITIONS
  • Throughout the description, including the claims, the term "comprising one" should be understood as being synonymous with the term "comprising at least one" , unless otherwise specified, and "between" should be understood as being inclusive of the limits.
  • As used herein, the terminology " (C n-C m) " in reference to an organic group, wherein n and m are each integers, indicates that the group may contain from n carbon atoms to m carbon atoms per group.
  • As used herein, the terminology “oxidative decarboxylation” reactions are oxidation reactions in which a carboxylate or carboxylic acid group is removed, forming carbon dioxide.
  • As used herein, the term “anode” means the electrode from which electrons migrate to the outside circuit and is the electrode where oxidation occurs.
  • As used herein, the term “cathode” means the electrode to which electrons migrate from the outside circuit and is the electrode where reduction occurs.
  • The articles “a” , “an” and “the” are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.
  • The term “and/or” includes the meanings “and” , “or” and also all the other possible combinations of the elements connected to this term.
  • It is specified that, in the continuation of the description, unless otherwise indicated, the values at the limits are included in the ranges of values which are given.
  • Ratios, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
  • DETAILS OF THE INVENTION
  • As used herein, “mediator” is a redox substance that mediates electron transfer. In the present invention, this substance acts as electron shuttles between the oxidizing electrode and the compound of formula (I) . The mediator is not particularly limited as long as it can shoulder the responsibility for transferring the electron between the oxidizing electrode and the compound of formula (I) .
  • Examples of the compound generating a mediator in reduced form in the solvent are:
  • - Alkali metal bromides, such as lithium bromide (LiBr) , sodium bromide (NaBr) and potassium bromide (KBr) ;
  • - Alkali metal chlorides, such as lithium chloride (LiCl) , sodium chloride (NaCl) and potassium chloride (KCl) ;
  • - Alkali metal iodides, such as lithium iodide (LiI) , sodium iodide (NaI) and potassium iodide (KI) ;
  • - Ammonium bromide (NH 4Br) ;
  • - Iron salts, such as iron (II) sulphate (FeSO 4) , iron (II) bromide (FeBr 2) , iron (II) chloride (FeCl 2) , iron (II) iodide (FeI 2) , iron (II) nitrite (Fe (NO 32) , iron (II) acetate ( (C 2H 3O 22Fe) , potassium ferricyanide (II) K 4 [Fe (CN)  6] and ferrocene;
  • - Cerium salts, such as cerium (III) sulfate Ce 2 (SO 43;
  • - Manganese salts, such as manganese (II) sulfate (MnSO 4) ;
  • - Copper salts, such as copper (II) sulfate (CuSO 4) , copper (II) bromide (CuBr 2) , copper (II) chloride (CuCl 2) , copper (II) iodide (CuI 2) , copper (II) nitrite (Cu (NO 32) and copper (II) acetate ( (C 2H 3O 22Cu) ;
  • - Cobalt salts, such as cobalt (II) sulfate (CoSO 4) , cobalt (II) bromide (CoBr 2) , cobalt (II) chloride (CoCl 2) , cobalt (II) iodide (CoI 2) , cobalt (II) nitrite (Co ( (NO 32) and cobalt (II) acetate ( (C 2H 3O 22Co) ;
  • - Chromium salts, such as chromium (III) sulfate (Cr 2 (SO 43) , chromium (III) bromide (CrBr 3) , chromium (III) chloride (CrCl 3) , chromium (III) iodide (CrI 3) , chromium (III) nitrite (Cr (NO 33) and chromium (III) acetate ( (C 2H 3O 23Cr) .
  • In some embodiments, sodium bromide (NaBr) or ammonium bromide (NH 4Br) can be preferably used.
  • In some embodiments, environmental-friendly compound such as iron salts can be preferably used. Among all iron salts, iron (II) sulphate (FeSO 4) is more preferable.
  • In the method according to the present invention, a mediator in reduced form is obtained when the compound above mentioned is dissolved in a solvent. It shall be understood by the skilled person that the mediator in reduced form is oxidized at the anode so as to obtain a mediator in oxidized form when the current is passed to the reactor. The mediator in oxidized form then oxidizes the compound of formula (I) and simultaneously forms a mediator in reduced form, which can be same as or different from the mediator reduced form obtained when the compound is dissolved.
  • Examples of the mediator in reduced form are:
  • - Halogen ions, such as Br -, Cl -and I -;
  • - Metal ions, such as Fe 2+, Fe (CN)  6 4-, Mn 2+, MnO 4 2-, Ce 3+, Cr 3+and Co 2+.
  • Examples of the mediator in oxidized form are:
  • - Halogen ions, such as hypobromite (OBr -) , hypochloride (OCl -) and hypoiodite (OI -) ;
  • - Metal ions, such as Fe 3+, Fe (CN)  6 3-, MnO 4 2-, MnO 4 -, Ce 4+, HCrO 4 -and Co 3+.
  • As defined above, M p+can be a metal cation. Preferably, p is 1 or 2.
  • Examples of the metal cation are: K +, Li +, Na +and Mg 2+.
  • In some preferred embodiments, M p+is H +.
  • As defined above, R 1, R 2, R 3 and R 4, independently from each other, are selected from the group consisting of: a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom, a haloalkyl group and a perhaloalkyl group.
  • In some embodiments, R 1, R 2, R 3 and R 4, independently from one another, may be a hydrogen atom or a C 1-C 6 alkyl group. More preferably, R 1, R 2, R 3and R 4, independently from one another, are selected from the group consisting of: a hydrogen atom, methyl, ethyl, propyl and isopropyl.
  • In some embodiments, R 1 or R 3 may be an alkoxy group, which is selected from the group consisting of methoxy, ethoxy, propoxy and butoxy. R 2 or R 4 may be a hydrogen atom.
  • According to a specific aspect of the present invention, R 5 is a hydrogen atom or an alkyl group.
  • The compound of formula (I) can be notably 4-hydroxy-3-methoxy mandelic acid or4-hydroxy-3-ethoxy mandelic acid.
  • The compound of formula (II) can be notably 4-hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-ethoxybenzaldehyde.
  • It is understood that the solvent shall have good solubility for both the compound of formula (I) and the compound generating the mediator in reduced form so that they can have sufficient contact in the solution. Such solvent can be alcohol, water or their combination. Preferably, the solvent is water.
  • pH value of the solution comprising the compound of formula (I) , and the compound generating a mediator in reduced form depends on the mediator and is optionally adjusted by the skilled person. For example, pH value of the solution comprising compound of formula (I) and an iron salt shall be adjusted to below 4  and preferably below 3 to prevent the formation of iron (II) / (III) hydroxide. pH value of the solution comprising compound of formula (I) and an alkali metal bromide shall be adjusted to an acidic or slight basic solution to prevent the formation of the toxic Br 2 gas.
  • The method according to the present invention is carried out in such a preferred reactor comprising both an anode and a cathode.
  • The anode and/or the cathode preferably comprises a catalyst. The catalyst for the anode or the cathode may comprise metal element, which can be in the form of elemental metal, metal alloy, metal oxide or metal complex.
  • The anode catalyst may preferably comprise element selected from the group consisting of elements of Groups IIIA, IVA, VA of Periodic Table and Transition metals.
  • As used herein, metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals. This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Rfto Cn) .
  • Examples of the anode catalyst are notably:
  • (i) Elemental metal comprise element selected from the group consisting of Pd, Pt, Ru, Au, Rh, Ir, Bi, Sn, B and any combination thereof.
  • (ii) Metal alloy, such as Pd-Au, Pd-B and Pt-Ru.
  • Preferably, the anode catalyst is Pt.
  • The cathode catalyst may preferably comprise element selected from the group consisting of elements of Groups IA, IIA, IIIA, IVA, VA, VIA, VIIA of Periodic Table, Transition metals and Lanthanides.
  • Examples of the cathode catalyst are notably:
  • - Elemental metal comprise element selected from the group consisting of Pt, Ni, Cu, C and any combination thereof.
  • Preferably, the cathode catalyst is Ni or Cu and more preferably Cu.
  • The catalyst for the anode or the cathode mention above can be loaded on a support. The support is not particularly limited. Typical examples of support are carbon, alumina and silica.
  • In one embodiment, the anode or the cathode may comprise a catalyst mentioned above and a substrate.
  • Preferably, the anode and the cathode can be made with porous substrate structures.
  • The anode substrates can include, for example, stainless steel net, nickel foam, sintered nickel powder, etched aluminum-nickel mixtures, carbon fibers, and carbon cloth. Preferably, carbon materials and stainless steel are used as an anode substrate.
  • The cathode substrates can include stainless steel, nickel foam, sintered nickel powder, etched aluminum-nickel mixtures, metal screens, carbon fibers, and carbon cloth.
  • Methods for applying the anode catalyst to the anode substrate, and the cathode catalyst to the cathode substrate include, for example, spreading, wet spraying, powder deposition, electro-deposition, evaporative deposition, dry spraying, decaling, painting, sputtering, low pressure vapor deposition, electrochemical vapor deposition, tape casting, screen printing, hot pressing and other methods.
  • When substrates are used, preferred range of the catalyst loading may be comprised between 0.01 mg/cm -2and 500 mg/cm -2. More preferably, the catalyst loading amount may be comprised between 1 mg/cm -2and 20 mg/cm -2.
  • In a preferred embodiment, the electrochemical reactor used according to the invention has two independent compartments. The anode and the cathode reside in these two compartments separately. A membrane can be placed between the two compartments. Said membrane can be neutral or ion-exchange membrane. Preferably, the membrane is a nafion (a sulfonated tetrafluoroethylene based fluoropolymer-copolymer) cation exchange membrane.
  • Advantageously, the distance between the anode and the cathode is in the range of 1 mm to 10 cm and preferably 3 mm to 1 cm.
  • In one embodiment, the method according to the present invention comprises following steps:
  • (i) dissolving the compound generating a mediator in reduced form in the solvent to obtain a solution;
  • (ii) adding the solution obtained at step (i) to an electrochemical reactor;
  • (iii) passing current to the electrochemical reactor to oxidize the mediator in reduced form to a mediator in oxidized form;
  • (iv) contacting the compound of formula (I) with the mediator in oxidized form obtained at step (iii) to produce the compound of formula (II) .
  • Step (i)
  • The concentration of the compound generating a mediator in reduced form in the solution can be in the range of 0.05 M to 2 M and preferably0.1 M to 0.5 M.
  • Step (iii)
  • Preferably, the reaction temperature can be from 0℃ to 100℃ and more preferably from 10℃ to 30℃ and most preferably room temperature.
  • According to the present invention, room temperature is between 15℃ and 25℃.
  • Preferably, the reaction can be run for 1 h to 144 h and more preferably2 h to 50 h.
  • Preferably, the reaction can be run at a current density ranging from 0.1 mA/cm 2 to 100 mA/cm 2 and more preferably from 0.5 mA/cm 2 to 15 mA/cm 2.
  • Preferably, the reaction can be run at a potential ranging from 0.0001 V to 10 V and more preferably from 1.5 V to 4 V.
  • Step (iv)
  • The molar ratio of the compound of formula (I) in this step to the compound generating a mediator in reduced form in step (i) can be equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  • Preferably, the reaction temperature can be from 0℃ to 100℃ and more preferably from 10℃ to 30℃ and most preferably room temperature.
  • According to the present invention, room temperature is between 15℃ and 25℃.
  • The skilled person will use the proper reaction time based on the reaction parameters above mentioned.
  • In another embodiment, the method according to the present invention carried out in an electrochemical reactor comprising both an anode and a cathode has following steps:
  • a) dissolving the compound of formula (I) and the compound generating a mediator in reduced form in the solvent to obtain Solution A;
  • b) dissolving the compound generating a mediator in reduced form in the solvent to obtain Solution B;
  • c) adding Solution A to the compartment having the anode and Solution B to the compartment having the cathode;
  • d) passing current to the reactor to produce the compound of formula (II) .
  • Step a)
  • The molar ratio of the compound of formula (I) to the compound generating a mediator in reduced form can be equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  • The concentration of the compound generating a mediator in reduced form in Solution A can be in the range of 0.01 M to 1 M and preferably 0.05 M to 0.2 M.
  • The concentration of the compound of formula (I) in Solution A can be in the range of 0.1 M to 1 M and preferably 0.1 M to 0.3 M.
  • Step b)
  • The concentration of the compound generating a mediator in reduced form in Solution B can be in the range of 0.01 M to 1 M and preferably 0.05 M to 0.2 M.
  • As can be understood by one skilled in the art, the sequence of step a) and step b) may be reversed, or performed simultaneously.
  • Step d)
  • Preferably, the reaction temperature in this embodiment can be from 0℃ to 100℃ and more preferably from 10℃ to 30℃ and most preferably room temperature.
  • Preferably, the reaction in this embodiment can be run at a current density ranging from 0.1 mA/cm 2 to 100 mA/cm 2 and more preferably 1 mA/cm 2 to 15 mA/cm 2.
  • Preferably, the reaction can be run at a potential ranging from 0.0001 V to 10 V and more preferably 1.5 V to 4 V.
  • Preferably, the reaction can be run for 1 h to 144 h.
  • The following examples are included to illustrate embodiments of the invention. Needless to say, the invention is not limited to described examples.
  • EXPERIMENTAL PART
  • Materials
  • - Sodium bromide: CAS No 7647-15-6 from Sigma-Aldrich
  • - Iron (II) sulfate heptahydrate: CAS No 7782-63-0 from Sigma-Aldrich
  • - 4-Hydroxy-3-methoxymandelic acid (vanillylmandelic acid) : CAS No 55-10-7 from Sigma-Aldrich
  • Example 1
  • Ex-situ synthesis of mediator
  • In order to prove that vanillin is formed by the mediator and not by electrochemistry, therefore in a first step BrO-will be formed by electrochemical oxidation of Br-in an H-Cell setup by electrochemistry. In a second step this solution will be added to 4-hydroxy-3-methoxy mandelic acid. Stirred for 4h.
  • ● 100 ml of 0.15 M NaBr aqueous solution is prepared including 1 ml of 1 M NaOH to achieve a slightly basic medium (total concentration=0.01M, pH between 7 and 8) .
  • ● As reactor an 80 ml H-cell is used. Both sides are filled with 50 ml of the above prepared solution. The membrane is a sulfone based cation exchange membrane (Nafion, M=1100, thickness=0.07 in) . In the anode chamber a circular Pt mesh is used as working electrode. (Diameter=2 cm, height=0.1 cm, surface area=3.14 cm 2) . In the cathode chamber a copper plate (1 cm x 1.5 cm, thickness=2 mm) is used as counter electrode. Prior to use the electrodes are cleaned. The Pt is cleaned with ethanol in ultrasonic bath for 15 min, rinsed with ethyl acetate and air dried. The Cu electrode is placed for 15 min in 2M HCl solution in ultrasonic bath, then rinsed with deionized water and placed another 15 min in the ultrasonic bath in ethanol. The Cu plate is rinsed with ethyl acetate and air dried.
  • ● The reaction is run for 20 h at a current density of 6.4 mA/cm 2.
  • ● In the second step, 0.86 mmol vanillylmandelic acid is weight and placed in a 10 ml beaker with stirr bar. In total 6 x 1 ml (equimolar) of the BrO-solution is dropped into the vessel while stirring. After slow addition of 1 ml 5 minutes are waited before the next addition. After 6 ml was added the reaction is allowed to stir overnight. The reaction solution has a strong vanillin smell. A precipitate is formed which is separated by centrifuging. The liquid phase is extracted with ethyl acetate. As well as the product of the organic phases as the solid precipitate are analyzed by NMR using DMSO. The estimated results show a total conversion of about 53%. The selectivity of the solid phase shows approximately 30%vanillin, 70%bisvanillin. The liquid phase showed 13%vanillin, 17%vanillic acid, 1%bisvanillin, 69%other.
  • Example 2
  • Electrochemical decarboxylation of 4-hydroxy-3-methoxy mandelic acid with sodium bromide.
  • A 20 ml H-cell with a nafion cation exchange membrane is used as reactor. After the membrane is placed between the cells, water is filled in both sides in order to check the sealing. The anode side is equipped with a Pt mesh as working electrode: diameter=1 cm, height=2 cm. Surface area=6.3 cm 2. The cathode side uses a 200 ppi Cu mesh as counter electrode. It is bent into cylindrical shape: length=4 cm, height=2 cm, surface area=8 cm 2. The system is not stirred and no reference electrode is used.
  • ● NaBr (0.1672 g, 0.1 M) and mandelic acid (0.7109 g, 0.3 M) is dissolved in 12 ml water and transferred into the anode chamber. The pH resulted in about 2. The cathode solution consists of NaBr (0.1644 g, 0.1 M) in 12 ml water.
  • ● For 144 h current with a current density of 0.5 mA/cm 2 is applied at the anode.
  • ● Work-up: the anode solution is 5 times extracted with 20 ml dichloromethane, dried over NaSO 4 and decanted. CH 2Cl 2 is removed in vacuum.
  • ● Following samples are taken for NMR: reaction solution before work-up, water phase after extraction, precipitate on anode, and organic phase. In addition HPLC is performed.
  • ● The HPLC show about 6 major products and the reactant. Vanillin could be clearly identified at a retention time of 12.394 min. The mandelic acid derivative is present at about 3.635 min. It seems that also dimer and trimer of vanillin is present. There are several unknown peaks which could be side products where the methoxy group at the aromatic ring is substituted by hydroxy group due to the acidic pH in the solution. Vanillic acid was not observed. Conversion was about 37%with a vanillin selectivity of 45%.
  • Example 3
  • Electrochemical decarboxylation of 4-hydroxy-3-methoxy mandelic acid with iron sulfate
  • ● A 50 ml H-cell with a nafion cation exchange membrane is used as reactor. After the membrane is placed between the cells, water is filled in both sides in order to check the sealing. The anode side is equipped with a Pt mesh as working electrode: diameter=1 cm, height=2 cm. Surface area=6.3 cm 2. The cathode side uses a 200 ppi Cu mesh as counter  electrode. It is bent into cylindrical shape: length=5 cm, height=2 cm, surface area=10 cm 2. The system is not stirred and no reference electrode is used.
  • ● FeSO 4 (0.8361 g, 0.1 M) and mandelic acid derivative (1.7839 g, 0.3 M) is dissolved in 20 ml water and 10 ml 1M H 2SO 4 and transferred into the anode chamber. The pH resulted in about 0. The cathode solution consists of 0.1 M FeSO 4 (0.8356g) solution in 10m ml 1M H 2SO 4 and 20 ml water.
  • ● For 144 h current with a current density of 10 mA/cm 2 is applied at the anode.
  • ● Work-up: the anode solution is 5 times extracted with 20 ml dichloromethane, dried over NaSO 4 and decanted. CH 2Cl 2 is removed in vacuum.
  • ● Following samples are taken for NMR: reaction solution before work-up, water phase after extraction, precipitate on anode, and organic phase.
  • ● After 2.5 h 15%of mandelic acid was converted. Next to several unknown side products vanillin and dihydroxy benzaldehyde was formed with selectivities of 17%and 16%respectively

Claims (15)

  1. An electrochemical method for converting a compound of formula (I) to a compound of formula (II) in the presence of a solvent and a compound generating a mediator in reduced form in the solvent,
    wherein:
    - M p+is a cation selected from group consisting of H +, NH 4 +and metal cation;
    - p is the valence of M;
    - R 1, R 2, R 3 and R 4, independently from each other, are selected from the group consisting of: a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom, a haloalkyl group and a perhaloalkyl group;
    - R 5 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  2. The method according to claim 1, wherein R 1 or R 3 is an alkoxy group.
  3. The method according to claim 2, wherein R 1 or R 3 is selected from the group consisting of methoxy, ethoxy, propoxy and butoxy and R 2 or R 4 is a hydrogen atom.
  4. The method according to claim 1, wherein R 5is a hydrogen atom or an alkyl group.
  5. The method according to claim 1, wherein the compound of formula (I) is 4-hydroxy-3-methoxy mandelic acid or 4-hydroxy-3-ethoxy mandelic acid.
  6. The method according to claim 1, wherein the compound generating a mediator in reduced form in the solvent is selected from the group consisting of alkali metal bromides, alkali metal chlorides, alkali metal iodides, ammonium bromide, iron salts, cerium salts, manganese salts, copper salts, cobalt salts and chromium salts.
  7. An electrochemical method for converting a compound of formula (I) as defined in claim 1 to a compound of formula (II) as defined in claim 1 comprising following steps:
    (i) dissolving a compound generating a mediator in reduced form in a solvent to obtain a solution;
    (ii) adding the solution obtained at step (i) to an electrochemical reactor;
    (iii) passing current to the electrochemical reactor to oxidize the mediator in reduced form to a mediator in oxidized form;
    (iv) contacting the compound of formula (I) with the mediator in oxidized form obtained at step (iii) to produce the compound of formula (II) .
  8. The method according to claim 7, wherein in step (i) , the concentration of the compound generating a mediator in reduced form in the solution is in the range of 0.05 M to 2 M and preferably 0.1 M to 0.5 M.
  9. The method according to claim 7, wherein in step (iii) and (iv) , the reaction temperature is from 0℃ to 100℃ and preferably from 10℃ to 30℃.
  10. The method according to claim 7, wherein the molar ratio of the compound of formula (I) in step (iv) to the compound generating a mediator in reduced form in step (i) is equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  11. An electrochemical method for converting a compound of formula (I) as defined in claim 1 to a compound of formula (II) as defined in claim 1 in an electrochemical reactor comprising both an anode and a cathode, this method comprising the following steps:
    a) dissolving the compound of formula (I) and a compound generating a mediator in reduced form in a solvent to obtain Solution A;
    b) dissolving a compound generating a mediator in reduced form in a solvent to obtain Solution B;
    c) adding Solution A to the compartment having the anode and Solution B to the compartment having the cathode;
    d) passing current to the reactor to produce the compound of formula (II) .
  12. The method according to claim 11, wherein in step a) , the molar ratio of the compound of formula (I) to the compound generating a mediator in reduced form is equal to or higher than 1 and preferably from 1 to 10 and more preferably from 1.5 to 5.0.
  13. The method according to claim 11, wherein the concentration of the compound generating a mediator in reduced form in Solution A of step a) or in Solution B of step b) is in the range of 0.01 M to 1 M and preferably 0.05 M to 0.2 M.
  14. The method according to claim 11, wherein in step a) , the concentration of the compound of formula (I) in Solution A is in the range of 0.1 M to 1 M and preferably 0.1 M to 0.3 M.
  15. The method according to claim 11, wherein in step d) , the reaction temperature is from 0℃ to 100℃ and preferably from 10℃ to 30℃.
EP19954123.6A 2019-11-25 2019-11-25 Electrochemical method for preparing vanillin or its derivatives Withdrawn EP4065543A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120513 WO2021102613A1 (en) 2019-11-25 2019-11-25 Electrochemical method for preparing vanillin or its derivatives

Publications (1)

Publication Number Publication Date
EP4065543A1 true EP4065543A1 (en) 2022-10-05

Family

ID=76129756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19954123.6A Withdrawn EP4065543A1 (en) 2019-11-25 2019-11-25 Electrochemical method for preparing vanillin or its derivatives

Country Status (6)

Country Link
US (1) US20230022284A1 (en)
EP (1) EP4065543A1 (en)
JP (1) JP2023508839A (en)
CN (1) CN114746581A (en)
BR (1) BR112022010011A2 (en)
WO (1) WO2021102613A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098374C (en) * 1999-08-25 2003-01-08 福建师范大学 Process for synthesizing o-, meta-, or p-methoxylbenzaldehyde by electrolysis
CN1940140A (en) * 2006-09-28 2007-04-04 东北电力大学 Production of 2,2-dimethyl-hydroxy-propionic acid by undirect electroxidation
FR2917085B1 (en) * 2007-06-06 2009-07-17 Rhodia Recherches & Tech PROCESS FOR THE PREPARATION OF HYDROXYAROMATIC ALDEHYDE
CN101260530A (en) * 2008-03-31 2008-09-10 浙江工业大学 Device and technique for indirectly electric oxidation synthesis of organic substance electrolytic regeneration medium
CN101979713A (en) * 2010-11-22 2011-02-23 天津市职业大学 A kind of electrolytic synthesis method of p-hydroxybenzaldehyde
CN102644091A (en) * 2012-04-13 2012-08-22 沈阳化工大学 Method for preparing o-vanillin
FR3013351B1 (en) * 2013-11-15 2016-01-01 Rhodia Operations PROCESS FOR THE PREPARATION OF MANDELIC AROMATIC COMPOUND AND AROMATIC ALDEHYDE COMPOUND
FR3014869B1 (en) * 2013-12-18 2016-01-01 Rhodia Operations PROCESS FOR THE SEPARATION OF MANDELIC COMPOUNDS IN SALIENT FORM AND THE USE THEREOF FOR THE PREPARATION OF AROMATIC ALDEHYDE

Also Published As

Publication number Publication date
US20230022284A1 (en) 2023-01-26
JP2023508839A (en) 2023-03-06
BR112022010011A2 (en) 2022-08-16
WO2021102613A1 (en) 2021-06-03
CN114746581A (en) 2022-07-12

Similar Documents

Publication Publication Date Title
Patil et al. Catalytic methods for imine synthesis
JP5465663B2 (en) Process for preparing hydroxyaromatic aldehydes
JP6096189B2 (en) Method for producing vanillin by electrochemically oxidizing an aqueous lignin solution or suspension
Bystroem et al. Palladium-catalyzed allylic oxidation of cyclohexenes using molecular oxygen as oxidant
Lu et al. Nanostructured electrocatalysts for electrochemical carboxylation with CO2
CN115917047B (en) Method for electrochemical production of alkanedicarboxylic acids by means of ring-opening oxidation using doped Ni (O) OH foam electrodes
Meyer et al. A zerovalent nickel-2, 2′-bipyridine complex: an efficient catalyst for electrochemical homocoupling of ortho-substituted halides and their heterocoupling with meta-and para-substituted halides
Das et al. Cobalt (III)-oxo cubane clusters as catalysts for oxidation of organic substrates
Dai et al. Upgrading biomass derived furan aldehydes by coupled electrochemical conversion over silver-based electrocatalysts
CN106946674A (en) A kind of environmentally friendly P-methoxybenzal-dehyde synthetic method
Karmakar et al. Solvent-free microwave-assisted peroxidative oxidation of alcohols catalyzed by iron (III)-TEMPO catalytic systems
Braun et al. Cobalt nickel boride as electrocatalyst for the oxidation of alcohols in alkaline media
EP4065543A1 (en) Electrochemical method for preparing vanillin or its derivatives
CA1269394A (en) Ceric oxidant
MX2015000244A (en) Method for producing vanillin.
CA1076603A (en) Process for preparing aromatic aldehydes and ketones
US11866835B2 (en) Electrochemical method for preparing an amine and/or a nitrile
Kon et al. Selective synthesis of α, β-unsaturated aldehydes from allylic alcohols using oxidatively supplied hydrogen peroxide from electrochemical two-electron water oxidation
EP0244812B1 (en) Oxidation of organic compounds
JP2015117224A (en) METHOD FOR PRODUCING α,β-UNSATURATED CARBONYL COMPOUNDS
JP2687590B2 (en) Method for producing sec-butyltoluene hydroperoxide
SU1030007A1 (en) Catalyst for extracting oxygen from water
CN110734363A (en) Method for oxidizing para-substituted phenols
JPS629095B2 (en)
Venkatesan et al. A rugged lead-ruthenate pyrochlore membrane catalyst for highly selective oxidation of alcohols

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SPECIALTY OPERATIONS FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240601